
Minimization of Memory Tra�c in High-Level Synthesis�

David J. Kolson Alexandru Nicolau Nikil Dutt

Department of Information and Computer Science

University of California, Irvine

Irvine, CA 92717-3425

Abstract

This paper presents a new transformation for the
scheduling of memory-access operations in High-Level

Synthesis. This transformation is suited to memory-

intensive applications with synthesized designs contain-
ing a secondary store accessed by explicit instructions.

Such memory-intensive behaviors are commonly observed

in video compression, image convolution, hydrodynamics
and mechatronics. Our transformation removes load and

store instructions which become redundant or unneces-

sary during the transformation of loops. The advantage
of this reduction is the decrease of secondary memory

bandwidth demands. This technique is implemented in

our Percolation-Based Scheduler which we used to con-
duct experiments on core numerical benchmarks. Our re-

sults demonstrate a signi�cant reduction in the number

of memory operations and an increase in performance on
these benchmarks.

1 Introduction

Traditionally, one of the goals in High-Level Synthesis
(HLS) is the minimization of storage requirements for syn-

thesized designs [5, 7, 15, 19]. As the focus of HLS shifts

towards the synthesis of designs for inherently memory-
intensive behaviors [6, 8, 14, 16, 18], memory optimiza-

tion becomes crucial to obtaining acceptable performance.

Examples of such behaviors are abundant in video com-
pression, image convolution, speech recognition, hydrody-

namics and mechatronics. The memory-intensive nature of

these behaviors necessitates the use of a secondary store
(e.g., a memory system), since a primary store (e.g., reg-

ister storage) su�ciently large enough would be impracti-

cal. This memory is explicitly addressed in a synthesized
system by memory operations containing indexing func-

tions. However, due to bottlenecks in the access of memory

systems, memory accessing operations must be e�ectively
scheduled so as to improve performance.

Our strategy for optimizing memory access is to elim-

inate the redundancy found in memory interaction when
scheduling memory operations. Such redundancies can be

found within loop iterations, possibly over multiple paths,

�This work was supported in part by NSF grant

CCR8704367, ONR grant N0001486K0215 and a UCI Faculty
Research Grant.

as well as across loop iterations. During loop pipelining

[17, 13] redundancy is exhibited when values loaded from
and/or stored to the memory in one iteration are loaded

from and/or stored to the memory in future iterations. For

example, consider the behavior:

for i = 1 to N

for j = 1 to N

a[i] := a[i] + 1

2
(b[i][j � 1] + b[i][j � 2])

b[i][j] := F (b[i][j])
end

end

The inner loop would normally require four load and two

store instructions per iteration. However, after application

of our transformation, the inner loop contains only one
load and one store.

Previous work in reducing memory accessing balances
load operations with computation [3]. However, their al-

gorithm only removes redundant loads and only deals with

single-dimensional arrays and single ow-of-control. In [6]
a model for access dependencies is used to optimize mem-

ory system organization. In [16] background memory man-

agement is discussed, but no details of an algorithm are
present. Therefore, it is not clear what approach is taken in

determining redundancy removal, nor the general applic-

itivity of the technique. Related work includes the mini-
mization of registers [8, 14], the minimization of the inter-

connection between secondary-store and functional units

[11], and the assignment of arrays to storage [18].

Our transformation has many signi�cant bene�ts. By

eliminating unnecessary memory operations that occur on

the critical dependency path through the code, the perfor-

mance of the resulting schedule can increase dramatically:

the length of the critical path can be shortened, thus gen-

erating more compact schedules and reducing code size.

Also, due to our transformation's local nature, it integrates
easily into other parallelizing transformations [4, 13]. An-

other bene�t is the possible savings in hardware due to

the decrease in memory bandwidth requirements and/or
the exploration of more cost-e�ective implementations.

2 Program Model

In our model, a program is represented by a control
data-ow graph where each node corresponds to opera-

tions performed in one time step and the edges between

nodes represent ow-of-control. Initially, each node con-
tains only one operation. Parallelizing a program involves

the compaction of multiple operations into one node (sub-
ject to resource availability).

Memory operations contain an indexing function, com-

posed of a constant base and induction variables (iv's),
and either a destination for load operations or a value for

store operations1 . The semantics of a load operation are

that issuing a load reserves the destination (local storage)
at issuance time (i.e., destination is unavailable during the

load's latency). For the purpose of dependency analysis on

memory operations, each contains a symbolic expression
which is a string that formulates the indexing function

without iv's. (During loop pipelining these expressions

must be updated w.r.t. iv's.)

The initial analysis algorithm in Fig. 1 computes ini-

tial program information. Detecting loop invariants and

iv's and building iv use-def chains can be done with stan-
dard algorithms found in [1] and stored into a database.

The function build symbolic exprs creates symbolic expres-

sions for each memory operation in the program by getting
the iv de�nitions that de�ne the current operation's index-

ing function and deriving an expression for each. Next, the

base of the memory structure is added to each expression.
An operation is then annotated with its expression, com-

bining multiple expressions into one of the form \((expr1)

or . . .or (exprN))."

The function derive expr constructs the expression

\(LoopId * Const)" if iv is self-referencing (e.g. i = i +

const) where LoopId is the identi�er of the loop over which
iv inducts and Const is a constant derived from the con-

stant in the iv operation multiplied by a data size and pos-

sibly other variables and constants2 . In the introductory
example, the data size for the j loop is the array element

size and for the i loop is the size of a column (or row) of

data. If iv is de�ned in terms of another iv (e.g. i = j +
1, where j is an iv) then recursive calls are made on all

de�nitions of that other iv. In this case, marking of iv's is

necessary to detect cyclic dependencies which are handled
by a technique called variable folding. Essentially variable

folding determines an initial value of a variable on input

to the loop or resulting from the �rst iteration (i.e. val-
ues which are loop-carried are not considered) from the

reverse-ow of the graph. The result can be a constant

or another variable (which is recursively folded, until the
beginning of the loop is reached).

Fig. 2 shows a sample behavior and its CDFG annotated

with symbolic expresssions. The load from A builds the
expression \((8 * L0) + (4 * L0))" which is the addition

of 2 (the const for iv j) times 4 (the element size) and 1

(the const for iv i) times 4. The second loop over k adds
the expression \(400 * L1)." Finally the base address of

A is added. For the store operation, the expression \(12 *

1We use the term argument to refer to destination if the
operations is a load or to value if the operation is a store.

2For clarity we present a simpli�ed algorithm. More complex
analysis (based on [12]) has been implemented in our scheduler.

Procedure initial analysis(program)
begin

/* Detect loop invariants. */
/* Detect induction variables in program. */
/* Build iv use-def chains in program. */
build symbolic exprs(program)

end initial analysis

Procedure build symbolic exprs(program)
begin

foreach mem op in program
/* Set iv defs to the possible iv defs found in DB. */
foreach iv group in iv defs
new expr = derive expr(iv group)
/* Add Base of mem op to new expr. */
/* Annotate mem op with new expr. */

end

end

end build symbolic exprs

function derive expr(iv group)

begin

foreach iv in iv group

if (/* iv is marked */) then
/* Do variable folding. */

else if (/* iv is self-referencing */)
/* Return the string \(Const * LoopId))" */

else

/* Mark iv, then recursively derive */
/* the iv that de�nes this iv. */

end if

end

end derive expr

Figure 1: Initial program analysis.

L0)" is created which is 1 times 4 times 3 (the constant in
the behavior). Due to the +1 in the index expression, the

constant 4 is added to the base address of A.

3 Memory Disambiguation

Memory disambiguation is the ability to determine if

two memory access instructions are aliases for the same
location [1]. In our context, we are interested in static

memory disambiguation, or the ability to disambiguate

memory references during scheduling. In the general case,
memory indexing functions can be arbitrarily complex due

to explicit and implicit induction variables and loop index

increments. Therefore, a simplistic pattern matching ap-
proach to matching loads and stores over loop iterations

cannot provide the power of memory aliasing analysis. For

instance, in the following behavior, if arrays a and b are

aliases:

for i = 1 to N

a[i] := 1

2
b[i� 1] + 1

3
a[i� 2]

Coef [i] := b[i] + 1
end

pattern matching will fail to �nd the redundancy.

In our scheduler, memory disambiguation is based on

the well-known greatest common divisor, or GCD test [2].

.

.

.

for k = 1 to 100
j = 0
for i = 1 to 100

b = A[k][i+j]
j = j + 2
A[k][3i+1] = value

end
end

Load
1

+

j +
2

i 3
*

1
-

4

*

k
400

+

+
baseA

+

*

4

*

+

i j

400 k

*

+

baseA

+

4

Store

((baseA + 4) + ((12 * L0) + (400 * L1)))

(baseA + (((8 * L0) + (4 * L0)) + (400 * L1)))

Figure 2: Symbolic expressions example.

Performing memory disambiguation on two operations,

op1 and op2, involves determining if the di�erence equa-

tion: (op1's symbolic expression) - (op2's symbolic expres-
sion) = 0 has any integer solution. Fig. 3 contains an

algorithm to disambiguate two memory references.

This algorithm works by iterating over all expressions

of operations one and two, thereby testing each possible

address that the two operations can have. The �rst step
in disambiguating two expressions is to convert them into

the sum of products form \((a * b)+. . .+(y * z))." Next,

operation two's expression is subtracted from operation
one's. If the resultant expression is not linear then the

disambiguator returns CANT TELL, otherwise the gcd of

coe�cients of the equation is solved for. If the gcd does
not divide all terms, there is no dependence between op1

and op2.

Returning to the example in Fig. 2, if the load from

iteration i + 1 is overlapped with the store from iteration i,

the disambiguator determines that the updated expression
for the load minus the store's expression is 0, exposing

the redundancy in loading a value which has just been

computed.

If the disambiguator cannot determine that two mem-

ory operations refer to the same location, we follow the
conservative approach that there is a dependence between

them (i.e., no optimization can be done). Assertions

(source-level statements such as certain arrays reside in
disjoint memory space, absolute bounds on loops, etc.)

can be used to allay this. Also, providing the user with

the information the dismabiguator has derived and query-
ing for a result to the dependence question is an alternate,

interactive approach.

function disambiguate(op1, op2)
begin

foreach ex1 in op1's expressions
foreach ex2 in op2's expressions
/* Convert ex1 and ex1 into sum of products form. */
/* Set expr to ex1 - ex2. */
/* If expr is not linear, return CANT TELL. */
/* Solve GCD of coe�cients of expr. */
/* If sol and divides all terms return EQUAL */
/* else return NOT EQUAL. */

end

end

end disambiguate

Figure 3: Disambiguating memory references.

function redundant elimination(op, from step)
begin

if (INVARIANT(op)) then
status = remove inv mem op(op, from step)

/* if op was removed, return REMOVED */
foreach memory operation, mem op, in to
if (disambiguate(op, mem op) == EQUAL) then

switch op-mem op
case load-load:

return do load load opt(op, mem op)
case load-store:

status = try load store opt(op, mem op)
/* if op was removed, return REMOVED */

case store-store:
/* If op's arg and mem op's arg have */
/* the same reaching defs, delete op, */

/* and update necessary information. */
return REMOVED

case store-load:
return ANTI-DEPENDENCE

end

end if

end

end redundant elimination

Figure 4: Redundant elimination algorithm.

4 Reducing Memory Tra�c

Our solution to reducing the amount of memory traf-

�c in HLS is to make explicit the redundancy in memory

interaction within the behavior and eliminate those ex-
traneous operations. Our technique is employed during

scheduling rather than as a pre-pass or post-pass phase; a

pre-pass phase may not remove all redundancy since other
optimizations can create opportunities that may not have

otherwise existed while a post-pass phase cannot derive

as compact a schedule since operations eliminated on the

critical path allow further schedule re�nement.

4.1 Algorithm in Detail

Fig. 4 shows the main algorithm for removing unneces-

sary memory operations. This function is invoked in our

Percolation-based scheduler [17] by the move op transform

(or any suitable local code motion routine in other sys-
tems) when moving a memory operation into a previous

step that contains other memory operations.

The function redundant elimination checks to see if the
memory operation is invariant. If so, then the function

remove inv mem op tries to remove it. If it is not invari-

ant or could not be removed, then op is checked against
each memory operation in the previous step for possible

optimization. If two operations refer to the same location

then the appropriate action is taken depending upon their
types. The load-after-load and load-after-store cases will

be discussed shortly. In the case of a store-after-store, the

�rst operation is dead and can be removed if it stores the
same argument as the second and the argument has the

same reaching de�nitions. We choose to simply remove

op, rather than removing mem op and moving op into its
place. For the store-after-load, nothing is done as this is

a false (anti-) dependency that should be preserved for

correctness. Status reecting the outcome is returned, al-
lowing operations to continue to move if no redundancy

was found.

4.1.1 Removing Invariants

Removing invariant memory operations is slightly di�er-
ent from general loop invariant removal. Traditional loop

invariant removal moves an invariant into a pre-loop time

step. For load operations this is correct; for store opera-
tions it is not. Conceptually, invariant loads are \inputs"

to the loop, while invariant stores are \outputs." There-

fore, loads must be placed in pre-loop steps and stores
must be placed in loop exit steps.

An algorithm to perform invariant removal appears in

Fig. 5. The conditions necessary for loop invariant removal

(adapted from [1]) are: 1) the step that op is in must
dominate all loop exits (i.e., op must be executed every

iteration), 2) only one de�nition of the variable (for loads)

or memory location (for stores) occurs in the loop and 3) no
other de�nition of the variable or memory location reaches

their users. Additionally, store operations require that the

de�nition of its argument be the same at the loop exits
so that correctness is preserved. If these conditions are

met, then the operation can be hoisted out of the loop. If

condition 2 fails and the operation is a load, it still might be
possible to hoist the operation if a register can be allocated

to the loaded value for the duration of the loop.

4.1.2 Load-After-Load Optimization

The load-after-load optimization is applied in situations
where a load operation accesses a memory value that has

been previously loaded and no intervening modi�cation

has occurred to that location's value (i.e. there is no inter-
mittent store). In Fig. 5 the load-after-load optimization is

found. The idea behind this optimization is to insert move

operations into nodes in mem op0s latency �eld which will
transfer the value without re-loading it. As a matter of cor-

rectness, move operations are only inserted into the nodes

function remove inv mem op(op, from step)
begin

/* Conditions necessary for hoisting: */
/* 1. from step must dominate all exit nodes. */
/* 2. Only one de�nition exists. */
/* 3. No other defs reach users. */
/* 4. (stores) Defs of argument are same at loop exits. */
if (/* conditions met */) then
/* Move op to pre-loop steps if it's a load */
/* and all post-loop steps if it's a store. */
return REMOVED

end if

return NO OPT
end remove inv mem op

function do load load opt(op, mem op)
begin

/* set �eld to the nodes at the latency of mem op */
foreach node in �eld
if (/* node is reachable by op */) then
/* Create move from mem op's arg to the */

/* arg of op. Add this move to node. */
end if

/* Delete op and update necessary information. */
Return REMOVED

end do load load opt

Figure 5: Supporting removal routines.

in mem op0s latency �eld if op0s de�nition reaches those

nodes. Finally, op is deleted from the program graph and
the local information is updated.

Although move operations are introduced into the
schedule, the number of registers used does not increase

(a proof appears in [9]).

4.1.3 Load-After-Store Optimization

The load-after-store optimization is used to remove a load
operation which accesses a value that a store operation pre-

viously wrote to the memory. Due to limited resources it
is possible that this optimization cannot be applied. Con-

sider the partial code fragment:

Step 1: a[i] := b b := �

Step 2: c := a[i]

To eliminate the load c := a[i], and replace it with the

move operation c := b in step 2 would violate program se-
mantics because it introduces a read-wrong conict. The

move operation must be placed in step 1 to guarantee cor-

rect results. However, in this code fragment:

Step 1: a[i] := b c :=

Step 2: c := a[i] d := f(c)

placing a move operation in step 1 will violate program

semantics because it introduces a write-live conict|the

move must be inserted into step 2. Notice that in both
cases, the transformation is still possible, analysis is re-

quired to determine which step is applicable.

function try load store opt(op, from step, mem op, to step)
begin

node = from step
if (/* there is a read-wrong conict */) then
node = to step

end if

if (/* there is a write-live conict */) then
if (/* free cell exists*/) then
/* Create move of mem op's arg to free cell. */
/* Add move op to to step. */
/* Create move of free cell to op's arg. */
/* Add move op to from step */

else

return NO OPT
else

/* Create move of mem op's arg to op's arg. */
/* Add move op to node */

end if

/* Delete op and update necessary information. */
return REMOVED

end try load store opt

Figure 6: Load-After-Store Algorithm.

This optimization might not be feasible in the following
situation:

Step 1: a[i] := b b := � c :=

Step 2: c := a[i] d := f(c)

Semantics are violated by placing c := b into either time

step. However, if a free storage cell exists, then the opti-

mization can be done:

Step 1: a[i] := b b := � c := e := b

Step 2: c := e d := f(c)

Therefore, the precise case when the load-after-store opti-

mization fails to remove a redundant load is composed of

three conditions:

1. A move in this step results in a read-wrong.

2. A move in the previous step results in a write-live.

3. No free storage cell exists in the previous time step.

In practice, this situation occurs very infrequently.

The load-after-store optimization algorithm is found in
Fig. 6. This algorithm determines which step to place a

move operation. Initially, the step that op is in is tried. If

a read-wrong conict occurs, the previous step is tried. If a

write-live conict arises, a free cell is necessary to transfer

the value. In this case, two move operations are added to

the schedule. If a free cell is not available, no optimization

is done. If no conicts occur (or they can be alleviated by

switching steps) then a move operation is inserted. Finally,

the load operation is deleted and necessary information
updated.

4.2 Example

Applying our transformation to the behavior in the in-
troduction will eliminate the loads of b[i][j-1] and b[i][j-

2] and the invariant load and store to a[i]. During loop

pipelining, the load of b[i][j-2] for iteration j+1 is the same
as b[i][j-1] from iteration j since (j+1)�2 = j�1. For the

invariants the store cannot be removed unless the load is
also removed. Once the load is hoisted, the store can then

be hoisted as well.

5 Experiments and Results

Four memory-intensive benchmarks were used to study

our transformation: three numerical algorithms (pre�x
sums, tri-diagonal elimination and general linear recur-

rence equations) which are core routines in many algo-

rithms (as discussed in the introduction) adapated from
[10] and a two-dimensional hydrodynamics implicit com-

putation adapted from [20].

Latencies used for scheduling these behaviors were two

steps for add/subtract, three steps for multiply, and �ve
steps for load/store. Also, the memory model adopted here

assumed that:

� memory ports are homogenous,

� each port has its own address calculator,

� the memory is pipelined with no bank conicts.

With these assumptions, two experiments were conducted.

In the �rst, schedules were generated with the number of

memory ports constrained between one and four and no
functional unit (FU) constraints. Two schedules were pro-

duced for each benchmark with the sole di�erence between

them the application of our transformation. The goal of
this experiment was to isolate the di�erence in transformed

schedules without the bias of FU constraints. In the sec-

ond experiment, schedules were generated with one to four
memory ports, two adder units and one multiplier unit.

This experiment was designed to study performance in the

presence of realistic FU resources.

For each experiment, the number of steps in the sched-
ule of the innermost loop was counted. The GLR equations

benchmark (marked with a ?) has two loops at the same

innermost nesting level; the results indicate the summa-
tion of the number of steps in both loops. The results

of experiments one and two are found in Tables 1 and 2,

respectively. The column labelled \RE" indicates applica-
tion of our transformation. The columns collectively la-

belled \Number of Ports" contain the number of steps in

the innermost loop for the respective FU and memory port
parameters.

The results for experiment one (Table 1) demonstrate

that this optimization considerably reduces the number

of cycles for the inner loop. In the pre�x sums and tri-

diagonal elimination benchmarks, a performance limited

by the latency of a load is achieved with a su�cient num-

ber of ports. Since a latency of 5 cycles was used for
load operations and not all loads can be eliminated, the

schedule length cannot be any shorter. The same char-

acteristic is exhibited by the GLR equations benchmark,
although computational latency causes a longer schedule

length while the hydrodynamics benchmark exhibits im-

RE Number of Ports

Benchmark 1 2 3 4

Pre�x Sums no 8 8 8 8
(scan) yes 6 5 5 5

Tri-diag. Elim. no 10 9 9 9

(Below Diag.) yes 7 6 5 5

GLR equations? no 25 24 24 24

yes 14 12 12 12

2D-Hydrodynamics no 32 28 26 25

(implicit) yes 26 24 24 22

Table 1: Steps for schedules with unlimited FUs.

RE Number of Ports

Benchmark 1 2 3 4

Pre�x Sums no 9 9 9 9

(scan) yes 6 5 5 5

Tri-diag. Elim. no 10 9 9 9

(Below Diag.) yes 7 6 5 5

GLR equations? no 28 28 28 28
yes 17 16 16 16

2D-Hydrodynamics no 38 32 28 26
(implicit) yes 26 25 24 23

Table 2: Steps for schedules with resource constraints.

proved performance as the number of memory ports in-
creases.

The results of experiment two (Table 2) indicate that

load elimination plays an important role in the presence

of realistic resource constraints. For the pre�x sums and
tri-diagonal elimination benchmarks, the transformed be-

haviors were not a�ected by the resource constraints due

to the increased exibility in scheduling. When a load op-
eration is removed, the dependent operations can move to

earlier time steps. In resource constrained scheduling these

operations have a much higher mobility, and thus a higher
degree of scheduling freedom, w.r.t. the untransformed be-

havior. This exibility is also demonstrated by the GLR

equations and hydrodynamics benchmarks, although they

are also a�ected by the particular resource constraints.

6 Conclusion

In this paper we have presented a new local scheduler
transformation which optimizes the accessing of a sec-

ondary memory thereby reducing memory tra�c. This

method is based on the redundancy found in memory ac-
cess instructions both within and across iterations of a

loop. The method of eliminating these redundancies is

through the use of memory aliasing theory, which deter-

mines when two memory instructions access the same lo-

cation. With this foundation, our technique provides a

powerful method of memory optimization in contrast to a

simplistic pattern-matching approach (either the compari-

son of source-level text or the overlaying of the behavioral

CDFG to determine equivalency) that can often and easily
be fooled. We have presented our algorithm in detail and

provided results of its application to several benchmarks
which demonstrate the utility and power of this memory

minimization transformation. In this paper we have re-

stricted our discussion to memory tra�c minimization. We
believe that this transformation, when used in conjunction

with other traditional HLS transformations, should yield

better designs for memory-intensive applications. Future
work will address this interaction.

References
[1] A. H. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,

Techniques and Tools. Addison-Wesley, Reading, MA, 1986.

[2] U. Banerjee. Loop Transformations for Restructuring Com-
pilers: The Foundations. Klewer Academic Publishers, Nor-
well, MA, 1993.

[3] D. Callahan, J. Cocke, and K. Kennedy. Estimating Interlock
and Improving Balance for Pipelined Architectures. Proceed-
ings of ICPP, 1987.

[4] R. Camposano. Path-Based Scheduling for Synthesis. IEEE
Trans. on CAD, 10(1), 1991.

[5] C. Chu, M. Potkonjak, M. Thaler, and J. Rabey. HYPER: An
Interactive Synthesis Environment for High Performance Real
Time Applications. ICCD-89, 1989.

[6] F. Franssen, M. van Swaaij, F. Catthoor, and H. De Man.
Modeling Piece-wise Linear and Data dependent Signal Index-
ing for Multi-dimensional Signal Processing. 6th International
Workshop on High-Level Synthesis, November 1992.

[7] D. Gajski, N. Dutt, A. Wu, and S. Lin. High Level Synthesis:

Introduction to Chip and System Design. Kluwer Academic
Publishers. Norwell, MA., 1992.

[8] T. Kim and C. L. Liu. Utilization of Multiport Memories in
Data Path Synthesis. 30th ACM/IEEE DAC, 1993.

[9] D. J. Kolson, A. Nicolau, and N. Dutt. Minimization of Mem-
ory Tra�c in High-Level Synthesis. Technical Report 93-46,
U.C. Irvine, October 1993.

[10] D. Kuck. The Structure of Computers and Computations,
volume 1. Wiley & Sons, 1978.

[11] P. E. R. Lippens, J. L. van Meerbergen, W. F. J. Verhaegh,
and A. van der Werf. Allocation of Multiport Memories for
Hierarchical Data Streams. ICCAD-93, 1993.

[12] A. Nicolau. Parallelism, Memory Anti-Aliasing and Correct-
ness for Trace-Scheduling Compilers. PhD thesis, Yale Uni-
versity, March 1985.

[13] K. O'Brien, M. Rahmouni, and A. Jerraya. DLS: A Scheduling
Algorithm for High-Level Synthesis in VHDL. EDAC-93, 1993.

[14] C. Park, T. Kim, and C. L. Liu. Register Allocation for Data
Flow Graphs with Conditional Branches and Loops. Euro-
DAC '93, 1993.

[15] N. Park and A. C. Parker. Sehwa: A Software Package for
Synthesis of Pipelines from Behavioral Speci�cations. IEEE

Trans. on CAD, 7(3), 1988.

[16] P. P�ochm�uller, M. Glesner, and F. Longsen. High-Level Syn-
thesis Transformations for Programmable Architectures. Euro-
DAC '93, 1993.

[17] R. Potasman, J. Lis, A. Nicolau, and D. Gajski. Percolation
Based Synthesis. 27th ACM/IEEE DAC, 1990.

[18] L. Ramachandran, D. D. Gajski, and V. Chaiyakul. An Algo-
rithm for Array Variable Clustering. EDAC-94, 1994.

[19] C. B. Shung et al. An Integrated CAD System for Algorithm-
Speci�c IC Design. IEEE Trans. on CAD, April 1991.

[20] Y. Tanaka, K. Iwasawa, Y. Umetani, and S. Gotou. Compiling
techniques for �rst-order linear recurrences on a vector com-
puter. Journal of Supercomputing, 4(1), March 1990.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

