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Abstract

Auctions are widely used on the Web. Applications range from internet advertising to
platforms such as eBay. In most of these applications the auctions in use are single/multi-
item auctions with unit demand. The main drawback of standard mechanisms for this type of
auctions, such as VCG and GSP, is the limited expressiveness that they offer to the bidders.
The General Auction Mechanism (GAM) of [I] is taking a first step towards addressing the
problem of limited expressiveness by computing a bidder optimal, envy free outcome for linear
utility functions with identical slopes and a single discontinuity per bidder-item pair. We show
that in many practical situations this does not suffice to adequately model the preferences of the
bidders, and we overcome this problem by presenting the first mechanism for piece-wise linear
utility functions with non-identical slopes and multiple discontinuities. Our mechanism runs
in polynomial time. Like GAM it is incentive compatible for inputs that fulfill a certain non-
degeneracy assumption, but our requirement is more general than the requirement of GAM. For
discontinuous utility functions that are non-degenerate as well as for continuous utility functions
the outcome of our mechanism is a competitive equilibrium. We also show how our mechanism
can be used to compute approximately bidder optimal, envy free outcomes for a general class
of continuous utility functions via piece-wise linear approximation. Finally, we prove hardness
results for even more expressive settings.

1 Introduction

Auctions are widely used on the Web. They are, e.g., used by Google, Microsoft, and Yahoo! for
search advertising [42]. They are also used on platforms such as eBay for selling a broad variety of
goods and services [43], [§]. In most of these applications the auctions in use are single/multi-item
auctions with unit demand. The problem solved by these auctions is essentially a matching and
pricing problem. In this problem n bidders have to be matched to k items. Each bidder has a utility
function w; ;(p;) that expresses his utility for being matched to item j at price p;. An outcome
(1, p) consisting of a matching p and prices p is said to be envy free if at the current prices every
bidder (weakly) prefers the item that he is currently matched to over every other item An envy
free outcome (u, p) is called bidder optimal if the utility of every bidder is at least as high as in every
other envy free outcome (y/,p’). Mechanisms that compute a bidder optimal, envy free outcome
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are desirable because they not only guarantee that everyone is “happy with what he gets”, but
also that everyone is “as happy as possible”. From an economic point of view a bidder optimal,
envy free outcome in which all unsold items have price zero is desirable because it represents a
competitive equilibrium (or Walrasian equilibrium) [42].

1.1 Limitations of Current Mechanisms

Standard mechanisms for auctions on the web, such as First- and Second Price for single-item
auctions and Vickrey Clarkes Groves (VCG) [49] [14], B3] and Generalized Second Price (GSP)
[26, 47] for multi-item auctions, nicely fit into the above model. For linear utility functions with
identical slopes, i.e., utilities of the form w; ;(p;) = v; j — pj, where v; ; denotes bidder i’s valuation
for item j, the outcome of VCG, for example, is envy free and bidder optimal [3§].

The main drawback of these standard mechanisms is the limited expressiveness that they offer
to the bidders. In particular, (1) they typically limit what functions the bidders can use to express
their utility for receiving a given item at a given price. In ad auctions, for example, some of the
bidders may have per-click valuations, while others have per-impression valuations. Mechanisms
that can handle either type exist (see, e.g., [26] [47] or [40] 28]), but mechanisms that can handle
both types simultaneously are still rare [32]. Moreover, (2) they do not allow to express budgets.
Budgets can either be soft (a limited amount of cash after which the bidder has to take out a loan)
or hard (an upper bound on the price the bidder is willing to pay). Budgets are considered an
important and difficult problem that recently has received a lot of attention (see, e.g., [11], 22]).

The General Auction Mechanism (GAM) of [I] is taking a first step towards addressing the
problem of limited expressiveness by allowing the bidders to specify a mazimum price for each
item. That is, it finds a bidder optimal, envy free outcome for linear utilities with identical slopes
and a single discontinuity per bidder-item pair. More specifically, the utility functions are of the
form w; j(p;) = vij — p; if pj < my; and w; j(p;) = —oo otherwise, where m; ; is the bidder-item
specific maximum price. GAM requires the input to be in general position (see [I] and Section [ for
a generalization of this concept). In general position it also preserves a desirable property of the
original model. Namely, no bidder can misreport his valuations and/or maximum prices to achieve
a higher utility. This makes it a (weakly) dominant strategy for the bidders to report truthfully.
Mechanisms with this property are said to be incentive compatible (or strategy proof) [42].

Despite its generality GAM has three major limitations: (1) It can only handle linear utility
functions with identical slopes. (2) It can only handle a single discontinuity with a jump to —oo
per bidder-item pair. (3) It cannot handle non-linear utility functions. We illustrate why and when
these shortcomings are problematic by means of three examples.

Example 1: Per-click vs. per-impression valuations (This example motivates linear utilities

with non-identical slopes.) Consider an ad auction with bidders with per-click valuations vﬁl;c’“ and

bidders with per-impression valuations vf’}w . The former are envy free if uf”Ck > vl-cl]?c’“ — pgl“k for
all j and the latter are envy free if u;"" > vf-’?p — p;-mp for all j. Suppose that the mechanism
collects per-click valuations and charges per-click prices. That is,

i (p;liCk) — 'UZ-C?Ck . pjliCk. (1)
A bidder with per-impression valuations can translate his valuations into per-click valuations us-

ing the click trough rate ctr; ; as follows: vfgc’“ = vf’}"p /ctri ;. That is, he reports u; ; (pgl“k) =
imp

v, Jctri; — p?lid“. Now suppose that given the per-click valuations, the mechanism computes an



envy free outcome (p, p™*“*) consisting of a matching p and per-click prices p“*. That is, for every

matched bidder-item pair (7,5) € p and all items j' # j we have:

click

click click
Uig TP Z Vi —

p5en (2)

What we actually want for bidders ¢ with per-impression valuations vfj}w is that for (i,j) € p and
all ' # j:
UZ??:D _ p;’_mp > vf?p o p;'jﬂp (3)

But if we take (2)), replace vf’l}c’“ with vf?p /ctrij, pi“c’“ with p;mp /ctri j, and multiply by ctr; j, then
we get

= B2 C W - ) @
where C' = ctr; j/ctr; . That is, if C' < 1, then () is not strong enough to guarantee envy freeness
for per-impression bidders. With non-identical slopes this can be sidestepped by having bidders
with per-impression valuations report

i (PR) = 0P — ctry - plick, o)

In this case the outcome (u, p®““*) computed by the mechanism will be envy free for both types of
bidders, i.e., the above problem does not arise.

Example 2: Soft and hard budgets (This example motivates piece-wise linear utilities with
non-identical slopes and multiple discontinuities.) Suppose that bidder ¢ wants to buy a car on
eBay. In the current system it would be dangerous for bidder ¢ to bid on more than one car at
the same time due to the risk of winning and having to pay for several cars when one is already
enough. With a GAM-like auction bidder 7 could bid on many cars at the same time while still
being guaranteed that he gets at most one.

With expensive items, such as cars, bidder i’s valuation v; ; for item j may exceed the amount
c of cash that he possesses. In this case ¢ might be willing to take out a loan if the price p; of item
j exceeds c. Assume that bidder i is offered a loan with a maximum amount of a, an interest rate
of r, and a fixed fee of f. Then bidder i’s utility for item j has the following form: (1) Because no
interest is due for the first ¢ dollars the utility function drops linearly with a slope of —1 from 0
to c. (2) At c it drops by the fixed fee f. (3) Afterwards, due to the interest rate r, every dollar
spent causes 1 + r dollars in actual cost. Hence the utility function drops linearly with a slope of
—(1+ ) from c to ¢+ a.

In addition to the soft budget constraint ¢, bidder ¢ may have a hard budget constraint b < c+a,
which is typically modeled by a jump to —oo at p; = b. Hence bidder ¢’s utility function for item
7 ultimately looks like this:
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without loan
- ‘ with loan --------

u_i,j(p_j) = i's utility for item j

p_j = price of itemj
Figure 1: Bidder 4’s utility function for item j.

Note that import duties that apply when bidder 7 wants to purchase car j abroad and its price p;
exceeds a certain threshold give rise to similar utility functions.

Example 3: Risk aversion (This example motivates arbitrary, non-linear utilities.) In the
previous example bidder ¢ may also be faced with costs for uncertain events after the purchase,
such as potential car repairs. A risk-averse buyer would have a utility function that drops super-
linearly in the price as a higher price is associated with a higher risk of not having sufficient money
to pay for the unforeseen events.

1.2 Owur Contributions

We overcome the limitations of GAM as follows: (1) We present the first mechanism for piece-
wise linear utility functions with non-identical slopes and multiple discontinuities. The problem
solved by our mechanism is more difficult than that solved by GAM as non-identical slopes require
the prices to be increased by different amounts, and multiple discontinuities can cause previously
matched bidders to become unmatched several times. Our mechanism is more expressive than GAM
as it can simultaneously auction off items to bidders with per-click and per-impression valuations
(Example 1), and it can handle a variety of soft and hard budget constraints (Example 2). The
running time of our mechanism is polynomial in the number of bidders n and items £l It is linear
in the number of discontinuities D and constant-slope intervals 7' of the utility functions. (2)
We precisely characterize under which conditions any mechanism that computes a bidder optimal
outcome in this setting is incentive compatible. This characterization involves a generalization of
the general position concept of [I]. For discontinuous utility functions that are non-degenerate as
well as for continuous utility functions the outcome of our mechanism is a competitive equilibrium.
(3) We show how to use our mechanism to compute a -bidder optimal, y-envy free outcome for
a general class of continuous utility functions via piece-wise linear approximation in time linear in
1/\/7. (4) Finally, we prove hardness results for two natural generalizations of our problem. In
the first, the utilities may depend on the matching. In the second, they may depend on the whole
vector of prices. In both cases computing a bidder optimal, envy free outcome is N'P-hard.

2For n > k it is linear in n.



1.3 Related Work

Continuous utility functions For linear utility functions with identical slopes the underlying
matching and pricing problem was first studied by Shapley and Shubik [45]. They formulated
the matching problem as a linear program and observed that the dual program yields envy free
prices. With the help of this formulation they also proved the existence of an outcome with
smallest prices/largest utilities, which is the bidder optimal outcome. Later Leonard [38] examined
the incentives for misreporting the utility functions and found that the bidder optimal outcome
is identical to the outcome of VCG [49] 14} [33] and therefore incentive compatible. The classic
mechanism for linear utility functions with identical slopes is the so-called Multi-Item Auction of
Demange et al. [19], which is a variant of the so-called Hungarian Method by Kuhn [37]. The
basic idea of this mechanism is to start with prices all zero and to repeatedly raise the prices
of overdemanded items by the same amount. This idea was generalized to continuous, piece-
wise linear utility functions with non-identical slopes by Alkan [3] [4], who showed that the prices
of overdemanded items need to be raised by different amounts and that these amounts can be
computed by solving a primal/dual problem. The existence of a bidder optimal outcome for more
general, non-linear utility functions was shown by Demange and Gale [18] using a lattice-theoretic
argument. They also proved that for continuous utility functions any mechanism that finds a bidder
optimal outcome is incentive compatible. Recently, Alaei et al. [2] presented a novel, inductive
characterization of the bidder optimal utilities/prices in this setting, which yields a constructive
proof of existence. Although hardness results have been established for related problems (see, e.g.,
[211 [48]), it is not clear whether or under which conditions a bidder optimal outcome can be found
efficiently for such general continuous utility functions.

Discontinuous utility functions The first to add a single discontinuity to otherwise linear
utility functions with identical slopes were Aggarwal et al. [I]. They also gave a mechanism, which
- for inputs in general position - is incentive compatible and finds a bidder optimal outcome in
polynomial time. Similar results to that of [I] were obtained by [5] [6] and [25]. In [36] it was shown
how to find the smallest envy free prices for a given matching. Recently, Chen et al. [12] gave
a polynomial-time mechanism for consistent utility functions. Note that all these results either
assume identical slopes [1}, [6l, 25| [36], just a single discontinuity [11, 16}, 25] [36], 12], or both. Also note
that the piece-wise linear utility functions with non-identical slopes and multiple discontinuities that
we study here are not consistent. The existence of a bidder optimal, envy free outcome for more
general, non-linear utility functions with multiple discontinuities was established in [24], but just
as in the continuous case no polynomial-time mechanism is known for such general discontinuous
utility functions.

Externalities Our hardness results rely on the fact that bidder ¢’s utility for being matched to
item j may depend on (a) who is assigned which item or (b) the prices of the other items. Such
dependencies are referred to as externalities. The “classic” result here is due to Jehiel et al. [35],
who presented a revenue maximizing auction for the sale of a single item when bidders who do not
acquire the item for sale incur a bidder-dependent externality. Other related results are [7] and
[30]. The former analyzes Nash equilibria of so-called social context games in which utilities are
computed based on an undirected neighborhood graph among players and aggregation functions.
The latter proves that the following winner determination problem, which, e.g, arises in the pay-per
lead model, is NP-hard and hard to approximate: Choose a set S of at most k advertisers from a
set of n advertisers, each with a private value v; and a random quality variable ¢; to maximize the
expected value v(S) = >, g vi-Pr[Vj € SU{0} : ¢; > q;], where qq is the quality of the best outside



option. The externality is thus encoded in the choice of S and the fact that the distributions from
which the ¢; are drawn need not be independent. Our problem is different as there is not a single
winner and the externality is either encoded in the matching or the prices.

1.4 Overview of Techniques

Our main result, the generalization of GAM, draws from the rich literature on matching and pricing
problems in various ways: First, it uses the same terminology (e.g., strict overdemand, alternating
path, alternating tree) and exploits the same link to Hall’s theorem [34] that was already used in [19]
and in [37]. It also borrows from [3, 4], in which the computation of price increases for continuous,
piece-wise linear utility functions with non-identical slopes is formulated as a primal/dual problem,
although we refine this approach to significantly improve upon the running time and extend it to
discontinuous utility functionsE Finally, our analysis follows a similar approach as [I] to cope with
the fact that in the presence of discontinuities bidder optimality and incentive compatibility no
longer coincide by characterizing inputs for which this is still the case.

On a conceptual level our main achievement is a decoupling of the argument for bidder opti-
mality from the argument for incentive compatibility. On a technical level it is that we can show
bidder optimality even if discontinuities require previously matched bidders to be unmatched. We
achieve this through a refinement of Alkan’s technique for increasing the prices when slopes are
non-identical (Lemma [7]) with a novel argument that shows that all price increases by the mech-
anism are necessary, even if discontinuities are reached and bidders become unmatched (Lemma
R). Together these lemmata allow us to prove bidder optimality even for inputs which make it
necessary to unmatch previously matched bidders. Note that neither [3, 4] nor [I] have to unmatch
bidders, because they either assume continuity or restrict themselves to inputs in general position.

Our new insight for incentive compatibility is that if for each price increase at most one utility
function reaches a discontinuity, then bidders never get unmatched (Lemma [)). We also observe
that in this case (a) all items with price p; > r;, where r; denotes an item-dependent reserve price,
are matched, and (b) at least one item j that is matched has p; = r; (Lemma [). We then use
a variant of Hwang’s Lemma (Lemma [I0]) to prove that whenever (a) and (b) are satisfied any
mechanism that computes a bidder optimal outcome is incentive compatible. Finally, we formulate
a condition on the input that guarantees that for each price increase at most one discontinuity is
reached. Following Aggarwal et al. [I] we say that inputs that satisfy this condition are in general
position, but our condition on the input is more general than that of [I] as it applies to piece-wise
linear utility functions with non-identical slopes and multiple discontinuities.

Concerning general continuous utility functions it is intuitively obvious that the solution to a
close enough piece-wise linear approximation cannot be far worse than the solution to the original
problem. The difficulty here is to get a running time that is polynomial in 1/, where ~ is the
maximal distance between the resulting bidder optimal utilities for the approximate utility functions
and for the original utility functions. In fact, it is not difficult to show that O(1/4/€) linear segments
suffice to ensure that the maximum distance between the approximate utility functions and the
original utility functions is at most € (Lemma [II]). The hard part is to show that the distance 7
between the resulting bidder optimal utilities scales linearly in e (Lemma [12]).

We establish the hardness result for utility functions that depend on the matching through a
reduction from 3-SAT [16] and the hardness result for utility functions that depend on the whole
vector of prices through a reduction from MAX-2-NASH [31], 15]@ The reduction from MAX-2-
NASH represents a novel and interesting link between the matching and pricing problem studied

3In [31 4] the running time is stated as O(n? - k* - IL j ti,;), where t; ; is the number of linear segments of wu; ;(-).
MAX-2-NASH: Find a Nash equilibrium of a 2-player game which maximizes the sum of the utilities.



here and the problem of computing Nash equilibria, whose computational complexity has been
settled only recently [17, [13].

2 Problem Statement

We are given a set I of n bidders and a set J of k items. The set of items J contains a dedicated
dummy item that we denote jo. For each bidder i we are given a constant o;, called the outside
option, which is the utility that bidder ¢ derives from not getting any non-dummy item. For each
item j we are given a constant r; > 0, called the reserve price, which is a lower bound on p;.
Finally, for each bidder-item pair (7,j) we are given a utility function u; ;(p;), where p; denotes the
price of item j. The utility functions are piece-wise linear. That is, each u; j(-) is composed of ¢; ;
linear segments

ul}(py) = o) = i) -pj for p; € [5,1).¢]7). (6)
wheret € {1,...,%;;}, s” =rj, egtj”) = 00, s(f) (t) ; (Vt), and e(t) = s(t+1 (Vt # t; ;). Where pos-

sible we omit (t) to improve readability. We make the following assumptlons concerning the utility
functions: (1) They are strictly monotonically decreasing. (2) They need not be globally continu-
ous. (3) For every bidder-item pair (4, j) there exists a threshold value p; ; such that u; ;(p; ;) < o0;.
(4) The utility functions u; j,(-) for the dummy item jy are of the form w; j,(pj,) = 0i — pj, for
Pjo € [0,00) and rj, =0

We want to compute (1) a subset u C I x J of the bidder-item pairs, in which (a) every bidder
i appears in ezxactly one pair (i,j) € u and (b) every non-dummy item j # jo appears in at most
one pair. We refer to this set as matching, even though multiple bidders 7 can be matched to the
dummy item jy. We also want to compute (2) per-item prices p = (p1,..,px). We refer to the pair
(1, p) as outcome. An outcome (p,p) is feasible if

Pjo = 0 and p; > r; for all j # jo. (7)

We say that prices with this property are feasible. In the remainder of this paper whenever we
refer to prices we mean feasible prices. An outcome is envy free if it is feasible and for all 4 and
(i,5) € 1 x J,

W; (i) (Ppiy) = wij(5), (8)

where p(i) denotes the item bidder i is matched to. An outcome (u,p) is bidder optimal if it is
envy free and for every bidder i and every envy free outcome (1/,p") we have

Wi () (Ppaiy) = Wi (i) (p;/(i))- 9)

Our goal is to compute a bidder optimal outcome.

3 Mechanism

In this section we describe and analyze our mechanism for piece-wise linear utilities. We proceed as
follows: First, we show how to reduce the problem of finding a bidder optimal outcome for an input
with reserve prices to the problem of finding such an outcome for a different input in which the

®Note that this definition guarantees that in every envy free outcome every bidder i has utility at least o;.



reserve prices are all zero. Second, we prove that the bidder optimal outcome has minimal prices
among all envy free outcomes. We then formulate the problem as a graph problem. This allows us
to define strict overdemand and to prove that an envy free outcome exists if and only if no set of
items is strictly overdemanded using Hall’s Theorem [34]. Our mechanism, which can be seen as
an algorithmic version of Hall’s Theorem [34], starts with prices all zero and iteratively raises the
prices of strictly overdemanded items. To ensure minimality of the resulting prices it does this in
an envy free and overdemand preserving manner.

Standard form We say that the input is in standard form if r; = 0 for all j. The following lemma
shows that we can w.l.o.g. assume that the input is in standard form as for any problem instance
that is not in standard form there is a linear-time reduction to an instance in standard form.
This reduction is similar to the reduction described in [3]. The lemma also shows that a sufficient
condition for an outcome (u*,p*) to be bidder optimal is that the prices p* are the minimum prices
at which an envy free outcome exists. This was already known for continuous utility functions (see,
e.g., [18]), but it is a novel observation for discontinuous utility functions. Moreover, unlike in the
continuous case, the reverse need not be true for discontinuous utility functions.

Lemma 1. We have:

1. If the outcome (i, p) is bidder optimal for u;j(pj) = u;;(pj+rj) and r;- = 0, then the outcome
(1, p") with p’; = pj +r; is bidder optimal for u; j(p;) and r;.

2. If the outcome (u*,p*) is envy free and p; < pj for all items j and every envy free outcome
(1, p), then (u*,p*) is bidder optimal.

Proof. To 1.: The outcome (u,p’) is feasible for u; ;(p;) and r; because p;-O = Dpj, +Tjo =Dj, =0
and p; = p;j +7; > r; for all j # jo. It is envy free because u; ;) (plL(i)) = U (i) (Pugi) + Tui)) =
u;“(i) (Pu@iy) = wi;j(pj) = wij(pj +15) = ui;(p}) for all i € I and all j € J. To see that it is also
bidder optimal, suppose for a contradiction that it is not, i.e., there exists an outcome (u”,p") that
is envy free for u; ;(p;) and r; and has wu; ;) (p::,,(i)) > U (i) (pL(i)) for all : € I and all j € J;
with at least one inequality strict. But then the outcome (u”,p") with p!’ = p —r; for all j is
(a) feasible for u; ;(p;) and 7; = 0 because pj’ = pj —rj, = 0 and p]" = pj —r; > 0 and (b)
envy free for u; ;(p;) and 7% = 0 because u;m,,,(i) (pZi,(i)) = u;m,,(i) (p::,,(i) =T (i)) = Wi (i) (p::,,(i)) >
u; () = uj (P —rj) = uj ;(p]') for alli € T and all j € J. Hence ugw,(i) (pZﬁ,(i)) = Uj (i) (p::u(i)) >
(N0 (p; (i)) = u;m(i) (Pu@y) for all i € I and all j € J; with at least one of the inequalities strict.
This contradicts the bidder optimality of (u,p) for u; ;(-) and 7 = 0.

To 2.: By contradiction assume that there is an envy free outcome (1, p") with u; ;) (p;L, (Z.)) >
Uy (3) (p;;*(i)) for some bidder i. Since (u*, p*) is envy free, we have u; ,,-(;) (p;*(i)) > Uj (i) (p;,(i)).

It follows that u; () (pL , (i)) > Ui (i) (p;, (Z.)), which implies pL ) < pz, (i) Contradiction! O

Graph-theoretic formulation Next we formulate the problem of computing an envy free out-
come as a graph problem. Central to this formulation is the first choice graph G, = (I U J, F,) at
prices p, which consists of one node per bidder ¢, one node per item j, and an edge from i to j if
and only if item j gives bidder i the highest utility at the current prices. That is, u; j(p;) > wi (pk)
for all k. For i € I we define F,(i) = {j : 3 (4,5) € Fp} and similarly F,(j) = {i : 3 (i,j) € Fp}.
Analogously, for T' C I we define F,,(T') = U;erFy(i) and for S C J we define F,(S) = UjesFp(j).
Based on the first choice graph we define strict overdemand: A set of non-dummy items S C J\{jo}
is strictly overdemanded at prices p with respect to the set of bidders T' C I if (a) F,,(T") C S and
(b) for all R C S with R # 0 : |F,(R)NT| > |R|. A set of non-dummy items S C J\ {jo} is



strictly overdemanded, if it is strictly overdemanded with respect to some set of bidders T' C 1.
Our definition of strict overdemand is stronger than the definition of overdemand [19], which only
requires that the number of bidders 7' demanding only items in the set S is greater than the number
of items in the set. It is different from the notion of minimal overdemand [19], which requires that
no subset is overdemanded. It is also different from the notion of directional overdemand in [4].
The advantage of our definition will become clear in the next subsection. The following lemma is
established using Hall’s Theorem [34] and the fact that a strictly overdemanded set of items exists
if and only if an overdemanded set of items exists.

Lemma 2. The following statements are equivalent:

1. The outcome (u,p) is envy free.
2. There exists a matching p in Gp.
3. No set of items S C J \ {jo} is strictly overdemanded at prices p.

Proof. 1. & 2.: An outcome (u,p) is envy free if and only if (a) pj, = 0 and p; > 0 for j # jo and
(b) i i) (Pugy) = wij(py) for all (i,5) € I x J if and only if all edges (i,j) € p belong to the first
choice graph G, at prices p with p;, = 0 and p; > 0 for j # jo.

2. < 3.: By Hall’s Theorem [34] there exists a matching p in the first choice graph at prices p
with p;, = 0 and p; > 0 for j # jo if and only if VI' C I: |F,(T)| > |T| or jo € Fp(T).

2. = 3.: Assume that VI' C I: |F,(T)| > |T| or jo € F»(T). For a contradiction suppose that
there exists a set of items S’ C J \ {jo} that is strictly overdemanded with respect to the set of
bidders 17, ie., (a) Fp(T") € 5" and (b) VR C 5 : |F,(R)NT'| > |R|. Let T = F,(S") N T".
From (a) we know that |F,(7")| < |S’|. From (b) we know that |T”| = |F,(S") N T"| > |S’|. Since
T" = F,(S")NT" C T, we have F,(T") C F,(T") and, thus, |F,(T")| < |F,(T")|. It follows that
|T"| > |E,(T")|. Since F,(T") C F,(T") € 8" C J\{jo}, we have jo & F,(T"). Hence for T"” neither
|F,p(T")| > |T"] nor jo € F,(T"). Contradiction!

2. < 3.: Assume that no set of items S" C J\{jo} is strictly overdemanded. For a contradiction
suppose that there exists 7" C I: |F,(T")| < |T”| and jo ¢ F,(T"). Consider the smallest such
T" and some i € T". For all proper subsets 7" C T" : |F,(T")| > |T"|. Hence all bidders
in 7"\ {i} can be matched to items in F,(7" \ {i}) by Hall’s Theorem [34]. Let x' be such a
matching. Let p/(7” \ {i}) denote the items matched to bidders in 7 \ {i} under x’. Compute a
maximal alternating tree 7 with respect to p’ with root i. Denote the bidders and items in this
tree by 7 C T"” and S" = F,(T") C F,(T"). It follows that (a) jo ¢ S’ because S’ = F,(T") C
F,(T") € J\ {jo} and (b) all items in F,(T") D F,(T') = S’ are matched because otherwise
[Ep(T)] > 1@/ (T")] = W/ (T"\A{i})| = [T"\{i}| = |T"[ = 1, e, [F,(T")| = |T"|. Hence Lemma 3
shows that S’ is strictly overdemanded with respect to T”. Contradiction! O

Alternating paths and trees To identify strictly overdemanded items our mechanism makes
use of alternating paths and trees: Let u be a partial matching. That is, a matching in which not all
of the bidders have to be matched. An alternating path P with respect to p in the first choice graph
G, at prices p from an unmatched bidder iy to some item or bidder j is a sequence of edges that
alternates between unmatched and matched edges and in which all items except j are non-dummy
items. An alternating tree T with respect to p with root ig is a tree in the first choice graph G,
at prices p which is rooted at an unmatched bidder ig and in which all paths from the root iy to
a leaf j are alternating. An alternating tree is maximal if the first choice items of all bidders in
the tree are contained in the tree and all matched items in the tree are matched to bidders in the
tree. Formally: If T'C I and S C J are the bidders and items in the tree 7, then F,(7") C S and
u(S) C T. The fact that a partial matching can be augmented along an alternating path from an



unmatched bidder to an unmatched item has been used before (see, e.g., [19]). The new insight of
the following lemma is that there is a close correspondence between maximal alternating trees and
our definition of strict overdemand.

Lemma 3. For any maximal alternating tree T with respect to p with root iy in G,, we have:

1. If the dummy item jo or some unmatched item j # jo is contained in T, then the matching
w can be augmented along an alternating path P from ig to jo resp. j.

2. If all items S in T are non-dummy items and matched, then S is strictly overdemanded with
respect to the bidders T in the tree and |T| = |S|+ 1.

Proof. To 1.: The path P is the path in the maximal alternating tree 7 that leads from iy to jg
resp. j. All bidders on this path except ig are incident to two edges, one matched and one un-
matched, and they are indifferent between the two. Hence we can swap the matched and unmatched
edges along P to augment the size of the matching by one.

To 2.: We know that jo ¢ S. From the maximality of the tree 7 we get F,,(T") C S. We still
have to show that for all R C S : |F,(R) NT| > |R|. For every item set R C S we know that there
exists a node x € R such that no other node of R lies on the path P from z to the root iy. Note
that x is not the root because the root does not belong to R. Let y be the neighbor of z on P.
Then y belongs to Fj,(R) N7, but it is not matched to any node in R. Thus, counting the nodes
matched to nodes in R and y, there are at least |R| + 1 nodes in F,(R) N T. O

Envy free price increase Once we have identified a strictly overdemanded set of items we need
to determine how to increase the prices in the set: A price increase d is a k-dimensional vector with
entries d; for j € {1,...,k}. A price increase is envy free with respect to a set of first choice edges
E C F,\ (I x{jo}) at prices p if (a) dj > 0 for all j such that there is a bidder ¢ with (i,j) € E
and d; = 0 otherwise, and (b) u; j(p; + A - dj) > wik(pr + X - dy) for all (i,7) € E, all (i,k) € F,
and all sufficiently small A > 0. Note that it is sufficient to require (b) for all (i, k) € F, and not
all (i,k) € I x J, because for every (i,k) € (I x J)\ F, we have u; ;(pj) > u;r(pr) and, thus,
wij(pj + A-dj) > u; x(pr + A - di) holds already. Also note that because for no bidder i we have
(4,jo) € E any envy free price increase has dj, = 0. Our definition of envy free price increase is
similar to the definition of a competitive direction in [3]. The next two lemmata are proved in [3]
for competitive directions and continuous utility functions, we generalize them to envy free price
increases and discontinuous utility functions. The first lemma is an immediate consequence of the
definition of envy free price increases. The second lemma gives a sufficient and necessary condition
for a price increase d # 0 to be envy free for a set of first choice edges 2 C Fj,. It shows that
a price increase d is envy free for a first choice edge (i,j) € F), if and only if the “utility drop”
¢ij - dj on this edge is minimal across the first choice edges (i,k) € F, incident to i. We exploit
this characterization in the computation of price increases described in the next subsection.

Lemma 4. If d is an envy free price increase with respect to the set of first choice edges E C
F,\ (I x{jo}) at prices p, then E belongs to the set of first choice edges at prices p+ A - d for all
sufficiently small A > 0.

Proof. Consider an arbitrary bidder-item pair (i,5) € E. If (i,k) € F,: Since d is envy free for
E and (i,j) € E, we have u; ;(pj + A - d;) > u;jr(pr + A - pg) for all X > 0 sufficiently small. If
(t,k) € (I x J)\ Fp: Since w; j(p;) > u;k(pr), we have u; j(pj + X - d;) > u; x(pr + A - di) for all
A > 0 sufficiently smalll] We conclude that wij(pj +X-dj) > uik(pr + A - dy) for all (,k) € I x J

There is no discontinuity in the utility function wu; ;(-) within the range [p;,p; + A - d;] for all A > 0 sufficiently
small because the utility function u; ;(-) is locally right-continuous.
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for all A > 0 sufficiently small. Since d; > 0 for all j s.t. there is a bidder ¢ with (¢,j) € E and
d; = 0 otherwise, we have p;, + A -dj, = pj, = 0 and p; + X -p; > 0 for all j # jo. O

Lemma 5. A price increase d # 0 is envy free for the set of first choice edges E C F), at prices p
if and only if ¢; ;- d; < ¢ - dy for all (i,j) € E C F, and all (i,k) € F),.

Proof. For the if-part assume that w; j(p; + X -d;) > w; x(pr + A - d,) for all sufficiently small A > 0,
all (i,5) € S C F), and all (i, k) € F,. Consider arbitrary edges (i,j) € S C F), and (i, k) € F,. By
piece-wise linearity, u; j(pj +A-d;j) = w; j(p;) —¢ij-A-dj and w; g, (pr + - di) = wik(Pr) — Cip - A-di
for all sufficiently small A > 0. From this and the fact that w;;(p; + A - dj) > u; k(pr + X - dy) it
follows that u; j(p;) — cij - A~ dj > wik(pr) — ik - A - dy. Since (i,j) € S C F, and (4,k) € F),, we
have u; j(p;) = wik(pr) and, thus, ¢ ;- dj < ¢ p - di.

For the only if-part assume that ¢; j - d; < ¢; 1 - dy for all (i,7) € E C F, and all (i,k) € F),.
Consider arbitrary edges (i,7) € E C F, and (4, k) € F),. By piece-wise linearity, u; j(p; + X - d;) =
wij(pj) — ¢ij - A-dj and u; g (pr + A - di) = wik(pr) — cik - A - di for all sufficiently small A > 0
Since (i,j) € E C Fp, and (i, k) € F,, we have u; j(p;) = u; ,(p). It follows that w; ;j(p; + X - d;) =
wij(pj) —¢Cij - N-dj > uip(pr) — cig - A diy = uik(pr + A - di) for all sufficiently small A > 0, i.e.,

d # 0 is envy free for E C F),. O

Overdemand preserving price increase It is not difficult to see that envy free price increases
are not enough to guarantee minimum prices. To achieve this goal we define a stronger notion of
price increases, which exploits the correspondence between maximal alternating trees and strict
overdemand: An overdemand preserving price increase d for a maximal alternating tree 7 with
respect to p with root ip in G, with item set S C J \ {jo} and bidder set T" in which all items
are matched, is a price increase d such that (a) there is some partial matching p/ that matches the
same bidders and items as p and that is identical to g on I\ T x J\ S, (b) there is a maximal
alternating tree 7’ with respect to p/ with root ig that has the same item and bidder set as 7", and
(¢) d is envy free for the edges of the maximal alternating tree 7'. We say that p’ is the matching
that corresponds to d. Note that p/ can be different from g on T x S. The crucial and new fact is
that by (b) all items in the tree, i.e., all items whose price is increased, remain overdemanded for
any small enough price increase.

Lemma 6. If d is an overdemand preserving price increase for a maximal alternating tree T with
respect to p with root iy in G, with item set S C J\ {jo} and bidder set T in which all items
are matched, then S is strictly overdemanded with respect to T' in Gpia.q for all sufficiently small
A > 0.

Proof. Denote the partial matching and the maximal alternating tree corresponding to d by p’ and
T’. Since d is envy free for 7', Lemma H] shows that all edges in 7’ belong to the first choice graph
Gpia.d at prices p+ A - d for all A > 0 sufficiently small. Since 7' is a maximal alternating tree
with item set S and bidder set 7" in which all items are matched, Lemma [3 shows that (1) the set
of items S is strictly overdemanded with respect to the set of bidders T" and (2) |T'| = |S|+ 1. O

Next we present a subroutine that computes an overdemand preserving price increase d and a
corresponding matching ' for a maximal alternating tree 7 with respect to p with root iy in G, with
item set S C J\ {jo} and bidder set T in which all items are matched. The computation consists
of three steps: (1) The subroutine computes a matching o between T\ {ig} and S consisting of
first choice edges, which minimizes H(i’ j)ep Cijs OF equivalently, Z(i’ ien log(c; ;). It also computes

"For this we need that the intervals are of the form [..).
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an envy free price increase d for o. This can be accomplished by solving a linear program (LP) and
its dual (DP), e.g., by using a primal-dual algorithm [37]. The duality between slopes and utility
drops exploited here is reminiscent of the duality between value-maximizing matchings and envy
free prices in [45]. (2) The subroutine extends d to an envy free direction for a maximal alternating
tree 7' with respect to o with root iy in G, with bidder set T" and item set S. (3) The subroutine
extends o to ¢’ by adding to it the bidder-item pairs from I\ T x J \ S that were matched in pu.
While (1) is essentially an application of Lemma [b] (and has been used in a similar form in [3] 4]),
(2) and (3) exploit the newly established correspondence between maximal alternating trees and
strict overdemand.

PSEUDOCODE 1: Subroutine for price increases
Input: maximal alternating tree 7 with respect to p with root iy in G, with item set S and
bidder set T" in which all items are matched
Output: overdemand preserving price increase d for 7 with corresponding matching p’
1 compute x as optimal solution to the following LP and let o = {(¢,7) € T'\ {ig} x S |z;; = 1}

min Zi,j Ti5 - log(ci,j)
sb Y iemmij=1 (VieT\{i})
Yicr,()Tig =1 (Vi€S)
Tij > 0 (V(Z,j) € Fp N (T\ {Zo} X S))

2 compute w, p as optimal solution to the following DP

max 3w+ 5, 05
sb wi+pj <log(eij) (V(i,7) € BN (T \ {io} x 9))

extend w from T\ {ip} to T by setting w;, = minjeg log(ci, ;) — pj
let H,=(T'US, E,), where E,={(i,j) €e F,,n(T x S) | wi + pj =log(cij)}
let 77 be a maximal alternating tree in H, with respect to o with root ig
let S’ C S and T" C T denote the items and bidders in 7~
while 7" £ T or S # S do
let 6 = ming jyer, e jes\s 10g(¢ij) — wi — pj
set pj =pj+dforal je S\, setw =w;—0forallieT\T
10 recompute 7', T', and S’

© ® N o Ok W

11 end

12 set dj = e %7 for all j € S and d; = 0 otherwise
13set p/ =cU(puNUI\TxJ\S))

14 output d and u’/

Lemma 7. This subroutine finds an overdemand preserving price increase and a corresponding
matching. It can be implemented to run in time O(min(n, k)3).

Proof. Let z, w, and p be defined as in the mechanism. The constraint matrix of LP is totally
unimodular, ie., z;; € {0,1} for all (i,j) € F, N (T \ {io} x S) [44]. Hence > cp ;) ®i; = 1
(Vi € T\ {io}) and 3 cp ;) @iy =1 (Vj € 5) ensure that o = {(i,j) € T \ {io} x S | z;; = 1}
matches every bidder i € T'\ {ip} and every item j € S exactly once. From duality:
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1. For all i € T'\ {ip} and all j € S with (4,7) € 0: w; + p; = log(c; ;).
2. Forall i € T\ {ip} and all j € St w; + p; < log(cs ;).

If we extend w from T \ {ip} to T as described in 1. 3, then we also have:

3. There exists a j € S: w;, + pj = logcl_O i
4. For all j € S: w;, +p; < 10g%],.

Let H, = (SUT,E,), E,, T', T’ and S’ be defined as in 1l. 4-6. It is not difficult to see that the
while-loop in II. 7-11 has the following properties:

a. For all i € 7" and all j € S’ : If we had w; + p; < (resp. =)log(c; ;) before the update, then
we have w; + p; < (resp. =) log(c; j) after the update.

b. For alli € T\ T and all j € S\ S : If we had w; + p; < (resp. =) log(c; ;) before the update,
then we have w; + p; < (resp. =)log(c; ;) after the update.

c. Forall: € T\T" and all j € S" : If we had w; + p; < log(c; ;) before the update, then we have
wi + pj < log(c; ;) after the update.

d. For all i € 7" and j € S\ S : If we had w; + p; < log(c; ;) before the update, then we have
wi + pj < log(c; ;) after the update.

e. There exist at least one i € 7" and j € S\ 5" : w; + p; = log(c; ;) after the update.

From a. to e. we get that no edge from o and 7’ in E, is lost. From e. we get that at least one
edge from some i € T" to some j € S\ S’ is added to E,. Since this item j was matched under
o along an edge in E, to an item ' € T'\ 7", we know that after each iteration of the while-loop
the maximal alternating tree 7' with respect to o with root iy in H, will at least cover the bidders
and items in 77U {i'} and S’ U {j}. Hence, after at most |S| < k iterations, 7" will cover the same
bidders and items as T.

Let d be defined as in 1. 12. Then d # 0 is envy free for 7' by Lemma [{ because:

1. For all (i,5) € 7" and all (i, k) € F,, we have that ¢; j-d; < ¢; - di because ¥ = ¢l°8(¢i.3)=P; =
cij-ePi=c;-djand e < elog(cik)—pr — Cif e Pk =cig - dy.

2. For all (i,5) € ¢/ \ T’ and (i, k) € F, we trivially have that ¢; ; - dj < ¢;, - di, because d; = 0,
di >0, and ¢;, > 0.

Let i/ be defined as in 1. 13, then y/ matches the same bidders and items as p because (1) u' is
identical to o on T x S and (2) ' is identical to pon I'\ T x J\ S.

The LP and the DP can be solved in time O(min(n, k)3) [27,46]. The maximal alternating tree
T’ can be computed in time O(min(n, k)?) using a breadth-first search approach. The while-loop
in 1. 8-12 can be implemented using “slack variables” §; = min; jyep,.ic7(log(c; ;) — w;i — pj) for
each item j € S\ S’ so that all iterations of the while loop take total time O(min(n,k)?): The
initialization of the §;’s takes time O(min(n, k)?) as for each of the up to min(n, k) items in S\ S’
the minimum is computed over the up to min(n, k) bidders in 7”. In each iteration of the while-loop
at least one bidder-item pair (¢,7) € T/ x S\ S is added to T" x S’. Since |S \ S| < min(n, k) it
follows that there are at most min(n, k) iterations. Using the §;’s for j € S\ S’ the § in 1.8 can be
computed in time O(min(n,k)). When the w;’s and p;’s are updated in 1. 9, the J,’s are adapted
in time O(min(n, k)) by subtracting § from each ¢;. Thus, 1l. 9 and 10 take time O(min(n, k)) per
iteration for a total of O(min(n, k)?). Instead of re-computing the maximal alternating tree 77 in
1. 10 from scratch we can keep the old one and add the required edges. Thus maintaining 7 takes
only time O(min(n, k)?) for all iterations of the while loop. Additionally the §;’s must be updated.
For each bidder that is added to T all §,’s must be updated. This takes time O(min(n,k)) per
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bidder. But this happens at most once for each of the up to min(n, k) bidders that are added to
T’, since no bidder is ever removed from 7”. Thus, all the updates to the J;’s that are required
when bidders are added to 7" take total time O(min(n, k)?). O

The following lemma — our key lemma and main technical improvement over [3| [4] — shows that
if overdemand preserving price increases are used, then the resulting prices will be minimum over
all envy free outcomes.

Lemma 8. Let d be an overdemand preserving price increase for a maximal alternating tree T in
G, with item set S and bidder set T' in which all items are matched. Let A\ > 0 be the smallest
scalar such that at p+ X -d (a) a bidder-item pair (i,j) € T x J\ S enters Gpix.q or (b) the end
(

point ei’tj)- of some interval t > 0 is reached. Then for any envy free outcome (p”,p") with p” > p
we have p” > p+ X\ -d.

Proof. For a contradiction suppose that p? < ps + X - ds for some s € S. Choose € > 0 such that
Ps =ps + (A —¢€) - ds. Note that € < A because p > ps. Let A= {j € S| p] —p; < (A—¢)-d;}
and let B = F,; (x_¢).q(A) N T. Note that A # ) because s € A.

Since d is envy free for 7" and p; < p; + (A —€)-d; < p; +A-d; < ejforall j €S, ie,
for no (i,5) € T x S there is a discontinuity in u; j(-) within the range [p;,p; + (A — ¢€) - d;], we
have 7' C F,; (»—¢).a- Since 7" covers all bidders in 7" and items in S and A C S and S is strictly
overdemanded with respect to 7', we have that |B| = |Fp;n—e).a(A) NT| > |A].

Next we show that |A| > |F,(B)|. For this it suffices to show that Fy (i) C A for all i € B.
For a contradiction assume that there exists an ¢ € B and a k ¢ A with k € F,»(i). It follows that

pr—pr > (XA —¢€) - dg, and (10)
wi g (pl) > uij(py) for all j. (11)

But by the definition of B, and since i € B, there must be a j € A such that j € Fj, (x_¢).q(7). It
follows that

P —pj <(A—e€)-d; and (12)
u; j(pj + (A =€) - dj) > uip(pr + (A =€) - di). (13)

Using the fact that the utility functions are strictly monotonically decreasing we get

uij () > uij(pj + (A —e€) - dj) (from (I2))
> i k(pr + (A —€) - di) (from (I3)
> w1 (ph)- (from (I0QI)

Since this would give a contradiction to (IIl), we must have F,/(B) C A, i.e., |A| > |F»(B)|. It
follows that |B| > |A| > F,#(B). But this shows that in (x”,p”) not all bidders can be matched in
an envy free manner. Contradiction! U

Bidder Optimal Outcome Our mechanism starts with an empty matching p = () and prices
p = 0. It then matches one bidder after the other until eventually all bidders are matched. For this
it computes a maximal alternating tree 7 with respect to p with root ig, where iy is the bidder
to be matched, in the first choice graph G),. If the alternating tree contains the dummy item jo
or an unmatched item j, then by Lemma [B] the current matching p can be augmented along an
alternating path from ig to jg resp. j. If this is not the case, then — again by Lemma [3] - the items
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S in the tree are strictly overdemanded with respect to the bidders T' in the tree. In this case
the mechanism computes an overdemand preserving price increase d together with a corresponding
matching p’ (using the subroutine from the previous subsection) and raises the prices in compliance
with d until (a) a bidder-item pair (,5) € T'x J \ S enters the first choice graph Gp; .4 or (b) the
end point egt]) of some interval ¢ > 0 is reached. In either case the current matching p is replaced
with 4/ and the minimality of the new prices is guaranteed by Lemma [l If at least one of the new
prices p; + A - d; corresponds to a discontinuity, then one or multiple edges might drop out of the
first choice graph. The mechanism corrects for this by removing such edges from the matching if
necessary. If no discontinuity is reached, then the maximal alternating tree 7 rooted at iy grows

by at least one item.

PSEUDOCODE 2: Mechanism for piece-wise linear utility functions
Input: bidders I, items J, piece-wise linear utility functions u; ;(-) with non-identical slopes
and multiple discontinuities, reserve prices r; = 0, outside options o;
Output: bidder optimal outcome (u,p)
1 set p; =0 for all j and set p =0
2 while there erists an unmatched bidder ig do
3 compute maximal alternating tree 7 w.r.t. 41 in the first choice graph G, with root g
let T and S be the bidders and items in T
while all items in S are matched and S does not contain the dummy item jy do
compute overdemand-preserving price increase d for 7 and corresponding matching
i (using the subroutine from the previous subsection)
7 let A > 0 be the smallest scalar such that at prices p+ A - d
(a) a bidder-item pair (i,7) € T' x J \ S enters the first choice graph Gp4x.q4, or

[ BN

(b) the end point egtj) of some interval ¢ > 0 is reached
set pj = p; + A-d; for all j € J and set p = 1/
remove bidder-item pairs from p that do not belong to the first choice graph G,

10 compute maximal alternating tree 7 w.r.t. 4 in the first choice graph G}, with root 4
11 let T and S be the bidders and items in T

12 end

13 augment p along alternating path P from iy to unmatched item j or dummy item 7

14 end

15 output (u,p)

Theorem 1. This mechanism finds a bidder optimal outcome. It can be implemented to run in
time O((n - min(n, k) + D - min(n, k) + T) - min(n, k) - (min(n, k)? + k)), where D = > dij and
T= Z” t;j denote the total number of discontinuities and constant-slope intervals.

Proof. The matching p is a subset of the first choice edges at prices p. Hence Lemma [2 shows that
(11, p) is envy free. By Lemmall (u,p) is bidder optimal if p; < p for every item j and every envy

free outcome (1, p"). Let p® denote the prices after the t-th update. We prove that pg-t) < pj for
every item j, every envy free outcome (p”,p”), and all time steps t by induction over ¢.
t = 0 : The claim follows from the fact that any envy free outcome (1", p) has pfj > 0 for all j.
t —1 — t : Assume that the claim is true for ¢ — 1. Let 7 be the maximal alternating tree
with respect to the current matching p(*=1) with root 4y right before the ¢-th update. Let S and T
denote the items and bidders in 7. Let d be an envy free price increase for 7 with corresponding
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alternating tree 7’ and matching p’. Let A be defined as in the mechanism. Note that A can be
computed in time O(min(n,k) - k by iterating over all bidders in 7', of which there are at most

min(n, k), and all items in J. The mechanism sets p§t+1) = pg.t) for j ¢ S and p§t+1) = pg»t) +A-d; for
j € S. Lemmal[8shows that any envy free outcome (1, p”) with p” > p® must have pj > PO+ Xd;.
It follows that pf > p§-t+l) for all j.

We bound the total time required by (1) the outer while-loop without the inner while-loop (11. 2-
4 & 13-14) and the inner while-loop corresponding to Case (a) (Il. 5-12) separately from the total
time required by (2) the inner while-loop corresponding to Case (b) (Il. 5-12).

To bound the total time required by (1) observe that: (i) In each iteration of the outer while-
loop exactly one bidder gets matched. (ii) Bidders can get unmatched only if the boundary of a
box is reached that corresponds to a discontinuity in at least one of the utility functions w; ;(-). (iii)
A discontinuity in w; j(-) can only unmatch bidder i. Since the prices are monotonically increasing
at most O(3_, ; d; ;) discontinuities are reached. From (i) to (iii) we deduce that there are at most
O(n+ ZZ j d; ;) iterations of the outer-while loop without the inner while-loop and that the inner
while-loop is executed at most O(n + ZZ j d; j) times. Each iteration of the outer-while without
the inner while-loop takes time O(min(n,k)?). Each execution of the inner-while loop consists
of at most min(n, k) iterations corresponding to Case (a). Each of these iterations takes time
O(min(n, k) - (min(n, k)? + k)), namely O(min(n, k)3) for computing the overdemand preserving
price increase (see Lemma [7]) and O(min(n, k) - k) for computing the A value. Hence the total time
required by (1) is O((n - min(n, k) + >, ; d;; - min(n, k)) - min(n, k) - (min(n, k)? +k)).

To bound the total time required by (2) observe that because the prices are monotonically
increasing there are at most O(zZ j ti ;) iterations of the inner-while loop that correspond to Case
(b). As argued above each iteration of the inner while-loop takes time O (min(n, k)-(min(n, k)?+k)).
Hence the total time required by (2) is O((>_; ; ti,j) - min(n, k) - (min(n, k)2 + k). O

4 Incentive Compatibility

In this section we precisely characterize under which conditions any mechanism that computes a
bidder optimal outcome is incentive compatible. Intuitively, a mechanism is incentive compatible
if for every bidder 7, independently of all other bidders, reporting his true utility functions yields
an outcome, which gives him the highest possible utility. This can be formalized as follows: A
mechanism is incentive compatible if for every bidder ¢ with utility functions u; ;(-) and every two
sets of utility functions u; ;(-) and w;;(-), where uj ;(-) = u; ;(*) for i and all j and wj, ;(-) = uy ;(-)
for all k # 4 and all j, and corresponding outcomes (¢/,p’) and (1", p”) of the mechanism we have

Ui, pi! () (P:L/(i)) = Wi 1 (3) (Pﬁff(z))' (14)

Note that this definition does not involve the reserve prices r; or outside options o;. This makes
sense because the reserve prices r; are typically set by the seller and misreporting o; is never
beneficial to ZE

Example: Lying pays off (This example shows that bidder optimality does not imply incentive
compatibility.) There are two bidders i € {1,2} and two items j € {1,2}. The utility functions for

8Qver-reporting can only lead to a missed chance of being assigned an item and under-reporting can only lead to
a utility below the true outside option.
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i€ {l1,2} are:

' [ 20—p; for p; €10,5),and
uin(p1) = { —00 otherwise,
uio(p2) = 1—py for ps € [0,00).

The reserve prices are r; = 0 for j € {1,2} and the outside options are o; = 0 for i € {1,2}. A
bidder optimal outcome for this input is = {(1,2)} with p; = 5 and py = 1. For this outcome both
bidders have a utility of zero. Bidder 1 can improve his utility by pretending to have u; 1 =0 —p;
for p; € [0,00). In this case the bidder optimal outcome is p = {(1,2),(2,1)} with p; = ps = 0.
The utility of bidder 1 improves from 0 to 1. The crucial point — as we will show below — is that
in the computation of the bidder optimal outcome on this example two first choice edges, namely
(1,1) and (2,1), simultaneously break away from the first choice graph at price p; = 5.

Price-Independent Formulation We will define next a condition on the input that implies
that never during the execution of the mechanism two edges will break away from the first choice
graph during the same price increase. Which edges break away depends on the current prices and
the price increases. However, using the following idea we can write down a condition that does not
depend on the current prices: Suppose that the edges (7,7), (¢, 7), and (¢/,j") belong to the first
choice graph G, at prices p. It follows that

Vit j = Cirjt Pj = Virjr = Cirjr Py (15)

Suppose further that d is an envy free price increase for the set of first choice edges E = {(4, 5), (¢', j),
(¢/,4")}, then

virj = Cirj - (pj + Adj) = vir jr = cijr - (Pjr + Adyr). (16)
By subtracting (I3 from (I6)), dividing by A > 0, and after rearranging we get
dj = ¢y ji/cij - djr. (17)
Now suppose that the discontinuities D; ; and Dy j are reached simultaneously. Then by (I6):
Vit — Citj - Dy j = vy jo — ¢y jr - Dy jo. (18)

Using (), subtracting 1/d; - v; j/¢; ; from both sides, and after rearranging we get

1 Vi g 1 v; 1 vy s 1 Vit 41

_( i — ﬂ) =W, = T _(Di’,j’ Y ).

d; Ciyj djcij  djcry  dy Cit 5/
Below we will define a multigraph such that the left and right hand side of this equation correspond
to the weights of two alternating walks in the graph, namely P = (i,5) and Q = (3,7,4,7"). Note
that neither the weight of P nor the weight of () depend on the prices.

General position For a given input we define a multigraph, called input graph, as follows: There
is one node per bidder i € I and one node per item j € J. There are three types of edges: (1)
There is a forward edge from i to j for each linear segment of w; (). (2) There is a backward edge
from j to i for each linear segment of u; ;(-). (3) There is a discontinuity edge from ¢ to j for each
discontinuity D; ; of u; ;(-).
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Let P = (ig,j1,---,%s,Js) be a walk in the input graph that alternates between forward and
backward edges, and ends with a discontinuity edge. Let d be a price increase such that d; =
(¢i,j1/cij)-dj for any two edges (i,) and (z,j') on P. Define the weight of each forward edge (i, j)
on P with respect to d as (—1/d;) - (vij/ci ), of each backward edge (j,4) as (1/d;) - (vij/ci ), and
of the discontinuity edge (4,7) as (1/d;) - (Di; — vi;/cij). Here v;; and ¢; ; are the constants of
the corresponding linear segments. Define the weight wg(P) of P with respect to d as the sum of
these weights. We say that the input is in general position if for no two walks P and @) that start
with the same bidder and end with a distinct discontinuity edge and for no price increase d such
that d; = (¢; ;7 /cij) - djy for any two edges (4,7) and (7,j") on P resp. @ we have wq(P) = wq(Q).
Note that this definition of general position is more general than that in [I]. In particular, it takes
into account that the utility functions have non-identical slopes and multiple discontinuities.

Lemma 9. We have:

1. An input is in general position if and only if the associated input in standard form is in
general position.

2. Let (u,p) denote the outcome of the mechanism in Section [3. If the input is in general
position, then

(i) mo two discontinuities are reached simultaneously,

(ii) if an item gets unmatched, it gets matched again in the subsequent iteration,
(iit) if p; > r;, then item j is matched under p, and
(iv) the last item, say j, that gets matched has pj = r;.

Proof. To 1.: Denote the original input by (u; ;(-), r;, 0;) and the associated input in standard form
by (u; ;(+),0,0;). Recall that u; ;(p;) = w;j(p; +r;) for all i, all j, and all p; > 0. Every pair of
walks P and @ in the input graph for input (u; ;(-), 7, 0;) corresponds to a pair of walks P’ and @’
in the input graph for input (u;](), 0,0;), and vice versa. Since ¢; ; = c;-J- for every edge (i,j) on P
and P’ resp. Q and @', every price increase d for which d; = (¢; j/¢; j) - djr for any two edges (4, j)
and (7,7') on P resp. @ has d; = (cgd/cg’j,) -dj for any two edges (4,7) and (i,5") on P’ resp. @',
and vice versa. Furthermore, since v; ; = vg,j +¢; ;-1 for every edge (i,j) on P and P’ resp. @ and
Q" and D; j = D ;+r; for every discontinuity edge (i,5) on P and P’ resp. @ and Q' (a) the weight
of each forward edge (4, j) is —(1/d;) - (vij/cij) = —(1/d;) - (vi ;/cij) — (1/d;j) -7, (b) the weight of
each backward edge is (1/d;) - (vij/cij) = (1/d;) - (v] ;/cij) + (1/d;) -7, and (c) the weight of each
discontinuity edge is (1/d;) - Di; — (1/dj) - (vij/cij) = (1/d;) - D ; — (1/d;) - (v; ;/cij)- Since on
each of the walks P and P’ resp. Q and Q' there are as many forward as backward edges and every
item j is incident to exactly one forward and one backward edge, the —(1/d;) - r; and (1/d;) - r;
terms cancel each other. Hence wy(P) is identical to wy(P’) and wgy(Q) is identical to wg(Q').

To 2.: We prove each of the claims (i) to (iv) individually.

To (i): For a contradiction suppose that two discontinuities are reached at the same time.
W.lo.g. assume that the discontinuities are reached on (i1, j1) and (i, j:—1), and denote them by
D;, j, and D;, j,,. Consider the walks P = (i1,71) and Q = (i1, 1,92, 52, - t—1,Jt—1, bt Jt—1)s
both alternate between forward and backward edges and end with a discontinuity edge. Note that
these walks always exist because (1) either j; lies on the path from 41 to i; or io = i1 and (2) either
jt—1 lies on the path from iy to i; or i; = ;1. Since the discontinuities are reached at the same time
there must be a price increase d # 0 that is envy free for some maximal alternating tree containing
P and @ and a positive scalar A > 0 such that A\ -d;, = D;, ;, —pj, and X-dj,_, = D, j, , — Dj,_,-
Rearranging this gives

1 1 1 1
d_j1 “Diy gy — m Dy oy = d_j1 “Pj — K "Pji (19)



From the fact that P and @ belong to the first choice graph G,, at prices p we get that for s = 1..t—2:
Vigi1js = Ciss1rjs * Pjs = Vigy1,josr — Cissrrjorr  Pjssrs (x). Solving for p; we get that for s =1..1 —2:

Vigy1,js Vigq1,js11 Cisi1,jst1
- + : pjerl N (20)

Pjs =
cis+17js Ci5+1,j5 cis+17js
From the fact that P and @ also belong to the first choice graph G4 y.q at prices p + X - d we get
that for s = 1.t — 2 : Vigi1,js — Cisg1,ds (pjs + A djs) = Vigi1,5s41 — Cist1,jos1 (pjs+1 + A djs+1)'
Subtracting () and solving for d;,., we get that for s =1..t —2:

s+1
d . Cist1,]s e d. (21)
Js+1 T . . yEN
cls+17]s+1

Solving the recurrence (20)) for p;,, substituting (2I)), and rearranging gives:

1 ) 1 ) _ 1 Uiz, j1 1 Vig,j2 1 Viy_1,ji—2 1 Viy_1,ji—1
df'pﬂl_df'pjt71_d_.'f_d_.'f_‘_“'_‘_d. T ) d. ¢ o
J Jt—1 g2 Cia,ja g2 Ciz,ja gi—1 Cit—1,ji—1 gi—1 Cii—1,ji—1

We combine this with (I9) to get

1 1 1 v, 1 v, 1 V; i 1 V; i
d_' Di17j1 _ d Dit7jt71 _ d_ . 7'/27.7-1 _ d_ . ?27]-2 _|_ - + d . %tfly,y.t72 _ d . %tfly,y.tfl .
J Jt—1 g2 Cia,jo jo  Ciz,jo gi—1  Ciz—1,jt—1 Gi—1  Ciz—1,jt—1
We add (—1/dj, )-(viy jy /iy ,5y) to both sides and (1/dj, )-(vi 5,1 /Civ 5 ) — (1/dj, 1) (Vi jo 1/ Civ o) =

0 to the right hand side. After rearranging we get:

1 D — Lowgg 1 i + Loviy 1 i et L Wi
11,J1 -
dj, djy  Ciyg djy  Cirgi  djp Cingy  djy Ciggjo djo_1 Cit_1je
. 1 Vi1 i + L Vi gy 1 Dy, j, , — Uit,jtﬂ)
d.; ) ) d.; . d: taJt—1 o ’
Ji—1 Cir_1,5i—1 j Cit gt Jt—1 Cit,je—1

Since the left hand side corresponds to wy(P) and the right hand side to wg(Q), we get a contra-
diction to the fact that the input is in general position.

To (ii): Consider an arbitrary price update. Let iy be the bidder, and let u be the matching
under consideration. Denote the maximal alternating tree with respect to p with root ig by 7. Let
d be the overdemand preserving price increase for 7 computed by our our mechanism. Denote the
corresponding maximal alternating tree and matching by 7" resp. p/. We know that u/ matches
the same set of bidders and items as p. If the price update corresponds to a Aoyt < Aoy, then
none of the edges in 7’ drops out of the first choice graph Gpt .4, i-e., none of the edges has to be
removed from p’. If it corresponds to a Ay > Agut, then — due to the fact that the input is in
general position — at most one edge in 7’ drops out of the first choice graph G, .. If the edge is
an unmatched edge, then no edge has to be removed from p/. If it is a matched edge, then exactly
one edge has to be removed from /. But since all items in 77 are closer to the root iy than the
bidder they are matched to, there must be an alternating path P from the unmatched item, say
7, to the root ig. It follows that in the subsequent iteration there is exactly one alternating path
along which the matching can be augmented, namely the path from iy to j. Hence j gets matched
again in the subsequent iteration.

To (iii): Our mechanism raises the price of an item strictly above its reserve price only if this
item belonged to the set of items S in a maximal alternating tree 7 in which all items are matched.
From (i) we know that every item that ever got matched, will be matched in the end.

To (iv): Consider the iteration in which the last item j gets matched. Since j belongs to F,(T),
we must have p; > r;. From (i) we know that item j was never matched before and from (ii) we
know that p; > r; would imply that j was matched before. Thus we must have p; = r;. O
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Characterization We already know that bidder optimality does not imply incentive compati-
bility, if the input is not in general position. With the help of the following lemma — which is a
generalization of Hwang’s Lemma (see, e.g., [29, 20]) — we can show that any mechanism that com-
putes a bidder optimal outcome is incentive compatible if conditions (iii) and (iv) from Lemma
are satisfied. An easy corollary is that if the input is in general position, then any mechanism that
computes a bidder optimal outcome is incentive compatible. Note that while we do not have a
polynomial-time algorithm to check whether an input is in general position, we can easily check
whether conditions (iii) and (iv) are satisfied using our mechanism from Section [3

Lemma 10. If conditions (iii) and (iv) from Lemmal[d are satisfied, then:

1. If the outcome (u*,p*) is bidder optimal, then for no feasible outcome (1',p’) we can have
Ui, ! (7) (p;/(,-)) > U () (pz*(i)) for all 7.

2. If the outcome (u*,p*) is bidder optimal, the outcome (u',p’) is feasible, and It # (), where
IT={iel] ui,u’(i)(p:y(i)) > ui,u*(i)(pZ*(i))}’ then there exists a bidder-item pair (i,7) €
I\ It xJ such that unul(i)(p:/(i)) < u; j(p}).

Proof. To 1.: For a contradiction assume that there is a feasible outcome (1, p") with w; ;) (plL,(Z.)) >
s 1 (3) (pz*(i)) for all 4. Let (u,p) denote the outcome of our mechanism. Since w; ;) (Pu@)) =
Us 1 () (pz*(i)) for all 4, it follows that wu; ;) (pL,(Z.)) > U4 (i) (D)) for all d.

Consider any pair (i,j) € p'. It follows that w; ;(p}) = u; () (pL,(i)) > Ui i) (Pugy) = uig(pj)
and, thus, p; > p;- > r;. Condition (iii) from Lemma [ implies that item j is matched under fx.
We conclude that (1) all the items that are matched under p' are also matched under p and (2)
pj < pj for all of these items j.

Case 1: At least one bidder ¢ is matched to the dummy item jo under p'. By (2) pj, > p;-() >0,
which contradicts the feasibility of the outcome (u,p).

Case 2: All bidders i are matched to non-dummy items j under p/. By (1) all bidders are
matched to non-dummy items under p. Condition (iv) from Lemma [0 shows that at least one item
Jj is matched under p at price p; = r;. By (2) p;- < p; = rj, which contradicts the feasibility of the
outcome (1, p').

To 2.: Let (p,p) denote the outcome of our mechanism. Since w; ) (Ppu(i)) = Ui, e () (p/*ﬁ(i)) for
all i, we have I = {i € I [ w; (i) (0},)) > Wiu(i)Pugi))} # 0- Let u(I7) resp. p/'(I7) denote the
set of items matched to bidders in I under p resp. i/. From the first part of this lemma we know
that IT # 1.

Case 1: p(It) # p/(I'™). There must be an item j € p/(I") such that j ¢ u(I™). Let i/ € It
be the bidder that is matched to item j in u'. Since i’ € I'T and the outcome (u,p) is envy free we
have that uy j(p};) = Uil7ul(il)(p;‘/(i/)) > Wy (i) (Pugiry) = Wi g () (P (ir)) = wir j(p;) which shows that
pj > pj. Hence j is matched under p by condition (iii) from Lemma [l Let i € I\ I" be the bidder
that is matched to item j under p. Since i ¢ I'" it follows that wu; ;) (plL,(Z.)) < Ui (i) (Pu)) =
ui,j(pj) < uij(p}).

Case 2: p(I™) = p/(IT). Let Jt = p(I™) = p/(I7). Consider the following restricted problem:
The set of bidders is I, the set of items is JT, the utility functions are u;”j() = w; j(-) for all
(i,j) € I x J*, the reserve prices are r] = max(r;, max;gr+ (u;jl (i (i) (Pu@iy)), 0)) for all j e JT,

+

and the outside options are o = o; for all ¢ € I. M Since the outcome (11, p) is envy free for the

Tf w; ;(-) is continuous then u;;
fjl (u) :=miny c[r; 00){wi,j(p;) < u}, and is merely a one-sided inverse function satisfying u;]l (ui,5(p;)) = pj. Note

that the minimum is indeed contained in the set itself as we only consider right-continuous utility functions.

(+) is indeed the inverse function. More generally, it is defined for u € [0;, 00) by
u
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original input it is also envy free for the restricted input. It is even bidder optimal because the
existence of an envy free outcome (u”,p”) for the restricted problem in which at least one bidder
i € I'" has a strictly higher utility would imply the existence of an envy free outcome (u””,p”") for
the original problem with this property and therefore contradict the bidder optimality of (u,p).

Case 2.1: The outcome (i, p') is feasible for the restricted problem. From the first part of
this lemma we know that there exists a bidder i € I'" such that u; ;) (p; , (i)) < U () (Pu(s))- This
contradicts the definition of IT.

Case 2.2: The outcome (1, p’) is not feasible for the restricted problem. This can only happen

if p;- < r;r for some item j € JT. Since the outcome (', p’) is feasible for the original problem this

can only happen if r;r > r; and so 7} = max;g+ (ui—’j1 (i (i) (Pu(iy)); 0)- We cannot have r;-' =0 as

j
this would imply p} < r;-r 1: 0. Thus we must 1hzwe 7‘;7 = ui_’jl(uw(i) (Pu(s))) for some i € T\ I Tt
follows that p; < r;r = ;i (W (i) (Pu(i))) < iy (Wi s (pL,(i))) and 0 u; ;) (pL,(i)) <wij(p;). O
Theorem 2. If conditions (iii) and (iv) from Lemma [9 are satisfied, then any mechanism that
computes a bidder optimal is incentive compatible.

Proof. For a contradiction suppose some subset of bidders I™ C I strictly benefits from misre-
porting their utility functions. Denote the true input by (u;;(-),7;,0;), and the falsified one by
(i (), 7, 0i). Note that uj ;(-) = u; j(-) for all (i,5) € I\T* x J. Let (u*,p*) resp. (1',p') denote
the bidder optimal outcome for the true resp. falsified input. Then I = {i € I | u; (s (pL,(i)) >
Uy (i) (p:*(i))}. Note that (u/,p') is feasible for the true input (u;;(-),7;,0;) because p; = 0 and
pj; > 0 for all j # jo.

Case 1: I't = I. The first part of Lemma[I0] shows that if condition (iii) and (iv) from Lemma [0l
are satisfied, then no feasible outcome (i, p’) can give all bidders a strictly higher utility than the
bidder optimal outcome (u*,p*). This gives a contradiction.

Case 2: I # I. The second part of Lemma [I0] shows that if condition (iii) and (iv) from
Lemma [ are satisfied, then some feasible outcome (¢/,p’) gives only some of the bidders a strictly
higher utility than the bidder optimal outcome (u*,p*), then there must be at least one bidder
i € INIT* and an item j € S for which u; ;) (pL,(i)) < w;,j(p}). But since i ¢ I™, i.e., iis not among
the liars, this implies that ug’u,(i) (pL,(i)) = Uj 0 (i) (pL,(Z.)) < u;,j(py) = ui;(p;) and contradicts the
fact that (4, p') is bidder optimal and therefore envy free for the falsified input (u; ;(-)),7j,0;). O

We conclude our discussion of the incentives involved in computing bidder optimal outcomes
with several interesting open questions concerning the general position concept: First, what does
it take (time-wise) to evaluate whether an input is in general position? Second, what does it take
to change an input that is not in general position to be in general position? Finally, under which
conditions is a bidder optimal solution to an input that has been brought into general position also
bidder optimal for the original input?

5 Approximation

In this section we show how our mechanism for piece-wise linear utility functions can be applied to
compute approximately bidder optimal outcomes for a general class of continuous utility functions
ui ;(-). The idea is as follows: Approximate each utility function u;, ;(-) by a piece-wise linear utility
function @; j(-). Then solve the problem for this approximated input exactly and use the outcome
(f1,p) obtained as an approximate solution to the original problem.
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More specifically, we say that an outcome ([, p) is y-envy free for the input u; ;(-) if it is feasible
and u; ;) (Pagy) + 7 = wij(p;) for all (i,5) € I x J. An outcome (fi,p) is y-bidder optimal if it is
y-envy free and for any envy free outcome (fi', p') we have w; 5y (Pa)) +7 = s ) (ﬁ;]’(i))’

Apart from the assumptions that the utility functions wu; ;(-) are strictly monotonically de-
creasing and continuous we make the following mild assumptions concerning the first and second
derivatives @; j(-) and i; j(-) of u;;(-), which allow us to bound the number of linear segments
needed for piece-wise linear approximation:

(A.1) The utility functions wu; ;(-) are twice differentiable on [r;,p; ;], i.e., i ;(p;) exists on this
interval.

(A.2) There exists a constant B such that V(i,j) € I x J : max, c[r, 5, i, (pj)| < B.

(A.3) There exist constants m and M such that V(i,j) € I x J and Vp; € [rj,pij] : 0 < m <
i, (pj)| < M.

Note that we use @; ;(-) and i; ;(-) to denote the first and second derivative of u; ;(-) to avoid
confusion with u; ;(-) and w7 ;(-), which were previously used in a different context.

Piece-wise linear approximation Given € > 0 we construct a piece-wise linear, continuous
approximation ;;(-) for u;;(-) with error at most €, ie., |u;;j(p;) — @i ;(pj)| < € for all p; €
[1,Di;], as follows: First, as u; () can extend from r; to co and could potentially require an
infinite number of segments to approximate, we limit the approximation to the range [r;, p; ;] as
follows: Since p; > p;; cannot correspond to a match as then w; ;(p;) < 0; = ;i j,(pj,), We can
extend wu; j(p;) for prices p; > p;; in a continuous and differentiable way by the line 4, ;(p;) =
Ui ;(Dij) - pj — Wi j(Dij) - Dij- This limits the “interesting” domain to [rj,p; ;|. Next we split the
range [r;,p; ;] into S = [(pi; — 7;)/\/8€¢/B] intervals of equal width w = (p; ; — r;)/S. On any
interval with endpoints [6®), e¢+1], where eV = é® 4 w, the line 1, ;(-) used to approximate
u;i () is defined by

s 1 (py) = wi (D) —u ;(@0) N wg (@0t — gy, 5 (@HHD)®
2,7 p] - é(t‘H) . é(t) p] é(t-i-l) — é(t) .

We call this kind of approximation point-to-point approximation as the piece-wise linear approxi-
mation agrees with the original function at the end points of each interval. The following lemma
shows that the above algorithm does indeed give a close approximation.

Lemma 11. For every bidder-item pair (i,7) € I x J the algorithm described above gives a point-
to-point approzimation using O(|p;; — | - VB - 1//€) = O(y/1]€) segments that (i) is piece-wise
linear, (ii) continuous, and (iii) has error at most €.

Proof. Point (i) is trivial as @, j(p;) is linear on each segment. Point (ii) holds as @Z](égtj)) = uw(é(? )

and zli,j(égt;r 1)) = uw(e(t;r 1)) so that for two adjacent segments the approximation agrees on the

boundaries. For Point (iii) we will argue as follows.

Given that the line segment @, ;(pj) = v;j — ¢;; - p; intersects the function u; ;(p;) at points
(t+1) Ety)’ what is the maximum ) |ui ;(pj) — @i j(p;)| for any continuous
function w; j(pj) with a bounded second derivative? Let us deﬁne 9i.;(p;j) = u; j(pj) — Ui j(p;). Note

that g; j(p;) is continuous, satisfies g; ;(€ (])) = g;j(é Et]+1)) = 0, and is twice differentiable. Denote

the first and second derivative of g; ;(-) by ¢;;(-) and g; ;(-). Suppose g; j(p;) reaches an extreme

point at p; = &\ — 5 € &) &l'T] with g; ("7 — 8) = 0. Then, for &V — 6 < p; < &FY,

égt) and €;
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53] < 1905 = O+ S Bia)del < [ 130l d2 < (b +6 = &) B. And

so the maximum of |g; ;(p;)] between e(;' ) _ § and e(t;rl) s

- py=eH) s 4D
~(t+1 v .
9i.5(8i 5 )+/é(t_+1) 9i,5(pj) dp; < ymeltH ) 19,5 (p5)| dp;
V)
~(7:+1)
“d (t+1)
< _ - Bdp:
< /p-:~(.t_+1>_5(p] +d6—¢€,. ) Bdp;

_ <((e(t+l))2 - t+1 ) )/2 4 6(5 — ~(t+1))> B

irJ irj
=4?/2-B

Similarly, the maximum of |g; ;(p;)| in the interval [é 5]), egt;rl) 0] is (ég’t;rl) —ég’tj)- —68)2B/2. As g j(p;)

is continuous, the maximum achieved at the point e(t+ )5 coming from the left, increasing from

gij(é (t)) = 0, has to equal the maximum achieved at this point coming from the right, increasing

from g; j(e (tH)) = 0. So |gij(pj)| is bounded by min <(é§t;r1) — ~(.t). —6)2B/2, 52B/2), which is

maximized for § = (él(-f;rl) ) /2, corresponding to a peak of at most (€ (t;r 2 Etj))2 /8- B <
w?/8 - B < € by the choice ofw O

Approximately bidder optimal outcome Given a set of continuous, piece-wise linear, point-
to-point approximations ; ;(-) with error at most €, we can use the mechanism from Section [3] to
obtain a bidder optimal outcome (fi,p) for the approximated input. The following lemma bounds
how “far” away from the bidder optimal outcome (u,p) for the original utility functions u; ;(-) this
outcome can be depending on how “close” the piece-wise linear approximations are, i.e., depending
on how small € is. The idea is as follows: Suppose we knew the bidder optimal prices p for w; ;(-).
We could use them to “jumpstart” the mechanism from Section Bl That is, starting from p we
could find the smallest prices p’ such that (4, p’) is envy free for @; ;(-). From Lemma [Il we know
that for the bidder optimal prices p we have that p < p’ so that any upper bound on p’ also applies
to p. To bound the difference between p and p’ we first bound the ratio between the biggest and the
smallest non-zero entry of an overdemand preserving price increase by O((M/m)™»(k)) We then
argue that between any two consecutive executions of Step 7(a) in the mechanism from Section [3]
this difference is increased by a multiplicative factor of O((M/m)™"(™*)). The crucial point here is
that the number of executions of Step 7(a) is O(min(n, k)?) and thus independent of ¢, which leads
to a difference between p and p’ linear in e. We use the resulting bound on the difference between
the prices to bound the difference between the utilities. Theorem [B] follows from this bound for €
small enough.

Lemma 12. For every envy free outcome (u,p) for u”() and continuous, piece-wise linear, point-
to-point approximation i, ;(-) with error at most € the mechcmism from Section [3 finds an envy

free outcome (fi, p) for i; j(-) with p; < pj + (2M [m)in(nk) +1)° ~€/M for all j and ; ;) (Paes)) +
(2M /) min(k) 417 o > g, () (Pu(y) for all i,

Proof. Consider an arbitrary envy free outcome (g, p) for u; ;j(-). Denote the set of bidders that
are unmatched under p by U. Let p’; = max (p;, min {p; : Vi € U : % j(p;) < 0;}). If u;;(p;) < 0;
then @, ;(pj) < 0; +€ and so @; ;(p; +€/m) < 0;. In other words, p;» < pj+¢€/m for all j. Moreover,
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for every envy free outcome for 4; j(-) with prices higher or equal to p;- for all j we can match the
bidders in U to the dummy item.

Suppose that we use the mechanism from Section Bl to find a bidder optimal outcome for
the bidders in I\ U, utility functions ;;(-), and reserve prices r; = p); for all j. Let us write
q for the number of Steps 7(a) that the mechanism has encountered since the beginning of its

execution. We write p@ for the prices after ¢ such cases and so p(o)

J
write 0@ = max; (pgq) - pgo)). Whenever we compute the sets S and T we have |T'| > |S| by the

definition of strict overdemand. Hence there exists a bidder ¢ € T such that (i) ¢ S. Regardless
of whether i turns out to be the bidder i of the (i,7) pair in the next Step 7(a) or not, we will show
that the required price updates for items in T to add the edge (i, (1)) to the first choice graph
are small. This will give us an upper bound on how much the price of any item in S has to be
increased until we reach Step 7(a). Let j € S be any of i’s current first choice items before the

price update, ie., j € Fow (%) Let us define the smallest utility gap as a(?) = mingeT:u(;)és ag@,

where agq) = max(0, zlgﬁ.(p;,q)) — U i) (piq()l))) with ¢ € T such that u(i) ¢ S.

Lemma in the appendix shows that the sets S and T" do not change between consecutive
Steps 7(b) and so all of 7’s first choice items, which can change with each new Step 7(b), remain
in the set S until the next Step 7(a). This means that if all items in S have their price increased
by at least a(?) /m then item (i) ¢ S will become a new first choice item for i and so Step 7(a) is
reached. Lemma[I4in the appendix shows that to ensure a price increase of at least a(9) /m for all
items in S, it is sufficient if any item in S has a price increase of a(@ (M /m)™®™k) . 1/m. So we

know 61 < @) 4 (D (M/m)* - 1/m. We bound a9 as follows:

= p;. Furthermore, we

ol < agq) < max <maX (0, ﬁ%,j‘ (pj@) _ ﬂ%#(%) (p,(j()l))))
max (07 ﬁ%,j (p/j') - &;M(;) (plu(g) + 5(11))))

mae (0,:50'5) = 5 () ) + 00 M

I
B

ax (maX (O= () P ut) = T ey (P i) — (w5 (0'5) — 15(0'5))
J

+ (u;5(05) — 45 0 (p’u(z)))» +5@M
< 2+ 0D M.

Combining this with §(0t1) < 5@ 4 (D (M /m)™n(k) . 1/m gives 6@+t < X - 6@ + Y where
X =1+ (M/m)™k)+1 and Y = 2¢/m - (M/m)™»k) Unrolling this gives 6+ < x2§@-1 4
XY4Y <... < X050 1y (Xt 1) /(X =1) = V- (X1 —1) /(X —1) < 2¢/m- (M /m)™n(k).
(Xt /(X — 1) < 2¢/M - (1 + (M/m)™n(k)+1)a+l - Hence the maximum price increase after ¢
occurrences of Step 7(a) is bounded by 69 < (1 4 (M /m)™n(k)+1)a . 9¢ /M.

We claim that g is at most min(n, k)? and we argue as follows. In the continuous case bidders
never get unmatched and the outer while-loop matches a new bidder each time it gets executed.
Since there are at most min(n, k) bidders this shows that the outer while-loop gets executed at
most min(n, k) times. Between two consecutive executions of the outer while-loop there can be at
most min(n, k) executions of the inner while-loop corresponding to Step 7(a) because each such
step adds an edge from a bidder i € T to an item j ¢ S. As a consequence either bidder iy gets
matched or the maximal alternating tree grows by at least one bidder-item pair. The former can
happen exactly once. The latter can happen at most min(n, k) times because there are at most
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min(n, k) bidder-item pairs.
Given that the prices for the approximated input @;;(-) cannot be much higher than for the
input u; (), we can bound the utility difference as follows:

i) \Pp(i) )

1) (Pu))

i) (Dugiy) — €(2M/m) — 6(2M/m)(mm(n Jk)+1)(min(n,k)?)
o (Pu(iy) — €2 - (2M /m) (min(nk)+1)(min(x, k)?)

iy (Duiy) — (2M/m)1+(mln(n k)-+1)(min(n,k)%)

o (Puy) — (2M/m) (min(n,k)+1)* |

Here we used the bound 2 (1 + (M/m)min("’k)ﬂ) < 4(M/m)mnmk)+L < (9N fm)min(n k)1 for
min(n, k) > 1 and that M/m > 1. Exactly the same type of manipulations can be apphed to show
that p; < p;+06@ < pj+e/m+2¢/M-(1+(M/m)™nR+1)0) < p, 4 (2M /m) @D /01 O

Theorem 3. Given strictly monotonically decreasing, continuous utility functions u; ;(-) satisfying

assumptions (A.1) to (A.3), we can compute a y-bidder optimal outcome with the running time
specified in Theorem [, where D =0, T = O(,\/1/e), and € = ~ - (2M /m)~min(nk)+1)*

Proof. Let € = ~v(2M /m)~(min( B+’ For each utility function wu; ;(-), find a piece-wise linear ap-
proximation 4; ;(-) with error at most e. This generates O(nk- |]5—7‘|\/§(2M/m)(min("’k)+1)3/2/ﬂ)
linear segments by Lemma [[1] where |p — r| = max; ; [p; j; — r;|. For this approximated input we
then obtain a bidder optimal outcome (fi,p) in time linear in the total number of segments times
min(n, k)3 by Theorem [} i.e., in time O(nk - |p — 7’\\/§(2M/m)(min("’k)ﬂ)g/zmin(n, k)g/ﬁ) We
claim that this outcome is y-bidder optimal for u; ;(-).

We have p; > r; and pj, = 0 as (1) we did not change the reserve prices and (2) we did not
approximate w; j, (pj,). And so (fi,p) is feasible for u; ;(-). It is also y-envy free as e < /2, and so
we know that max;(max; (ui;(5;) — w; ) (Pagy))) < maxg(max; (@ (5j) — 5 Py )+2€)) <
by the choice of €. Finally, and most importantly, Lemma shows that the utility losses with
respect to the unknown bidder optimal outcome (u,p) are bounded by . O

6 Externalities

In this section we show that two natural generalizations of our problem are AN/P-hard: In the first,
the utility functions are allowed to depend on the matching. In the second, they are allowed to
depend on the vector of prices.

Utilities that depend on the matching Our first hardness result is for utility functions that
depend on the matching. These utility functions allow, for example, to express that a given ad-
vertiser (e.g., Coca-Cola) achieves a higher utility if he gets an ad slot that is above the slot of
her competitor (e.g., Pepsi). For utility functions of this kind it is N"P-complete to decide whether
there exists an outcome in which the sum of the utilities is above a certain threshold.
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Theorem 4. Given utility functions u; j(11) that depend on the matching p, and given a constant K,
deciding whether there exists an outcome with sum of the utilities at least K is N'P-complete. This
is true even if there is an ordering on the items, each bidder i has a set S; of three other bidders,
and the utility of bidder © depends on whether in the ordering the items to which the bidders in S;
are matched to appear before or after the item that bidder i is matched to.

Proof. Checking whether a given outcome (u, p) has sum of the utilities at least K takes polynomial
time. This shows that the problem belongs to NP. We prove NP-completeness by providing a
polynomial-time reduction from 3-SAT [16]: Given n Boolean variables xj, m clauses ¢, (disjunction
of up to three literals, i.e., xx or —xy), and a formula f (conjunction of the m clauses) decide whether
there exists a satisfying assignment .

For a given instance of 3-SAT: For every variable create one bidder, called variable bidder, and
two items, one called true item and one called false item. The variable bidder has a utility of zero
for each of these items and minus infinity for all other items. For every clause create one bidder,
called clause bidder, and one item, called clause item. In the ordering all true items are before all
clause items, and all clause items are before all false items. The utility of a clause bidder for the
clause item depends on whether the variable bidders correspoding to variables in that clause are
matched to items before or after the clause item, i.e., to a true item or a false item. It is 1 if and
only if the matching is such that the clause is satisfied and 0 otherwise. The utility function of a
clause bidder for all other items is minus infinity.

It is not difficult to see that there is an outcome with sum of the utilities at least K = m if and
only if the formula is satisfiable. This completes the proof. O

Utilities that depend on the vector of prices Our second hardness result concerns situations
in which the utility that a bidder derives from being matched to an item depends on the whole
vector of prices. These utility functions allow, for example, to express that a bidder 7 achieves a
higher utility when the other bidders have to pay more, i.e., when items that ¢ does not get become
more expensive. For these utility functions deciding whether there exists an envy free outcome in
which the sum of the utilities is above a certain threshold is N'P-complete.

Theorem 5. Given utility functions u; j(p) that depend on the whole vector of prices p = (p1, ..., Dk),
that are monotonically decreasing in p; and monotonically increasing in p; for all I # j, and given
a constant L, it is N'P-complete to decide whether there exists an envy free outcome (u,p) in which
the sum of the utilities is at least L.

Proof. We prove the claim for utility functions wu; j(p1,...,p) that depend on the vector of prices
p = (p1,...,px) and are decreasing in p; for all . The proof for utility functions w; ;(p1,...,pk)
that are decreasing in p; and increasing in p; with [ # j is similar.

Checking whether a given outcome (u, p) is envy free and has sum of the utilities at least L takes
polynomial time. This establishes membership in N'P. To prove hardness we provide a polynomial-
time reduction from MAX-2-NASH [31], [I5]: There are two players i € 1,2. For i = 1 we use —i to
denote player 2, and vice versa. Each player i has a finite set of strategies S; and a payoff function
a;(s,t) describing her payoff if he plays strategy s € S; and the other player plays strategy ¢ € S_;.
A mized strategy for player i is a probability distribution o; over S;. A strategy profile o = (o1, 02)
defines a mixed strategy for each of the two players. A strategy s € S; is in the support of player 4
if and only if 0;(s) > 0, i.e., player i plays strategy s with non-zero probability. A strategy profile
o* = (07,03) is a mized Nash equilibrium (mixed NE) if for every player i and all mixed strategies
0i Y ses, Dres , ai(s,t) 07 ,(t) - 07 (8) = D ges, D otes , ai(s,t) - 07 (t)) - 0i(s). A pure strategy
s is a best response if for all pure strategies r: >, o ai(s,t) - 0%,(t) > Y icg . ai(r,t) - o2, (t). It
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can be shown that ¢* = (o7, 03) is a mixed NE if and only if every pure strategy in the support
of o* is a best response. The goal is to compute a mixed NE ¢* = (0}, 03) with maximum total
payoff. The decision version of this problem asks for a mixed NE with total payoff at least K.

MAX-2-NASH is N'P-complete even if both players have the same number of strategies |S1| =
|S2| = N and all entries in the payoff matrices are integers between 0 and N [31) 15]. Let C' =
(N!- NN)2N | Note that C' can be represented with at most 4N?log(N) bits. Given an MAX-2-
NASH instance with |S1| = |S2| = N and payoff matrices with integer entries between 0 and N we
construct an instance of our problem by means of the following “gadgets”:

Best response gadget B: For each player i and strategy s € S; we add one best response gadget
B consisting of two bidders i¢s1 and is2 and two items i¢s3 and is4. Bidder i¢sl has a utility of
Uist,is3(p) = Ztes,i a;(s,t) - (1 — p_i3) for item is3 and a utility of u;s1 isa(p) = maxses; uirn itz (p)
for item is4. Bidder is2 has a utility of u;s2 is4(p) = 1/(8NC') — pjs4 for item is4. Both bidders have
an outside option of 0, i.e., 0,51 = 0552 = 0.

Probability gadget P1: For each player ¢ and strategy s € S; we add one probability gadget P1
consisting of two bidders isa and isb and two items isc and isd. Bidder isa has a utility of 0 for
item isc, and a utility of 1 — p;s3 for isd. Bidder isb has a utility of 1 for item isc, and a utility of
—oo for isd. The outside options are —oo.

Probability gadget P2: For each player ¢ and strategy s € .S; we add one probability gadget P2
consisting of two bidders isa’ and isb’ and two items isc¢’ and isd’. Bidder isa’ has a utility of 0 for
item isc’, and a utility of 1/(8NC') — p;s4 for isd’. Bidder isb’ has a utility of 1 for item isc/, and a
utility of —oo for isd’. The outside options are —oo.

Distribution gadget D1: For each player ¢ we add one distribution gadget D1 consisting of two
bidders and one item. Both bidders have a utility of [, g (1 —pis3) - (1/(8NC) —pisa)] —1/(8NC)
for the item and an outside option of 0.

Distribution gadget D2: For each player ¢ we add one distribution gadget D2 consisting of two
bidders and one item. Both bidders have a utility of [} ¢ (1 — pis3)] — 1 for the item and an
outside option of 0.

Claim 1. If all payoffs a;(si, s—i) in a 2-player game are non-negative integers, with the largest being
N, then the probabilities in any mized NE are rational numbers with the smallest being 1/(N!-NN).

Proof. Given the support of a mixed NE, the corresponding mixed NE ¢* = (o},03) can be
determined by solving a linear equation system (LES). Since the coefficients in this LES are non-
negative integers, with the largest being N, any solution ¢* = (o},03) to this LES consists of
rational numbers with denominator at most N!- NV [39]. Hence the smallest probability in the
mixed NE is at least 1/(N!- NV). O

Claim 2. There exists a mized NE o* = (07, 03) with total payoff K if and only if there exists an
envy free outcome (p,p) with sum of the utilities strictly larger than N - (K +4) + 2 and less than
N-(K+4)+2+1/C.

Proof. For the only if-part assume that such a mixed NE ¢* = (07, 0%) exists. Denote the support
of player i by SUPP;. For each player i and strategy s: If s is in the support of player 7, then match
isl to is3 and is2 to is4 and set pjs3 = 1 — 0/ (s) < 1 and p;sa = 0. If it is not, then match isl to
is4 and leave is2 unmatched and set ps3 =1 — 07 (s) = 1 and p;jsq = 1/(8NC). In the former case
this is envy free because s is one of i’s best responses and 0 wis1,is3(P) > Uis1,is4(p) and at pjga = 0
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we have ;52 is4(p) > 0. In the latter case this is envy free because wisi,isa(p) > uis1,is3(p) and at
pisa = 1/(8NC') we have u;s2 is4(p) = 0. Since 0 < pje3 < 1 for all is3 items and 0 < p;sq < 1/(8NC)
for all is4 items, we can match the bidders in the P1 and P2 gadgets in an envy free manner. Since
(a) > ses, (1 = pis3) = L and (b) 1 — pis3 = 0 if and only if 1/(8NC) — pjsa = 0, this is also true
for the bidders in the D1 and D2 gadgets. The isl vertices contribute a utility of N - K, namely
K, each for the ones of player 1 and K» each for the ones of player 2 with K1 + Ko = K. The
is2 vertices contribute (|[SUPP;|+ |[SUPPs|)/(8NC). The P1 gadgets contribute 2 - N 4 2. The
P, gadgets contribute 2 - N + (|[SUPP,| + |SUPP,|)/(8NC). The distribution gadgets contribute
nothing. Hence the total utility is N - (K +4) + 2 + (|[SUPP,| + |SUPP,|)/(4NC). The claim
follows from the fact that 1 < |SUPP;| < N for both ¢ and, thus, 2 < |[SUPP,| + |[SUPP,| < 2N.

For the if-part consider an envy free outcome that maximizes the sum of the utilities. Denote
the sum of the utilities by L. Let T} = {s € S1 : isl is matched to is3} and let T, = {s € Sy :
is1 is matched to is3}. Let Kj denote the utility of each of the 1s1 players and let Ky denote the
utility of each of the 2s1 players. Let K = K + Ky. It follows that L = N - (K +4) + 2+ (|T1] +
|T2])/(8NC). Since |T1| < N and |T3| < N, this is at most N - (K +4) + 2+ 1/C. We show below
that for each player ¢ with p;s3 < 1 bidder is1 must be matched to is3. Due to the distribution
gadget D2, > s (1 — pis3) = 1. Thus there is at least one strategy s such that 1 — p;s3 > 0, i.e.,
pis3 < 1. It follows that for each player there is at least one isl node that is matched to an is3
node. In other words, |T7| + |75 > 2 and, thus, L > N - (K +4) + 2.

Next we show that 0* = ((1 — p1s3)sesys (1 — P2s3)ses,) is a mixed NE, i.e., for each player ¢
every strategy s € S; with 1 — p;s3 > 0 is a best response to 0*; = (1 — p_is3)ses_,- We do this by
showing that (1) if 1 — p;s3 > 0, then isl is matched to is3, and (2) if isl is matched to is3, then
s is a best response to 0¥, = (1 — p_is3)scs_,-

To (1): To show that if (1 — p;s3) > 0, then isl is matched to is3 we show that if isl is not
matched to is3, then (1 — p;s3) < 0. Note that by envy freeness if isl is not matched to is3, then
it must be matched to is4. Also note that by P1 we have (1 — p;s3) > 0 so that (1 — pis3) < 0 is
equivalent to p;s3 = 1. In other words, we have to show that if is1 is matched to is4, then p;s3 = 1.
If is1 is matched to is4, then p;s4 > 1/(8NC') because otherwise is2 is not envy free. With P2 we
know that p;s4 = 1/(8NC). Additionally, since the outcome maximizes the sum of the utilities, if
151 is matched to is3, then p;s4 = 0. Now D1 guarantees: Esesmsl is matched to Z.83(1 —pis3) = L.
And D2 guarantees: Y g (1= piss) = 1. We get 3° o i1 matched to isa(l — Pis3) = 0 (). Since
by P1 we know that 1 — p;s3 > 0 for all 7 and s, (%) is only possible if (1 — p;s3) =0 for all s € S;
with is1 matched to is4. This shows that if is1 is matched to is4, then p;s3 = 1.

To (2): If isl is matched to is3, then ws is3(p) > uis1,isa(p) because otherwise the outcome
would not be envy free. This shows that ) ,.s ~ai(s,t)o”;(t) > maxes, ) ycq . ai(r,t)o”,(t).
Thus, for all r € Sit D g . ai(s,t)0;(t) > D g . ai(r,t)o”;(t). In other words, s is a best
response to 0*, = (1 — pit3)tes_;-

We conclude by showing that the payoff of the mixed NE o* = ((1 — p1s3)ses;, (1 — p2s3)sesy)
is K. The payoff to player i is u;(s,0";) = > cq . ast(s,t)0”;(t), where s is some strategy in
i’s support. For every such strategy s, we have o*,(t) = (1 — p_s3) and, thus, u;(s,0%;) =
Ztesﬂ_ as+(s,t)(1—p_it3) = K;. Since this is true for both i the total payoff is K + Ky = K. 00O

7 Future Work

The demand for more expressive mechanisms is reflected in the richness of preferences offered by
web applications as diverse as matchmaking sites, sites like Amazon and NetFlix, and services like

28



Google’s AdSense. Standard mechanisms often do not meet this demand. Providing mechanisms
that do meet this demand and that at the same time (1) guarantee the existence of a stable
solution, (2) are computationally tractable, and (3) have good incentive properties is one of the
major challenges that the field of computational mechanism design is currently facing.

In this paper we contributed to this general agenda by considering the domain of multi-item
auctions with unit demand and by providing the most expressive mechanism for this setting so
far. This mechanism, which can be seen as a generalization of the General Auction Mechanism of
[1], can handle piece-wise linear utility functions with non-identical slopes and multiple discontinu-
ities. These utility functions allow the bidders to explicitly specify conversion rates (enabling, e.g.,
per-click auctions that are simultaneously envy free for bidders with per-click and per-impression
valuations) and a variety of soft and hard budget constraints (which, e.g., arise when bidders have a
limited amount of cash and have to take out loans). An interesting direction for future work would
be to push the “expressiveness frontier” even further. This is particularly true for more general
domains, e.g., one-to-many and many-to-many domains.

On a more abstract level it would be desirable to have a “theory of expressiveness”, which helps
to find the right degree of expressiveness. More expressiveness might be good (e.g., because more
efficient outcomes are obtainable), but it might also be too much (e.g., stable outcomes may no
longer exist, may be hard to compute, or may be easy to manipulate). A first step towards such a
general theory was recently undertaken by [9, [10] and [41] 23]. Any refinement of this theory would
be highly interesting.
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A Analysis of Mechanism for Continuous Utility Functions

The following lemmata bound the price increase between two consecutive Steps 7(a) in the mech-
anism for piece-wise linear utility functions when there are no discontinuities.

Lemma 13. Let T, S, and T be the maximal alternating tree, item set, and bidder set considered
by the mechanism. Then the overdemand-preserving price increase d computed in 1.6 satisfies
max;ics jes(dy /dj) < (M/m)mink),

Proof. Let j and j' be two distinct elements in S. As 7T is a tree we know that j and j' are connected
by a path, alternating between items in S and bidders in 7', of length at most 2min(|S|, |T|) <
2min(n, k). Let this path be j = jo, %0, 71,91, 02, -, Js—1,4s-1,Js = j - From Lemma [§ we know
that as d is envy free for 7 we must have both ¢;; - dy < cppq1 - diy1 and ¢y - dip > ¢ g1 - diga,
and hence ctt di = ctp41 - dipq for all 0 < ¢t < s. Applying this to the whole path we get

i = di 11720 (coe/crirr) < (M/m)mnteR)d;, O

Lemma 14. Let dY,....d®) be a sequence of consecutive overdemand preserving price increases
(1.6) such that the set S (1.4) is the same for all of them Let X X6 be the corresponding

scalars (1.7). Then for any j,7 € S we have (3]_, )/(Zl )\(l d(l ) < (M /m)min(nk),

Proof. Lemma [I3 ensures that for all [ € {1,...,s}: dg-l) < (M/m)min("’k)dgl,). Hence, )\(l)dg-l) <
XD/ m)min("’k)d§.€) and the result follows by summing over all {. O

Lemma 15. From one Step 7(a), where a new bidder-item pair (i,j) enters the first choice graph,
to the next, which can be separated by many Steps 7(b) and changes in the price increase d, the sets
S and T considered by the mechanism do not change.

Proof. We will prove the claim by induction over the number of Steps 7(b) separating two Steps
7(a). Let b be this number. If b = 0 then the claim holds trivially. Denote the maximum alternating
tree before the b-th update by 7(). This tree is with respect to the matching p(®) and spans the
items in S and the bidders in T" and is computed in 1.3 of the mechanism in Section Bl Computing
the overdemand preserving price increase d in 1.6 of the mechanism results in an implicitly computed
new tree T’ (b), the tree corresponding to d, spanning the same items and bidders that corresponds
to a new matching p’ ®) . Since d is envy free for 7’ ® and the utility functions are continuous
all edges in T’ ®) (and in particular those in y (b)) belong to the first choice graph after the price
update (hence no edges are removed from p’ ®)in 1.9 of the mechanism). It follows that the max
alternating tree 7(+1) that is explicitly computed in 1.10 of the mechanism is identical to T’b,
which we know spans the same items and bidders as 7, namely S and 7. O
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