
Calculation of Unate Cube Set Algebra Using Zero-Suppressed BDDs

Shin-ichi Minato

NTT LSI Laboratories
3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa Pref., 243-01 Japan

Abstract | Many combinatorial problems in LSI

design can be described with cube set expressions.

We discuss unate cube set algebra based on zero-

suppressed BDDs, a new type of BDDs adapted for

cube set manipulation. We propose e�cient algo-

rithms for computing unate cube set operations in-

cluding multiplication and division, followed by some
practical applications of unate cube set calculation.

1 Introduction

Recently, Binary Decision Diagrams (BDDs), which are
graph-based representations of Boolean functions[1], have
attracted much attention because they enable us to ma-
nipulate Boolean functions e�ciently in terms of time and
space. There are many cases that the algorithm based on
conventional data structures can be signi�cantly improved
by using BDDs[2][3].
As our understanding of BDDs has deepened, the range

of applications has broadened. Besides Boolean functions,
we are often faced with manipulating sets of combinations
in VLSI CAD problems. By mapping a set of combina-
tions into the Boolean space, they can be represented as
a characteristic function using a BDD. This method en-
ables us to implicitly manipulate a huge number of com-
binations, which have never been practical before. Re-
cently, new two-level logic minimization methods have
been developed based on implicit set representation[4].
These techniques are also used to solve general covering
problems[5].
BDD-based set representation is more e�cient than

conventional methods. However, it can be ine�cient at
times because BDDs were originally designed to represent
Boolean functions. We have recently developed a new type
of BDD which has been adapted for set representation[6].
This type of BDD, called a zero-suppressed BDD (0-sup-
BDD), enables us to represent sets of combinations more
e�ciently than using conventional ones. It is useful for
solving combinatorial problems that sometimes arise in
VLSI design.
When describing algorithms or procedures for manip-

ulating BDDs, we usually use Boolean expressions based
on switching algebra. Similarly, when considering sets of
combinations with 0-sup-BDDs, we can use unate cube set

expressions and their algebra. Based on unate cube set
algebra, we can simply describe algorithms or procedures
for 0-sup-BDDs. We developed e�cient algorithms for ex-
ecuting unate cube set operations including multiplication
and division.
In this paper, we discuss calculation of unate cube set al-

gebra using 0-sup-BDDs. We propose e�cient algorithms
for computing unate cube set operations and some prac-
tical applications.

2 Zero-Suppressed BDDs

Zero-suppressed BDDs (0-Sup-BDDs)[6] are a new type of
BDDs[6] that are adapted for representing sets of combi-
nations. They are based on the following reduction rules:

� Eliminate all nodes with 1-edge pointing to the 0-
terminal node. Then connect the edge to the other
subgraph directly (Fig. 1).

� Share all equivalent sub-graphs in the same manner
as that for conventional BDDs.

Notice that, contrary to conventional BDDs, we do not
eliminate nodes whose two edges point to the same node.
This reduction rule is asymmetric for the two edges be-
cause the nodes remain when their 0-edge points to a ter-
minal node. When the number and order of the variables
are �xed, 0-sup-BDDs provide canonical forms for Boolean
functions.
Fig. 2 illustrates conventional and 0-Sup-BDDs repre-

senting the sets of combinations. Using the \0-sup" re-
duction rule, the two BDDs are automatically reduced
into the same form, free of irrelevant variables. 0-sup-
BDDs are more e�ective for sparser combinations, which
means only a few objects out of many are included in each
combination in the set.
The methods for manipulating 0-sup-BDDs are de�ned

as set operations and di�er slightly from conventional

0

0

x

y

1

y

Jump

Fig. 1: Reduction Rule for 0-sup-BDDs

0 1

a a

b
c

d

1

1
1

1
1

0

0

0

00

(abcd):{1000, 0100}
(abc):{100, 010}

BDD

(abc):{100, 010}
(abcd):{1000, 0100}

0 1

a

b

1

1

0

0

0-sup-BDD

Fig. 2: E�ect of \0-sup" Reduction Rule

BDD manipulation. First, we generate trivial graphs and
then construct more complex ones by applying basic oper-
ations such as union, intersection, and di�erence. We can
execute these operations in a time almost proportional to
the size of the graphs, just as using conventional BDDs.
The basic operations for 0-sup-BDDs are summarized be-
low: (see [6] for detailed algorithms.)

Empty() returns �. (empty set)
Base() returns f0g.
Subset1(P; var) returns the subset of P such as var = 1.
Subset0(P; var) returns the subset of P such as var = 0.
Change(P; var) returns P when var is inverted.
Union(P;Q) returns (P [Q)
Intsec(P;Q) returns (P \Q)
Di�(P;Q) returns (P �Q)
Count(P) returns jP j. (number of elements)

Using the above operations, we can deal with any set of
combinations using 0-sup-BDDs; however, such C-like no-
tation is not so easy to use. A simpler method is desired.

3 Unate Cube Set Algebra

In this section, we discuss unate cube set algebra for ma-
nipulating sets of combinations. A cube set consists of a
number of cubes, each of which is a combination of liter-
als. Unate cube sets allow us to use only positive literals,
not the negative ones. Each cube represents one combi-
nation, and each literal represents an object chosen in the
combinations.
We sometimes use cube sets to represent Boolean func-

tions; however, they are usually binate cube sets contain-
ing negative literals. Binate cube sets have di�erent se-
mantics from unate cube sets. In binate cube sets, lit-
eral x and x represent x = 1 and x = 0, respectively,
while the absence of a literal means don't care, namely
x = 1; 0, both OK. On the other hand, in unate cube
sets, literal x means x = 1 and an absence means x = 0.
For example, the cube set expression (a + bc) represents
(abc) : f111; 110; 101; 100; 011g under the semantics of bi-
nate cube sets, but (abc) : f100; 011g under unate cube
set semantics.

3.1 Basic Operations

Unate cube set expressions consist of trivial sets and al-
gebraic operators. There are three kinds of trivial sets:

0 (empty set),
1 (unit set),
xk (single literal set).

The unit set \1" includes only one combination that
chooses no objects. This set becomes the unit element
of the product operation. A single literal set xk includes
only one combination that chooses only one literal. In the
following section, a lower-case letter denotes a literal, and
an upper-case letter denotes a cube set expression.
We arranged the line-up of the basic operators as fol-

lows:
& (intersection),
+ (union),
� (di�erence),
� (product),
/ (quotient of division),
% (remainder of division).

(Sometimes we omit \�". We may use a comma \," in-
stead of \+".) For example, fab; b; cg&fab; 1g = fabg,
fab; b; cg+ fab;1g = fab; b; c; 1g and fab; b; cg � fab; 1g =
fb; cg. It stands that (P � Q) = (Q � P) if and only if
P = Q.
The product operation \�" generates all possible con-

catenations of two cubes in respective cube sets. For ex-
ample:
fab; b; cg � fab; 1g

= (ab�ab)+(ab�1)+(b�ab)+(b�1)+(c�ab)+(c�1)
= fab; abc; b; cg.

In this operation, P � 0 = 0; P � 1 = P; P � (Q +R) =
(P �Q) + (P �R) and a � a = a. In general, P � P 6= P .
Dividing P by Q acts to seek out the two cube sets

P=Q (quotient) and P%Q (remainder) under the equality
P = Q � (P=Q) + (P%Q). In general this solution is
not unique. Here, we apply the following rules to �x the
solution with reference to the weak-division method[7].

1. When Q includes only one cube, (P=Q) is obtained
by extracting a subset of P , which consists of cubes
including Q's cube, and then eliminating Q's literals
from the subset. For example, fabc; bc; acg=fbcg =
fa; 1g.

2. When Q consists of multiple cubes, (P=Q) is the in-
tersection of all the quotients dividing P by respective
cubes in Q. For example,
fabd; abe; abg; cd; ce; chg=fab; cg

= (fabd; abe; abg; cd; ce; chg=fabg)
& (fabd; abe; abg; cd; ce; chg=fcg)

= fd; e; gg&fd; e; hg
= fd; eg .

3. (P%Q) can be obtained by calculating P�P �(P=Q).

These three trivial sets and six basic operators are used
to represent and manipulate sets of combinations. In Sec-
tion 2, we de�ned other three basic operations of Sub-
set1(), Subset0() and Change() for assigning a value to
a literal; however, we do not have to use the three op-
erations since the weak-division operation can be used
as generalized cofactor for 0-sup-BDDs. For example,
Subset1(P; xk) can be described as (P=xk) � xk, and

procedure(P �Q)
f if (P:top < Q:top) return (Q � P) ;

if (Q = 0) return 0 ;
if (Q = 1) return P ;
R cache(\P �Q") ; if (R exists) return R ;
x P:top ; /* the highest variable in P */
(P0; P1) factors of P by x ;
(Q0;Q1) factors of Q by x ;
R x (P1 �Q1 + P1 �Q0 + P0 �Q1) + P0 �Q0 ;
cache(\P �Q") R ;
return R ;

g

Fig. 3: Algorithm for Product

procedure(P=Q)
f if (Q = 1) return P ;

if (P = 0 or P = 1) return 0 ;
if (P = Q) return 1 ;
R cache(\P=Q") ; if (R exists) return R ;
x Q:top ; /* the highest variable in Q */
(P0; P1) factors of P by x ;
(Q0;Q1) factors of Q by x ; /* (Q1 6= 0) */
R P1=Q1 ;
if (R 6= 0) if (Q0 6= 0) R R & P0=Q0 ;
cache(\P=Q") R ;
return R ;

g

Fig. 4: Algorithm for Division

Subset0(P; xk) becomes (P%xk). Change() operation can
also be described using some multiplication and division
operators. Using unate cube set expressions, we can ele-
gantly express the algorithms or procedures for manipu-
lating sets of combinations.

3.2 Algorithms of Operations

We show here that the above operations can be e�ciently
executed using 0-sup-BDD techniques. The three triv-
ial cube sets are represented by simple 0-sup-BDDs. The
empty set \0" becomes the 0-terminal, and the unit set
\1" is the 1-terminal node. A single literal set xk corre-
sponds to the single-node graph pointing directly to the
0 and 1-terminal. The intersection, union, and di�erence
operations are the same as the basic operations of the
0-sup-BDDs shown in Section 2. The other three opera-
tions, product, quotient, and remainder, are not included
in the basic ones. We have developed the algorithms for
computing these operations.
If we execute the multiplication and division operations

by processing each cube one by one, the execution time
will depends on the length of expressions. Such a proce-
dure is impractical when we deal with very large number
of cubes. We developed new recursive algorithms based
on 0-sup-BDDs to e�ciently calculate large size of expres-
sions.
Our algorithms are based on the divide-and-conquer

method. Suppose x is the highest-ordered literal, P and
Q are then factored into two-part:

P = x � P1 + P0; Q = x �Q1 +Q0.
The product (P �Q) can be written as:

(P �Q) = x� (P1 �Q1+P1 �Q0+P0 �Q1)+P0 �Q0.
Each sub-product term can be computed recursively. The
expressions are eventually broken down into trivial ones
and the results are obtained. In the worst case, this algo-
rithm would require an exponential number of recursive
calls for the number of literals; however, we can acceler-
ate them by using a hash-based cache which memorizes
results of recent operations. By referring to the cache be-
fore every recursive call, we can avoid duplicate executions
for equivalent subsets. Consequently, the execution time
depends on the size of 0-sup-BDDs, not on the number of
cubes and literals. This algorithm is shown in detail in
Fig. 3.
The quotient is computed in the same recursive man-

ner. Suppose x is a literal at the root-node in Q, and
P0; P1; Q0; Q1 are the sub cube sets factored by x. (No-
tice that Q1 6= 0 since x appears in Q.) The quotient
(P=Q) can be described as:

(P=Q) = (P1=Q1), when Q0 = 0.
(P=Q) = (P1=Q1)&(P0=Q0), otherwise.

Each sub-quotient term can be computed recursively.
Whenever we �nd that one of the sub-quotients
(P1=Q1)or(P0=Q0) results in 0, (P=Q) = 0 becomes obvi-
ous and we no longer need to compute it. Using the cache
technique avoids duplicate executions for equivalent sub-
sets. This algorithm is illustrated in Fig. 4. The remainder
(P%Q) can be determined by calculating P �P � (P=Q).

4 Implementation and Applications

Based on the techniques mentioned above, we developed
a Unate Cube set Calculator (UCC). This program is an
interpreter with a lexical and syntax parser for calculat-
ing unate cube set expressions and displaying the results
in various formats. Our program allows up to 65,535 dif-
ferent literals. An example of execution is shown in Fig. 5.
We can de�ne the cost for each literal, for use in com-

puting the minimum-cost cube. After constructing 0-sup-
BDDs, the minimum-cost cube can be found in a time
proportional to the number of nodes in the graph, as us-
ing conventional BDDs[5].
Because UCC can generate huge 0-sup-BDDs with mil-

lions of nodes, limited only by memory capacity, we can
manipulate large-scale and complicated expressions. Here
we show several applications for the unate cube set calcu-
lator.

4.1 8-Queens Problem

The 8-queens problem is one example in which using unate
cube set calculation is more e�cient than using ordinary
Boolean expressions.
First, we allocate 64 logic variables to represent the

squares on a chessboard. Each variable denotes whether
or not there is a queen on that square. The problem can
be described with the variables as follows:

� Only one variable is \1" in a particular column.

***** Unate Cube set Calculator (Ver. 1.1) *****
ucc> symbol a(2) b(1) c(2) d(3) e(2)
ucc> F = (a + b) (c + d + e)
ucc> print F
a c, a d, a e, b c, b d, b e
ucc> print .factor F
(a + b) (c + d + e)
ucc> print .matrix F
1.1..
1..1.
1...1
.11..
.1.1.
.1..1

ucc> print .count F
6

ucc> print .size F
5 (10)

ucc> G = F * a + c d e
ucc> print G
a b c, a b d, a b e, a c, a d, a e, c d e
ucc> print .factor G
a (b + 1) (c + d + e) + c d e
ucc> print F & G
a c, a d, a e
ucc> print F - G
b c, b d, b e
ucc> print G - F
a b c, a b d, a b e, c d e
ucc> print G / (a b)
c, d, e
ucc> print G % (a b)
a c, a d, a e, c d e
ucc> print .mincost G
a c (4)
ucc> exit

Fig. 5: Execution of Unate Cube Set Calculator

� Only one variable is \1" in a particular row.

� One or no variable is \1" on a particular diagonal
line.

To solve this problem using conventional BDDs based on
Boolean algebra, we construct each column/row/diagonal
constraint with a BDD. Then we compute conjunction for
all the constraints to generate a BDD representing the
whole solution.
Table 1 shows the experimental results of this proce-

dure. We observed the number of BDD nodes and pos-
sible solutions at each intermediate steps, at after com-
puting conjunction of column conditions (column), then
after including row condition (row), after ascending diag-
onals (dia-asc), and �nally after descending diagonals (�-
nal). This experiment shows that the number of solutions
decreases monotonically during computation, but size of
BDDs temporarily grows much larger than the �nal size.
This temporary growth may cause overow when solving
larger-scale problems.
By unate cube set calculation, we can more e�ciently

solve the 8-queens problem in another way:

1. Search all the choices to put the �rst queen.

2. Search all the choices to put the second queen,
considering the �rst queen's location.
: : :

8. Search all the choices to put the eighth queen, con-
sidering the other queens' locations.

Table 1: 8-Queens Using Boolean Algebra
Step column row dia-asc �nal

#Node 119 3330 10308 2450

#Solution 16777216 40320 2113 92

Table 2: 8-Queens Using Unate Cube Set Algebra
Step 1 2 3 4 5 6 7 8

#Node 8 35 107 246 504 715 647 373

#Solution 8 42 140 344 568 550 312 92

Table 3: Results on N-Queens Problems
N Lit. Sol. BDD ZBDD (B/Z) (Z/S)

4 16 2 29 8 3.6 4.0
5 25 10 166 40 4.2 4.0
6 36 4 129 24 5.4 6.0
7 49 40 1098 186 5.9 4.65
8 64 92 2450 373 6.6 4.05
9 81 352 9556 1309 7.3 3.72
10 100 724 25944 3120 8.3 4.31
11 121 2680 94821 10503 9.0 3.92
12 144 14200 435169 45833 9.5 3.23
13 169 73712 2044393 204781 10.0 2.78

(B/Z) BDD/ZBDD, (Z/S) ZBDD/Solution.

This algorithm can be described with unate cube set
expressions as:

S1 = x11 + x12 + : : :+ x18
S2 = x21(S1%x11%x12) + x22(S1%x11%x12%x13)

+ : : :+ x28(S1%x17%x18)
S3 = x31(S2%x11%x13%x21%x22)

+x32(S2%x12%x14%x21%x22%x23)
+ : : :+ x38(S2%x16%x18%x27%x28)

S4 = : : :
Calculating these expressions with 0-sup-BDDs pro-

vides the set of solutions to the 8-queens problem. Table 2
shows the experimental results of our new approach. In
this method, we can limit the growth in graph size, and
thus, the �nal size of 0-sup-BDDs is much less than when
using conventional BDDs.
H. Okuno reported experimental results for N-queens

problems[8]. In Table 3, the column \BDD" shows the
size of BDDs using Boolean algebra, and \ZBDD" is the
size of 0-sup-BDDs using unate cube set algebra. This
shows that there are about N times less 0-sup-BDDs than
conventional BDDs. We can represent all the solutions
at once within a storage space almost proportional to the
number of solutions.

4.2 Fault Simulation

N. Takahashi et al. proposed a method of fault simula-
tion for multiple faults using BDDs[9]. This is a deductive
method for multiple faults, that manipulates sets of mul-
tiple stuck-at faults using BDDs. It propagates the fault
sets from primary inputs to primary outputs, and eventu-
ally obtains the detectable faults at primary outputs. The
study [9] used conventional BDDs, however; we can more

x0(s-a-0)
x1(s-a-1)

X X’

net x X net x

net y

net z

Y Z

(a) At a Net (b) At a Gate
Fig. 6: Fault Set Propagation

simply compute the fault simulation using 0-sup-BDDs
based on unate cube set algebra.
First, we generate the whole set of multiple faults that

is assumed in the simulation. The set of all the single
stuck-at faults is expressed as:
F1 = (a0 + a1 + b0 + b1 + c0 + c1 + :::), where a0 and a1
represent the stuck-at-0 and -1 faults, respectively, at the
net a. Other literals are similar. We can represent the
set of double and single faults F2 as (F1 � F1). Further,
(F2 � F1) gives the set of three or less multiple faults. If
we assume exactly double (not including single) faults, we
can calculate (F2 � F1). In this way, the whole set U can
easily be described with unate cube set expressions.
After computing the whole set U , we then propagate

the detectable fault set from the primary inputs to the
primary outputs. As illustrated in Fig. 6(a), two faults
x0 and x1 are assumed at a net x. Let X and X 0 be the
detectable fault sets at the source and sink, respectively, of
the net x. We can calculate X 0 from X with the following
unate cube expression as:
X 0 = (X+(U=x1)�x1)%x0, when x = 0 in a good circuit.
X 0 = (X+(U=x0)�x0)%x1, when x = 1 in a good circuit.
On each gate, we calculate the fault set at the output of
the gate from the fault sets at the inputs of the gate. Let
us consider a NAND gate with two inputs x and y, and
one output z, as shown in Fig. 6(b). Let X;Y and Z be
the fault sets at x; y and z. We can calculate Z from X
and Y by the simple unate cube set expressions as follows:
Z = X &Y , when x = 0; y = 0; z = 1 in a good circuit.
Z = X�Y , when x = 0; y = 1; z = 1 in a good circuit.
Z = X+Y , when x = 1; y = 1; z = 0 in a good circuit.
We can compute the detectable fault sets by calculat-

ing those expressions for all the gates in the circuit. Us-
ing unate cube set algebra, we can simply describe the
fault simulation procedure and can directly execute it by
a unate cube set calculator.

5 Conclusion

We have discussed unate cube set algebra based on 0-
sup-BDDs. We proposed e�cient algorithms for comput-
ing unate cube set operations including multiplication and
division. We have developed a unate cube set calculator,
which can be applied to many practical problems.
Unate cube sets have di�erent semantics from binate

cube sets; however, there is a way to simulate binate cube
sets using unate ones. We use two unate literals x1 and
x0 for one binate literal. For example, a binate cube set

(a b + c) is expressed as the unate cube set (a1b0 + c1).

In this way, We can easily simulate the cube-based algo-
rithms implemented in the logic design systems such as
ESPRESSO and MIS[7]. Utilizing this technique, we have
developed a practical multi-level logic optimizer. It is de-
tailed elsewhere[10].
Unate cube set expressions are suitable for representing

sets of combinations, and they can be e�ciently manipu-
lated using 0-sup-BDDs. For solving some types of combi-
natorial problems, our method are more useful than using
conventional BDDs based on Boolean algebra. We expect
the unate cube set calculator to be utilized as a helpful
tool in researching and developing LSI design systems.

Acknowledgment

The author wish to acknowledge the valuable discussion
with H. Okuno and N. Takahashi.

References

[1] R. Bryant, \Graph-based algorithms for Boolean
function manipulation," IEEE Trans. Comput.,
Vol. C-35, No. 8, pp. 677-691, Aug.1986.

[2] Y. Matsunaga and M. Fujita, \Multi-level logic op-
timization using binary decision diagrams," Proc. of
ACM/IEEE ICCAD'89, pp. 556-559, Nov. 1989.

[3] J. Burch, E. Clarke, K. McMillan and D. Dill, \Se-
quential circuit veri�cation using symbolic model
checking," Proc. of ACM/IEEE DAC'90, pp.618-624,
June 1990.

[4] O. Coudert and J. Madre and H. Fraisse, \A new
viewpoint of two-level logic optimization," Proc. of
ACM/IEEE DAC'93, pp. 625-630, June 1993.

[5] B. Lin and F. Somenzi, \Minimization of symbolic
relations," Proc. of ACM/IEEE ICCAD'90, pp. 88-
91, 1990.

[6] S. Minato, \Zero-suppressed BDDs for set ma-
nipulation in combinatorial problems," Proc. of
ACM/IEEE DAC93, pp.272-277, 1993.

[7] R. Brayton, R. Rudell, A. S.-Vincentelli and
A. Wang, \MIS: a multiple-level logic optimization
system," IEEE Trans. CAD, Vol. CAD-6, No. 6,
pp. 1062-1081, June 1987.

[8] H. Okuno, \Reducing combinatorial explosions in
solving search-type combinatorial problems with bi-
nary decision diagram" (in Japanese), Trans. of In-
formation Processing Society of Japan, Vol.35, No.5,
May 1994, in press.

[9] N. Takahashi, N. Ishiura and S. Yajima, \Fault simu-
lation for multiple faults using shared BDD represen-
tation of fault sets," Proc. of ACM/IEEE ICCAD'91,
pp. 550-553, Nov. 1991.

[10] S. Minato, \Fast weak-division method for implicit
cube representation," Proc. of the Synthesis and
Simulation Meeting and International Interchange
(SASIMI'93, Japan), pp. 423-432, Oct. 1993.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

