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Abstract

Sequential place and route tools for FPGAs are inherently weak at
addressing both wirability and timing optimizations. This is primarily
due to the difficulty in predicting these at the placement level. A new per-
formance-driven simultaneous placement / routing technique has been
developed for row-based designs. Up to 28% improvements in timing
and 33% in wirability have been achieved over a traditional sequential
place and route system in use at Texas Instruments for several MCNC
benchmark examples.

1 Introduction

Field Programmable Gate Arrays provide a means of drastically
reducing the turn-around time for digital ICs, with a relatively small
degradation in performance (e.g., maximum achievable clock
speed). For a variety of application-specific integrated circuit (ASIC)
applications, where time-to-market is most critical and the perfor-
mance requirements do not mandate a custom or semi-custom ap-
proach, FPGAs are an increasingly popular alternative. This has
prompted a substantial amount of specialized synthesis and layout
research focused on maximizing density, minimizing delay, and
minimizing design time. The style of FPGA that this research targets
is the row-based style (e.g., ACTEL-style parts [1]).

Figure 1. Layout Flow for Row-Based FPGAs
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Row-based FPGAs comprise rows of logic modules separated by
channels. Each logic module can be configured to perform a variety
of functions. Horizontal routing resources are available in the form
of segments in channels. Adjacent segments can be connected by
programming thehorizontal antifuse between them. Ports of logic
modules can be connected to segments by programming across an-
tifuse. Vertical routing resources are similarly available for wires
that span channels; these paths may themselves be segmented. De-
pending on the technology, the antifuses can cause a nonnegligible
delay. Small segment sizes are desirable for wirability because they
maximize segment usage. However, this tends to increase the num-
ber of antifuses on each signal path, which is detrimental for timing.
Hence, there is usually a mix of small and large segments. The spatial
distribution of segments in a channel is known as thesegmentation
of the channel.

The design flow for a typical row-based FPGA is shown in Fig-
ure 1. Logic synthesis and technology mapping tools convert a high
level circuit description into a net-list of FPGA logic block sized
cells [9]. These blocks may be of different types,e.g., I/O blocks (“i”
blocks), combinational logic blocks (“c” blocks),etc. A placer maps
these cells onto valid module locations. Because accurate routing in-
formation is absent during placement optimization, typical placers
optimize based on estimated net-length and congestion criteria, using
formulations essentially similar to row-based semi-custom standard
cell layouts [6]. A global router then assigns vertical feedthroughs to
nets which must span multiple channels [7]. In Figure 1., for exam-
ple, net A needs a feedthrough which will be assigned at the global
routing stage. Once the global routing is done, the channel problems
are defined. A detailed router then allocates horizontal routing re-
sources, assigning specific segments to each net in each channel [8].

The problem with this fairly traditional layout flow is the in-
creasing need to achieve two incompatible optimizations:dense
routable placements which meet aggressivetiming requirements.
Failure to pack a single design onto the smallest feasible FPGA car-
ries a substantial cost penalty: the cost of moving to a larger FPGA
and then only sparsely populating it. Unfortunately, optimizing for
100% wirability is often at odds with optimization for speed. Critical
paths must be respected and the cells and nets which define these
paths must be given priority during placement. Given the extremely
granular, rigid nature of the routing resources here, optimizations for
delay minimization are very difficult to estimate during placement,
yet an overly conservative estimate may compromise overall
routability.

We suggest that the core of this problem is the assumption that
FPGA placement, global routing, and detailed routing under delay
constraints must beseparate, sequential steps. We suggest that the
more reasonable approach issimultaneous placement, global routing
and detailed routing. Of course, in general, such a strategy is likely



to be computationally unaffordable. However, the same granular/rig-
id problem structure that makes difficult the creation of the “down-
stream” estimators necessary in a sequential place-then-route
scheme is a positive advantage in a simultaneous place/route
scheme: it limits the possibilities that must be searched. Indeed, row-
based FPGAs are an ideal problem domain for an aggressive combi-
natorial formulation in whichall the design variables are manipulat-
ed simultaneously. FPGAs are of modest size (thousands of cells and
nets) with an extremely limited palette of geometric alternatives for
any given cell or wire. With appropriate algorithm design, all of
these difficulties can be turned to our advantage.

This paper presents a simultaneous placement, global routing,
detailed routing algorithm for row-based designs which maximizes
density and minimizes worst-case critical path delay. We present an
optimization-based formulation which uses simulated annealing,
combined with constructive global routing and detailed routing “in
the loop” to achieve this. The paper is organized as follows. Section
2 discusses in somewhat more detail the FPGA design concerns to
which we have just alluded, and summarizes relevant previous lay-
out approaches specific to FPGAs. Section 3 then presents our simul-
taneous placement and routing approach in detail. Section 4 presents
results on some MCNC benchmark examples, and compares these
with results from production FPGA layout tools in use at Texas In-
struments. Finally, Section 5 offers concluding remarks.

2 FPGA Design Concerns and Approaches

2.1 Design Concerns

We can broadly summarize the three areas of concern in FPGA
layout to be:

• Routability : fixed routing resources complicate our ability to
achieve 100% automatic wiring, especially if we try to pack the
largest possible design onto a particular (fixed size) FPGA.

• Delay: wiring paths necessarily pass through several antifuses,
accruing delay (via loading) with each antifuse; optimizing delay
is often at odds with optimizing routability.

• Leverage: by which we mean the ability of any particular step in
the traditional sequential layout flow to impact the routability
and delay characteristics of the final placed/routed FPGA.

We discuss these briefly, below.

For semi-custom row-based standard cell designs, flexibility in
terms of variable channel height can be used to alleviate routability
problems. In contrast, row-based FPGAs, with their rigidly pro-
scribed channel structure (tracks and track segmentation) see no such
flexibility. For example, antifuse locations usually allow only adja-
cent segments on the same track to be connected; this constrains each
connection to be routed on a single track in its passage through one
channel. Wirability predictions at the placement level based on net-
length and estimated congestion are thus especially prone to error for
FPGAs. The problem is that these rigid routing resources and their
fine-grain connectivity constraints areinvisible at the placement lev-
el. This is illustrated in Figure 2. with a small example comprising 7
cells (X, Y, A, B, C, D and E), 3 routing segments, and 3 nets (N1
connecting X and Y, N2 connecting A and B, and N3 connecting B
and C). The total net-length and congestion is less for the placement
on the left. Nevertheless, the placement on the left is actually un-
routable due to the segmentation, whereas the alternative can be
wired.

Figure 2.  Length and Congestion-based Predictor Inaccuracy

The timing problem involves the identification and minimization
of critical path delay. If interconnect delays could be ignored, the
path delays could be estimated accurately at the placement level by
the block delays on paths between latches and primary inputs/out-
puts. However, since interconnect delays are not insignificant even
for conventional layout styles, placers often use initial critical path/
net estimates to prioritize the nets. There are two basic problems in
applying this scheme to FPGAs. The first is that the interconnect de-
lays are significant due to the existence of antifuses connecting dis-
joint path segments. Therefore, it is very probable that a path with
less “depth” (passing through fewer blocks) than a statically identi-
fied critical path might become critical because of the large intercon-
nect delays of its constituent nets. The second problem concerns ba-
sic interconnect delay estimation at the placement level. The com-
mon assumption of monotonic scaling of delay,i.e., thelonger a net,
the larger is the delay, is not always true. Given non-uniform seg-
mentation schemes created to optimize routability, this becomes a
particularly dangerous assumption; the interconnect delay is influ-
enced strongly by thenumber of antifuses in the path, not just the
path length.

While our ability topredict wirability and timing behavior for
FPGAs during placement is rather weak, it continues to be true that
the ability toeffect a substantial change in the wirability and timing
behavior is much greater at the placement stage. Compared to the
routing stage, where the flexibility is very much limited due to the
rigid routing resources and fixed placement, placement offers much
moreleverage in controlling the density and delay of the final layout.
An illustration of this fact can be seen again from Figure 2. The
placement at the left in Figure 2. is unroutable no matter what routing
algorithm is used. However, a small change in the placement (mov-
ing cell B), makes it routable.

2.2 Previous Approaches

Existing work in the areas of FPGA synthesis and layout can be
divided into four major areas:partitioning, technology mapping,
placement androuting.

Partitioning is motivated by the fact that very large logic circuits
require multiple FPGA chips. Partitioning affects the wirability of
each FPGA chip and the timing behavior of the circuit. The partition-
er therefore needs to comprehend that the routing resources are fixed
and the relative magnitudes of intra-chip and inter-chip delays. Most
previous partitioning work is based on the Kernighan-Lin biparti-
tioning technique [19] with the Fiduccia-Matheyses modifications
[20]. The bipartitioning technique is either modified [14] or used it-
eratively [15] to achievek-way partitions. Some methods also em-
ploy simulated annealing [3]for partition optimization [18].

Thetechnology mapping phase transforms an optimized, but ge-
neric logic input (e.g., comprised of only nand gates) into the logic
structures specific to the type of FPGA. The typical objectives in this
phase are to minimize area [16] or delay in terms of number of logic
levels [17], the assumption being that all interconnects have similar
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delay. In an effort to mitigate the deleterious effects of this assump-
tion, [10] uses post-mapping timing-driven placement to derive net-
criticality constraints consistent with the particular mapping, for
driving the subsequent placement and routing phases.

Although the placement phase is arguably the most critical to en-
suring the ultimate success of the final FPGA layout, it has received
relatively less specialized attention than FPGA routing. Most indus-
trial placers of which we are aware use some variant of annealing-
based semi-custom placement [6], with modifications to suit specific
architectures. Interestingly, [22] recently revived for FPGAs some
earlier stochastic wirability prediction techniques originally de-
signed to evaluate how probable it was that a particular netlist could
be wired in a given gate array architecture. Again, we regard this as
a reaction to the continuing difficulty of ensuring that complex de-
signs can be packed onto a specific FPGA architecture with 100%
routability.

The two requirements of therouting phase are to achieve 100%
wirability and to meet the timing requirements. [8] considers routing
for the segmented channel architecture of row-based FPGAs via
search and dynamic programming algorithms; the approach seeks to
maximize routability, but only handles timing via prioritizing critical
nets in the cost function. To address performance more directly, [13]
introduces a cost-based maze-router for island-style FPGAs [2] that
iteratively improves performance by modifying the delay bounds on
connections, and rerouting.

2.3 Analysis

We believe that the biggest obstacle to achieving dense, high-
performance FPGA layouts is lack of communication among the var-
ious phases of the design process,i.e., technology mapping may
compromise place/route, placement may compromise routability or
delay. The primary cause here is the difficulty to predict accurate
wirability and timing behavior at the placement level. The more suc-
cessful attempts to handle these problems resort to (1) constructive
estimators of the downstream design phases, and (2) iterative im-
provement to undo/redo suboptimal early decisions in the design
flow. The overall trend is to combine previously separated, sequen-
tial design steps. Examples include [14], which attempts to iterate be-
tween partitioning and technology mapping to optimize the timing
and wirability. [10] uses a technology mapping solution to generate
net constraints for guiding the placement. [23] similarly combines
the mapping and placement phases, using rectilinear Steiner tree-
based global routing, and relocating the contents of logic blocks in
congested areas in an annealing framework. (In the gate array rather
than FPGA arena, [21] follows placement with limited re-synthesis
and re-placement to optimize the solution.). For row-based FPGAs,
we suggest that simultaneous placement, global routing and detailed
routing under timing constraints is the necessary next step in this di-
rection.

3 Simultaneous Placement, Global and
Detailed Routing

3.1 Algorithmic Strategy

Our strategy for efficiently combining the placement, global and
detailed routing steps for row-based FPGAs comprises the following
key elements:

• Optimization-based approach: The scale of the row-based
FPGA layout problem–102 to 103cells and nets–and the highly

rigid geometric alternatives imposed by FPGA cell and wiring
resources both lend themselves to a combinatorial optimization
formulation of the combined layout problem. Our scheme of
choice is simulated annealing [3], which is robust in a variety of
related layout problems, suitable for the scale of this problem,
and accommodating of complex cost functions.

• Cells and Nets Uniformly Malleable:This means that, concep-
tually, all the cells and all the nets are manipulated concurrently
throughout the optimization process, under routability and tim-
ing constraints. The problem of reduced flexibility at the routing
level, caused by the existence of fixed placement, is mitigated
because it is always possible to change the placement.

• Incomplete Intermediate Layout Configurations: We do not
attempt to move from complete layout to complete layout as our
annealer generates and evaluates new solution candidates. We do
insist that all cells are legally placed in each intermediate state,
but not that all nets be routed. Some nets may be completely un-
routable; others may be globally routed but not detail routed; still
others may be completely embedded. Our annealing formulation
tracks all the actors in this layout process–cells, globally routed
nets, detail routed nets–and accrues costs based on the “level of
completeness” of the evolving layout.

• Incremental Global Routing: For efficiency, we avoid doing
complete global routing of all nets at intermediate states of opti-
mization. Instead, we maintain a partial global routing at inter-
mediate states with some nets being unroutable. At any interme-
diate state, only the existing unroutable nets and a few perturbed
nets are globally routed. This has the twin advantages of efficien-
cy and independence of final solution from the routing heuristics
used.

• Incremental Detailed Routing: Guided by the same reasoning
as mentioned for the global routing, we do incremental detailed
routing. At any intermediate state of optimization, a partial de-
tailed routing solution exists with certain nets being unroutable
in certain channels. Only the existing unroutable nets and a few
perturbed nets are being detail routed in relevant channels.

• Critical Path Calculation:  We address the timing issue by ex-
plicitly (re)determining the static critical paths as the layout
evolves. Again, as for the routing calculations, we perform only
incremental critical path-related calculations for efficiency. At
any intermediate stage of optimization, the cell/net perturbation
information is used to efficiently determine the change in critical
path delay.

The remainder of this section expands on these key components
of our formulation.

3.2 Annealing Formulation

Our central goal is an iterative-improvement layout algorithm in
which placement perturbations, global routing perturbations, and de-
tail routing perturbations are all feasible concurrently. Obviously, we
expect that the frequency of each sort of perturbation will change
over the evolution of the annealing cooling process: in the hot regime
we expect mostly placement decisions to be made; in the warm re-
gime we expect small placement changes accompanied by large-
scale global routing decisions; in the cold regime we expect fine
placement changes, modest global routing changes, and substantial
attention to detail routing choices. The key technical question is how
to accommodate all these actors in the layout process.

We can describe any annealing formulation by describing its



four key components: thestate representation of the evolving solu-
tion; the set of perturbations, ormove-set, that moves from one state
to the next; thecost function that measures the quality of each visited
state; and thecooling schedule that determines how we move from
initial large-scale random search to local, fine-grain optimization.
This section describes these components.

Our state representation for evolving layouts has 3 components:

• Cell Placement Assignments:each cell is always assigned a
feasible location. We do not allow illegal intermediate states
(e.g., overlapping or unassigned cells).

• Cell Pin Assignments: since each cell is based on some arrange-
ment of programmable lookup tables (LUTs), any given cell-lev-
el function can be realized using many different pin assignments,
usually referred to aspinmaps in this context. Each movable cell
is always assigned a particular legal pinmap, which affects the
nets to which it is connected. We assume it is possible at compile
time to generate a manageable palette of pinmap alternatives
from which to select a pin assignment during layout.

• Net Segment Assignments:since we manipulate nets as well as
cells during layout, the disposition of each net must also be ac-
counted for. Nets may appear in three distinct states: (1) com-
pletely unrouted, (2) globally routed but not detail routed, (3)
globally and detail routed. The distinction involves whether each
net has associated with it a set of free vertical and horizontal
routing segments which complete its necessary port connections.
Each netn can be regarded as a pair of sets (Vn={v1, v2,...vk},
Hn={H1, H2, ...Hl}), where eachvi is a vertical routing segment
used to span channels, and eachhi is a horizontal segment in a
particular channel. An unrouted net has no assigned segments,
i.e., (Vn= , Hn= ). A globally routed net has vertical segments
assigned, but not horizontal segments: (Vn={v1, v2, ...vk},
Hn= ). A completely routed net has its vertical and horizontal
segments assigned.

Moves are the mechanisms for initiating state changes in the
course of optimization. Our move-set is actually quite simple, com-
prising only two orthogonal classes of moves:cell swaps, andpin-
map reassignments. Swaps randomly exchange the contents at two
different logic module locations. Since one of these locations may be
empty, we also support single cell translations. Pinmap reassign-
ments randomly change the pin assignments for a particular cell from
a palette of fixed, legal alternatives. An important point here is that
there areno moves that specifically alter nets. Rather, each move that
alters cellsremoves any routing associated with the pins on the
moved cells. Then, fast heuristics attempt to reroute the ripped up
nets globally and detailed. Thus, a single placement move may cause
a set of routed nets to be rerouted differently, or a set of previously
routed nets to become unroutable, or a set of previously unrouted
nets to become routable. Our strategy is to employ a vigorous place-
ment optimization, each of whose atomic steps sets off a cascade of
local net ripup and repair attempts. By allowing this routing process
to fail, i.e., to be incomplete after any given placement perturbation,
we free the overall layout optimization to evolve both placement and
routing at a rate determined by the inherent difficulty of the problem.

The cost function in an annealer controls the acceptance of new
states, and measures the overall quality of the evolving solution. Our
cost function must address both routability and timing concerns for
the evolving placement, global routing and detailed routing. We use
the following weighted cost function:

(1)

φ φ

φ

Cost Wg G Wd D W+×
t

T×+×=

G counts the number of globally unrouted nets. Similarly,D
counts the number of nets that lack a complete detailed routing.T
measures the worst-case delay on the slowest path in the current
placement, using a detailed timing model that accounts for physical
segment and antifuse delays. Roughly speaking, the cost function pe-
nalizes theunroutability of the current placement and theworst-case
delay through the layout, as determined by an up-to-date critical path
analysis. Perhaps most interestingly, there is no wirelength estima-
tion term. Wirelength minimization happensconstructively, in the
sense that the fast heuristics we employ for incremental global and
detailed routing after each placement move are strongly biased to-
ward short paths, where possible. The weights, Wg, Wd and Wt are
determined adaptively at runtime so as to normalize the components
of the cost function so that each term contributes approximately
equally to the cost function.

Our cooling schedule is based on the scheme proposed in [4]
which determines starting temperature, time spent at a temperature
and temperature decrements adaptively, as the annealing progresses.
In the following sections we return to the details of the incremental
routing and delay calculations necessary to compute the cost func-
tion introduced in this section.

3.3 Incremental Global Rerouting

A move that alters the placement produces a change in cost∆C.
One component of this cost is the incremental change in the number
of globally unroutable nets, . Global routing for row-based FP-
GAs consists primarily of assigning feedthroughs to nets that need
them. Of course, we would ideally like to consider a full global rout-
ing optimization after each cell perturbation,e.g., by annealing, [25],
or by heuristic cost-based search [24], but this is computationally in-
feasible. Hence, we employ an incremental global router based on
fast, simple heuristics. At any intermediate stage of annealing,UG
represents the set of nets that are globally unroutable. When a cell is
moved, all the nets connected to it are ripped up (i.e., their vertical
segment assignments are removed) and these nets are added to UG.
UG itself is sorted based on the estimated length of its contents. After
each move, we then work our way downUG, attempting to globally
route each unroutable net, thus giving priority to the longer un-
routable nets.

The heuristics used for globally routing a net are simple: we as-
sign the available set of vertical segments that are closest to the cen-
ter of a net’s bounding box. After an initial start-up transient wherein
many of the nets find some (poor) global path, each new move af-
fects a manageable number of nets. Moreover, since the heuristic
used is simple, the time requirement is minimal. Perhaps most im-
portantly, we note that we are relying not onone exhaustive search
for a good global route for each net, but rather, onmany simple
searches for global routes, each undertaken in a new, possibly more
compliant placement. Nets are continuously being ripped up and re-
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routed, rendering the final solution less dependent on the ability of
the global routing heuristic to find thebest paths.

 The incremental global routing mechanism is illustrated by the
6 nets (numbered 1-6) in Figure 3. Initially, only net 6 is unroutable,
UG = [6]. After the illustrated move, the nets connected to the cell
perturbed (nets 1, 2 and 3) are ripped up, thus freeing some vertical
segments. Nets 1, 2 and 3 are now added to UG. Working through
UG, we attempt to find a global route for net 6, which succeeds, and
then similarly route net 1. Nets 2 and 3 no longer need vertical re-
sources (i.e., a trivially null global routing now suffices). So, at the
end of incremental global routing, all nets are globally routed and the
contributed  for this move is -1.

3.4 Incremental Detailed Rerouting

Any placement move may also alter the number of nets without
a detailed routing, in a contribution to∆C of . It should be noted
here that if a net cannot be globally routed, it automatically cannot be
detail routed. Following the same reasoning as was discussed for glo-
bal routing, we employ a set of fast heuristics for incremental de-
tailed routing. In addition to maintainingUG for each intermediate
layout configuration, we also maintain for each channelR, a setUDR
of unroutable nets–that is, nets for which there are insufficient hori-
zontal segments to completedetailed routing in channelR for the
current placement. Note that when any cell is moved or has its pin-
map perturbed, we removeall connected nets, both thevertical seg-
ments (global routing) and thehorizontal segments (detailed rout-
ing). These nets are initially deposited inUG and relevantUDR. Fol-
lowing incremental global routing, we proceed through each of theP
total channels, and try to detail route the unrouted nets in eachUDR,
1 ²R ²P. As before, eachUDR is actually a queue sorted on estimat-
ed net length.

The incremental detailed router assigns available tracks to un-
routed nets based on two terms: segment-wastage and number of seg-
ments used [11]. In this manner, we indirectly optimize for minimum
net length; our router constructively prefers short paths. Large seg-
ment usage for small-span nets may cause wirability problems in the
channel. If too many segments are used for a net, then this path will
pass through many horizontal antifuses, and likely accrue unaccept-
able delay. Of course, a move’s acceptance depends on the complete
cost function comprising both wirability and timing terms.

Figure 4. Incremental detailed routing
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The incremental detailed routing procedure is illustrated in Fig-
ure 4. Initially (Figure 4.a), all nets have been globally routed. Also,
in channels 0, 1 and 3, all nets (that are present in these channels) can
be detailed routed. However, in channel 2, net 1 cannot be routed for
lack of horizontal routing resources. When cell A is moved (Figure
4.b), nets connected to cell A (nets 1, 2) are ripped up (i.e., vertical
and horizontal segments connected to nets 1 and 2 are freed). There-
fore, now nets 1 and 2 need global routing and there aredetail-un-
routed nets in all channels. Eventually, all these unrouted nets are re-
routed both globally, and then in the channels (Figure 4.c). Note that
only a small subset of nets gets rerouted on any placement perturba-
tion.

3.5 Incremental Worst-Case Delay Calculation

A placement perturbation can affect the global and detailed
routability of a subset of the nets, which is reflected in terms of the
cost function. Similarly, we must reflect the impact of placement
changes on delay. Rather than relying on the user to supply a set of
critical paths to evaluate, the worst-case critical path is incrementally
updated after each perturbation. Any change here contributes an in-
cremental change in worst-case delay  to the overall cost func-
tion. Critical paths are defined between the boundaries formed by
primary inputs, outputs and sequential blocks (or flip-flops). We
consider the long-path delay problem and assume that all paths are
sensitizable. Of course, this is a simplification, and our timing esti-
mates are therefore quite conservative. Nevertheless, by maintaining
pressure on the worst path delay as placement evolves, we do bound
all other delays.

Initially the cells are levelized. Boundary elements have a level
of 0. The level of any other cell is one more than the maximum of the
levels of all its inputs. The levels determine the order in which the
cells should be processed while propagating delays across paths.
Since levels are determined only by connectivity and not the location
of cells, levelization needs to be done only once.

Figure 5. illustrates the delay propagation mechanism. The lev-
els of the cells are shown beside each. When a cell is moved (for ex-
ample, cell B in Figure 5.), all nets connected to it may be rerouted.
Therefore, the interconnect delays for these nets (driver to sinks)
have to be recalculated. In addition, the delay change needs to be
propagated to a boundary while respecting the levels of the cells con-
cerned. To do this, a frontier of affected cells is maintained: affected
cells are those cells which are either connected to affected nets, or
which lie on the path of affected cells to boundaries. Initially the
frontier has only non-boundary cells which are connected to the af-
fected nets as inputs (e.g., cells B, C and I in our example). At any
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nealing process have found acceptable vertical routing resources.
Initially the number of nets globally routed but detailed unrouted
(represented by the difference of the plots for unrouted nets and glo-
bally unrouted nets) is small. However, the aggressive changes in the
middle of the layout process, which result in all nets being globally
routed, raises the number of nets that are globally routed but detailed
unrouted. In the second half of the optimization process, all nets con-
tinue to be globally routed (although their vertical segment assign-
ments do change) and the number of unrouted nets (caused primarily
by detailed unroutability in this phase) converges to zero, thus pro-
ducing a fully routed solution. The dynamics here are as we de-
scribed in our initial goals: vigorous placement optimization, fol-
lowed by a focus on global routing, followed by graceful conver-
gence to full detailed routing.

To measure the impact of this strategy on delay optimization, our
tool has been tested on 5 MCNC benchmark examples. The results
were compared with those of a proprietary sequential place and route
system for row-based FPGAs in use at Texas Instruments. The cus-
tom placer is based on TimberWolfSC [6], the global router is from
[7] and the detailed router from [11]. Table 1 shows the results. The
critical paths were determined using Texas Instruments’ timing ana-
lyzer. Post-layout interconnect delays were determined using the
RICE [12] AWE-based delay evaluation tool. The critical path de-
lays determined by the post-layout timing analyzer were very close
(within 90%) of that determined internally by our simultaneous place
and route tool. Results appear in Table 1. Most importantly, we
achieved improvements in worst-case timing from 16% to 28% over
the sequential layout tool.

To measure the wirability improvement that can be achieved
with the simultaneous approach, the number of tracks per channel in
these designs was reduced for each example to the point that our si-
multaneous tool, and the sequential tool failed to meet 100% wirabil-

Table 1. Timing Improvement

Design # cells % improvement

s1 181 28

cse 156 16

ex1 227 23

bw 158 25

s1a 163 21

Table 2. Wirability Improvement

Design # cells Tracks/Channel reqd

Seq. P&R Sim. P&R

s1 181 23 18

cse 156 22 17

ex1 227 26 21

bw 158 15 10

s1a 163 22 17

stage, the cell in the frontier with the minimum level is processed.
Therefore, cell B is processed. Processing a cell involves two parts:
updating the output delay of the cell based on the new input delays,
and if output delay changes, putting new cells in the frontier by ex-
amining the fanout cells. If a fanout cell is already in the frontier or
if it happens to be a boundary element, then that cell is not added to
the frontier. The expansion stops when the frontier is empty. The
maximum delay at an input of a boundary cell is a measure of the
most critical path delay.

To sharpen the worst-case delay estimate, we use a detailed RC
tree model for the interconnect–when the nets contributing to this
worst path are physically embedded. Since the exact antifuse usage
is known for such nets, we calculate the Elmore delay [5]. Of course,
in our simultaneous place and route strategy, not all nets are physi-
cally embedded at all times. For such nets we resort to crude estima-
tors that relate the known spatial extent of the net (based on its cur-
rent port locations) to the probable number of antifuses it will en-
counter, to create a rough delay estimate. This is, of course,
inaccurate, but suffices early in the layout process. Recall that other
terms of the cost function put pressure on the number of unrouted
nets, coercing these nets to take feasible paths for which we can more
accurately estimate delay.

4 Implementation and Results

We have implemented these ideas in a prototype simultaneous
placement, global and detailed routing tool for row-based FPGAs.
Our goals here are (1) to illustrate the dynamics of fully simultaneous
placement, global and detailed routing optimizations; (2) to demon-
strate the impact of this layout strategy on delay optimization; (3) to
demonstrate the impact on wirability.

We begin by illustrating the dynamics of the annealing layout
process in Figure 6. We plot the fraction of cells and nets whose lay-
out is changing as annealing optimization is proceeding. Our goal
here is demonstrate that our formulation does, in fact, allow place-
ment, global and detailed routing to proceed simultaneously. To be
precise, we plot, at each temperature: %cells perturbed; % nets glo-
bally unrouted; % nets unrouted. The difference between the last two
(%nets unrouted - % nets globally unrouted), represents the fraction
of nets that are globally routed but detailed unrouted. As can be seen,
placement activity starts aggressively, and falls off until only small,
local perturbations are being attempted for local routability improve-
ment. Many nets start globally unrouted, but by the middle of the an-

Figure 6. Illustrating layout evolution during optimization
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ity. By this process we determined the minimum number of tracks re-
quired in each channel of each row-based design to successfully
route the layout. Results appear in Table 2. Wirability improvements
(track count reductions) ranging from 20% to 33% were achieved.
The primary reason for this was that the placer in the sequential case
packed the cells based on the connectivity while being ignorant of
the routability of such a configuration. The time required for sequen-
tial layout was roughly 1 hour compared to 3-4 hours for simulta-
neous layout on an HP 425 workstation.

Finally, Figure 7. illustrates a larger 529 cell design completed
with 100% routing in roughly 8 hours on an IBM RS6000 by our
tool.

5 Conclusions

A technique for simultaneous placement and routing has been
developed for row-based FPGAs. Efficient incremental global and
detailed routing techniques coupled with an aggressive combinatori-
al optimization formulation enables our tool to optimize routability
and delay simultaneously. Preliminary results show the merits of this
approach over traditional sequential approaches, achieved at some
cost in runtime. Our current work focuses on technical improve-
ments to the core of the annealing formulation for increased speed,
and larger benchmarks.
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