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ABSTRACT
With the advent of heterogeneous computing systems con-
sisting of multi-core CPUs and many-core GPUs, robust
methods are needed to facilitate fair benchmark compar-
isons between different systems. In this paper we present a
benchmarking methodology for measuring a number of per-
formance metrics for heterogeneous systems. Methods for
comparing performance and energy efficiency are included.
Consideration is given to further metrics, such as associ-
ated runnings costs and even carbon emissions. We give a
case study for these metrics applied to BUDE, a molecular
mechanics-based docking application that has been ported
to OpenCL at the University of Bristol.
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1. INTRODUCTION
Several trends in semiconductor physics have combined with
trends in media-rich applications to give rise to highly paral-
lel computer architectures, the two most obvious examples
being multi-core CPUs and the latest fully programmable
many-core graphics processors (GPUs). Some of the major
trends in semiconductor physics are familiar, such as the
exponential increase in available transistors as described by
Moore’s Law [11]. But some trends are more recent. For
example, per device power consumption is now bounded,
where previously this did trend upwards, tracking Moore’s
Law until mid way through the first decade of the twenty
first century [18, 19]. Similarly, in the past chip voltage has

been steadily reducing with each silicon process generation.
Reducing voltages has been one of the main mechanisms
for keeping device power consumption in check, giving rise
to today’s chip voltages of 1.0V or lower. However voltage
cannot be reduced forever, and indeed the closer the volt-
age gets to a threshold that is determined by the physics of
CMOS-based transistors, the worse they behave. Currently
this lower threshold is 0.7V, and so we are close to losing
voltage as a power reduction mechanism too.

These clashing semiconductor physics trends mean we will
see processors with greater parallelism and greater hetero-
geneity in the future, as microprocessor architects seek cre-
ative ways to harness the potential of many more transistors
in ever harsher power consumption regimes. Heterogeneous,
massively parallel processors are thus likely become ubiqui-
tous. They will be used everywhere from HPC systems to
the smartphones in our pockets. Today’s GPUs are a sign-
post for what is to come, with hybrid CPU-GPU processors
soon to become the norm. In HPC we will need to embrace
this next major architectural paradigm in order to maximise
the performance benefits we receive from future systems.

GPUs were the first massively parallel processor technologies
to be explored for use in HPC. The term ‘General-Purpose
computation on Graphics Processing Units,’ or GPGPU,
was first coined by Mark Harris as early as 2002 [7]. By 2006
the first fully programmable GPUs emerged, with Nvidia’s
introduction of CUDA and its G80 architecture. Since then
the floodgates have opened, with multiple competing GPU
architectures from major vendors and even an emerging open
standard for GPU programming, OpenCL [8].

2. RELATED WORK
GPUs are fast and low-cost, so it should be no wonder that
they have already found their way into HPC systems, with
many applications being ported to CUDA or more recently
OpenCL. One of the earliest classes of applications to be
successfully ported to GPUs is the class to which BUDE be-
longs: molecular mechanics codes. These N-body algorithms



are potentially well suited to GPUs because of the massively
parallel nature of the problems they are solving. Early ex-
amples of molecular mechanics codes ported to GPU-like
architectures include GROMACS in 2005 [20], NAMD in
2007 [16], Folding@Home [13] and Amber [2].

In terms of molecular docking codes, Sukhwani and Her-
bordt at Boston University were among the first to adopt
GPUs, porting the PIPER production-level docking code
initially to FPGAs and more recently GPUs [17]. Very few
other docking codes have been ported yet but we expect this
to change rapidly over the next few years.

Measuring power efficiency has only recently received sig-
nificant attention in HPC. The Top500 now records energy
consumption for systems being listed [10], and the Green500
was created in 2007 to rank systems by energy efficiency [14].
The challenge for both the Top500 and Green500 is the ac-
curacy and consistency of the power consumption measure-
ments — verifying these is much more difficult than LIN-
PACK performance, and differences in how power consump-
tion is measured or even estimated can potentially have a
large impact on the metric. The power consumption given
for some systems in the Top500 is the maximum power rat-
ing while in other cases the figures are actual measurements
during their Top500 LINPACK runs. Additionally there is
some confusion regarding whether power consumption in-
cludes system cooling in some cases (for example cooling
systems integrated into the racks).

One project attempting to make system power measure-
ments more accurate and robust is PowerPack [5]. Pow-
erPack combines hardware probes with a software monitor-
ing system to give a detailed view of power consumption
at a component level inside a node (CPU, memory, disk,
mainboard, network etc). The PowerPack project is show-
ing great promise but its adoption is being hampered by the
need for fairly intrusive hardware modifications to achieve
its per component level of accuracy. Future server hardware
may include more built-in monitors making PowerPack’s ap-
proach much more widely applicable.

3. BUDE: A MOLECULAR MECHANICS-
BASED DOCKING ENGINE

At the University of Bristol we have been developing a molec-
ular mechanics-based docking engine called BUDE since 2001
[6]. BUDE uses a molecular mechanics-like empirical free-
energy forcefield to predict the binding energy of two molecules.
We have recently used BUDE to design inhibitors of hu-
man elastase [3] which have the potential to become drugs
for the treatment of emphysema. Designed compounds are
ranked in terms of their predicted binding affinity using the
Evolutionary Monte Carlo (EMC) search method. Promis-
ing ligand molecules are synthesised in the laboratory and
their real binding affinities experimentally determined. In
the docking procedure, BUDE is given two molecules, one
protein representing a drug target, and one ligand (poten-
tial drug). These two molecules are manipulated to see how
well they fit or ‘dock’ for different poses (different positions
of the ligand relative to the protein). Figure 1 illustrates a
successful docking operation.

Like many molecular mechanics-based codes, BUDE is an

Figure 1: The molecular docking of an enzyme with
a peptide.

ideal target for massively parallel implementations. BUDE
has previously been ported to ClearSpeed systems, an early
GPU-like accelerator developed specifically for HPC [9].

BUDE docking simulations may process an entire library
of potential ligands which can contain millions of candidate
molecules. Each of these ligands is docked with the protein
in many different orientations or ‘poses’, where a pose de-
scribes a unique translation and rotation of the ligand in
relation to the protein. Assuming modifications to pose ro-
tation of 5◦ in each of the three spatial dimensions, there
are 3.7 × 105 unique poses before translation is taken into
account. Each pose is independent of all others, enabling
poses to be calculated in parallel. BUDE is thus massively
parallel in two dimensions: there are millions of indepen-
dent ligands to be simulated, and each ligand has poten-
tially hundreds of thousands of independent poses to test.
BUDE does not search the entire solution space but instead
its genetic algorithm-like EMC approach creates successive
generations of candidate solutions from the best candidates
from previous generations. After several such evolutionary
phases BUDE typically finds answers very close to the op-
timal yet will have only searched around 1% of the total
solution space.

There is one obvious further level of parallelism that can be
exploited. Each docking operation is itself an N-body prob-
lem, where the energies of interaction between all atoms in
the protein and all atoms in the ligand are calculated. The
interaction energies between these atom pairs may be cal-
culated in parallel, and indeed, this (and the corresponding
force calculation) is the most common method of parallelism
for molecular dynamics code ports to GPUs.

3.1 BUDE’s Forcefield
BUDE describes the properties of the atoms of the 20 stan-
dard amino acids in a ‘combined-atom’ forcefield : each atom
except for hydrogen (i.e. the heavy atoms) is modelled as
a sphere with a specific radius and hydrophobicity or hy-
drophilicity potential, and hydrogen atoms are included in
the volume of the heavy atoms they are attached to [15].
BUDE’s forcefield parameters were collated empirically from
experimental data, and are continually being modified and
improved to predict accurate binding free-energies.

In order to calculate theoretical binding energies, BUDE
uses these forcefield parameters and the equations described



below (illustrated graphically in figure 2), which were mod-
ified from the forcefield developed for protein folding stud-
ies with the program RAFT [6]. The energy calculated by
BUDE approximates to a free energy, as described by:

Ecomplex = Esteric + Eelectrostatic + Edesolvation (1)

Esteric is a repulsion caused by overlap of the spheres, Eelectrostatic

is the electrostatic energy from charge-charge interactions
and Edesolvation is derived empirically for each amino acid
from experimentally-determined solvation energies [21].
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Figure 2: The functions used by BUDE to calculate
theoretical energies. In all cases, radij is the sum
of the radii of atoms i and j. The x axis is the
distance between the two atoms, distij. In figure
a), H is the hardness of each atom. In figure b),
the red line illustrates the case where qi and qj are
like charges and the black line illustrates the case
where the charges are opposite. The distance after
which no interaction is assumed to occur is dcutoff, q
is the charge on each atom and ε is taken to be 1. In
figures c) and d), K is the desolvation potential of
each atom. dn−n or dn−p is the distance over which
the interaction is assumed to occur.

When distij < radij , Esteric =

„

Hi + Hj

2

« „

1 −
distij

radij

«

(2a)

When distij > radij , Esteric = 0 (2b)

where distij is the distance between the two atoms, radij

is the sum of the radii of the atoms, and Hi and Hj are
the hardness of the interacting atoms, as specified by the
forcefield parameters.

When distij < radij ,

Eelectrostatic =
qi · qj

4πε · radij

(3a)

When radij < distij < dcutoff,

Eelectrostatic =

„

qi · qj

4πε · radij

« „

1 −
distij − radij

dcutoff − radij

«

(3b)

When distij > dcutoff,

Eelectrostatic = 0 (3c)

where qi and qj are the charges on the two interacting atoms
and the value of ε, the permittivity, is 1. dcutoff is defined as
4 Å where the atom has a partial charge (i.e. for hydrogen

bonding atoms) and 6 Å in the case of formal charge-charge
interactions.

For polar – polar atom interactions,

Edesolvation = 0 (4a)

For polar – non-polar or non-polar – polar interactions, when
distij < radij ,

Edesolvation =
|Ki| + |Kj |

2
(4b)

where Ki and Kj are the values for desolvation potentials of
the interacting atoms.

When radij < distij < dn−p,

Edesolvation =

„

|Ki| + |Kj |

2

« „

1 −
distij − radij

dn−p

«

(4c)

where dn−p is the cutoff distance for non-polar – polar or
polar – non-polar interactions.

When distij > dn−p,

Edesolvation = 0 (4d)

For non-polar – non-polar interactions, when distij < radij ,

Edesolvation =
Ki + Kj

2
(4e)

When radij < distij < dn−n + radij ,

Edesolvation =

„

Ki + Kj

2

« „

1 −
distij − radij

dn−n

«

(4f)

where dn−n is the cutoff distance for non-polar – non-polar
interactions.

When distij > dn−n,

Edesolvation = 0 (4g)

These calculations amount to a very computationally-intensive
atom-atom inner loop for BUDE. Indeed this is more computationally-
intensive than a typical N-body, atom-atom code, which
helps to make BUDE even more suitable for parallelisation,
effectively increasing the granularity of each independent
task. Another useful characteristic of BUDE is its use of
single precision floating point, making it suitable for most
contemporary GPUs, even those which do net yet support
double precision as fully as single precision.



Another important observation about this set of atom-atom
calculations is that at first glance they contain a high degree
of conditional execution dependant on the distances between
the atom pair. Atoms closer together are treated differently
to atoms further apart, as different forces come into play
at different separation distances or with different kinds of
atoms. On further examination some of the different dis-
tance cases contain common subexpressions which may be
calculated just once for any atom-atom pairing, then modi-
fied further for a particular circumstance. We shall examine
the implications of the remaining distance-dependant condi-
tional execution on our data-parallel implementation in the
following section.

3.2 A many-core parallelisation of BUDE us-
ing OpenCL

With a computationally-intensive atom-atom kernel and an
abundance of ligand and pose-level parallelism, we were able
to design a parallel version of BUDE that calculates many
independent poses simultaneously, essentially running fast-
yet-serial N-body kernels on each parallel processing ele-
ment. We decided to use OpenCL for porting BUDE to
GPUs for a number of reasons:

1. We wanted to port BUDE just once and then run the
ported code on all potentially interesting GPUs for
benchmarking purposes. While our initial hardware
is from Nvidia we also wish to evaluate AMD’s Fire-
Stream GPUs in due course.

2. One of the attractive features of OpenCL is the poten-
tial to run the same parallel code on multi-core host
CPUs. BUDE has not yet been ported to OpenMP
and so an OpenCL version using the host as the target
device is of tremendous interest if the performance is
good enough. Ultimately this will also enable us to
make direct, like-for-like comparisons between GPUs
and CPUs running the same OpenCL code.

3. OpenCL could also potentially support heterogeneous
execution, running the OpenCL kernel on both GPUs
and multi-core host CPUs at the same time. In this
way we should achieve maximum aggregate performance,
harnessing all available execution resources in a hetero-
geneous, multi- and many-core system.

BUDE’s N-body kernel is computationally intensive, using
an advanced empirical free energy forcefield, as described
in the previous section. In addition, with protein molecules
typically consisting of O(103) atoms and ligands typically
O(102) atoms, the dataset for a real docking problem is for-
tuitously small. Indeed it is trivial to store all the necessary
data for docking one ligand with one protein permanently
either in the on-board memory of a GPU or in the on-chip
cache of a CPU. Better yet, with a pose-parallel implemen-
tation, the data representing both the protein and the ligand
is shared by all parallel processing elements (PEs). Unique
to each PE will be a transformation matrix defining the pose
to be tested on that PE. Transformation matrices are just
twelve single precision floating point numbers that specify a
translation and rotation in 3D space, and so once the pro-
tein and ligand atom information has been transferred to

Figure 3: High-level description of BUDE

the OpenCL device in use, only 12 × 4 = 48 bytes of infor-
mation has to be transferred per PE in order to initiate a
significant amount of computation. Atoms are represented
with just 40 bytes of information — three single precision
floating point numbers representing the atom’s (x, y, z) po-
sition in space, six single precision numbers representing the
atom’s radius, various charge parameters and so on, and a fi-
nal four bytes of atom type information. Hence a simulation
involves sending less than 50kBytes to the OpenCL device
for the molecular information as a one off cost, and then
one 48 byte transformation matrix per PE for each batch of
pose calculations to be performed. For an OpenCL device
with n PEs, n× 48 bytes of transformation matrices will be
transferred per batch – a trivial amount of data.

Data returned from the calculations is even more trivial.
Each PE will be calculating a fitness function for how well
its particular ligand pose has docked with the protein under
consideration. This fitness value is ultimately a single 32-bit
floating point number, and so for n PEs we will return just
4n bytes per batch of n poses that have been calculated in
parallel.

4. BENCHMARKING METHODOLOGY
We had a number of systems we wished to test in terms
of their performance and energy efficiency. The BUDE test
problem we were using as a benchmark was for docking a
53 atom ligand to the 1,719 atom human prion protein [12].
A run of a single such BUDE simulation takes of the or-
der of an hour on one core of a contemporary x86 processor.
This is long enough to amortise any short duration noise and
aid the repeatability of results. Nevertheless, we adopted a
standard benchmarking approach of running every simula-
tion five times, looking for any outliers, and taking the mean
of the five runs on each platform.

We used the same FORTRAN host code on all platforms and
the same OpenCL code across the range of systems that sup-
ported this programming language. We also used the same
compilers wherever possible: gcc 4.3.3 and gfortran 3.4.6,
both with -O3 optimisation levels selected. We used the lat-
est Nvidia drivers on systems using their GPUs: NVIDIA
UNIX x86 64 Kernel Module 260.24, released Thu Sep 9
17:01:12 PDT 2010. This corresponds to CUDA toolkit 3.1



and Nvidia’s OpenCL release 1.1. We tried a number of ex-
periments using OpenCL on the host CPU as an alternative
to using OpenMP. For these experiments we used AMD’s
OpenCL SDK v2.2.

To ensure accuracy when measuring power consumption across
the diverse platforms being measured, we decided to use a
discrete power measuring device which would also allow us
to measure power consumption ‘at the wall’ for each system.
After considering several options we decided to use a ‘Watt’s
Up? Pro’ device [4]. This equipment measures total system
power very accurately, to within ±1.5%, and records sam-
ples at a user-specified rate into an internal memory that can
then be read back via a USB port for later analysis. Given
that simulation runs were of the order of hours for single
cores and minutes for GPUs we set the power consumption
sampling rate for one second intervals. Being able to use
the same measuring equipment for all the devices under test
is an important element of this methodology, allowing us to
guarantee that power consumption is being measured in a
consistent fashion.

On multi-core CPUs we ran independent identical copies of
the BUDE benchmark on each core, for example running
eight simultaneous BUDE simulations on our eight core test
machines. We would also run a single BUDE simulation
on each GPU under test, for example running two simul-
taneous simulations on our twin GPU test machines. This
allowed us to measure performance and power consumption
on fully-loaded test machines. Given BUDE’s massively par-
allel design and minimal data streaming requirements we
would expect the simultaneous BUDE simulations to be very
well behaved and exhibit close to linear speedup.

In addition to measuring performance and power consump-
tion on the platforms under test we were interested in cal-
culating carbon emissions per simulation. Carbon emissions
are likely to be targeted for increased taxation in the UK
and around the world in coming years. One may intuitively
expect that carbon emissions are directly proportional to
energy use, but this turns out not to be the case. Power
generation is variable in terms of its carbon intensity, with
the mix of energy sources such as coal and gas-fired power
stations, nuclear and renewable, changing all the time, de-
pending on the time of day, weather, demand etc. In the UK
the iDEaS project at the University of Southampton deliv-
ers real-time information on energy carbon intensity for the
UK’s national grid [1]. We used this information to form
estimates of carbon emissions per simulation and also to
understand how this metric can vary over time. We believe
these kinds of metrics — energy efficiency, cost per simu-
lation, and carbon emissions per simulation — will become
increasingly important in HPC over the coming decade.

4.1 Systems under test
The first system under test was a Supermicro 1U dual GPU
server with two Intel 5500 series 2.4 GHz Xeon ‘Nehalem’
quad-core processors, 24 GBytes of DRAM and two PCI Ex-
press x16 gen 2 slots, each holding an Nvidia C2050 ‘Fermi’
GPU. We benchmarked both the host CPUs and the Fermi
GPUs in this system. This system is representative of the
most popular high-end GPU-based servers being used in
HPC today.

The second system under test was a workstation contain-
ing an Intel E8500 3.16 GHz dual core CPU and a previous
generation Nvidia GPU in consumer form, the GTX280. We
wanted to compare how well the new Fermi GPUs performed
on the BUDE benchmark in relation to prior GPUs. This
workstation is representative of a typical desk-side machine
running a moderately up-to-date GPU for scientific experi-
ments.

Because OpenCL also supports running on a multi-core host
CPU we decided to try a workstation based on an AMD
Phenom II X3 720 running at 2.8 GHz. This three core
machine sported Ubuntu 10.04.1, had 4 GBytes of DRAM,
and used AMD’s Stream SDK v2.2. This system should be
typical of the lower end of parallel machines, and so it is
still useful and interesting to see what it can do in relation
to the higher core count and GPU accelerated systems in
this benchmarking comparison.

The final system under test was an Intel-based Core2Duo
SU9400 ‘Penryn’ 1.4 GHz laptop with 4 GBytes of DRAM.
Sometimes BUDE can be used for small simulations on a
researcher’s personal computer, and with most laptops now
being at least dual core, we wanted to see the effect of using
OpenCL to run on both cores at once, compared to the single
core the original FORTRAN code would use.

4.2 Problems encountered
During this work it became clear that OpenCL is still a ma-
turing technology. Nvidia’s drivers were very stable but we
had a mixed experience with AMD’s OpenCL SDK v2.2. We
found that these drivers worked reasonably well targeting a
host CPU, even Intel CPUs, but in a number of attempts to
use AMD/ATI 4870 GPUs we would consistently suffer sys-
tem crashes. In the end we gave up on trying to benchmark
AMD GPUs with the current drivers and hope to return to
these after their next software release and using more con-
temporary AMD GPUs.

5. RESULTS
First we had to form some measure of how optimal our
OpenCL code was when running on a GPU. Using Nvidia’s
tools we were able to determine the ‘utilisation’ factor for
BUDE’s OpenCL kernel, which turned out to be 0.5 on the
GTX280. We also recorded a branch divergence ratio of
300:1. Anecdotally, utilisations of 0.6–0.7 are good, so we
were satisfied with this level of GPU efficiency.

Satisfied that our OpenCL code was reasonably optimal
we moved on to measuring performance and energy effi-
ciency across our range of test systems. The results using
the representative high-end GPU server were about what
we expected. The Fermi GPUs performed exceptionally
well — when both GPUs were used at once they deliv-
ered 6.0X greater performance that the eight Nehalem cores
in the same node. The other systems under test also per-
formed roughly as one would expect. The GTX280 GPU
performed very well, at about 40% slower than the Fermi-
based C2050’s. The three core AMD Phenom II X3720 also
performed well at just 45% slower than the much more ex-
pensive and power hungry quad core Nehalems. As expected
the laptop-optimized Core2Duo SU9400 is the slowest by
far, but achieved a better than expected 2.3X speedup us-
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Figure 4: Normalised graph of time per simulation,
lower is better.

Figure 5: Power consumption profile for the dual
Fermi GPUs compared to the eight Nehalem cores.
Both runs complete eight BUDE simulations

ing OpenCL on both cores compared to using the original
FORTRAN code on just a single core. Figure 4 shows the
normalised time per simulation of each system in the test.

In terms of energy efficiency, the dual Fermi GPU system
would average 413.1W and consume 0.11kWh of energy to
complete eight simulations. On the eight Nehalem cores the
system would average 313.9W but would of course run for
much longer, resulting in 0.40kWh of energy being used to
complete the same eight simulations. Hence the GPUs were
3.6X better than the eight cores in terms of performance per
watt. Figure 5 shows the power consumption profile of the
system in the two different cases: using both Fermi GPUs
and using all eight Nehalem cores. In both cases a total of
eight BUDE simulations were completed.

It is worth breaking out the GPU power profile and zooming
in to a single pair of BUDE simulations, see figure 6. The
profile is slightly noisy because both GPUs are being used in
parallel and the simultaneous BUDE simulations are slightly
offset. However, there are some distinct features which we
can correlate to our understanding of BUDE’s execution on
the GPUs. The peaks correspond to the GPUs running the
atom-atom kernel, while the troughs correspond to the host
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Figure 6: Power consumption profile for the dual
Fermi GPU server to complete two BUDE simula-
tions

!"#$
!"%$

&"'$
&"&$

%"($

("!$

#$

!$

%$

)$

&$

($

'$

*+,-.$/01$ /23%4#$ *56,$75,+$

8+9:;+-$

09+<5-$==$

>?@+<ABC$

A%D$E1F&##$

>?@+<ABC$

A%D$E1F&##$

>*?G2GH8C$

!
"
#$
%
&
"
'(
)
"
*+
,
'-
"
*'
.
/0

1
#$
%
2
)
'

Figure 7: Normalised graph of energy used per sim-
ulation, lower is better.

cores being used to generate new populations of potential
ligands based on the best ligands from the previous pop-
ulation. At the end of the simulations there is a results
gathering and reporting phase that currently runs only on
the host cores and so the GPUs are unused for a period of
time before BUDE completes.

Comparing the relative energy used per simulation the re-
sults take on a different shape. As expected the GPUs do
very well. But relatively speaking the AMD Phenom II
X3720 and Intel Core2Duo SU9400 do well, posting similar
energy efficiencies to the Intel Nehalem system. We should
note that of course the Nehalem system is a high-end server
optimized primarily for performance, whereas the Phenom
and Core2Duo systems under test were workstation and lap-
top systems where power consumption has been more of a
focus. Figure 7 shows the normalised energy used per sim-
ulation for each system in the test.

There is one important caveat to these result which is that
the Fermi GPUs are known to have quite a high idle power
draw which would be negatively impacting the Nehalem
CPU results. We did not have time to uninstall the GPUs
from the system and rerun the CPU results but this could



Figure 8: An instantaneous measurement of the UK
national grid’s carbon intensity

have yielded a non-trivial improvement to the performance
per watt results of the CPUs. Conversely, the host CPUs
would be consuming idle power while the OpenCL code was
running on the GPUs, though this should be a smaller effect.
This is an issue we would hope to address in future work.

In the one instance where we were able to measure OpenCL
performance using the host CPU as the OpenCL target we
saw surprisingly good results. The original FORTRAN code
for BUDE would only use one host core by default, but
running the OpenCL code on the C2D SU9400 we saw a
speedup of 2.3X, more than the theoretical maximum 2X
we were aiming for. We are slightly suspicious of this result
and investigations are continuing, but there is one potential
explanation: BUDE is very vectorizable, and it is possible
that the OpenCL code on the host is able to exploit the SSE
SIMD instruction set in the x86 architecture. We have yet
to confirm if this is actually what is happening here.

From these results we can also consider the carbon emis-
sions associated with each simulation. Average carbon emis-
sions for electricity generation for the UK’s national grid are
around 500g of CO2 per kWh, but this can vary depending
on the time of day and the prevailing weather. For example,
between the hours of 9am and 6pm on a week day electricity
demand is typically at its peak with a correspondingly high
carbon intensity. But during hours of lower demand, the
mix of power generation can be up to 25% more carbon effi-
cient, especially in the small hours of the night, for example
between 3am and 6am.

Using data from the iDEaS project at the University of
Southampton [1] it is possible to see this effect over a 24
hour window. The graph in figure 8 shows an instanta-
neous view of the mix of gas, coal, nuclear, wind and hydro
power generation for the UK’s national grid (the UK was
consuming a total of 40.4 GigaWatts with an average car-
bon intensity of 498gCO2/kWh). Figure 9 shows how the
total power demand changed over a 24 hour period, and how

Figure 9: A 24-hour view of the carbon intensity of
power generation in the UK

this affected the mix of the different sources.

6. FUTURE WORK
We are now in a strong position to benchmark our portable
BUDE OpenCL code on a wider range of systems. We hope
to test some of AMD’s latest GPUs in the near future, and
also to measure OpenCL performance on the Nehalem CPUs
within our Fermi GPU cluster.

BUDE should scale extremely well to many GPUs, and so
we would like to benchmark Dell’s new dense GPU chassis,
the 3U PowerEdge C410x which can accomodate up to 16
GPUs.

BUDE’s OpenCL code is already quite optimal but we know
there is room for improvement. In particular BUDE only
makes 32-bit memory accesses when there is potential for
it to load up to 128-bits at a time, improving load/store
efficiency on most GPU architectures. It should also be pos-
sible to make use of OpenCL’s implicit vector datatypes to
unroll BUDE’s inner loop four times. This should improve
performance on AMD GPUs and perhaps aid vectorization
on x86-SSE architectures. With the GPU code now running
so fast, what little remains on the host is becoming the bot-
tleneck. We will investigate porting some of the remaining
functionality into OpenCL to mitigate this pinch point.

Finally we would also hope to try running BUDE heteroge-
neously using both the host cores and multiple GPUs to run
the OpenCL kernel all at the same time. This arrangement
should yield the maximum possible system performance and
energy efficiency. Further development work on BUDE will
be required to make this possible.

7. CONCLUSIONS
We have shown that real applications can be ported to OpenCL
and achieve impressive performance gains on the latest GPUs
and even on multi-core CPUs. OpenCL is still a maturing
technology but is rapidly gaining ground as it enables ap-
plications to be ported once and run on many platforms.
Molecular docking applications of the class represented by
BUDE are particularly well suited to parallel implementa-
tions in general, and to GPUs in particular. And GPUs are
able to deliver not just the best performance for our ap-
plication, but also the most energy efficient execution. As



docking applications evolve to use more computationally-
intensive atom-atom kernels and searching more poses and
potential ligands, they should become even more ideal matches
to many-core architectures. We have demonstrated that it is
possible to accurately compare energy efficiency between dif-
ferent systems with careful selection of the test equipment.
We have shown how new metrics for per simulation energy
consumption, cost and even carbon emissions are now pos-
sible and yield valuable insight. We believe these energy,
running-cost and carbon-aware metrics will become increas-
ingly important over the coming decade in HPC.
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