A Fully Implicit Algorithm for Exact State Minimization

Timothy Kam* Tiziano Villa

Robert Brayton

Alberto Sangiovanni-Vincentelli

Department of EECS, University of California at Berkeley, Berkeley, CA 94720

Abstract

State minimization of incompletely specified machinesis animpor-
tant step of FSM synthesis. An exact algorithm consists of generation
of prime compatiblesand solution of abinate covering problem. This
paper presents an implicit algorithm for exact state minimization of
FSM'’s. We describe how to do implicit prime computation and im-
plicit binate covering. We show that we can handle sets of compatibles

and prime compatibles of cardinality up to 2°°°. We present the first
published algorithm for fully implicit exact binate covering. We show

that we can reduce and solve binate tables with up to 10° rows and
columns. The entire branch-and-bound procedure is carried on im-
plicitly. We indicate also where such examples arise in practice.

1 Introduction

Implicit techniques are based on the idea of operating on discrete
sets by their characteristic functions represented by Binary Decision
Diagrams (BDD’s). In many casesof practical interest these sets have
aregular structure that translatesinto small-sized BDD’s. BDD's can
be manipulated efficiently with the usual Boolean operators.

Previous work showed how to compute implicitly the primes of
a Boolean function and how to reduce implicitly the unate table of
the Quine-McCluskey procedure to its cyclic core ([4, 8]). Exact
solutions to problems too hard for ESPRESSO were found. Implicit
techniquesincrease the size of problemsthat can be solved exactly in
logic synthesis and verification.

This paper presentsan implicit algorithm for exact state minimiza-
tion of incompletely specified FSM’s (ISFSM’s), an NP-hard problem.
Theclassical algorithm for state minimization of ISFSM’s[6] reduces
the problem to the computation of prime compatibles and the selec-
tion of aminimum closed set of them by means of a binate covering
step [14]. To compute prime compatibles one must examine compat-
ible sets of states. If an FSM has too many compatibles, either the
prime computation or the binate covering step will beintractable with
explicit techniques. Interesting classesof FSM’syield suchintractable
problems.

In this paper we describe how to do implicit prime computation
and implicit binate covering. Since generation of compatibles and
solution of binate covering are common problemsin logic synthesis,
the techniquesthat we are going to describe have alarge applicability.
We show that we can handle sets of compatibles and prime compat-

ibles of cardinality up to 2, a size clearly unattainable by explicit
enumeration. We present the first implicit exact algorithm for binate
covering. We report results of an implementation capable of reducing

and solving huge binate tables (up to 10° rows and columns). The
entire branch-and-bound procedure is carried on implicitly. Previ-
ous implicit implementations of unate covering did not address the
problem of finding implicitly abranching column and alower bound.

The remainder of the paper is organized as follows. Section 2
introduces implicit representations and manipulations. Algorithms
for implicit generation of compatibles are presented in Section 3.
Section 4 givessomegeneralitieson binate covering. Generation of the
implicit binate tableis describedin Section 5. Implicit table reduction

* Research supported by DARPA under contract JFBI90-073 and California State
MICRO Program

TResearch supported by NSF under contract MIP-8719546 and California State
MICRO Program

is described in Section 6, while other implicit table manipulations are
briefly given in Section 7. Results on a variety of benchmarks are
reported and discussed in Section 8. Conclusionsand future work are
summarized in Section 9. Theseimplicit algorithms are discussed in
greater lengthsin [9].

2 Implicit Representations and M anipulations

Algorithms for sequential synthesishave been developed primarily
for State Transition Graphs (STG's). STG's have been usually repre-
sented in two-level form where state transitions are stored explicitly,
one by one. Alternatively, STG’s can be represented implicitly with
Binary Decision Diagrams (BDD’s) [2, 1]. BDD’s represent Boolean
functions (e.g. characteristic functions of sets and relations) and have
been amply reported in the literature [2, 1], to which we refer!

2.1 Implicit FSM Representation

A Finite State Machine (FSM) can be represented by a 5-tuple
({,0,5,7,0). I and O are the sets of input patterns and output
patterns. S istheset of states. 7 C [x .S x S isthetransition relation
that relates anext stateto aninput andapresent state. © C I x S x O
is the output relation that relates an output to an input and a present
state. An FSM, where each (input, state) pair is related to exactly
one next state and one output, is a completely specified FSM. An
incompletely specified FSM is one where either the next state or the
output is not specified for at least one (input, state) pair.

If anext state is unspecified, no transitions on the (input, state) pair
need to be considered for the purposeof state minimization, sothey are
omitted from7". Ontheother hand, werepresent all unspecified output
patternsin O correspondingto an (input, state) pair, to ensure correct-
ness of the output compatibles computation described in Section 3.1.
Thetransition and output relations are given by:

T (i, p,n) = 1 iff n isthe specified next state of statep oninput
O(i, p,0) = 1 iff o isa(possibly unspecified) output of state p on ¢

where: and o are Boolean vectors of signalswhile p and n are repre-
sented by positional-sets defined below.

2.2 Positional-set Representation

To perform state minimization, one needsto represent and manip-
ulate efficiently sets of states, or state sets, (such as compatibles) and
sets of sets of states (such as sets of compatibles). Our goal is to
represent any set of sets of states implicitly as a single BDD, and
manipulate such state sets symbolically al at once. Different sets of
setsof statescan bestored as multiple roots with asingle shared BDD.

Suppose a FSM has n states, there are 2" possible distinct subsets
of states. In order to represent collections of them, each subset of
states is represented in positional-set form, using a set of » Boolean
variables, z = z1z2...z,. The presence of a state sy, in the set is
denoted by thefact that variable z;, takesthe value 1 in the positional-
set, whereas x5, takesthe value O if state s isnot amember of the set.
One Boolean variable is needed for each state because the state can
either be present or absent in the set.? For example, if n = 6, the set

132(F) (Yo (F))denotestheexistential (universal) quantificationof function F over
variablesz; = denotesBoolean implication; <> denotesXNOR; = denotesNOT.

2The representation of primes proposed by Coudert et al. [3] needs 3 values per
variableto distinguish if the present literal isin positive or negative phase or in both.

with asingle state s4 is represented by 000100 while the set of states
s283s5 IS represented by 011010.

A set of sets of states is represented as a set .S of positional-sets
by a characteristic function xs : B" — B as. xs(z) = 1iff the set
of states represented by the positional-set = isin the set S. A BDD
representing x s(z) will contain minterms, each corresponding to a
statesetin S.

2.3 Operationson Positional-sets

With our definitions of relations and positional-set notation for
representing set of states, useful operators on sets and sets of sets can
be derived. We have proposed in [9] a unified notational framework
for set manipulation, extending the work by Lin et al. in [11]. Here
we define some relationships between two sets, between two sets of
sets, between a set and a set of sets, etc.

Theorem 2.1 Setequality, containment and strict-containment be-
tween two positional-sets « and y can be captured by the following

congtraints: (z =y) = [[,_,zx & ux; (z 2 9) =[[,_ ux =
zp;and(z Dy)=(z 2 y)-(z #vy).
Theorem 2.2 Given two sets of positional-sets, complementation,

union, inter section, and shar p can be performed on them as logical
operations (-, +, -, -—) on their characteristic functions.

Theorem 2.3 Given the characteristic functions y 4(z) and ys(z)
representing two sets A and B (of positional-sets), the set contain-
ment test istrueiff set A containsset B, and can be computed by:

Set_Containg(xa,xB) = Ve [x5(r) = xa(z)]

Theorem 2.4 Given a characteristic function x 4 (z) representing a
set A of positional-sets, set union defines a positional-set ¥ which
representsthe union of all state setsin A, and can be computed by:

Set_-Uniong(xa,y) = Hyk < Jz [xa(z) - zi]
k=1

For each bit position &, the right-hand expression sets y;, to 1 iff
there exists an ¢ € x . such that its kth bit isa 1. This implies
that the positional-set y will contain the kth element iff there exists a
positional-set = in A suchthat & is amember of .

Theorem 2.5 The maximal of a set F' of setsis the set containing
setsin F' not strictly contained by any other set in F', and is given by:

Mazimaly (xr) = xr(z)- Ay [xr(y) - (y D x)]
Theterm 3y [xr(y) - (y D z)] istrueiff thereisapositional-sety in

xr suchthat y D z. In suchacase, z cannot be in the maximal set
by definition, and are taken away from x 7 ().

2.4 k-out-of-n Positional-sets

Wedefineafamily of setsof state sets, T'uple i (¢), which contain
all positional-setsz C S with exactly & statesin them. Their BDD’s
can constructed by the following algorithm, by calling T'uple(n, k):

Tuple(z, 5) {
if (7 <0)or(i<y) retunO
if (¢ =0)and (i = j) return1
return ITE(z;, Tuple(z — 1, 5 — 1), Tuple(z — 1, 7))

Tuple(, j) contains positional-sets of cardinality j with i variables,
z1,%2,...,%;, Which can be grouped into those that include state
1 and those that do not. The latter group simply corresponds to
Tuple(i — 1, 5), the set of positional-sets of cardinality j with only
T1, &2, ..., ¢;—1 (USINg one less variable). The former group can
be obtained by adding state ¢ to each positional-set in Tuple(: —
1,5 — 1), the set of positional-sets of cardinality j — 1 with s — 1
variables. Therefore Tuple(s,) can be computed recursively by
ITE(z;, Tuple(s —1,§ — 1), Tuple(s — 1, 5)). Recursion can stop
when atermination condition asshownismet. TheBDD sizeandtime
complexity of Tuple(n, k) areboth O(nk), provided itsintermediate
results are memoized in acomputed table ([1]).

3 Implicit Generation of Compatibles

An exact algorithm for state minimization consists of two steps:
generation of various sets of compatibles, and solution of a binate
covering problem. The generation step involves identification of sets
of states called compatibles which can potentially be merged into
a single state in the minimized machine. Unlike the case of CS-
FSM'’s, where state equivalence partitions the states, compatibles for
incompletely specified FSM may overlap. As aresult, the number of
compatibles can be exponential in the number of states ([13]), and the
generation of the whole set of compatibles can be a challenging task.

The covering step (described in Sections 4 to 7) is to choose a
minimum subset of compatibles satisfying covering and closure con-
ditions, i.e., to find aminimum closed cover. The covering conditions
require that every stateis contained in at least one chosen compatible.
The closure conditions guarantee that the states in a chosen compati-
ble are mapped by any input sequenceto states contained in a chosen
compatible.

In this section, we describe implicit computations to find sets of
compatibles required for exact state minimization.

3.1 Output Incompatible Pairs

To generate compatibles, incompatibility relations between pairs of
states are derived first from the given output and transition relations.

Definition 3.1 Two states are an output incompatible pair if, for
some input, they cannot generate the same output. The set of output
incompatible pairs, OZCP(y, =), can be computed as:

OICP(y, z) = Tupler(y) - Tupleir(z)-31 Ao[O(1,y,0)-O(i, z,0)]

Although y and =z can represent any positional-sets, the conditions
Tuple1(y) - Tuplea(z) restrict themto represent only pairs of single-
ton states. The last term istrue iff for someinput ¢, there is no output
pattern that both state 4 and = can produce(i.e., output incompatible).

3.2 IncompatiblePairs

Definition 3.2 Two states are an incompatible pair if (1) they are
output incompatible, or (2) on some input, their next states are an
incompatible pair. The set of incompatible pairs is the least fixed
point of ZCP:

ICP(y,z) = OICP(y,z)+3t,u,v [T (3, y,u)T(i,2,0)LCP(u,v)]
and can be computed by the following iteration:

ICPo(y,z) =
ICPealy,?) =

OICP(y,z)
ICPi(y, =)
+ 3, u,0 [T (2, y,u) - T(1,z,0) - ZCPr(u, v)]

Theiteration can terminate whenZCPx11 = ZCPy (= ICP).

Thefixed point computation starts with the set of output incompatible
pairs. After the kth iteration, ZCPx41(y, #) contains al the incom-
patible state pairs (y, ») that lead to an output incompatible pair in &
or less transitions. This set is obtained by adding state pairs (y, z)
to the set ZCP«(y, #), if an input takes states (y, z) into an already
known incompatible pair («, v).

3.3 Incompatibles
So far we established relationships between pairs of states. The
following definition introduces sets of states of arbitrary cardinalities.

Definition 3.3 A set of statesisanincompatibleif it containsat least
oneincompatible pair. The set of incompatibles can be computed as:

IC(c) = 3y, = [ZCP(y, =) - [[+ 20 = e

k=1

[Ii_;9x + 2 = ci performs bitwise OR on singletons y and z. If
either of their k-th bitsis 1, the corresponding ¢, bit isconstrainedto 1.
Otherwise, ¢, can take any values. The outer product HZ=1 requires
that the aboveistrue for each k. Thus, it generates all positional-sets
¢ which contain the union of the positional-sets y and z. The whole
computation definesall state sets ¢ each of which contains at least an
incompatible pair of singleton states(y, z) € ZCP.

3.4 Compatibles

Definition 3.4 A set of statesisa compatibleif it is not anincompat-
ible. The set of compatibles, C(¢), can be computed as:

C(c) = =Tupleo(c) - 7ZC(c)

C(c) simply contains all non-empty subsets of states which are not
incompatibles. The empty set in positional-set notation is T'upleo(c)
and all subsets which are not incompatible are given by —=ZC(¢).

3.5 Implied Classesof a Compatible

To set up the covering problem, we al so need to computethe closure
conditions for each compatible. Thisis done by finding the class set
of acompatible, i.e., the set of next statesimplied by a compatible.

Definition 3.5 A set of states d; is an implied set of a compatible ¢
for input ¢ if d; isthe set of next states fromthe statesin ¢ oninput s.

Theimplied set (in singleton form) of a compatiblec for input ¢ can
be defined by the relation F (¢, ¢, n) which evaluatesto 1 iff on input
1, n iISa next state from state p in compatible c.

Fle,i,m) =3p[C(c) - (¢ 2p) - T(i,p,n)]

InF(c,i,n), acompatiblec € C(c) andaninput s are associatedwith
singleton next state n. Given ¢ and ¢, n isinrelation F(c, 1, n2 (i.e,
state n isin the implied set of compatible ¢ under input :) iff if there
isapresent state p € ¢ such that » is the next state of p oninput :.

Note that the implied next states are represented here as singleton
states in F(c,4,n). All singletons n in relation with a compatible
¢ and an input ¢ can be combined into a single positional-set, for
later convenience. This positional-set representation of implied sets
associates each compatible ¢ with a set of implied setsd.

Theorem 3.1 Theimplied setsd (in positional-set form) of a compat-
ible ¢ for all inputs are computed by the relation CZ (¢, d) as:

CZ(c,d) =3 [An(F(c,i,n)) - Set_-Union,(F(c,i,n),d)]

F(c,1,n) relatesimplied next states as singleton positional-setsn to
compatible ¢ and input 7 and Set_Union,(F(c,i,n),d) forms the
union of these singleton sets by bitwise OrR and produces a positional-
set d. The term In(F(c, i, n)) is needed, to exclude invalid (com-
patible, input) combinations. Finally the inputs ¢ are existentially
quantified from the implied sets of ¢ of different inputs.

3.6 Class Set of a Compatible

Definition 3.6 An implied set d of a compatible ¢ is in its class set
iff (1) ¢ has morethan one element, and (2) d € ¢, and (3)d ¢ d’ if
d' € classset of c.

We can ignore any implied set which contains only a single state,
becauseits closure conditionis satisfiedif the stateis covered by some
chosen compatible. Also if d C ¢, the closure condition is satisfied
by the choice of ¢. Finally, if the closure condition corresponding to
d’ is stronger than that of d, the implied set d is not necessary.

Theorem 3.2 Theclassset of acompatiblecis defined by therelation
CCS(c, d) which evaluatesto 1 iff theimplied set d isin the class set
of compatible c.

CCS(c,d) = —~Tupler(d) - (¢ 2 d) - Mazimaly(CI(c,d))

The singleton implied sets T'uple1 (d) are excluded according to con-
dition 1 in Definition 3.6. By condition 2, we prune away implied
sets d which are contained in their compatibles ¢. Finally given a
compatiblec, Mazimalys(CZ(c, d)) givesall itsimplied setsd which
are not strictly contained by any other implied setsin CZ(c, d).

3.7 Prime Compatibles

To solve exactly the covering problem, it is sufficient to consider a
subset of compatibles called prime compatibles. As proved in [6], at
least one minimum closed cover consists entirely of prime compati-
bles.

Definition 3.7 . A compatible ¢/ dominates a compatible ¢ if (1)
¢’ D ¢,and (2) classset of ¢’ C classset of c.

i.e., ¢’ dominatesc if ¢’ coversall states covered by ¢, and the closure
conditions of ¢’ are a subset of the closure conditions of c. As a
result, compatible ¢’ expresses strictly less stringent conditions than
compatiblec. Thereforec’ isawaysabetter choice for a closed cover
than ¢, thus ¢ can be excluded from further consideration.

Theorem 3.3 The prime dominancerelation is given by:
Dominate(c',¢) = (' D ¢)-Set_Containg(CCS(¢c,d),CCS(c', d))

The two terms on the right express the two dominance conditions
by which ¢’ dominates ¢ according to Definition 3.7. Since compat-
ibles ¢ and ¢’ are represented as positional-sets, (¢’ O «¢) is com-
puted according to Theorem 2.1. On the other hand, class sets are
sets of sets of states and are represented by their characteristic func-
tions. Containment between such sets of setsof statesis computed by
Vd CCS(c',d) = CCS(c,d), as described by Theorem 2.3.

Definition 3.8 A prime compatible is a compatible not dominated
by another compatible. The set of prime compatiblesis given by:

PC(c) = C(c)- Ac'[C(c") - Dominate(c', ¢)]

Compatiblesc that are dominated by some compatiblec’ are computed
by theexpression3c’ [C(c') - Dominate(c’, ¢)]. By definition, the set
of prime compatibles is simply given by the set of compatiblesC(c)
excluding those that are dominated.

4 Implicit Binate Covering

The classical branch-and-bound algorithm for minimum-cost bi-
nate covering has been described in [6, 7] and implemented by means
of efficient computer programs (ESPRESSO and STAMINA). Thebranch-
and-bound solution of minimum binate covering is based on the fol-
lowing recursive procedure. In our implicit formulation, we keep the
branch-and-bound scheme, but we replace the traditional description
of the table as a (sparse) matrix with an implicit representation, using
BDD’sfor the characteristic functions of the rows and columns of the
table. Moreover, we have implicit versions of the manipulations on
the binate table required to implement the branch-and-bound scheme.
In the following sections we are going to describe the following: im-
plicit representation of the covering table, implicit reduction, implicit
branching column selection, implicit computation of the lower bound,
and implicit table partitioning.

mincov(R, C, U) {

(R,C) =Reduce(R,C,U)

if (Terminal_Case(R, C))
if (cost(R, C') > U) return no solution
else U =cost(R, C); return solution

L =Lower_Bound(R, C)

if (L > U) return no solution

¢; = Choose_Column(R, C')

St =mincov(R.,, C.,, U)

S° = mincov(Rz, C, U)

return Best_Solution(S* U {¢;}, S°)

At each call of the binate cover routine mincov, the binate table
undergoes areduction step Reduce and, if termination conditionsare
not met, a branching column is selected and mincov is called recur-
sively twice, once assuming the selected column ¢; in the solution set
(on the table R.,, C.,) and once out of the solution set (on the table
Rz, C%). Some suboptimal solutions are bounded away by comput-
ing alower bound Z on the current partial solution and comparing it
with an upper bound U (best solution obtained so far). A good lower
bound is based on the computation of a maximal independent set.

5 Implicit Covering Table Generation

We do not represent (even implicitly) the elementsof the table, but
we makeuseonly of aset of row labelsand a set of column labels, each
represented implicitly asaBDD. They are chosen so that the existence
and value of any table entry can be readily inferred by examining its
corresponding row and column labels. This choiceallows usto define
all table manipulations needed by the reduction algorithms in terms
of operations on row and column labels and to exploit all the special
features of the binate covering problem induced by state minimization
(for instance, each row has at most one 0).

Definition 5.1 A column islabelled by a positional-set p. The set of
column labels C' is obtained by prime generationas C'(p) = PC(p).

Beside distinguishing a row from another, each row label must
also contain information regarding the positions of 0 and 1's in the
row. Each row label + consists of a pair of positional-sets (c, d).
Since there is at most one 0 in the row, the label of the column p
intersecting it in a 0 is recorded in the row label by setting its ¢ part
to p. If thereisno O in the row, c is set to the empty set, T'upleo(c).
Therefore a row label r corresponds to a unate clause iff relation
unate_row(r) = Tupleo(c) istrue. Because of Definition 5.3 for
row labels, the columnsintersecting arow labelled r = (¢,d) inal
are labelled by the prime compatibles p that containd. i.e.,

Definition 5.2 Thetable entry at the inter section of a row labelled by
r = (¢,d) € R andacolumnlabelledby p € C' canbeinferred by:
thetableentry isa 0iff relation O(r, p) o (p = c) istrue,

thetableentryisa 1iff relation 1(r, p) = (p 2 d)istrue

Definition 5.3 The set of row labels R is given by:

R(r) =PC(c)- CCS(c,d) + Tupleo(c) - Tuples(d)

The closure conditions associated with a prime compatible p are that
if p isincluded in a solution, eachimplied set d inits class set must be
contained in at least one chosen prime compatible. A binate clause of
theform (p + p1 + p2 + - - - + pi) hasto be setisfied for eachimplied
set of p, where p; isaprime compatible containing the implied set d.
Thelabels for binate rows are given succinctly by PC(c) - CCS(c, d).
Thereis arow label for each (¢, d) pair suchthat c € PC isaprime
compatible and d is one of its implied sets in CCS(c,d). This row
label consistently represents the binate clause because the 0 entry in
therow isgiven by the columnlabelled by the prime compatiblep = ¢,
and the row has 1'sin the columns labelled by p; wherever (p; D d).

The covering conditions require that each state be contained by
some prime compatible in the solution. For each stated € S, aunate
clause has to be satisfied which is of the form (p1 + p2 + - - - + p;)
where the p;’s are the prime compatibles that contain the state d. By
specifying theunaterow labelstobeTupleo(c)- Tuplei(d), wedefine
arow label for each state in T'uple1(d). Sincetherow hasno 0, its ¢
part must be set to T'upleo(c). The 1 entries are correctly positioned
at the intersection with all columns labelled by prime compatiblesp;
which contain the singleton state d.

From now on, we will use ¢ as column label and C(c) will be the
set of column labels, aswe no longer manipulate compatibles.

6 Implicit Reduction Techniques

Reduction rules aim to the following:

1. Selection of acolumn. A column must be selected if it is the only
column that satisfiesa given row. A dual statement holds for columns
that must not be part of the solution in order to satisfy a given row.

2. Elimination of a column. A column ¢; can be eliminated if its
elimination does not preclude obtaining aminimal cover, i.e., if there
is another column ¢; that satisfiesat least all the rows satisfied by ¢;.
3. Elimination of arow. A row r; can be eliminated if there exists
another row r; that expressesthe same or astronger constraint.

The order of the reductions affects the final result. Reductions are
usually attempted in agiven order, until nothing changesany more(i.e.,
the covering matrix hasbeen reducedto acyclic core). Thereductions
and order implemented in our reduction algorithm are summarized as
follows:

Reduce(R,C,U) {

repeat {
Collapse_Columns(C'); Column_Dominance(R, C')
Sol = Sol U Essential_Columns(R, C')
if (|Sol| > U) return no solution
Unacceptable Columns(R, C'); Unnecessary_Columns(R, C')
if (C doesnot cover R) return no solution
Collapse_Rows(R); Row_Dominance(R, (')

} until (both R and C' unchanged)

return (R, C')

In the reduction, there are two caseswhen no solution is generated:
1. The added cardinality of the set of essential columns, and of the
partial solution computed so far, Sol, islarger or equal than the upper
bound U. In this case, abetter solution is known than the onethat can
be found from now on and so the current computation branch can be
bounded away.
2. After having eliminated essential, unacceptable and unnecessary
columns and covered rows, it may happen that the rest of the rows
cannot be covered by the remaining columns. In this case, the current
partial solution cannot be extended to any full solution.

We are going to describe how the reduction operations are per-
formed implicitly using BDD’s on the special table representation
described in the previous section.

6.1 Duplicated Rowsand Columns

It is possible that more than one column (row) label is associ-
ated with columns (rows) that coincide element by element. We
need to identify such duplicated columns (rows) and collapse them
into a single column (row). This avoids the problem of columns
(rows) dominating each other when performing implicitly column
(row) dominance. The following computations can be seen asfinding
the equivalence relation of duplicated columns (rows) and selecting
one representative for each equivalence class.

Theorem 6.1 Duplicated columns and rows can be detected and
collapsed by:

dup_col(c, ¢) = ¥r [R(r)-=0(r, ¢)-=0(r, ¢)-(1(r, ¢') & 1(r, ¢))]
C(c) = C(c)- Bc' [C(c') - dup_col(c,¢) - (¢’ < ¢)]

dup_row(r',r) = Ye[C(c)-(0(r', ¢) & O(r, ¢))-(1(r', ¢) & 1(r, ¢))]
R(r) = R(r)- Ar' [R(+') - dup_row(+',v) - (+' <)]

For the column labels ¢’ and ¢ to be in the relation dup_col, the first
equation requires the following conditions to be met for every row
label r € R. Since each row has at most one 0, the row labelled
7 cannot intersect either column at a 0, (i.e, —0(r,¢') - =0(r, c)).
In addition, the entry (r, ¢) is a 1 iff the entry (r,c') isa 1, (i.e,
1(r, ") & 1(r,c)).

The second computation picks a representative column label out
of a set of columns labels corresponding to duplicated columns. A

column label ¢ is deleted from C iff there is a column label ¢’ which
has a smaller binary value than ¢ and both label duplicated columns.
Here we exploit the fact that any positional-set ¢ can be interpreted as
abinary number. Therefore, a unique representative from a set can be
selected by picking the one with the smallest binary value.

Detection of duplicated rows, selection of arepresentative row, and
table updating are performed by the third and last equations asin the
case of duplicated columns.

From now on, sometimes we will blur the distinction between a
column (row) label and the column (row) itself, but the context should
say clearly which oneit is meant.

6.2 Column Dominance

Definition 6.1 A column ¢’ a-dominates another column ¢ if ¢’ has
all the1’sof ¢, and ¢’ containsno 0.

= Ar {R(r) -[1(r,) - ~1(r.") + O(r,)]}

For column ¢’ to o-dominate ¢, the right-hand expression ensuresthat
thereisnot arow r € R such that either the table entry (v, c¢) isal
but the table entry (r, ¢') isnot, or the table entry (r, ¢} isaO.

a_dom(c',c)

Definition 6.2 A column ¢’ 3-dominates another column ¢ if (1) ¢’
has all the 1's of ¢, and (2) for every row r’ in which ¢’ containsa 0,
there exists another row r in which ¢ has a 0 such that disregarding
entriesin column¢’, ' hasall the 1’s of r.

Bdom(c') =Ar" {R(r') - [L(r', ¢) - =L(+",) + O(+', ") Br
[R(r) - O(r, ¢)- Bc" [C(c")- (" # ") - 1(r, ") - =1(r",)]]I}

According to the definition, the table should not containarow ' € R
if either of the following two cases is true at that row: (1) table
entry at column ¢ is a 1 while entry at column ¢’ isnot a1l (i.e,
1(r',c)-=1(r’, ")), or (2) ¢ hasaOinrow r’ (i.e., O(r', ¢')) but there
doesnotexistarow r € R suchthatitscolumncisa0anddisregarding
entries in column ¢/, row r’ has all the 1's of row r. Rephrasing the
last part of the condition 2, the expression Ac” [C(c"") - (" # ')
A(r, ") - =1(r’,)] requires that there is no column ¢ € C' apart
from column ¢’ such that ¢’ hasa1in row r, but notin row .

The conditions for a-dominance are a strict subset of those for 3-
dominance, but «-dominanceis easier to compute implicitly. Either
of them can be used for col_dom. The set of dominated columns to
be deleted from the table can be computed as:

D(c) = C(c)- A [C(c") - (&' # ¢) - coldom(c, ¢)]

A column ¢ € C is dominated if there is another different ¢’ € C
which column dominates c.

Theorem 6.2 The following computations delete a set of columns
D(c) fromatable (R, C') and all rows intersecting these columnsin
a0.

C(e) C(e) - =D(e)
R(r) R(r)- Bc[D(c)-O(r, c)]

The first computation removes columns in D(¢) from the set of
columns C(c). The expression 3¢ [D(c) - O(r, ¢)] defines all rows
r intersecting the columnsin D in a0. They are deleted from R.

6.3 Row Dominance

Definition 6.3 Arowr’ dominates another row r if r hasall the I's
and 0 of r*. Reduction by row dominance can be computed by:

row_dom(r',r) = Ac {C(c)-[L(r', ¢)-=1(r, c)+0(r', ¢)-=0(r, ¢)]}
R(r) = R(r)- A" [R(r") - (+' # 7) - row_dom(r', r)]

For r’ to dominate r, the first equation requiresthat thereis no column

¢ € C suchthat either the table entry (r', ¢) isa 1 but the entry (r, c)

isnot, or theentry (r', ¢) isa0 but theentry (r, ¢) isnot. The second

equation saysthat any row r € R, dominated by another different row
r’ € R, isdeleted from the set of rows R(r) in the table.

6.4 Essential and Unacceptable Columns

Definition 6.4 A column ¢ is an essential column if there is a row
having a 1 in column ¢ and 2 everywhereelse.

C(c) - Ir {R(r) - unate_row(r) - 1(r, c)
A [C() (£ o) 1(r)]

For acolumn ¢ € C to be essential, there must existsarow r € R
which (1) doesnot containany 0 (i.e., unate_row(c)), (2) containsal
incolumne (i.e., 1(r, ¢)), and (3) thereis not another different column
intersecting therow inal (i.e, Ac' [C(c") - (¢ # ¢) - 1(r,)]).

Theorem 6.3 Essential columns must bein the solution. Each essen-
tial column must then be deleted from the table together with all rows
whereit has 1's. The following computations add essential columns
to the solution, delete them fromthe set of columnsand delete all rows
inwhich they have 1's:

ess_col(c) =

solution(c) = solution(c)+ ess_col(c)
C(c) = C(c)-esscol(c)
R(r) = R(r) Acless_col(c)- 1(r,c)]

Thefirst two equations move the essential columns from the column
set to the solution set. The last equation deletes from the set of rows
R al rowsintersecting an essential column ¢ inal.

Definition 6.5 A column ¢ is an unacceptable column if thereis a
row having a 0 in column ¢ and 2 everywhereelse.

C(e)-3r {R(r)-0(r,c)- Bc'[C(c))-1(r,)]}
For column ¢ € C to be unacceptable, there must be arow r € R

which intersects the column ¢ at a0 and no column ¢’ intersects that
rowrinalf(i.e, A [C(c") - 1(r, c)]).

Definition 6.6 A column is an unnecessary column if it does not

haveany linit.
C(e)- Ar [R(r) - 1(r,)]
A column ¢ € C isunnecessary if norow r € R intersectsitinal.

unacceptable_col(c) =

unnecessary_col(c) =

Theorem 6.4 Unacceptable and unnecessary columns should be
eliminated from the table, together with all the rows in which such
columnshave0's. Thetable (R, C') is updated accordingto Theorem
6.2 by setting D(c¢) = unacceptable_col(c) + unnecessary_col(c).

7 Other Implicit Covering Table Manipulations

To have a fully implicit binate covering algorithm as described in
Section 4, we must also compute implicitly a branching columnand a
lower bound. Thesecomputationsaswell astable partitioning involve
solving a common subproblem of finding columns in a table which
have the maximum number of 1's.

7.1 Selection of Columnswith Maximum Number of 1's

Given abinary relation F(r, ¢) asaBDD, the abstracted problemis
to find asubset of ¢’s each of which relates to the maximum number of
r’sin F'(r, ¢). Aninefficient method isto cofactor £ with respectto ¢
taking each possible valuesc;, count the number of onset minterms of
each F'(r, ¢)|c=.,, and pick the ¢;"s with the maximum count. Instead
our algorithm, Lmaz, traverses each node of F' exactly once:

Lmax(F,r) {
v = bdd_top_var(F')
if (v €) return (1, bdd_count_onset(£'))
else{ /* visac variable*/
T, count_T) = Lmax(bdd_then(F')
E, count_E) = Lmax(bdd_else(F), r)
count = max(countT, count_E)

if (count T = count_E) G = ITE(,T,F

elseif (count = count T) G = IT (v,7,0

elseif (count = count_E) G =ITE(v,0, E)
return (G, count)

Lmaz takesarelation F'(r, c% and the variables set r as arguments
andreturnsthe set G of ¢’'swhich are related to the maximum number
of r’'sin F', together with the maximum count. Variables in ¢ are
required to be ordered before variablesin r. Starting from the root of
BDD F', the algorithm traverses down the graph by recursively calling
Lmaz onitsthen and else subgraphs. Thisrecursion stopswhenthe
top variable » of F'iswithin the variable set r. In this case, the BDD
rooted at v corresponds to a cofactor F'(r, ¢)|.=., for somec;. The
minterms in its onset are counted and returned as count, which is the
number of r’s that are related to ¢;.

During the upward traversal of F', we construct a new BDD G in
abottom up fashion, representing the set of ¢’s with maximum count.
The two recursive calls of Lmaz return the setsT'(¢) and E(c) with
maximum counts count_ T and count_F for the then and the else
subgraphs. The larger of thetwo countsis returned. If the two counts
are the same, the columnsin 7" and E are merged by ITE(v, T, E)
and returned. If count T is larger, only 7' is retained as the updated
columns of maximum count. And symmetrically for the other case.
To guarantee that each node of BDD F(r, c) is traversed once, the
results of Lmaz and bdd_count_onset are memoized in computed
tables. Notethat Lmax returnsaset of ¢’s of maximum count. If we
need only one ¢, some heuristic can be used to break the ties.

7.2 Implicit Selection of a Branching Column

The selection of a branching column is a key ingredient of an
efficient branch-and-bound covering algorithm. A good choice re-
duces the number of recursive calls, by helping to discover more
quickly a good solution. We adopt a simplified selection crite-
rion: select a column with a maximum number of 1's. By defining
F'(r,¢) = R(r) - C(c) - 1(r, ¢) which evaluates true iff table entry
(r, ¢) isal, our column selection problem reduces to one of finding
the ¢ related to the maximum number of r's in the relation F'(r, ¢),
and so it can be found implicitly by calling Zmaz(F’,r). A more
refined strategy is to restrict our selection of a branching column to
columns intersecting rows of a maximal independent set, because a
unique column must eventually be selected from each independent
row. A maximal independent set can be computed as follows.

7.3 Implicit Selection of a Maximal Independent Set of Rows

Usually alower bound is obtained by computing a maximum inde-
pendent set of the unate rows. A maximum independent set of rows
is a (maximum) set of rows, no two of which intersect the same col-
umn at a1l. Maximum independent set is an NP-hard problem and an
approximate one (only maximal) can be computed by a greedy algo-
rithm. The strategy isto select short unate rows from the table, so we
construct arelation F(c, r) = R(r) - unate_row(r)-C(c)- 1(r, c).
Variables in r are ordered before those in ¢. The rows with the
minimum number of 1'sin F" can be computed by Lmin(F", c),
by replacing in Lmax the expression maz (count_T, count_E) with
min(count_T, count_E). Once a shortest row, shortest(r), is se-
lected, all rows having 1-elements in common with shortest(r) are
discarded from F"'(c, r) by:

F'"(e,ry = F"(c,r). A {Tr [shortest(r')-F" (", 7)) F"(c',r)}

Another shortest row can then be extracted from the remaining table
F' and so on, until £/ becomes empty. The maximum independent
set consists of all shortest(r) so selected.

7.4 Implicit Covering Table Partitioning

If acovering table can be partitioned into . digjoint blocks, themin-
imum covering for the original table is the union of the minimum cov-
erings for the » sub-blocks. n-way partitioning can be accomplished
by successive extraction of disjoint blocks from the table. When the
following iteration reaches a fixed point, (R, Cx) correspondsto a
disioint sub-blockin (R, C).

Ro(r) = Lmaz(R(r)-C(c)-[0(r,c) + 1(r,¢)], ¢)
Cule) = C(e)-3r {Ria(r)-[00r,0) + 1,)]}
Re(r) = R(r)-3c {Cu(e)-[0(r,) + 10r,)]}

This sub-block should be extracted from the table (R, C') and the
above iteration can be applied again to the remaining table, until the
table becomes empty. [9] provides a more detailed explanation.

8 Experimental Results

We implemented the algorithms described in the previous sections
inaprogram called 1sm, an acronym for Implicit State Minimizer. We
ran 1sM on different suites of FSM’s. They are: the MCNC bench-
mark and other examples, FSM’s from asynchronous synthesis [10],
FSM'’s from learning I/O sequences[5], FSM’s from synthesis of in-
teracting FSM’s [15], constructed FSM’s that exhibit a large number
of maximal and prime compatibles, random FSM’s. Each suite has
different features with respect to state minimization. We present in
two tables the most interesting experiments. Table 1 summarizes the
results of computing prime compatibles. Table 2 summarizesthe re-
sults of solving binate covering. Examples with a few compatibles
were not included in Table 1. Exampleswhere primes are not needed
to find a minimum FSM were not included in Table 2. Comparisons
are made with STAMINA ([12], shortened as STAM in the tables), a pro-
gram that represents the state-of-art for state minimization based on
explicit techniques. All run times are reported in CPU secondson a
DECstation 5000/260 with 440 Mb of memory.

8.1 Computation of Compatibles

Table 1 reports the numbers of compatibles and prime compati-
bles of FSM’s from various benchmarks. The CPU time refers to the
computation of prime compatibles. For these experiments STAMINA
was run with the option -P to compute all primes. Compatibles are
an important measure of complexity because they are the candidates
from which prime compatibles are selected. There are no interest-
ing examples from the MCNC benchmark or similar hand-designed
FSM'’s. In those casesan explicit algorithm is sufficient to get aquick
answer and it may be faster than an implicit one. The reason is that
ISM manipulates relations having a number of variables linearly pro-
portional to the number of states. When there are many states and
few compatibles, the purpose of 1M is defeated and its representation
becomesinefficient.

prime CPU time (sec)
‘ fsm ‘ # states ‘ # compat. ‘ compat. ‘ ISM | STAM
alex1 42 55928 787 24 16
intel _edge.dummy 28 9432 396 37 3
isend 40 22207 480 13 fails
pe-rev-ifc.fc 46 1.528e11 148 114 fails
pe-rev-ifc.fe.m 27 1.793e6 38 3 147
pe-send-ifc.fc 70 5.071el7 506 571 fails
pe-send-ifc.fc.m 26 8.978e6 23 3 312
vbeda 58 | 1.756el12 2072 109 167
vmebus.master.m 32 5.049¢7 28 26 fails
th.30 31 97849 33064 21 | 17256
th.40 41 1.456e6 529420 75 fails
th.55 55 3.622e7 1.555e7 1273 fails
f0.20 21 42193 12762 2| 1369
f0.50 51 3.643e7 1.696e7 216 fails
f0.70 71 | 9.621€10 | 4524€10 | 22940 fails
ifsm0 38 | 1064973 18686 43 | 4253
ifsml 74 43006 8925 25 466
ifsm2 150 497399 774 267 356
rubin18 18 221 221 0 751
rubin600 600 | 240 _1 | 20 _1 1978 fails
rubin1200 1200 | 280 _1 | 28°_1 | 27105 fails
rubin2250 2250 | 280 _ 1 | 280 _ 1 | 271134 fails
€271 19 393215 96383 21 fails
€285 19 393215 121501 13 fails
€304 19 393215 264079 93 fails
e423 19 204799 160494 102 fails
€680 19 327679 192803 151 fails

Table 1: Computation of compatibles.

The examplesfrom alex1 to vmebus.master.mare FSM’s generated
as intermediate steps of an asynchronous synthesis procedure [10].

STAMINA failed on the examples isend, pe-rcv-ifc.fc, pe-send-ifc.fc,
vmebus.master.m, while 1ISM was able to complete them. The running
times of 1SM track well with the size of the set of compatiblesand when
both programs completethey are usually well below those of STAMINA
(pe-rev-ifc.fc.m, pe-send-ifc.fc.m, vbeda). For asynchronoussynthesis
a more appropriate formulation of exact state minimization regquires
the computation of all compatibles or at least of prime compatibles
and a different set-up of the covering problem [10].

The examples from th.30 to fo.70 come from a set of FSM’s con-
structed to be compatible with a given collection of examples of in-
put/output behavior [5]. Here 1sm shows all its power compared to
STAMINA, both for the number of computed primes and running time.
STAMINA fails on the examples from th.25 and fo.20 onwards and,
when it completes, it takesalmost two orders of magnitude more time
than I1sm. The examplesifsm0, ifsml, ifsm2 come from a set of FSM’s
produced by FSM optimization, using the input don’t care sequences
induced by a surrounding network of FSM’s[15]. They exhibit often
large number of prime compatibles.

The examples prefixed by rubin have been constructed to have a
number of prime compatiblesexponential in the number of states[13].
ISM is able to generate sets of prime compatibles of cardinality up to

215 with reasonablerunning times, unattainablefor explicit enumera-
tion. The examplesfrom €271 to 680 have been randomly generated.
Again only 1sm could complete those exhibiting many primes.

8.2 Solution of Binate Covering

Table 2 reports results of the implicit binate covering algorithm
implemented in 1SM vs. the explicit one available in STAMINA. CPU
time refers only to binate covering without the time to find prime
compatibles. Dataare given both for o and 5 dominance. Under table
size we provide the dimensions of the initial binate table (rows times
columns). # mincov is the number of recursive calls of the binate
cover routine. Data are reported with a* in front, when only the first
solution was computed. Data are reported with a 7 in front, when
only thefirst table reduction was performed. # cover isthe cardinality
of a minimum cost solution (when only the first solution has been
computed, it is the cardinality of thefirst solution). The examplesare
from the same benchmarks presented before.

mincov # cover CPU time (sec)

fsm tablesize 1SM STAM 1SM 1SM STAM
rxc o/ o/ o/ o/ o/

ex2 4e3x1e3 | *6/*14 | *6/286 | *10/*12 *58/* 293 *116/2100
ex3 243x91 201/37 91/39 4/4 78/33 0/0
ex5 81x38 16/6 10/6 3/3 4/3 0/0
ex7 137x57 38/31 37/6 3/3 8/12 0/0
e271 9e4x9e4 11 -/- 2/2 1/55 failg/fails
€285 1x1e5 11 -/- 2/2 0/0 failg/fails
e304 1lebx2€e5 2/- -/- 2/- 463/fails failg/fails
e423 6e5x1e5 *2/- -/- *3/- *341/fails failg/fails
€680 7e5x1e5 2/- -/- 2/- 833/fails failg/fails
th.20 6e3x3e3 *4/*6 *5/*3 *5/*5 *13/*26 | *1996/*677
th.25 3edxled *3/*6 -/- *5/*6 *69/*192 failg/fails
th.30 6e4x3e4 *4/%9 -/- *8/*8 *526/* 770 failg/fails
th.35 1ebx8ed *8/*9 -[- | *12/*10 | *2296/*2908 failg/fails
th.40 1e6x5€5 *8/- -/- *12/- *6787/fails failg/fails
fo.16 6e3x3e3 *2/*3 *3/*3 *3/*3 *6/*23 | *1641/%513
fo.16 6e3x3e3 | *2/623 | *3/377 *3/3 *6/9194 | *1641/1459
fo.20 2edxled *21*4 -/- *4*4 *31/*68 failg/fails
f0.30 1e6x5€5 *2/*5 -/- *4/*5 | *1230/*1279 failg/fails
fo.40 6e9x2e9 t1/- -/- t-1- t723/fails failg/fails
ifsml 1e4x8e3 *4/2 *10/3 *14/14 *388/864 | *17582/805
ifsm2 1e3x774 4/3 41/44 9/9 136/230 49/3

Table 2: Solution of binate covering.

With the exception of ex3, ex5, ex7 from the MCNC benchmark
(where as expected 1M takes more time than STAMINA), the other
examples generatelarge covering tables. Some of them arethe largest
binate tables ever mentioned in the literature (up to 10° rows and
columns). The experiments show that 1Sm is capable of building and
reducing those table and of producingaminimum solution or at least a

solution. This achievement is beyond the reach of explicit techniques
and substantiatesthe claim that implicit techniquesadvancedecisively
the size of instancesthat can be solved exactly.

When both programs complete, the number of recursive calls of the
binate cover routine is often comparable for 1ISv and STAMINA. There
are some exceptions and for those STAMINA is usually better. This
indicates that our implicit branching selection is good, but still short
of the target. We are aware of more optimizations that can improve
the speed and increase the applicability of our implicit binate solver.

9 Conclusions and Future Work

We have presented an implicit algorithm for exact state minimiza-
tion of ISFSM’s. We have described how to do implicit prime com-
putation and implicit binate covering. Sets of compatibles of size up
to 2150 have been generated. Tableswith up to 10° rows and columns
have been solved. We have also indicated where such examples arise
in practice. The only explicit dependenceis on the number of states
of the FSM.

Theimplicit computations presented here to solve binate covering
exploit somerestrictions on theinstancesoccurring in state minimiza-
tion of ISFSM’s, e.g., thefact that binate clauseshave exactly one zero.
This pays off in terms of computational efficiency. Moreover, typical
occurrences of binate covering in logic synthesis share this feature.
Our technique can be extended to general binate covering problems.
How much generality one can afford and still expect efficiency is a
matter of applications and object of current research.

References

[1] K. Brace, R. Rudell, and R. Bryant. Efficient implementationof aBDD package. In
The Proceedingsof the Design Automation Conference, pages 4045, June 1990.

[2] R. Bryant. Graph based algorithm for Boolean function manipulation. In IEEE
Transactions on Computers, pages C-35(8):667-691, 1986.

[3] O. Coudert and J.C. Madre. Implicit and incremental computation of prime and
essential primeimplicants of Boolean functions. In The Proceedings of the Design
Automation Conference, pages 36-39, June 1992.

[4] O. Coudert, JC. Madre, and H. Fraisse. A new viewpoint on two-level logic
minimization. In The Proceedings of the Design Automation Conference, pages
625-630, June 1993.

[5] S.Edwardsand A. Oliveira. Synthesisof minimal state machinesfrom examplesof
behavior. EE290LSClass Project Report, U.C. Berkeley, May 1993.

[6] A. Grasselli and F. Luccio. A method for minimizing the number of internal states
in incompletely specified sequential networks. IRE Transactions on Electronic
Computers, EC-14(3):350-359, June 1965.

[7]1 A.Grasselli and F. Luccio. Some covering problemsin switching theory. | n Networks
and Switching Theory, pages 536-557. Academic Press, New York, 1968.

[8] G.Swamy, R.Brayton, and PMcGeer. A fully implicit Quine-McCluskey procedure
using BDD's. Tech. Report No. UCB/ERL M92/127,1992.

[9] T.Kam,T. Villa, R. Brayton,and A. Sangiovanni-Vincentelli. A fully implicit algo-

rithm for exact state minimization. Tech. Report No. UCB/ERL M93/79, November

1993.

L. Lavagno, C. W. Moon, R. K. Brayton, and A. Sangiovanni-Vincentelli. Solving

the state assignment problem for signal transition graphs. The Proceedings of the

Design Automation Conference, pages 568-572, June 1992.

B. Lin, O. Coudert, and J.C. Madre. Symbolic prime generation for multiple-valued

functions. In The Proceedingsof the Design Automation Conference, pages 4044,

June 1992.

J-K. Rho, G. Hachtel, F. Somenzi, and R. Jacoby. Exact and heuristic algorithms

for the minimization of incompletely specified state machines. |EEE Transactions

on Computer-Aided Design, 13(2):167-177, February 1994.

F. Rubin. Worst case boundsfor maximal compatible subsets. |EEE Transactions

on Computers, pages 830-831, August 1975.

R. Rudell. Logic synthesisfor VLSI design. Tech. Report No. UCB/ERL M89/49,

April 1989.

H.-Y. Wang and R. K. Brayton. Input don’t care sequencesin FSM networks. In

The Proceedingsof the Inter national Conference on Computer-Aided Design, pages

321-328, November 1993.

[10]

[11]

[12]

[13]
[14]

[15]

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

