Formally verifying a microprocessor usng a simulation methodol ogy

Derek L. Beatty
Cadence Berkeley Laboratories
Cadence Design Systems, Inc.

beatt y@adence. com

Abstract

Formal verification is becoming a useful means of validating de-
signs. We have devel oped amethodology for formally verifying data-
intensive circuits (e.g., processors) with sophisticated timing (eg.,
pipelining) against high-level declarative specifications Previoudy,
formally verifying amicroprocessor required the use of anautomatic
theorem prover, but our technique requires little more thana sym-
badlic simulator. We have formally verified apre-exiging 16-bit CISC
mi croprocessor circuit extracted from the fabri cated lay out.

| ntroduction

Previously, symbolic switch-level simulation has been used to
verify some small or simple daa-intensive circuits (RAMSs,
stecks, register files, ALUs, and simple pipdines) [2, 3]. In
doing 0, the necessary simulation paternswere devel oped by
hand or by using ad-hoc techniques, and it was then argued
that the patterns were sufficient, and that their generation could
be automated. We have developed aufficient theory to fully
support such dams, and used this methodology to verify a
representetive set of operations (initialization and interrupt as
wdl as ingructions) of a microprocessor [1].

To verify a cdircuit, a designer writes assations to specify
high-level gperations. He or she aso writes mappingsillustrat-
ing how abstract state and 1O is realized by the circuit. From
these, our verifier generates symbolic mulation tests, which
are localized intime and space. In other words, they are short
patterns (typicdly single operations which exercise parts of
the circuit. Our theory then guarantees, from these locd tests,
that an arbitrary ssquence of operationswill work correctly.

In developing our methodology, our touchgone was a mi-
croprocessor cdled Hector [10, 5]. Thecomplexity of amicro-

0

Randad E. Bryant
Carnegie Mdlon University
bryant +@s. cru. edu

processor impliesthat ad-hoc techniqueswill not suffice, soits
verification requires careful atention to methodology. Hector
is a16-bit CISC fabricated in 1985. Its 2-address architecture
issimilar to the PDP-11, but with more (16) registers and fewer
addressing modes. System staeishdd inthe register fileand a
few condition code bits. The implementation is microcoded; at
themicrocodelevd itisslightly pipdined, but a theinstruction
set leve itis not! The bus interface issimilar to the Motorola
6800. In addition to a resat line there is a wait line, DMA,
prioritized interrupts, and asingle-stepfacility. Hectar has no
cache and does not support virtual memory.

Hector indudes an ALU with condition codes. Of its ad-
dressable registers, 7 are completely generd-purpose, and 9
are sometimes specidized (eg., PC, stack pointer, interrupt
vectors). Hectar has four addressing modes: register, indi-
rect, indirect with post-increment, and indexed. Additional
addressing modes can be synthesized since the stack pointer
and program counter are addresseble. (This dso gives ome
pathol ogi cal addressing modes.)

We did not participate in Hector'sdesign In modding Hec-
tor for verifi cation, wefirstextracteda switch-levd circuitfrom
layout. We made few changes to the extracted circuit—just
those necessary to modd it a the switch level. (We used the
switch level due to our expertise there, but our methodol ogy
could be essily used a a higher leve instead. The key require-
mentson the 9mulation are that it be symbolic, and efficiently
support an “unknown” signal value, such asthe switch-level X
vaue)

Thus, we stated with a pre-existing circuit. A C program
simulating Hector’s instruction set was dso avalable, but we
didnot useit directly. Instead, we wrote a higher-level, ded ar-
ative formal spedification of the instruction set. (It might dso
be possible to extract such higher-level descriptions from HDL
programs[8]. We havenot pursued this.)

1Actually, there isa very slight degree of pipd ining: theprocessor senses
the state of the interrupt | ines as it completes executi onof each instruction.

For mal verification

“Formal verification” (or simply FV) consists of egablishing
that a mathematica relaion holds between two descriptions
of asystem. The paticular relation established varies with
the gpproach to verification. A high-level description, called
the “specification,” is taken to be correct and a lower-levd
description, called the “redization,” is checked.?

Our approach to FV divides the specification into 2 parts.
The man part is ase of assertions, which are descriptions of
desired state-transition behavior. The other part describes |O
encodings. Once we haveverified acircuit, mathematicdly we
have established a relaion between 10 sequences of the speci-
fication andl O signal sof the circuit. Informdly, everything the
circuit does must be something dlowed by the specifi cation.

Some researchers make a diginction between “property
checking” (or design verification) and “machine comparion”
(or implementation verification). The assertions comprising
one of our spedifications define (implicitly) a gate machine
Thus, inatechnicd sense, weareperforming machine compar-
ison. However, strict division between two kindsof verification
is unhdpful in evauating this work—surely one sees a signif-
icant difference between the statements “this microprocessor
implementsthisinstruction set” and “these two state machines
aresimila.”

Other wor k

Previously, microprocessors have been formaly verified using
automati c theorem provers|[6, 7, 4, 13]. Our methodology re-
quires little more than a symbolic simulaor. Processors have
been verified by Madre and coll eagues without using theorem
provers [8, 9], hut the specification and circuit were required
to have identical latch structures and timing, and a unique reset
state. We do not have these redrictions. We can dso use more
detaled circuit models and handle detailed circuit iming in-
cluding pipelining. Our specifications are at the i ngtruction-set
level, a higher level than most previous work. Unlike ap-
proaches based purely on logic, we can structure our specifica
tionsto avad the danger of antecedent failure.

Verifyingcircuits

We givetwo examples: alach, to illustrate ideas in smplest
form, and Hector, toillustratetheir actual application. Thefirst
step informadly verifying adesignisto specify it formally.

Abgract specification

Daaintensive systems perform operations on data vaues.
Their stae trangtions implement such operations. A latch
hastwo kinds of operaions: it canload a new datavdue, and

2In gererd the specificati on mi ght either describe the system completely
(but abstrectly), or give some properties the system shoul d have, or both.

it can dore an old one. Formdly, we can describe such op-
erations ugng assertions. An assertion consists of two logical
formulas, which describe setsof states Its antecedent, or pre-
condition, describes dates before the operation occurs. For
example, before a“load” operation inalach, some new vaue
must begiven to the latch, and the latch must be told to load the
vaue. An assertion’s consequent, or post-condition, describes
states afterward. After a“load” operation, the new vaue will
be stored in the latch. For example, we can describe a latch
using the two asertions

op= load A == 2 0=

op= holdhid == é& o=
These say that if the operation isa*“load” and the input It has
vaue », then aterward the state © will have value=. If the
operaionisa“hold” andthe statehasvduex , it will remain.

The symbol 2 , which we read as* then implies” or “leads to,”
indicates both that the | eft-hand side implies the right, and that
time passes.

A microprocessor has more kinds of operaions: it can be
resd, it can repond to interrupts, and it has many types of
instructions. The Hector microprocessor is reset by applying
an externd reset signal. Thissgnal must be gpplied for & |east
7 dock cycles? hut this detal is extraneousto the behavior of
the processor, so here we will concentrate on the abstract reset
operdtion, writing the assertion

control = reset é:- invariant = 0
& R[PC]=0
& RB[SP]=0
A B[INT] =4
& BE[NMI1= 2

Itstatesthat if the processor isgivenitsreset signal, it will then

enter a date where:) i .
= It will be ready to executeinstructions or respond to inter-

rupts, as reflected by an invariant condition, and

=+ Several registerswill have specified initid vadues includ-
ingthe program counter, the stack pointer, and theinter rupt

VeCtors. _ . .
Hector'sresponse to an interrupt is specified by a morecom+

plicated assertion. Part of the added complexity isin speci-
fying the conditions under which an interrupt occurs, for we
must include more o the processor’s state than was necessary
in specifying reset behavior. (Since the reset operation makes
no use of existing processor state, we did not need to describe
initial state in the reset assertion.)

The antecedent of the assertion describesinitial stete:
control = mMmi Ainvariant = 1A Ml = 4

A ZFNMIAe # SPAr £ PC] =+ B[] = »

A E[NMI] = w
AME[SP=x
LE[PCl=F

f cyCC = cyfh ovCC = ovh ngCC = ng
h zeCC = zeh intCC = int
Ar#£0 = B[O ==

3Thi s number was found empirically, then veri fied formally.

It describes the conditions in which a non-maskable interrupt
occurs A non-maskable interrupt occurs when the abstract
input is“nmi.” Ary arhitrary memory location I holds some
arbitrary dataword 4. Any abitrary register r (other than the
specid registers: NMI, which holds the address of theinter-
rupt service routing; SP, the stack pointer; or PC, the program
counter) holds some arbitrary vaue ». The special regigers
and condition codes hold arbitrary ecial values w, =, and g.
Register 0 also holds some arbitrary word = (unless register
0 was the arbitrary register r sdected above; if so, we have
already stated that it hasavaue, namdy »).

The consequent of the asserti on describes the conditions that
follow recept of a non-maskable interrupt.

invariant = 0

AT r—-18I£ -2 4 M[]=4d
& M[r - 1k4: Oy = intzengovcy

A -2]=F

hE[SP]=r-2

hir#£SH =+ Rlr]= =

& cyCC = cy AovCC = ovhngCC = ng
hzeCC= zehintCC=1

& E[PC]=n

& BE[NMI] = w

After aninterrupt i sreceived memory will beunchanged, except
for the stack, which will hold the previous condition codes and
program counter. The stack pointer will have been updated.
Most condition codes will be unchanged, but the “interrupt’
flag will be asserted. The program counter will now point
to the interrupt service routine (whose address also remains
in the NMI register). Snce Hector does not allow instruc-
tionsto be interrupted, i.e., interrupts are sensed only between
instructions;* this assertion captures all possible conditions in
which an interrupt could occur.

Itisimportanttoobservetha in these assertionstherearetwo
different kinds of variables. Some variables—thase on the left
of “=" signs—correspond to abstract sygtemstate (or 1 O), such
as & in the lach, or B in the microprocessor. Other variables
are used in representing the values that these dbstract states
can take on, such as » in the latch, or 4, , r, =, and = in the
microprocessor. We must consider the first kind of varigbles,
which represent components of abstract system state, when we
define mappings from abstract state onto circuit state.

Observe that assertions are local properties in two ways.
First, each describe avery short computation: an islated, sin
gle state trandgtion. Second, each describes the operation o
only part of the circuit. For example, the “ hold” assertion for
thelatch does notinvolvethell input, and for the processor, the
specification of the initidization operation says nothing about
the memory. Thus, individual assertions are partial goecifica
tions, and do not define the transition behavior of the speci-

4Thisisverified during verification of instructions, by checking that once
an ingtruction has begun execution, it iscompleted regardl ess of subsequent
activity on the interupt li newhile the instruction is completed.

fication machine, but they constrain the transition behavior,®
so tha the sat of dl assertions taken together does define a
transition relation. Though the assertions are locdized, by
checking them we can guarantee global properties which hold
for computations of any length involving the entire circuit.

Mappings
10 and timing

An abstract description of state-transition behavior is insuffi-
cientto specify acircuit. Circuits do nottakeabstractinputsand
produce abstract outputs. | ngead, they have input and output
signds. Thus, itisalso necessary to specify the way inwhich
abdract 10O is encoded ascircuit 10. Input varigbles in the as-
sertions (L' and = for thelatch) will be mapped onto particular
voltage levds a particular times. The zero point with respect
to which time is measured is the “nomina beginning” of the
operation. We will dso specify the possible durations of the
operation by specifying the“ nominal ending” of the operation.
(The beginning of any successive operation will, of course, be
the ending of the current operation.)

Although we use a textua representation to express map-
pingsintheactud verifier, it is easiest to show thiswith iming
diagrams. Rather than giving nomind beginning and ending
time points as numbers, we can more easily give them asiden-
tifying markers—vertical lines sketched on atiming diagram.
Figure 1 shows how we mgp the abstract latch operations onto
one particular circuit.

Load Hold

Start

Figurel: A simplelatch anditsmapped assertionsastiming diagrams.
For each signal, adouble horizontal lineindicatesthat either ahighor
alow vauemight be present; the absence of any lineindi cates that we
don't know or don't care about the value.

State mappings

It is insufficient to consider only the inputs and outputs of
sequential systems. Operation depends crucidly on stored in-
ternd state Thus, we dso describe the way inwhich abstract
stete isencoded as circuit date.

5SFor example, to show that unintended state changes do not ocaur, it is
necessary to express this condition, kut it could be written as a new asserti on,
or incorporaed intoexisti ng ones.

State variables in the assertions (L' for the latch assertiong
will be mapped onto charge stored on circuit nodes, over inter-
vals o time measured rdativeto a” marker.” Thisisillustrated
with the last two rows of the timing diagram. Note that, ab-
stractly, thevdue stored inthelatch isaso its output va ue, but
in the circuit, thenode controlling the stored vd ue (%) and the
output (&) are separate nodes

For the microprocessor, the mapping is more complex, and
it must take into account the separation of processor state and
memory state, but it iscongructed similarly. Processor state is
mapped normdly, whilememory state is mapped onto memory
operations. Weillugrae thisinFig. 2 For example, theinitia
program counter va ue is mapped onto register 15, Hector'src
register, a the beginning of the operation.

Given such a specification and a symbolic simulaion mode
for a circuit, we can verify it. We check each assertion sepa
ratdy. For each assertion, we use the mappings that we have
defined to generae symbolic simul ation patterns.

Wegeneraethestimu us using the precondition of the asser-
tion. Mgpping the abstract input varigbles of the specification
yields a short circuit input sequence, which dso contans two
markers Mapping the abgract state variables of the pecifica
tionyiedsacircuit state sequence, defined relativeto a marker.
Wealign this marker with the first marker of the i nput sequence
to get the entire stimulus.

We generate the response using the postcondition of the as
sertion. Mapping the abstract state variables of the gecifica
tion (which also serve as outputs) yields another circuit date
sequence defined rel aive to a marker, but we dign this marker
with thesecond marker of the input sequence, to get thedesired
response

This explains what happens to the abstract input and state
variables that gppeared in the specification. The specification
al 9 containedanother kind of variables: those used tor epresent
values that the abstract gate could tekeon (e.g., = inthe latch, 4
intheprocessor). We havenot explaned what hgppensto these
variabl es because nothing happensto them: they are preserved,
so that they appear in the Smuldion patterns (Since we are
using asymbolic smulator, variables can appearin simulation
patterns.)

We check the generated patterns using symbolic trgectory
evaluation, af orm of symbolic simulation which dlows precise
constraining and checking of system state during sequences of
operation [12]. This exploits the power of the switch-level
model’sternary X value in reducing extraneous andysis of cir-
cuitcomponentsthat do not participatein acal culaion (thereby
reducing precision, but remaining accurate, i.e., not producing
incorrect binary vaues) 8

80f course, a simulaor that propagated X va ues indiscri minatdy would
be too blunt a tool.

Mor e about mappings

The specification here issimpified. Inthe actual specification
[1, append x B], referencesto valuesstoredinmemory aregiven
with an extra parameter, asmal integer. Itisa“hint,” used to
edablish the dock cyde on which a memory operation takes
place. Formadly, hints are unnecessary. To be most generd,
assertionsshoul d bemapped so that they dlow any sequence of
memory operationsthat yields the desred effect. For example,
the order in which locations are read from memory does not
matter. However, checking all possible ordersis expensive
For Hector, it iseasy toidentify thespecific order that actudly
is used, by examining the instruction level simulator. The
generated assertion isthen specificto theparticular sequencing
that wasassumed, and we woul dbe unableto verify aprocessor
that atempted to perform the memory operaions in a diff erent
order. Hints do not compromise the vdidity of verification.

Definition of “implementation”

Therdation established by our verification is one between 10
sequencesof the specification andl Osignds of thecircuit. This
is a global property. However, the illustration above has dis-
cussed only individual assertionsin i sl ation—I ocal properties.
It is not particularly interesting to guarantee that a processor
will execute one indruction correctly—we must show that it
will execute entire programs correctly.

The theory underlying our verifier explans how establishing
the local property is sufficient to establish the global property.
Before explaining it, we should be more precise about exactly
what is established. We give an abstract definition and an
example.

Formadly, circuits (redizations) and their forma specifica
tions are bath computational agents, which are nondeter min-
istic, Moore-type, finite-state machines without defined initial
staes. (A nondeterminigic machine is one whose response to
a simulus is not entirdy determined. For example, we don’t
know what values most of a processor’sregisterswill have &f-
ter we reset the processor, and we may not know what output
a cdircuit will produce when it is first powered up.) However,
to define what we really mean when we say that the circuit
implements its specification, we need very few detals about
agents. All we need to know isthat each agent takes an input
sequence and produces an output sequence (which may not be
uniquely determined). Since the specification ismore abstract
than the redization, we also have a“mapping” which “fillsin
the detals,” i.e, for each specification sequence, it produces
a corresponding circuit sequence. This mapping may aso be
nondeterministic, for there may be morethan one drcuit se-
guence tha correspondsto a single specification sequence.

Given thisnotion of computational agents wesay tha acir-
cuit implements a specifi cation if thef ollowing holdsfor every
specification input sequence for every corresponding circuit
i nput sequence, every poss bl eresulting crcuit output sequence
is within the image, under the mgpping, of some specification

frpl 1 1 1 1 Iy 4 |
f1p2 1 1 1 1 1 1 [H(
Eﬁxauma —_— —_— —_ -
rd_wr _—
*d0/Fake_in I I I p
C:d0 I
Ctal I I I
Atral = —
ferd7.0 I op=run_ 7
A:ri6.0 I ARIPCI=p
Ar15,0 NM[p] = instr.
fird.0 %} <«——+\ cond. codes
. N R[dest] = j
Cyrd?,0 -
Cird5.0 AMip+1] = b ~
C3ri5.0 AMi+pl=v — 1
Carilo ==> 2
Cird,0 RIPCl=p+2 —] E
NM[j+b] = opv
N\ cond. codes

Figure 22 Example of an assertion mapped onto the microprocessor. Signals beginning with A are applied, and those beginning with C are

checked.

output sequence which the specification could have produced
from the origind input sequence.

Deailsof “implementation”

The property we have just discussed isactudly not implemen
tation. Instead it is what we cdl obedience. Implementation
comprises obedience plus two other technicd conditions, con
formity and distinction.”

Without these additional conditions mathematicdly trivid
solutionsto the obedience condition are posside. We impose
the extra conditions to avoid these trividities Conformity
requiresthat for every specification input ssquence there bea
corresponding circuit input sequence. Distinction requiresthat
any two different specification output sequences cannot have
the same correspording circuit output sequence. These ae
properties of themapping, rather than of thecircuit, sothey are
easy to check.

Theory

The theory underlying our methodology, which dlows us to
cond udethe implementation re aion between |1 O sequences of
a drcuit and its specification by perf orming symbolic simula
tion testson only individud transitions isactualy rather simple
but mathematically abstractinits essential form. D etail sappear
eleewhere[1].

7 A corvenient mnemonic isa fictitious military boarding school withmotto
“ Conformity, obedience, disti nction.”

Conclugon

Experimental results

As we deve oped the methodology sketched here, we verified
anumber of diff erent operations and instructions of theH ector
microprocessor. We verified initidization and response tothe
non-maskabl e interrupt. We verified instructionsincluding al
addressing modes of the CLRinstruction, some branch instruc-
tions, andthe regi ster addressi ng mode for the unary operations
(NOT, INC, DEC, SHL, ROL, SHR, ROR, LDF, STF and SWAP) and
binary operations (ADD, ADDC, SUB, SUBC, AND, OR, XOR and
test-and-branch).

Our god wasto demonstratethe feasibility of symbolic sim-
ulaion for forma verification, sowe have not concentrated on
performance. Fg. 3 showsthe performance of the verifier for
severd instructionsand operations. Thetabe is useful for an
indication of the magnitude of the numbers involved, but not
for adetailed andysis of afactors contributing to the verifier's
performance. As shown, checking an asertion is not a fast
process.

Checking each assertion involves a significant amount of
work. Consider the“dea” instructionwith indexedaddresd ng.
Referring back to the timing diagrams of Fig. 2 is instructive:
inorder to verify thisinstruction, 7 cydesof sysem operaion
must be simulated.

Debugging

Pinpointing suspected error sduring verifi cation seemsstrai ght-
forwardin retrospect, when ther causes can be simply stated.
However, locating these errors was mog tedious. First, ether
the specification or the circuit may be inerror. Second, with-
out schematics, it was difficult to even knowv what crcuitry
surrounded the node exhibiting the error. Third, there is er-
rar laency, the activity between an error’'s occurrence and its

Instr. Addr Time BDDsize
Mode () find max
dr reg. 518 240000
dr ind. 341 31000
dr inc. 380
dr indexed 853 159000
dr reg. 559 241000
dr indexed 819 156000
dr indexed 611 6930
add reg.reg. | 1711
xor reg.reg. | 647 22500 86000
b reg.reg. | 1090 122000
abc reg.reg. | 1068 62000
add reg.reg. | 644 103000
or reg.reg. | 741 53000
xor reg.reg. | 893 67000
dr ind. 534 23000 45000
initialization 303 496 2376
nmi 790 4783 15445
initiali zation 369 256 2051

Figure 3: Performance of verifier on several assertions Time was
mesasured in user CPU seconds on a DECstation 5000/200 with 32
MB memory (25MHz R3000 CPU, 19.9 SPECmeark) under the Mach
2.6 operating system. The operations shown more than once were
re-verified at different stages of tuningthe verifier's performance.

manif estation® Fourth, understanding the state of a symbolic
simulator is difficult.

A symbolic dmulaor represents not a single state for the
system being modeled, but many states one for each vaua
tion of the symbolic variables. Underganding even a simple
Boolean function of three variablestakes same thought, which
is more difficult if the function isexpressed in some automati-
cdly generated form(e.g., asan ordered sum of products, or as
aBDD) rather than an expression designed for exposition. Un-
derstanding alarge et of even more compli cated functions, and
the structure of a circuit, and the reltion between the two—a
the sametime—isall but impossible. Thus, when errorsarede-
tected by symbolicsimulation, a diff erent drategy isrequired to
andyze them. Sdecting avauation for the symbolic variables
which manif ests the errar is the first step. Although in princi-
ple any such valuation will do, simpler ones—such asthosein
which most of the varigblestake the value 0—are often essier
to understand. Examining the symbolic simul ation state under
thisva uation becomestractabl e, for thestate val ues become0,
1, and X rather than complex functions.

I nour experience, when verifying toy circuits, themost dif-
ficult part of our methodol ogy iswriting the mgpping. For red
circuits, finding erors in the abdract edification itsdf aso
becomes a significant task. For example, Hector’s “ SuBC” in
struction was difficult to verify because its use of the carry flag
isquitesubtleto specify correctly, sinceit isactudly necessary

8Thisisa good general rule of debuggi ng whi ch bears some repeating.

toallow 18-bit arithmetic in one case.

Ultimatdy we found no errors in the instructionswe exam-
ined. Hector’s designers later confirmed that the only known
bug in Hector affects aninstruction we had not tried to verify.
We did find that precisdy stating instruction semantics was a
chdlenge For example, Hector has a*“ push” instruction and
the PC isaddressable, so there isa “push PC” instruction which
stores into instruction memory then decrements the pC (caus-
ing aloop). Thisisa useless instruction, but it isnecessary to
either specify itsbehavior, or specify that its behavior does not
métter (e.g., with an assertion whose consequent is the constant
fomulatrue).

Observations

We have verified tha a microprocessor circuit implemerts its
intended instruction set using symbolic simulaion. There are
somekey dff erences between Hector and modern, commercial
dedgns, induding size, pipelining, exceptions, and caches.

Oneof theprincipd dangersof forma verification iswhat we
have call ed antecedent failure.® Formally,implications havean
extensional meaning: they are al 9 true if the antecedent con-
dition isnot true. Antecedent failure means that we can speak
nonsense and not realize it’® One grength of our approach
istha we can check for antecedent failure, and structure our
specifications so that antecedents never fail. While structuring
a edification thisway lengthensit, itimproves our confidence
that the specification actudly makes sense.

The danger of antecedent failure should not be underesti-
mated. If alogical proposition a is false, every implicaive
statement having a asantecedent, “if a then =,” is dways true.
When a iseasy to understand, this poses no problem. If wishes
were horses, then beggars would ride. However, when state-
ment a concerns the very circuit being verified, it may not be
obvious that a isin fact fdse—the fdsity of a might wdl be
dueto acircuit bug. “ If theinput ishigh, then the output islow”
isnot only trueof aninverter, but dso true of any circuit whose
input is accidertally shorted to ground. Thisis an example of
antecedent falure

Oneway to avoid antecedent failure is to check that the an-
tecedent is, in fact, dways true For the inverter, we would
discover the problem when we check that we can indeed setthe
input high. Incorporating such a check restrictsthe dass of as-
sertionsthat can be verified to just thosewhose antecedents are
true. When wefind an antecedent fail ure, werewriteassertions
sothat their antecedentsremaintrue. (Thisisaways possible.)
For example, the restrictionsin the second line of the interrupt
antecedent, earlier in this paper, were added for this reason.

The methodology has some distinguishing features worth
noting.

9Thi s phenomenon is cdl ed one of the* Lewis prindipl es’ by logiciars.
10 Antecedentfa lure canbeaproblem in any approachto formal veri ficati on.
Techniques that are based entirdy on purelogic, such asHOL, are esped dly
pronetoit.

+ It is most suited for verifying functional properties of
data intensive sysems, i.e, those whose operaion can
be thought of as updating data values gored as compo-
nents of a large stored state, in response to a rdativey
smal number of operations.

+ Ou spedcifications are given a a high level. This re-
quires an uncorventional format. We have defined a new
language, based on assertionsrather than imperativecom-
mands, that is higher leve than most hardware description
languages. It ispossible to derive assertions from more-
corventional HDL descriptions [11], but such assertions
would be too highly constrained for verification.

Future wor k

The god of FV is to eliminate hamful design errors with-
out compromising desgn goals The work outlined hereis a
step toward this ided. Further work could solidify the theory,
implement itin robust tools, and demonstrate their useful ness
on real dircuits. Definition of mappings is an ideal task for a
graphical specification language. T he full generality of trajec-
tory evaluation should be explored a other levels. Supporting
existing HDL's in some way would facilitateacceptanceof FV
techniques in industry.

When we choose circuits to verify, we must take care to
ensure tha they differ from previous circuits, to advance the
state of the art in verification. In addressng the differencesbe-
tween Hector and mare modern processors, one place to start
would be with simple pipelinesthat dlow interruptsor excep-
tions. The ultimate god of verificaion is to attain currency
with state-of -the-art design techniques, so it is imperative to
ded with superpipdined and superscda designs. Although
we have given multiple-i ssue systems some thought while de-
veloping our theory, we have not given it aufficient serious
study. The gpproach of garting with simple examplesis usef ul,
but so far we are unaware of any simple superscalar designs.

References

[1] D. L.Bestty. A Methodology for For mal Hardware Verification,
with Application to Microprocessors. PhD thes's published as
technical report CMU-CS-93-190. Comp. Sci. Dept., CMU,
Aug. 1993.

[2] D. L. Bestty, R. E. Bryant, and C.-J. H. Seger. Synchronous
circuit verification by symbolic Smulation: anillustration. Ad-
vanced Research in VLSI: Proc. 6th MIT Conf., pages 98-112.
MIT Press, Mar. 1990.

[3] R.E.Bryant,D.L. Bestty, and C.-J. H. Sgyer. Formal hardware
verification by symbadlic ternarytrajectory eval uati on. 28th DAC,
1991.

[4] A. Cohn. Correctness propertiesof the Viper block model: the
second level. Technical report 134. University of Cambridge
Comp. Lab.,, May 1988.

(5]

(6]

[7]

(8]

(9]

(10]

(1]

(12]

(13]

K. W. Fernald, T. A. Cook, T. K. Miller Ill, and J J. Paulos
A microprocessor-based i mpl antabl e tel emetry system. IEEE
Computer, 24(3):23-30, Mar. 1991.

W. A.Hunt, Jr. FM8501: a\krified Microprocessor. PhD thed s
Univ. of Texas, Austin, Dec. 1985.

J J Joyce. Multi Level \grification of Microprocessor -Based
Systems PhD thed's published astechnical report 195. Univ.
of Cambridge, Comp. Lab., May 1990.

J-C. Madreand J.-P. Billon. Proving circuit correctness usng
formal compari son between expected and extracted behavior.
25th DAC, pages205-10, 1983.

J-C. Madre, O. Coudert, M. Currat, A. Debreil, and C. Berthet.
Theformd verificationchain at BULL. EURO ASIC (Paris, 28
May—1 June 1990), pages 474-9. |EEE, 1990.

T.K.Millerlll, B. L. Bhuva, R. L. Barnes, J.-C. Duh, H.-B. Lin,

and D. E. VandenBout. The HECTOR microprocessor. ICCD,
pages406-11, 1986.

J D. Oakley. Symbdlic Execution of Formal Madchine Decrip-
tions PhD thess CMU, Apr. 1979.

C.-J H. Seger andR. E.Bryant. Formal verification by symbolic
evaluati on of parti all y-ordered trajectories Technical report 93—
8. Comp. Sci. Dept., Univ. of British Columbia, 1993.

M. Srivas and M. Bickford. Formal verification of apipelined
microprocessor. IEEE Software, 7(5):52-64, Sep. 1990.

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

