
Performance Optimization using Exact Sensitization

Alexander Saldanha� Heather Harknessy Patrick C. McGeerz

Robert K. Brayton Alberto L. Sangiovanni-Vincentelli

University of California - Berkeley CA

Abstract
A common approach to performance optimization of circuits focuses
on re-synthesis to reduce the length of all paths greater than the de-
sired delay � . We describe a new delay optimization procedure that
optimizes only sensitizable paths greater than � . Unlike previous
methods that use topological analysis only, this method accounts for
both functional and topological interactions in the circuit. Compre-
hensive experimental results comparing the proposed technique to a
state-of-the-art performance optimization procedure are presented for
combinational and sequential logic circuits.

1 Introduction
A common technique for performance optimization of logic
circuits is re-synthesis to reduce the length of statically long
paths. Optimization methods which apply this technique as-
sume that the delay of the circuit is equivalent to the delay of
the topologically longest path, and use path lengths to identify
critical paths [8], or as a rough measure of delay optimiza-
tion [11].These techniques are topology dependent and func-
tion independent, since no consideration is made for false paths.
However, in many circuits the topologicallylong paths are false
paths, which do not contribute to the actual delay. For such
circuits, the methods which rely on topological path length
may waste unnecessary resources optimizing false paths, or
may fail to achieve the maximum performance optimization.

More recent performance optimization work utilizes the fact
that the actual delay of the circuit is not equivalent to the longest
topological delay when the longest paths in a circuit are false.
The simplest methods [6, 2] just remove long false paths so
that the longest topological path in the resulting circuit is equal
to the actual delay of the circuit.

A more aggressive method, the generalized bypass trans-
form [4], accelerates circuits by introducing redundancy which
makes long paths false. This method relies on a generalization
of the carry-bypass adder optimization technique to perform
local optimizations. It bypasses long paths by adding local re-
dundancy to the network. The algorithm of [6] is then used to
remove the long false paths. While this method relies on local
sensitization to optimize paths, it uses topological information
to select paths for optimization and doesn’t consider global
sensitization information.

The method of [3] considers path sensitization as one cri-
terion in the selection of paths for delay optimization. This
method considers only gate resizing and buffer insertion as de-
lay optimization techniques, leaving the topology of the circuit
unchanged.

In this paper we propose a new delay optimization tech-
nique that relies on recent advances in timing analysis and
optimization to speed up only sensitizable paths. A step be-

�Cadence Berkeley Labs - Berkeley CA
yDigital Equipment Corporation - Hudson MA
zCadence Berkeley Labs - Berkeley CA

yond path-based procedures, it is a functional procedure, based
on recent sensitization work[5]. In this work, delays are asso-
ciated not with paths but with specific input vectors or vector
sequences. Thus, with each range of circuit delays, there is
an associated boolean function representing the sensitizable
paths which terminate within that delay range. This function is
extracted for the range of delays [�;1] where � is the desired
circuit delay, and optimized using any delay reduction tech-
nique. The result is then combined with the original circuit
and the whole circuit passed through the false path elimina-
tion procedure [6]. The approach may be extended to consider
multi-cycle false paths in sequential circuits, and it combines
multi-cycle false path elimination and retiming to exploit the
advantages demonstrated by the approach of [1].

This functional timing optimization technique provides sig-
nificant advantages over the existing false path based opti-
mization methods. It is the first approach to consider exact
sensitization conditions in selecting paths for performance op-
timization. This global circuit information is used to derive a
more topology-independentfunction for optimization than that
produced by the existing methods. This produces logic which
is potentially more optimal in terms of both area and perfor-
mance. Also, rather than operating on a path-by-path basis,
which might be impractical, the functional method considers
the entire set of long paths simultaneously.

This paper first demonstrates how the proposed optimization
technique is applied to combinational logic circuits and how
don’t cares can be exploited in performance optimization of
the sensitization functions. Next, the technique is extended to
sequential logic circuits where unreachable states are used as
don’t cares. We also demonstrate how information related to
multi-cycle false paths may be utilized in performance opti-
mization. Comprehensive experimental results comparing the
proposed technique to a state-of-the-art performance optimiza-
tion procedure are presented.

2 Background
2.1 Delay model
Every optimization technique makes use of timing information
contained in some delay model. If the circuit is built from
library gates, and if layout information is available for the
extraction of routing delays, then exact delay information is a
reasonable model. When layout and gate delay information are
not known precisely, weaker models are preferred. The general
model is the unit-fanout model, where each gate is thought of
as having a unit delay, and where each fanout is thought of as
contributing a smaller delay. This model is intended to capture
wiring effects.

Touati et al. [11] argue persuasively that layout and mapping
factors such as transistor sizing, buffering, and routing tend to
dwarf pure fanout effects, and that as a result technology-
independent optimization should concentrate on reduction of
circuit levels; this is the unit delay model where each gate is

31ST ACM/IEEE Design Automation Conference ®
Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying it is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. © 1994 ACM 0-89791-653-0/94/0006 3.50

425

http://crossmark.crossref.org/dialog/?doi=10.1145%2F196244.196448&domain=pdf&date_stamp=1994-06-06

thought of as having a unit delay and there are no fanout effects.
The effectiveness of the unit delay model over two-input gates
has been experimentally confirmed by Singh [8], who shows
that the final delay of the mapped circuit is reasonably predicted
by the unit delay of the two-input NAND network.

Although our experimental results are restricted to the simple
unit delay model, the proposed method applies to circuits with
more realistic delay models. We are limited only by the resyn-
thesis procedures used for performance optimization, which
are less predictable and significantly slower when technology
mapped delays are used [8].

2.2 Exact sensitization
Recently a ternary waveform algebra framework was provided
in which the exact sensitization conditions under several com-
mon delay models are easily described [5]. Here we adapt the
exact sensitization conditions of [5] to “floating delay” mode
computations only.

Definition 2.1 A characteristic function is a mapping:

� : Bn 7! f0; 1g:

� is associated with some set S � Bn: �(w) = 1 iff w 2 S

Characteristic functions are a feature of the timing verifica-
tion algorithms developed in [5]. They are used to represent
functions of the form:

�g(t)=v � fwjg settles to stable value v before time tunderwg

Here g is a gate, v 2 f0; 1g and �g(t)=v is the set of all
input vectors such that the output of g is constant at v on the
interval (t;1). Since �g(t)=1 contains all the vectors under
which g settles to a stable value of 1 before t, the set g:�g(t)=1

contains all the vectors that cause g to settle to a final value
of 1 after t. This set is denoted as Rg(t). Similarly, the set
g:�g(t)=0 contains all the vectors that cause g to settle to a final
value of 0 after t, and is denoted as Fg(t). Thus, we have the
complementary characteristic functions:

Rg(t) � fwj g settles to stable value 1 after time t under wg

and

Fg(t) � fwj g settles to stable value 0 after time t under wg

Rg(t) (Fg(t)) is the set of all input vectors for which a rising
(falling) sensitizable path of length > t exists up to the output
of g. It follows from their definitions that Rg(t) � g and
Fg(t) � g for any gate g and time t.

In [5], an efficient recursive form of theRg(t) or Fg(t) sen-
sitization function is introduced. The expression for �g(t)=v
is written so that it depends only on the function g and the
sensitization functions of the fanin of g.

Lemma 2.1 Let g be a gate with inputs f1; :::; fr. Let p1; :::; pn
be all the primes of g, and q1; :::; qm all the primes of g. Let
Fk(p) denote the value of input fk in a prime p. Then:

�g(t)=1 =
nX
i=1

rY
k=1

�
f(Fk(pi) = 1)) �fk(t�D

k)=1g

f(Fk(pi) = 0)) �fk(t�D
k)=0g

�

�g(t)=0 =
mX
j=1

rY
k=1

�
f(Fk(qj) = 1)) �fk(t�D

k)=1g

f(Fk(qj) = 0)) �fk(t�D
k)=0g

�

Since we are working with the technology independent delay
model of two-inputNAND gates, an attractive side-effect of the
use of these recursive functions is that they retain the structure
of the original network as closely as possible. In fact, for our
results using the exact sensitization formulation, the depth of
the recursive function at a node is exactly equal to the depth
of that node in the original network. This is easy to observe
in the recursive formula of Lemma 2.1. For computing the
rising delay, since a NAND gate has two primes, a single two-
input NAND gate captures the outer summation term. Since
the primes each have a single literal, a gate is not needed to
represent the inner product term. Analogous reasoning holds
for the falling delay sensitization function. Not surprisingly,
the delay of the recursive functions �g(t)=1 and �g(t)=0 in
Lemma 2.1 is at most the length of the longest sensitizable path
up to g in the original network. The functionRg(t) is formed
as the product of �g(t)=1 and the original network, so the delay
ofRg(t) is most one greater than the longest sensitizable path
delay of function g. Similar reasoning indicates that the delay
of Fg(t) is at most one greater than the delay of g. Even in the
case of technology dependent delays, the delay of the recursive
functions can be expected to closely match those of the original
network.

3 Combinational performance optimization
Given a combinational logic circuit and a target time of � + 1,
the exact sensitization optimization procedure, sense opt, op-
erates as follows. The risingand fallingsensitization functions,
Rg(�) and Fg(�), for each primary output g are created using
the recursive formulation of Lemma 2.1. If the delay of these
two functions can be optimized � � , then by composing the
circuits as shown in Figure 1, the longest sensitizable path in
the final network, denoted g fast, is guaranteed to be no more
than � plus the delay the two 2-input gates used to combine the
sensitization functions with the original function.

The proof that the delay of g fast � � + 2 follows from
sensitization theory. We provide only a brief sketch of the
proof here. Consider the input vectors under which primary
output g settles to a final value of 1. These are the only vectors
that impact the rising delay at g. There are two cases:

1. If g settles to 1 before time � under input vector v in the
original circuit, then the OR gate in g fast of Figure 1
settles to 1 before time � + 1. Since the fall sensitization
network is zero under this vector, the AND gate settles to
1 by time � + 2.

2. If g settles to 1 after time � under vector v in the original
circuit, then v is included inRg(�); i.e. the output of the
networkRg(�) is 1 under v. If the delay of Rg(�) is less
than � , then the OR gate in g fast of Figure 1 settles to 1
before time � + 1. Hence, all paths of rising delay > �
are false under v in the original network for g of Figure 1.

An analogous argument is valid for the falling delay. Since
the delay of g fast is � � + 2, all paths of length > � in the
original circuit can be removed using the false path elimination
algorithm described in [6].

Under the assumption that the rise and fall delay of a con-
nection are identical, only one of the sensitization functions
need be used. For example, if Rg(t) has delay � � , then all
paths of length > � are false in the original circuit, after the
composition shown in Figure 2. Removal of these long false
paths also eliminates all paths with falling delay > � , so the
final composed circuit has delay� � + 1. Since we have em-
ployed the unit delay model, the requirement of equal rise and

426

PI
Original network

Rise sensitization
network

g

Fall sensitization
network

g_fast

Figure 1: Speed up of circuit using sensitization functions

PI
Original network

Rise sensitization
network

g_fastg

Figure 2: Speed up of circuit using only rise sensitization
function

fall times is trivially satisfied. In the case of different rise and
fall delays on a connection (e.g. technology mapped circuits),
the maximum of these two quantities may be used to avoid the
creation of both sensitization functions.

Don’t care conditions which arise from the relationship of
the sensitization functions to the original functions may be
exploited in the simplification of the rise and fall sensitiza-
tion functions. One can see that g:Rg(�) is the observabil-
ity don’t care set for the function Rg(�). Similarly, g:Fg(�)

is the don’t care set for Fg(�). The sensitization functions
may be optimized using an algorithm such as the full simplify
command available in SIS [7], which uses satisfiability, ob-
servability and external don’t cares in logic minimization. For
our experiments, however, simplification is performed using
a redundancy removal algorithm that considers external don’t
cares.

Delay optimization of each sensitization function may be
achieved using any combinational delay reduction technique.
For this purpose, we use the latest speed up procedure de-
scribed in [8], which is shown to include or subsume most
of the well known topology based performance optimization
methods. This improved speed up is an iterative delay opti-
mization method, which applies a number of different local
delay optimization techniques to produce a global decrease in
delay. Among the local delay optimizations considered are
timing driven simplification, decomposition, cofactoring, the
generalized bypass, and the function complement. The method
divides a network into small sub-networks of fixed size, and
evaluates various delay optimization operations on each to de-
termine maximum performance improvement, and associated
area increase. This data is used to determine a lower bound
on the attainable delay reduction. The possible delay reduc-
tion then determines which regions of the circuit should be
optimized and which local optimization methods should be
performed to meet the delay requirement at each output with
minimal area cost. Note that the local transformations per-
formed by speed up rely on static delay analysis. Therefore,
sense opt is invoked recursively on the sensitization functions
to ensure that false paths in these function representations are

/* � + 1 is the target delay */
sense opt f

Create Rg(�), Fg(�)

DC rise = g:Rg(�)

DC fall = g:Fg(�)

RISE min = Rg(�) simplified wrt DC rise
FALL min = Fg(�) simplified wrt DC fall
RISE opt = speed up(RISE min, �)
FALL opt = speed up(FALL min, �)
g fast = Either g+RISE opt or g:FALL opt
g fast = KMS(g fast, > � + 1)
Recover area by redundancy removal and

resubstitution
g

Longest path in g fast has delay � � + 1

Figure 3: Overview of proposed delay optimization procedure

not considered in performance optimization.
After successful delay optimization of the sensitization func-

tions, and recombination with the original circuit, a single pass
implementation of the KMS algorithm [6] is performed on
the resulting circuit to eliminate the false paths without in-
creasing delay. Once the false paths have been removed, the
static delay reflects the actual delay of the circuit. A final step
of area recovery by redundancy removal and resubstitution is
then performed. The basic steps of the algorithm are shown in
Figure 3.

4 Sequential performance optimization
The first extension of this method to sequential circuits exploits
unreachable states for simplification of the sensitization func-
tions. The set of reachable states is computed using an implicit
breadth-first algorithm. The complement of this set is added
to the don’t care set used for minimization of the sensitization
functions.

An n-cycle path Q = P1P2:::Pn is composed of paths Pi
in the combinational logic such that the output of path Pi is
the input of path Pi+1 for 1 � i < n. Each Pi is termed
a component path. Timing analysis of multi-cycle paths is
described in [1]. An algorithm for removal of paths in the
combinational logic which are part of long multi-cycle false
paths is also provided in [1].

A second extension of sense opt to sequential circuits ex-
ploits retiming to reduce the clock period. Assume that the
combinational delay cannot be reduced below � . However, if
every n-cycle path is of length � n� , then retiming may be
attempted to reduce the clock period. (Note that retiming can-
not guarantee a final clock period less than � since the initial
state may not be preserved on retiming [10].) The main point
to note is that each combinational path does not need to have
delay � � to ensure a n-cycle path delay � n� . The problem
now is to distribute appropriate required times on the outputs
of the combinational logic such that satisfaction of these con-
straints results in multi-cycle paths of at most the target delay.
Several heuristics to perform the distribution of delay reduc-
tion to each of the combinational paths over multi-cycles are
described in [8]. We have not incorporated these heuristics
into sense opt; instead we simply reduce the delay of the sen-
sitization functions maximally. This is in contrast to satisfying
the maximum required time of � in the combinational case.

A third extension exploits false paths over multiple cycles.
It has been demonstrated that a path P that is sensitizable over
a single time frame (i.e. in the combinational logic) may be a
component path of an n-cycle path Q which is false [1]. This

427

information can be utilized by sense opt in further improving
the performance optimization procedure. Assume that we are
interested in reducing the length of n-cycle paths to < n� to
enable re-timing to reduce the clock period. Consider a pathP
in the combinational logic. If every n-cycle path Q of length
> n� , of whichP is a component path, is false, thenP need not
be considered in performance optimization1. This condition
is easily captured as a don’t care of the sensitization function.
Given a target n-cycle delay of n� , we perform timing analysis
over n-cycle paths to determine the set of vectors in the first
time frame which can sensitize paths > n� . The vectors in
Rg(�) and Fg(�) that are not included in this set are don’t
cares, since they do not sensitize n-cycle paths of length> n� .
Following the performance optimization, elimination of all n-
cycle paths of length > n� ensures that the longest path in the
resulting circuit over n cycles is� n� .

This procedure includes the technique of [1]. Like that ap-
proach, if all n-cycle paths of length > n� are false, sense opt
returns a circuit with n-cycle delay� n� . However, unlike the
technique of [1], which cannot reduce the n-cycle delay less
than n� if at least one path of delay > n� exists, our proce-
dure can utilize don’t care conditions for only those n-cycle
paths which are false in the simplification of the sensitization
functions for each path. This potentially aids in reducing all
n-cycle paths to being either false or of delay � n� .

5 Results
In this section we detail the experimental procedure and results
obtained for combinational and sequential logic circuits. In
both cases we have compared sense opt to the latest version
of the performance optimization procedure speed up described
in [8]. Comprehensive experimental results in [8] have shown
it to be the state-of-the-art optimization procedure. The results
obtained using the latest version of speed up are significantly
better than those originally presented in [9]. The results are
also better than those reported in [4, 11].

5.1 Combinational logic circuits
Table 1 shows results produced by sense opt and speed up on
benchmark combinational logic circuits. Each circuit is first
optimized for area using the standard script (script.rugged)
in SIS [7]. The circuit is next decomposed into 2-input
NAND gates using an area and delay driven decomposition
(good decomp; eliminate -1; speed up -i). We do not use
the area driven decomposition (good decomp; tech decomp -
a 2) since this provides a dis-advantageous starting point for
speed up [8]. A final single stuck fault redundancy removal is
performed to ensure that the initial circuit is minimal.

The table shows the area and delay results produced by each
optimization method. Here, area is the number of literals and
delay is the longest sensitizable path delay under the unit delay
model. For initial circuits, the longest topological path delay
is also shown in parentheses where this delay differs from the
longest sensitizable delay. For the sense opt and speed up op-
timized circuits, the static delay of the final circuit is equal to
the longest sensitizable path under the unit delay model. Data
for the minimum delay circuits obtained by each optimization
method are shown. Speed up generates a minimum delay cir-
cuit by repeatedly performing local delay optimizations until
no further improvement in delay is achieved. To obtain a min-
imum delay circuit using sense opt, the sense opt algorithm
is performed on the original network for various target delays
to find the minimum target delay for which the sensitization
functions meet the required timing constraints. The sense opt
algorithm is also iterated on the resulting network until there is

1If P is also part of some path of length � n� , then the false path elimination
algorithm performs duplication to ensure that P is retained for these shorter paths [6, 1].

Circuit Initial Speed up Sense opt
Area Delay Area Delay Area Delay

bw 288 23 378 19 375 8
k2 1699 17 1681 16 1813 13
ampbpreg 1395 18 1529 14 1793 11
duke2 666 14 688 12 829 10
amppint2 919 (20) 16 965 13 1035 11
misex3c 820 (25) 22 909 19 1327 17
cbp.16.4 353 43 614 16 532 15
t481 1187 17 529 16 636 15
sbiucb1 390 16 395 13 573 12
cps 1884 16 1904 12 2123 11
rd84 209 11 209 11 244 10
pdc 601 14 600 11 658 10
ampxhdl 533 16 549 11 674 10
ampbsm 1120 (15) 14 1112 10 1220 9
b9 194 9 204 7 229 6
des 6051 18 6115 17 6401 16
ex1010 3936 14 3920 14 4006 13
ex4 918 11 936 10 1007 9
dflgrcb1 495 12 502 9 576 8
fconrcb1 360 12 382 9 438 8
cordic 130 11 170 9 180 8
tfaultcb1 278 9 280 8 296 7
b12 148 6 142 6 142 6
misex2 165 7 182 6 172 6
kcctlcb3 349 9 399 7 414 7
rot 1086 (21) 20 1164 14 1469 14
spla 966 (16) 14 1088 10 1178 10
dalu 1594 19 1515 13 2004 13
C1908 800 (30) 28 988 22 1899 22
C1355 820 19 1140 15 1302 15
C2670 1237 24 1298 16 1228 18

Table 1: Delay optimization on combinational circuits

no further delay improvement. Although not shown, a tradeoff
between the delay and area using sense opt can be realized
similar to that attainable with speed up [8].

There are three sets of results. The first set of examples
are those for which sense opt outperforms speed up. Many
of these circuits have large numbers of false paths. For these
circuits, sense opt yields substantial gains over speed up cor-
roborating the thesis of this paper. The second set of examples
are those for which both techniques yield the same delay. In
most of these cases, speed up produces a smaller circuit. No-
tice that the area difference is small in most cases. However, for
examples dalu and C1908, the area resulting from sense opt
is substantially larger than that produced by speed up. The
greater area overhead for these sense opt examples results from
duplication during the network recombination step, and fanout
path duplication during the KMS procedure. In the third set,
is the one benchmark example for which sense opt fails to
achieve the delay produced by speed up. For this example,
the sensitization functions cannot be optimized to be at most
� � 1 although the original circuit can be optimized to have
delay � . As mentioned previously, the delay of the sensitiza-
tion function is initially at most one more than the delay of the
original function. For this example, that difference in initial
delay apparently prevents achievement of the same delay as
speed up.

5.2 Sequential logic circuits
Table 2 compares the results of speed up against sense opt on
optimized sequential logic circuits. The unreachable states of
the circuit are first extracted and used as external don’t cares
in area optimization using the standard script (script.rugged)
in SIS [7]. The circuit is next decomposed into 2-input NAND
gates using a delay driven decomposition (good decomp; elim-
inate -1; speed up -i). Finally, single stuck-fault sequential
redundancy removal is performed to ensure the circuit is mini-
mal. These steps produce the initial circuit used for comparing
speed up and sense opt.

Delay optimization is performed as follows. Speed up or

428

Circuit Initial Speed up Sense opt
Area Delay L Area Delay Area Delay L

bbara 92 10 4 96 8 84 5 9
s510 429 16 6 461 13 548 10 6
s349 207 16 15 248 11 263 8 15
dk512 102 12 4 110 8 129 6 8
s386 169 12 6 211 9 233 7 6
s344 206 16 15 251 11 231 9 15
dk27 44 8 3 46 5 39 4 3
mc 45 7 2 42 5 44 4 2
modulo12 44 5 4 44 5 48 4 2
s298 154 7 14 146 6 154 5 14
train11 81 7 4 81 7 71 6 4
ex7 114 7 4 114 7 148 6 4
bbsse 210 9 4 214 8 227 7 7
dk14 182 8 3 182 8 173 7 3
s208 139 12 8 157 9 149 8 8
kirkman 434 10 4 434 10 431 9 4
s641 235 16 14 295 11 403 10 14
s820 503 12 5 511 11 551 10 5
s832 472 12 5 472 11 514 10 5
s1238 960 15 18 990 14 1131 13 18
bbtas 41 5 3 37 4 36 4 3
dk15 129 7 2 131 6 131 6 2
dk16 516 9 5 502 9 500 9 5
dk17 126 7 3 126 7 126 7 3
ex3 132 7 4 132 7 130 7 4
ex4 131 7 4 131 7 130 7 4
planet 881 13 6 991 11 955 11 6
scf 1342 12 7 1342 12 1314 12 7
beecount 79 7 3 78 6 79 6 3
cse 313 11 4 309 10 331 10 4
ex1 410 12 5 395 10 409 10 5
ex2 261 10 5 271 9 274 9 5
mark1 126 7 4 120 6 130 6 4
opus 143 9 4 137 8 165 8 4
sand 876 13 5 936 11 997 11 5
s1196 976 16 18 1020 13 1172 13 18
s713 237 16 14 303 11 318 11 15
keyb 440 14 5 444 11 435 12 5

Table 2: Delay optimization on sequential circuits

sense opt is used to reduce the combinational delay of the
circuit. Appropriate don’t cares arising from two-cycle false
paths are generated and used in simplification of the sensitiza-
tion functions. Next, two-cycle false paths are identified and
eliminated; this is followed by sequential redundancy removal
and retiming to reduce the clock period [1]. As a safety check,
we verify that the final circuit is equivalent to the initial circuit.

The additional last column in the table indicates the number
of latches in the final circuit. The number of latches changes
only if multi-cycle false paths are exploited or retiming is
successful in reducing the delay of the circuit. We have exper-
imented only with multi-cycle paths. More extensive experi-
ments with multi-cycle paths over more than two time frames
remain to be done.

The first set of examples are those for which the delay ob-
tained using sense opt is better than that produced by speed up.
The delay reductions are substantial on several examples. Al-
though the area decreases in some cases with sense opt, the
increased number of latches offsets some of this gain. As
expected, the results obtained using sense opt are also uni-
formly as good as those reported in [1], where delay reduction
is achieved by removing multi-cycle false paths but without
resynthesis of the combinational logic.

The second set of examples are those for which the delay
achieved using speed up and sense opt are the same. This
typically occurs in those circuits where multi-cycle false paths
do not exist and retiming cannot reduce the clock period. In
some of the examples, the set of unreachable states is either
empty or very small, leaving little room for the exploitation
of external don’t cares in simplification of the sensitization
functions. On the circuit keyb, sense opt is unable to achieve
the same delay reduction as speed up.

6 Conclusions
Previous work in performance optimization falls into two cate-
gories: path-based topological approaches that do not consider
functional interactions, and false path elimination based tech-
niques which do not perform resynthesis of the nodes within
the circuit. We have presented a procedure that considers both
functional and topological interactions in performance opti-
mization of circuits. Our procedure combines both the topo-
logical and functional interactions in combinational and se-
quential logic circuits and incorporates the advantages of both
categories of performance optimization techniques. Compre-
hensive experimental results demonstrate that the gains over
a state-of-the-art path-based approach [8] are significant for
combinational and sequential logic circuits.

References
[1] P. Ashar, S. Dey, and S. Malik. Exploiting multi-cycle false paths

in performance optimization. In Proceedings of the Interna-
tional Conference on Computer-Aided Design, pages 510–517,
November 1992.

[2] H. Chen and D. Du. Circuit enhancement by eliminating long
false paths. In Proceedings of the Design Automation Confer-
ence, pages 249–252, June 1992.

[3] H. Chen, D. Du, and L-R. Liu. Critical path selection for perfor-
mance optimization. In IEEE Transactions on Computer-Aided
Design, pages 165–195, February 1993.

[4] P. McGeer, R. Brayton, A. Sangiovanni-Vincentelli, and
S. Sahni. Performance enhancement through the generalized
bypass transform. In Proceedings of the International Confer-
ence on Computer-Aided Design, pages 184–187, November
1991.

[5] P. McGeer, A. Saldanha, P. Stephan, R. Brayton, and
A. Sangiovanni-Vincentelli. Timing analysis and delay-fault
test generation using path recursive functions. In Proceedingsof
the International Conferenceon Computer-Aided Design, pages
180–183, November 1991.

[6] A. Saldanha, R. Brayton, and A. Sangiovanni-Vincentelli. Cir-
cuit structure relations to redundancy and delay: The KMS
algorithm revisited. In Proceedings of the Design Automation
Conference, pages 245–248, June 1992.

[7] E. Sentovich, K. Singh, C. Moon, H. Savoj, R. Brayton, and
A. Sangiovanni-Vincentelli. Sequential circuit design using
synthesis and optimization. In Proceedings of the International
Conference on Computer Design,pages 328–333,October 1992.

[8] K. Singh. Performance optimization of digital circuits. Ph.D.
Thesis, University of California - Berkeley, November 1992.

[9] K. Singh, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli.
Timing optimization of combinational logic. In Proceedings of
the International Conferenceon Computer-Aided Design, pages
282–285, November 1988.

[10] H. Touati and R.K. Brayton. Computing the initial states of
retimed circuits. IEEE Transactions on Computer-Aided Design,
July 1992.

[11] H. Touati, H. Savoj, and R. Brayton. Delay optimization of
combinational logic circuits through clustering and partial col-
lapsing. In Proceedings of the International Conference on
Computer-Aided Design, pages 188–191, November 1991.

429

