
Process-Driven Feature Modeling for Variability

Management of Project Environment Configurations
Thomas Moser, Stefan Biffl, and Dietmar Winkler

Christian Doppler Laboratory for Software Engineering Integration for Flexible Automation Systems

Institute of Software Technology and Interactive Systems, Vienna University of Technology
Favoritenstrasse 9/188, 1040 Vienna, Austria

{thomas.moser, stefan.biffl, dietmar.winkler}@tuwien.ac.at

ABSTRACT

Technical projects environments, i.e., sets of methods and tools

that support an engineering project, are software-intensive

systems that need to be configured according to software process

and project characteristics. Tailored software processes, e.g.,

based on the V Modell XT framework, specify project process

steps and drive method and tool selection with a focus on

individual feature requirements. Therefore, feature models can

support the automated selection and configuration of methods and

tools. For designing an effective and efficient engineering project

environment, project managers and engineering domain experts

can semantically integrate a given set of engineering tools and

project data models in a flexible way. In this paper, we analyze

challenges of managing engineering tool variability in context of

engineering project environment configurations and present a

conceptual approach using semantic modeling of project

requirements and tool capabilities.

Categories and Subject Descriptors

D.2.9 [Management]: Software Configuration Management.

General Terms

Management, Design, Theory.

Keywords

Feature Modeling, Project Environment Variability Management.

1. INTRODUCTION
Technical project environments aim at making software project

planning and execution more efficient and effective [3, 12].

Software environments are software-intensive systems as multiple

methods and tools have to collaborate efficiently on technical and

semantic levels to support project participants. As Software

Product Lines (SPL) support a strategic reuse of software artifacts

in a specific domain to enable a faster and cheaper delivery of

solutions on a higher level of product quality [5], project

environment configuration can be considered as a “product line

approach” to enable efficient and effective project execution

support on process level. A technical project environment

configuration consists of four parts (see Figure 1):

1. Tailored Process Approach. The process approach defines

process-related project execution strategies and required

process units [4], i.e., process components, encapsulating

process deliverables (products), activities to support product

construction, and product responsible roles. Process units are

core components of the V-Modell XT (a standard process

model for software and systems projects) and enable flexible

arrangement of components according to project types.

2. Best-Practice Method Support: Best-practice methods,

aligned with tailored processes and project characteristics,

enable effective and efficient construction of deliverables [2].

3. Tool Support: Tools – often heterogeneous derived from

different engineering disciplines – support method

application, collaboration, and project execution [3].

4. A Feature Model [8] aims at providing a link between

appropriate methods and candidate tools to support project

engineering. For instance, methods from requirements

management need features to specify individual requirements

and can enable tracing between these requirements.

Candidate tools must provide these features to some extent.

A feature model aims at supporting mapping of requested

(method) features and provided (tool) features to identify a

best-practice method/tool setting in the project context.

Tailored Process Approach based

on the V-Modell XT

Effective and Efficient

Method support

T
e

c
h

n
ic

a
l
P

ro
je

c
t
E

n
v
ir
o

n
m

e
n

t
C

o
n

fi
g

u
ra

ti
o

nDefine: Project

execution strategy

Method Tailoring

1

2
Execute: Task-related

method support

Evaluation &

Application of Tools

Enable: Efficient task

execution

Feature

Model

Requested / required features

4

Provided tool features

Tool Support
3

Figure 1: Project Process – Method – Tool-Support.

The considerable variability of candidate methods within an

engineering project scope and an even higher number of candidate

tools require appropriate approaches for linking methods, tools,

project data models, and the engineering process to provide an

efficient and effective project environment configuration. Based

on lessons learned with SPL research, we assume a high potential

of feature models to provide this missing link [8]. In this paper,

we analyze the challenges of managing engineering tool

variability in the context of engineering project environment

configuration. Additionally, we conceptually apply the proposed

approach to this context and present our findings regarding

strengths and limitations.

The remainder of this paper is structured as follows: Section 2

summarizes related work on SPL in the context of project

environment configuration, a process-driven approach based on

the V-Modell XT, and the application of variability management

with semantic techniques. We illustrate the basic research

challenges from real-world use cases in Section 3 and present a

solution approach in Section 4. Finally, Section 5 discusses the

findings, concludes and identifies further research work.

2. RELATED WORK
This section summarizes related work on (a) variability modeling

in software product lines, (b) a process-related approach based on

the V-Modell XT, and (c) feature models with semantic modeling

aspects.

2.1 SPL and Variability Management
Product line software engineering (PLSE) is an emerging software

engineering paradigm, which guides organizations towards the

development of products from core assets rather than the

development of products from the scratch. Two major activities of

PLSE are core asset development (i.e., product line engineering)

and product development (i.e., product engineering) using the

core assets [5]. In order to develop reusable core assets, PLSE

must provide the ability to use commonalties and manage

variability. Although core assets are built for a product line, they

have to be constructed with an understanding of the domain,

which provides a wider engineering perspective for reusability

and adaptability than a product line. Therefore, domain analysis,

which identifies commonality and variability from a domain

perspective, is a key requirement for reusable core asset

development for product lines [8].

Kang et al. established feature-oriented domain analysis (FODA)

[7], which identifies and classifies commonalities and differences

in a domain in terms of “product features.” Feature analysis

results can be used to develop reusable assets for the development

of multiple products in the domain.

2.2 Process Tailoring using the V-Modell XT
Project environment integration requires a well-defined baseline,

e.g., a software process model for guiding the project course. The

modular V-Modell XT1 (VMXT) concept enables the individual

customization of a project environment with respect to the

application domain, project characteristics, project views, and

organization-specific requirements [4]. Mandatory and optional

process units encapsulate products (product-centric approach) and

related activities, define responsible roles, and represent the basic

components of the process model approach [4]. A project

execution strategy defines the sequence of steps regarding the

project course separated by defined decision gates. Note that

passing each decision gate requires a set of deliverables at a

certain state of completion (including compliance with defined

quality criteria).

The modular structure of the VMXT enables process tailoring and

the adjustment of the VMXT to individual project requirements

and defines a sequence of project steps including required

deliverables and activities. Method and tool support is sketched

1 See http://www.v-modell-xt.de for a complete description of the process

approach.

by the VMXT framework, but there is still a lack of

implementation of method and tool support. Because of this

process’s flexibility we see the VMXT framework as a valuable

foundation for project environment configurations. However, a

key challenge is to handle the variability in configuring and

combining best-practice methods and tools for successful project

application. Nevertheless, all candidate methods and tools have

strength and weaknesses regarding individual method and tool

characteristics. Thus a well-defined evaluation and tool selection

approach is required to focus on individual needs of the technical

project configuration and the project.

2.3 Feature Models and Semantic Modeling
There are several reasons why feature-oriented domain analysis

has been used extensively compared to other domain analysis

techniques. First, features are essential abstractions that both

customers and developers understand, and therefore should be

first class objects in software development. Secondly, feature-

oriented domain analysis is an effective way to identify variability

(and commonality) among products in a domain. Finally, the

feature model can provide a basis for developing, parameterizing,

and configuring various reusable assets (e.g., domain requirement

models, architectural models, and reusable code components) [8].

In order to increase the quality of product line variability models

and to improve the product derivation process, researchers have

started investigating the use of ontologies in SPLE. For example,

Czarnecki et al. [6] have explored the relationship between

feature models and ontologies. They analyzed the notational

spectrum of feature models and ontologies and derived the idea

that feature models are views on ontologies. Czarnecki et al.

suggest using ontologies as views on feature models to provide

semantics for potentially overlapping feature models and support

querying and constraint mechanisms for these overlapping feature

model parts. Peng et al. [11] enriched feature models with

ontologies to increase feature models’ expression capacity. By

converting feature models into ontology models, the authors

provide a foundation for different mechanisms to validate feature

models through ontology inference. However, one of the core

problems is to agree on a common description language to

describe features of potentially similar assets, using heterogeneous

terminologies.

3. RESEARCH ISSUES
Our observations in industry projects have shown that

organizations often use tailored software processes following

industry sector and/or company standards, apply individual

methods and tools but without comprehensive view on the

technical project environment configuration. Process tailoring,

method selection, and tool application is typically based on the

individual experience of different roles, e.g., project managers,

method specialists, and tool engineers, without considering

variation points of methods and tools. The missing overview on

connected decisions and configuration activities often leads to

project environment that do not work well.

Therefore, an integrated view can improve project planning

including the selection and application of best-practice methods

and tools sets including variability considerations of methods and

tools with feature models across different engineering disciplines

and roles. We expect the following benefits from an integrated

approach: (a) more efficient project tailoring from individual

project characteristics and (b) better fitting selection and

configuration of tool sets to support method application. Thus,

project environment configuration requires (a) suitable and

tailored process approach, (b) appropriate methods and tools

(identified by features), and (c) a semantic integration and link of

features in terms of a feature model. From these requirements we

derive the following research challenges:

1. Definition of a process-driven approach for project

environment configuration. The VMXT aims at providing a

framework for individual process tailoring according to project

needs (project process steps) and provides a basic framework

for method and tool integration. Nevertheless, a main open

issue is how to couple method and tool assignment and

configuration with individual process steps.

2. Handling of the project environment configuration process as a

variant of SPL on process level. Based on the SPL approach

we see various technical project environment configurations

including variants of candidate method and tool sets and

variation points according to individual method and tool

characteristics as a promising approach for proposing a

“product line” for process- and project-related engineering

requirements. This research issue focuses on a possible

implementation of a process-related product line approach.

3. Realization of project environment configuration with feature

models and semantic techniques. Individual characteristics of

methods and tools hinder an efficient (automation-supported)

selection of method and tool sets. Thus we see the need for

introducing feature models and semantic techniques to enable

automated mapping with respect to project characteristics.

As research approach we present a solution concept based on a

real-world showcase and propose a concept for empirical

evaluation of the solution concept.

4. SOLUTION APPROACH
This section introduces a solution approach including a process-

driven application of project environment integration in context of

SPL, applying techniques from semantic feature modeling.

4.1 Project Environment as Process Line
From SPL, we see the selection and mapping process as some

kind of product line for processes, i.e., similar projects (e.g.,

comparable project types and application domains) which might

apply similar tool sets and project environment configurations.

Because of these similarities we applied the project environment

configuration to SPL engineering [1]. Figure 2 presents this

concept in a brief overview. The conceptual view in Figure 2 is

based on a simplified version of the SPL meta-model according to

Alves et al. [1] proposed by Muthig [10] and applies the concept

of project environment integration.

The upper block illustrates a general approach on various project

environment configurations and the lower block shows a detailed

configuration with respect to a particular project. The project

environment includes a certain tool set for a specific application

domain. Infrastructure and asset lead to a feature model

(variability of various tool sets and their features) and candidate

components for a project environment configuration. Architecture

refers to the technical implementation framework for tool

integration (e.g., the Engineering Service Bus [3]). Candidate

components are linked to expected tool characteristics. In this

paper we focus on early binding during project execution.

Alternative approaches might focus on the need for changing tool

characteristics during development (late binding) and at runtime

(e.g., diagnosis components).

The lower block presents a project view for individual project

environment configuration engineers. The engineer derives a

suitable project environment configuration based on individual

project requirements, the set of available tools (derived from the

feature model), proposed tool variants, and candidate components.

Note that the feature model aims at linking method and tool

requirements (requested by the tailored software process) as well

as tool and method features provided by the individual

components. A remaining question is the structure of the feature

model and how the feature models can be implemented to

efficiently support product environment configurations.

 Model & Tool

Engineer

Project

Environment

PL

Infrastructure

PL

Asset

Project

Environment

Architecture

Candidate

Components for

Proj. Env. Conf.

Tool

Characteristics

Binding Time

(early binding)
Feature Model

engineers

Project

Characteristics
Tool Set Variants Tool Variants

Tool Configuration

Project

Environment

Configuration

 Project

environment

configuration

engineer

1 *

* *

0..*

has

InstanceOfInstanceOfInstanceOf

configures

determines

*

0 .. *

*

*

1

*1

Figure 2. Project Environment Integration with SPL. Figure 3. Engineering Tool Feature Modeling.

4.2 Semantic Feature Modeling
Figure 3 shows the interplay of required and provided engineering

tool features. A typical engineering project has a defined

engineering project environment and uses the available IT

infrastructure. Based on these descriptions, a project environment

configuration can be derived, which specifies the engineering tool

features required by the particular engineering project. In contrast,

typical engineering tools provide a set of engineering tool

features, which again are trimmed by both the available IT

infrastructure, as well as by the configuration of particular

engineering tools.

The challenge is to identify from the set of candidate tools and

their configurations the set which is able to provide all (or most)

required engineering tool features for a given project and

available IT infrastructure. In [9], we introduced an approach for

semi-automatic semantic matchmaking for software services in the

Air Traffic Management (ATM) domain, which can provide

system designers with a set of promising matching software

service candidates and therefore strongly reduces the human

matching effort by focusing on a much smaller space of

matchmaking candidates.

5. DISCUSSION AND CONCLUSION
A technical project environment configuration including process,

method and tool support (adjusted to each other) is the backbone

for an efficient and effective project execution. In industry

practice we observed that each topic requires individual experts

but there are limitations on a comprehensive view on the technical

project environment configuration. Additionally, individual

variation points of methods and tools seem not to be considered

(variability aspects). Therefore, we proposed a framework for

setting up a process-driven approach for variability of project

environment configuration based on feature models and semantic

techniques. Expected benefits are:

1. Systematic approach for environment configuration.

Individual process tailoring based on a well-known software

process (V-Modell XT) enables a well-suited sequence of

process steps according to individual project needs.

Additionally, the modular configuration enables an

integrated view on methods and tools within the project

configuration.

2. Application of successful SPL principles. Based on reports

from SPL, we see similarities of product line and project

environment configurations as individual methods and tools

include variation points, which have to be adjusted to each

other. Similar projects can be based on a common

(organization specific) project management and engineering

base; individual tailoring according to a specific project

enable a project specific selection of tool-sets.

3. Semi-automated support for tool selection and

configuration. Candidate methods and tools include

individual features and characteristics. Thus, there is a need

to map these individual characteristics to identify a best-

practice method/tool set in a given project context.

Nowadays, this mapping is done be individual roles (e.g.,

project manager, method experts, and tool specialists)

manually. Feature models and semantic techniques can

support this selection and evaluation process automatically.

In our work we see technical projects environments as software-

intensive systems that need to be configured and have to adhere to

software process and project characteristics. In this paper we

analyzed the basic characteristics of project environment

configuration based on the V-Modell XT framework and

presented a feature-model based approach and illustrating

showcase for the selection and configuration of methods and tools

from a candidate set. The feature models in combination with

semantic integration approaches were shown to principally

support the automated selection of methods and tools during

project configuration and planning. We analyzed the challenges of

managing engineering tool variability in the context of

engineering project environment configuration and presented a

conceptual approach using semantic modeling of project

requirements and tool capabilities.

In our further research work we will evaluate the proposed feature

modeling approach with practitioners in the use case domain to

find out whether the approach seems usable and useful in a real-

world context.

6. REFERENCES
[1] V. Alves, D. Schneider, M. Becker, N. Bencomo, and P. Grace,

“Comparitive Study of Variability Management in Software

Product Lines and Runtime Adaptable Systems,” 3rd International

Workshop on Variability Modelling of Software-Intensive Systems,

2009, pp. 9-17.

[2] S. Biffl, C. Denger, F. Elberzhager, and D. Winkler, “Quality

Assurance Tradeoff Analysis Method (QATAM)-An Empirical

Quality Assurance Planning and Evaluation Framework,”

Euromicro SEAA, Work in Progress, 2007, pp.

[3] S. Biffl, A. Schatten, and A. Zoitl, “Integration of Heterogeneous

Engineering Environments for the Automation Systems Lifecycle,”

IEEE Industrial Informatics Conf., 2009, 2009, pp. 576-581.

[4] S. Biffl, D. Winkler, R. Höhn, and H. Wetzel, “Software Process

Improvement in Europe: Potential of the New V-Modell XT and

Research,” Software Process: Improvement and Practice, vol. 11,

no. 3, 2006, pp. 229-238.

[5] P. Clements, and L. Northrop, Software product lines, Addison-

Wesley Reading MA, 2001.

[6] K. Czarnecki, C.H.P. Kim, and K.T. Kalleberg, “Feature models are

views on ontologies,” 10th International Software Product Line

Conference, IEEE CS, 2006, pp. 41-51.

[7] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson,

“Feature-oriented domain analysis (FODA) feasibility study,”

Technical Report CMU/SEI-90-TR-21, 1990.

[8] K. Lee, K.C. Kang, and J. Lee, “Concepts and Guidelines of

Feature Modeling for Product Line Software Engineering,” 7th

International Conference on Software Reuse: Methods,

Techniques, and Tools, Springer-Verlag, 2002, pp. 62-77.

[9] T. Moser, R. Mordinyi, W.D. Sunindyo, and S. Biffl, “Semantic

Service Matchmaking in the ATM Domain Considering

Infrastructure Capability Constraints,” 21st International

Conference on Software Engineering and Knowledge Engineering

(SEKE 2009), 2009, pp. 222-227.

[10] D. Muthig, “A light-weight approach facilitating an evolutionary

transition towards software product lines,” Series of PhD Theses in

Experimental Software Engineering, vol. 11, 2002.

[11] X. Peng, W. Zhao, Y. Xue, and Y. Wu, “Ontology-Based Feature

Modeling and Application-Oriented Tailoring,” 9th International

Conference on Software Reuse (ICSR), Springer, 2006, pp. 87-100.

[12] I. Sommerville, Software Engineering. 8th, Addison-Wesley, 2006.

