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ABSTRACT
We present a simple logical query language called RL for
expressing different kinds of rules and we study how this lan-
guage behaves with respect to the well-known Armstrong’s
axioms. We point out some negative results, e.g. it is unde-
cidable to know whether or not a query from this language
is “Armstrong compliant”. The main contribution of this
paper is to exhibit a restricted form of RL-queries – yet
with a good expressive power – for which Armstrong’s ax-
ioms are sound. From this result, this sublanguage turns out
to have structural and computational properties which have
been shown to be very useful in data mining, databases and
formal concept analysis.

1. INTRODUCTION
The notion of rules or implications is very popular and ap-
pears in different flavors in databases, data mining or artifi-
cial intelligence communities. Famous examples of rules are
functional dependencies [4], implications [9] or association
rules [3]. As such, a simple remark can be made on such
rules: their syntax is the same but their semantics widely
differs.

In this paper, we consider rules to be defined on tabular
datasets. Basically, a tabular dataset is equivalent to a
set of relations over a set U of distinguished attributes (or
columns) in databases terminology [1].

Logical languages can be used to express the different well-
known rule semantics on tabular datasets. By the way, a
natural and ”generic” definition of a query language devoted
to ”rules” can be elaborated in order to be able not only to
capture most of existing semantics already known on tabular
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datasets (e.g. functional dependencies), but also to devise
new semantics specific to some application domains through
the key notion of queries.

We have also chosen to focus on a class of queries that satisfy
Armstrong’s axioms, so-called Armstrong compliance. More
precisely, Armstrong compliance of a query Q means that on
every input relation r, if ans(Q, r) – the answer of Q against
r – includes a set of rules F and the rule X → Y can be
inferred from F by Armstrong’s axioms, then ans(Q, r) also
contains X → Y .

For functional dependencies and implications, Armstrong’s
axioms are known to be sound and complete but more sur-
prisingly, many other semantics also fit into this framework
[2]. Roughly speaking, our aim is to define syntactical bound-
aries of Armstrong-compliant semantics expressed by queries.

Practical interests are for instance that some forms of rea-
soning can be performed on rules (e.g. implication problem
in linear time [5]). Moreover, it is also possible to work on
”small” covers of rules [11, 12, 16] and to use data mining
techniques specific to the considered cover, but applicable
to every Armstrong-compliant queries.

Paper contribution. We extend the relational domain cal-
culus with attribute-variables and schema-variables that
range over attributes and sets of attributes respectively. A
simple logical language called RL for expressing different
kinds of rules is presented. This ongoing work brings a log-
ical view to the contribution of [2]. In this paper, a logical
query language is proposed from which new undecidability
results are proposed. Its main contribution is to exhibit a
restricted form of RL-queries – yet with a good expressive
power – for which Armstrong’s axioms are sound.

From this result, this sublanguage enjoys structural and
computational properties which has been shown to be very
useful in data mining, databases and formal concept analy-
sis.



Related works. Declarative query languages for data min-
ing have been studied for years [13, 15, 18, 19]. Logical query
languages for data mining have been studied for example in
[6, 10]. In [6] , a general query language for data mining
has been devised in a different context: the authors defined
a data mining language with schema-variables that range
over sets of n-ary tuples of attributes. Their objective was
to characterize data mining queries amenable to a levelwise
search strategy, i.e. exhibiting monotone properties with re-
spect to some partial order. They obtain negative results
pointing out that their class of queries was too expressive to
ensure properties such as (anti-)monotonic property.

Other declarative approaches have been proposed in data
mining but in a much more general setting, i.e. at the inter-
section of DBMS and data mining techniques (classification,
clustering, pattern mining ...), e.g. [8, 18, 19].

An inductive logic programming query language for database
mining was also proposed in [20]. The proposal for an induc-
tive logic programming query language puts inductive logic
programming into a new perspective. Recent works bridging
the gap between constraint programming and data mining
have been proposed, for example see [21].

From an application point of view related to gene expression
data in biology, an ad-hoc rule language has been proposed
in [2] to deal with the high number of semantics biologists
could define over their gene expression data to specify their
own rules. The problem was not tackled with a query lan-
guage target as we propose in this paper.

Paper organization. In the following section,we present
syntax and semantics of the logical query languageRL. Sec-
tion 3 introduces what is an Armstrong-compliant query lan-
guage. In Section 4, we show some negative results on this
language, mainly the undecidability of Armstrong-compliance
ofRL-queries. We have to restrict the shape ofRL-language
to succeed in an Armstrong-compliant one. We describe in
Section 5 how to define this new language (called RLR)
by considering step by step counter-examples of the origi-
nal one. Then we show that RLR-queries are Armstrong-
compliant. This last result establishes the fact that RLR-
queries are amenable to levelwise strategy to compute an-
swer of such queries. Finally, Section 6 concludes this paper.

2. SYNTAX AND SEMANTICS OF
RL-LANGUAGE

The RL-language is defined as an extension of domain re-
lational calculus in databases [14] with addition of tuple-
variables and schema-variables.

2.1 Alphabet and formulas
For simplicity, we first assume that the database consists of
a single relation, avoiding to introduce predicate symbols.

Let U be a set of attributes. A schemaR is a finite, nonempty
set of attributes from U . A tuple t over a schema R is a to-
tal function from R to CST , t[A] denotes the value of t for
attribute A. A relation over a schema R is a finite set of
tuples over R.

Then, let us define some notations for the RL-language:

• CST is a set of constants,

• s, t, u, s1, . . . are tuple-variables,

• A,B,C,A1, B1 . . . are attribute-variables, i.e. capital
letters from the beginning of the alphabet,

• X,Y, Z,X1, Y1 . . . are schema-variables, i.e. capital let-
ters from the end of the alphabet

To avoid ambiguity with variables, we shall use the following
notations for attributes, set of attributes and tuples:

• A,B,C,A1, B1 . . . are single attributes,

• X,Y , Z,X1, Y1 . . . are set of attributes.

• s, t, t1, t2, . . . are tuples,

Atomic RL formulas. Let A,B be attribute-variables, t, s
tuple-variables, a a constant, X a schema-variable.

Definition 1. The following expressions are atomic RL
formulas:

A = B, t.A = s.B, t.A = a, X(A), A = Ā

RL-formulas are defined inductively as follows.

Definition 2.

1. Every atomic RL-formula is a RL-formula

2. If δ1 and δ2 are RL-formulas, then ¬δ1 and ( δ1 ∧ δ2)
are RL-formulas

3. If δ is a RL-formula and A an attribute-variable, then
∀A(δ) is a RL-formula

4. If δ is a RL-formula and t a tuple-variable, then ∀t(δ)
is a RL-formula

5. If δ is a RL-formula, then (δ) is a RL-formula

Other logical connectors such as ∨,⇒, quantifier ∃ and ab-
breviations true, false are defined as usual.
Note that schema variables cannot be quantified.
ARL-formula is closed if all occurrences of tuple- and attribute-
variables are bound. To make expressions of RL-formulas
easier, we shall use the following abbreviations [6]:

• ∀t1, . . . , tn(δ) for ∀t1(. . . (∀tn(δ) . . .)

• ∀A(X)(δ) for ∀A(X(A)⇒ δ)

• ∃A(X)(δ) for ∃A(X(A) ∧ δ)



2.2 The RL-query language
Now we introduce the notion of RL-queries which allows us
to express different kinds of rules.

Definition 3. TheRL-query language is defined as the set
of RL-queries Qδ expressed as follows:

Qδ = {〈X,Y 〉 | ∀~t(ψ(X,Y,~t) ∧ (δ1(X,~t)⇒ δ2(Y,~t)))︸ ︷︷ ︸
δ(X,Y )

}

where:

• X,Y are free schema-variables of δ(X,Y ).

• ∀~t is a vector of universally quantified tuple-variables,
let us say ~t = 〈t1, . . . , tn〉

• ψ(X,Y,~t) is a RL-formula with X,Y, t1, . . . , tn free
variables,

• δ1(X,~t) and δ2(Y,~t) are two RL-formulas with respec-
tively X, t1, . . . , tn and Y, t1, . . . , tn free variables .

By definition ofRL-queries, we cannot have schema-variables
in formulas, except those used for representing the left- and
right-hand sides of the rules. A RL-query is denoted Qδ or
simply Q when δ is clear from the context.

Example 1. Let us consider functional dependencies (FD).
They can be defined as follows:

Qf1 = {〈X,Y 〉 |∀t1, t2(∀A(X)(t1.A = t2.A)⇒ ∀B(Y )(t1.B =
t2.B))}

Qf2 = {〈X,Y 〉 |∀t1, t2(∃A(Y )(¬X(A))∧∀A(X)(t1.A = t2.A)⇒
∀B(Y )(t1.B = t2.B))}

Trivial FD are allowed with Qf1 and disallowed with Qf2 .

Example 2. Let us consider implications as defined in for-
mal concept analysis (domain of attributes should be {0, 1}):
Q2 = {〈X,Y 〉 |∀t(∀A(X)(t.A = 1)⇒ ∀B(Y )(t.B = 1))}

Let us now consider the following query Q3 more specific
than Q2 and the relation r:

r g1 g2 g3 g4 Gender
t1 1 0 1 1 M
t2 0 1 1 1 F
t3 0 1 0 1 F
t4 1 1 1 0 M

Q3 = {〈X,Y 〉 |∀t(∀A(X)(t.A = 1 ∧ µ) ⇒ ∀A(Y )(t.A = 1 ∧
µ))}
where µ = ∃B(B = Gender ∧ t.B = F ).

Q3 uses schema information of r whereas Q2 is independent
of any schema.

In practice, the kind of data being analyzed clearly influences
the definition of a query. Association rules and implications
require binary data while functional dependencies can be
defined on arbitrary attribute domains.

Furthermore, external information may also be available and
useful to define queries. Moreover, it is not necessary to
know neither the schema nor the relation to define a query.
The schema and the relation turn out to be necessary when
we care about the meaning of the rules.

2.3 RL semantics
For the sake of completeness, we defined RL semantics in
the classical sense.

Definition 4. Let R ⊆ U , r be a relation over R and
adom(r) ⊆ CST the active domain of r. An RL-structure
over R is defined by r and an assignment Σ from schema-
variables to 2R. An RL-structure over R is denoted by
〈r,Σ〉.

Example 3. Let r1 be a relation over R = {A,B,C} and
X,Y two schema-variables.
For instance, consider that Σ1(X) = {A,B} and Σ1(Y ) =
{C}. 〈r1,Σ1〉 is a RL-structure over R.

Definition 5. A RL-interpretation over R is defined by a
RL-structure 〈r,Σ〉 and an assignment σ to every tuple- and
attribute-variable defined as follows:

• Let t be a tuple-variable. σ : t 7→ tuple defined over R

• Let A be an attribute-variable. σ : A 7→ attribute of
R

An RL-interpretation over R is denoted by 〈〈r,Σ〉 , σ〉.

Example 4. Continuing the previous example, let s, t be
two tuple-variables and r1 defined as:

r1 A B C
t1 1 2 1
t2 1 2 3
t3 2 2 3
t4 3 4 5

Consider the two following assignments σ1 and σ2:

• σ1 : t 7→ t1, s 7→ t2

• σ2 : t 7→ 〈0, 0, 0〉 , s 7→ t3

〈〈r1,Σ1〉 , σ1〉 and 〈〈r1,Σ1〉 , σ2〉 are two RL-interpretation.



Satisfaction of RL-formulas. Given a RL-interpretation,
the satisfaction of a RL-formula can now be defined.

Definition 6. Let δ be a RL-formula. The satisfaction of
δ with respect to a RL-interpretation 〈〈r,Σ〉 , σ〉, denoted
by 〈〈r,Σ〉 , σ〉 |= δ, is defined inductively as follows:

• 〈〈r,Σ〉 , σ〉 |= A = B iff σ(A) = σ(B)

• 〈〈r,Σ〉 , σ〉 |= t.A = s.B iff σ(t)[σ(A)] = σ(s)[σ(B)]

• 〈〈r,Σ〉 , σ〉 |= t.A = a iff σ(t)[σ(A)] = a

• 〈〈r,Σ〉 , σ〉 |= X(A) iff σ(A) ∈ Σ(X)

• 〈〈r,Σ〉 , σ〉 |= X(A) iff A ∈ Σ(X)

• 〈〈r,Σ〉 , σ〉 |= ¬δ iff 〈〈r,Σ〉 , σ〉 6|= δ

• 〈〈r,Σ〉 , σ〉 |= δ1∧δ2 iff 〈〈r,Σ〉 , σ〉 |= δ1 and 〈〈r,Σ〉 , σ〉 |=
δ2

• 〈〈r,Σ〉 , σ〉 |= ∀A(δ) iff for everyA ∈ R, 〈〈r,Σ〉 , σA 7→A〉 |=
δ

• 〈〈r,Σ〉 , σ〉 |= ∀u(δ) iff for every t ∈ r, 〈〈r,Σ〉 , σu7→t〉 |=
δ

• 〈〈r,Σ〉 , σ〉 |= t = s iff σ(t) = σ(s)

Example 5. Continuing previous examples, let

δ = ∀A(X)(s.A = t.A)

We get 〈〈r1,Σ1〉 , σ1〉 |= δ since t1[A] = t2[A] and t1[B] =
t2[B]. We also get 〈〈r1,Σ1〉 , σ2〉 6|= δ since t3[A] 6= 0.

When clear from context, we shall note 〈r, σ〉 |= δ instead
of 〈〈r,Σ〉 , σ〉 |= δ whenever δ does not have any schema-
variables, i.e. the schema-variable assignment Σ is useless.

2.4 Answer of a RL-query
We can now define the answer of a RL-query.

Definition 7. Let Qδ be a RL-query and r a relation over
R. The answer of Qδ in r, denoted by ans(Qδ, r), is defined
as:

ans(Qδ, r) = {Σ(X) → Σ(Y ) | 〈r,Σ〉 is a RL-structure s.t.
〈〈r,Σ〉 , σ〉 |= δ for every σ}

In the sequel, Σ(X)→ Σ(Y ) is referred to as a rule and will
be also equivalently denoted by the couple (Σ(X),Σ(Y )).

Example 6. Continuing previous examples, we have:

ans(Qf1 , r1) =
{

A→ A,B → B,C → C,AB → AB,AC → AC,
BC → BC,ABC → ABC,ABC → A,ABC → B,
ABC → C,ABC → AB,ABC → AC,ABC → BC,
AB → A,AB → B,AC → A,AC → C,BC → B,
BC → C,A→ B,A→ AB,AC → B,AC → BC,
AC → AB,AC → ABC,C → B,C → BC

}

For convenience, a set {A} is referred to as A and a set
{A1, . . . , An} is referred to as A1, . . . , An

Now, we define the notion of satisfaction of a rule in a rela-
tion with respect to a RL-query.

Definition 8. Let Q be a RL-query, r a relation over R
and X → Y a rule. The satisfaction of X → Y in r, denoted
by r |=Q X → Y , is defined as:

r |=Q X → Y iff X → Y ∈ ans(Q, r)

By extension, let F be a set of rules over R. We note r |=Q F
iff for every X → Y ∈ F, r |=Q X → Y .

Now, given a RL-query, we can define the notion of logical
implication of a rule with respect to a set of rules.

Definition 9. Given a RL-query Q, a schema R, a set of
rules F over R and a rule X → Y , the logical implication,
denoted by F |=Q X → Y , is defined as:
F |=Q X → Y iff for all r over R such that r |=Q F , we
have: r |=Q X → Y

3. ARMSTRONG-COMPLIANT QUERY LAN-
GUAGE

In order to define a class of queries of interest, we are inter-
ested in some axiomatizations to get some reasoning capa-
bilities. Clearly, functional dependencies and implications
in formal concept analysis fit into the framework presented
so far (cf examples 1, 2). In this paper, we focus on a well-
known axiomatization in database and FCA: Armstrong’s
axioms due to its efficiency to check the implication prob-
lem [5]. Let us recall the Armstrong’s axioms for a set of
rules F defined over a set of attributes U :

1. Reflexivity: If X ⊆ Y ⊆ U then F ` Y → X

2. Augmentation: If F ` X → Y and W ⊆ U , then
F ` XW → YW

3. Transitivity: If F ` X → Y and F ` Y → Z then
F ` X → Z

The notation F ` X → Y means that a derivation of X → Y
can be obtained using Armstrong’s axiom system from F .

The practical interests of this axiomatization are twofold:



• Firstly, reasoning can be performed on rules from the
Armstrong’s axioms. For instance, the implication
problem can be resolved in linear time [5].

• Secondly, instead of listing many redundant rules, we
can focus on ”small” covers of rules [11, 12, 16].

In the setting of this class of queries, query processing tech-
niques could be devised, allowing to bridge the gap between
data mining and databases. This is out of the scope of this
paper though.

The first point is to characterize, for a given RL-query Q,
what does that mean that this query ”complies” with the
Armstrong’s axioms ? The first idea is to extend the classical
definition as follows: For a given query Q, a schema R and
a set of rules F over R, we would like to have F ` X → Y
iff F |=Q X → Y .

Unfortunately, this definition turns out to be useless as shown
in the following example.

Example 7. Let Q1 = {〈X, Y 〉| true }
We have F |=Q1 X → Y for every F and for every X → Y .
As a consequence, F |=Q1 X → Y does not imply F ` X →
Y .

As a matter of fact, we need to relax somehow the tentative
definition of compliance of a query with respect to Arm-
strong’s axioms. To do that, we introduce a set-oriented
perspective for Armstrong compliance.

Definition 10. Let U be a finite set. Let S ⊆ 2U ×2U . We
say that S is Armstrong-closed if and only if it satisfies the
following three conditions:

1. Reflexivity: For allX,Y ⊆ U ifX ⊆ Y , then (Y ,X) ∈
S.

2. Augmentation: For all X,Y ,W ⊆ U , if (X,Y ) ∈ S,
then (X ∪W,Y ∪W ) ∈ S.

3. Transitivity: For all X,Y , Z ⊆ U , if (X,Y ) ∈ S and
(Y , Z) ∈ S, then (X,Z) ∈ S.

Definition 11. A RL-query Q is Armstrong-compliant if
and only if for every relation r, ans(Q, r) is Armstrong-
closed.

Example 8. Continuing the previous example, Q1 is Arm-
strong compliant.

4. NEGATIVE RESULTS
We show here some negative results, mainly the undecidabil-
ity of Armstrong-compliance ofRL-queries and the undecid-
ability of testing the equivalence of two formulas. First, we
consider two simple queries and point out their status with
respect to Armstrong-compliance.

Lemma 1. Let Q1 = {〈X, Y 〉| true } and
Q2 = {〈X, Y 〉| false }

1. Q1 is Armstrong-compliant.

2. Q2 is not Armstrong-compliant.

Proof. We show the two assertions

1. For every schema R and every relation r over R, all
possible rules belong to ans(Q1, r), i.e. 2R × 2R. The
result follows.

2. For every schemaR and every relation r overR, ans(Q2, r)
is empty. Therefore, rules induced by reflexivity do not
belong to ans(Q2, r).

Now, it is worth noting that in this paper RL-formulas do
not include real attributes (only attribute variables are al-
lowed). As a consequence, RL-formulas cannot simulate the
tuple relational calculus, even if this is a simple extension of
the RL-language, not described here though. For simplicity
of the arguments, we shall assume in the sequel that TRC
formulas are allowed in RL-formulas.

Theorem 1 Armstrong-compliance of RL-queries is unde-
cidable.

Proof. Consider RL-query of the form:

Qϕ = {(X,Y )|ϕ ∧ ∀A(X) true⇒ ∀A(Y ) true}

where ϕ is a closed formula in tuple relational calculus.
Assume relations r over a finite set of attributes U . We can
notice that:

1. if ϕ is logically valid (i.e. true under every possible
interpretation), then for every relation r, ans(Qδ, r) =
ans(Q1, r) . By lemma 1, Qδ is Armstrong-compliant.

2. if ϕ is not logically valid, then there exists a rela-
tion r such that r is not satisfied by ϕ. Then, we
have ans(Qδ, r) = ans(Q2, r). By lemma 1, Qδ is not
Armstrong-compliant.

Consequently, Qϕ(r) is Armstrong-compliant if and only if
ϕ is logically valid. Yet, it is undecidable to know whether
or not a given closed formula is logically valid ([7], theorem
6.3.1 in [1]).

Next, we define what does equivalence mean in our con-
text. Then, we show a negative computational property, i.e.
checking predicate equivalence turns out to be undecidable.

We shall define the notion of equivalence betweenRL-formulas
as follows:



Definition 12. Two RL-formulas δ1 and δ2 are said to be
equivalent, denoted δ1 ≡ δ2, iff for every RL-interpretation
〈〈r,Σ〉 , σ〉 such that 〈〈r,Σ〉 , σ〉 |= δ1, then 〈〈r,Σ〉 , σ〉 |= δ2
and vice versa.

Theorem 2 Let δ1 and δ2 be two RL-formulas. Checking
equivalence between δ1 and δ2 is undecidable.

The proof is omitted.

5. TOWARDS AN ARMSTRONG-COMPLIANT
RL-LANGUAGE

From the negative results shown so far, we are going to re-
strict the ”shape” of the query language defined previously
(cf. definition 3).

Impact of the RL-formula ψ(X,Y,~t) . The previous un-
decidability result (cf theorem 1) points out that ψ(X,Y,~t)
should be removed from the query language. First, we show
that this constraint is indeed useless in our setting.

Lemma 2. Let Q be a RL-query. If Q is Armstrong-
compliant then ψ is logically valid.

Proof. Now suppose that Q is Armstrong-compliant and
ψ(X,Y,~t) is not logically valid.
Therefore, there exists at least oneRL-interpretation 〈〈r,Σ〉 , σ〉
such that 〈〈r,Σ〉 , σ〉 6|= ψ(X,Y,~t). Therefore, ans(Q, r) is
empty and by the Lemma 1, Q is not Armstrong-compliant.
Contradiction.

We deduce from this result that ψ(X,Y,~t) is useless to get
Armstrong-compliant queries since ψ should be necessary
logically valid.

Unfortunately, this is not sufficient to be sure to define
only Armstrong-compliant queries. In the sequel, we ex-
hibit counter-examples from which a slight restriction of
RL-queries will be proposed.

Impact of existential quantifiers. Let us consider an ex-
ample of queries in which existential quantifiers are used in
δ1 and δ2.

Example 9.

Q′
δ = {〈X,Y 〉|∀t, s(∃A(X)(t.A = s.A))⇒ (∃B(Y )(t.B = s.B))}

Let r0 be the following relation:

r0 A B
t1 0 0
t2 0 1

Let us consider the following assignments over r0 : Σ1(X) =
{A,B},Σ1(Y ) = {B} and σ1(t) = t1, σ1(s) = t2, σ1(A) =
A, σ1(B) = B.

Then, A,B → B 6∈ ans(Q′
δ, r0) and the reflexivity is lost.

The previous example suggests to allow only universal quan-
tifiers in δ1 and δ2 of RL-queries.

Impact of different formulas in the left- and right-hand
sides of a rule. The next example stresses the need to have
equivalent predicates δ1 and δ2.

Example 10. Let us consider the following query.

Q”δ = {〈X,Y 〉 | ∀t(∀A(X)(t.A = 1)⇒ ∀B(Y )(t.B = 0))}

Let r be the following relation:

r A B C
t1 1 0 1
t2 0 1 0

We have r |=Q”δ A → B, r |=Q”δ B → C but r 6|=Q”δ A →
C, cf tuple t1 (lost of the transitivity).

Nevertheless, checking the equivalence of δ1 and δ2 has been
shown to be undecidable (cf theorem 2).

5.1 The RLR language
In the setting of the query language defined in definition 3,
we made syntactic restrictions to obtain theRLR-query lan-
guage. The main result of the paper will be given on that
class of queries.

Definition 13. The RLR-query language is defined as the
set of RLR-queries Qδ expressed as follows:

Qδ = {〈X,Y 〉 | ∀~t(∀A(X)δ1(A,~t)⇒ ∀A(Y )δ1(A,~t))︸ ︷︷ ︸
δ(X,Y )

}

where:

• X,Y are free schema-variables on δ(X,Y ).

• ∀~t is a vector of universally quantified tuple-variables.
Let say t = 〈t1, . . . , tn〉

• δ1(A,~t) is a RL-formula with A, t1, . . . , tn free vari-
ables and without other free variables.

The main result of the paper can be given on the class of
RLR-queries, i.e. they enjoy Armstrong-compliance.

This result is stated as follows:

Theorem 3 If Q is a RLR-query, then Q is Armstrong-
compliant.



Proof. (reflexivity) Let us assume Y ⊆ X and let r0 be
a relation over R. We have to show that (X,Y ) ∈ ans(Q, r0)
i.e. r0 |=Q X → Y , or X → Y ∈ ans(Q, r0).
Assume 〈r0,Σ〉 is a RLR-structure with Σ(X) = X and
Σ(Y ) = Y such that 〈〈r0,Σ〉 , σ〉 |= ∀~t(∀A(X)δ1(A,~t)) for
every σ.
By assumption, we know that Y ⊆ X. Then we have
〈〈r0,Σ〉 , σ〉 |= ∀~t(∀A(Y )δ1(A,~t)) for every σ.
So X → Y ∈ ans(Q, r0) and (X,Y ) ∈ ans(Q, r0).

(augmentation) Let r0 be a relation overR such that (X,Y ) ∈
ans(Q, r0) and W ⊆ U . We have to show that (XW,YW ) ∈
ans(Q, r0) i.e. r0 |=Q XW → YW , or XW → YW ∈
ans(Q, r0).
Assume 〈r0,Σ〉 is aRLR-structure with Σ(X) = X, Σ(Y ) =
Y and Σ(W ) = W such that 〈〈r0,Σ〉 , σ〉 |= ∀~t(∀A(XW )δ1(A,~t))
for every σ.
By assumption, we know that (X,Y ) ∈ ans(Q, r0) i.e. r0 |=Q

X → Y . Then we have 〈〈r0,Σ〉 , σ〉 |= ∀~t(∀A(YW )δ1(A,~t))
for every σ.
So XW → YW ∈ ans(Q, r0) and (XW,YW ) ∈ ans(Q, r0).

(transitivity) Let r0 be a relation over R such that (X,Y ) ∈
ans(Q, r0) and (Y , Z) ∈ ans(Q, r0). We have to show that
(X,Z) ∈ ans(Q, r0) i.e. r0 |=Q X → Z, or X → Z ∈
ans(Q, r0).
Assume 〈r0,Σ〉 is aRLR-structure with Σ(X) = X, Σ(Y ) =
Y and Σ(Z) = Z such that 〈〈r0,Σ〉 , σ〉 |= ∀~t(∀A(X)δ1(A,~t))
for every σ.
By assumption, we know that (X,Y ) ∈ ans(Q, r0) i.e. r0 |=Q

X → Y . Then we have 〈〈r0,Σ〉 , σ〉 |= ∀~t(∀A(Y )δ1(A,~t)) for
every σ.
Moreover, (Y , Z) ∈ ans(Q, r0) i.e. r0 |=Q Y → Z. Then we
have 〈〈r0,Σ〉 , σ〉 |= ∀~t(∀A(Z)δ1(A,~t)) for every σ.
So X → Z ∈ ans(Q, r0) and (X,Z) ∈ ans(Q, r0).

5.2 Computational property
We proved thatRLR-queries are Armstrong-compliant. Given
a RLR-query Q and a database r, how can we compute
ans(Q, r)? We just sketch one easy result, this issue being
out of the scope of this paper.

It is worth noting that this classical database problem can
be seen de facto as both a pattern mining problem in data
mining and an enumeration problem in combinatorics. We
give a result related to levelwise strategies in data mining
[3, 17].

Property 1 RLR-queries are amenable to levelwise strate-
gies.

Proof. Let Q be a RLR-query. We have to show that
for every r over R, if X → Y ∈ ans(Q, r) then for all
Z ⊃ X,Z → Y ∈ ans(Q, r). The result follows since Q
is Armstrong-compliant.

5.3 Example of RLR-query
We give below an example of RLR-query that might be
useful in practice.

Example 11. LetQefd = {〈X,Y 〉 |∀t1, t2, t3(δ(X, t1, t2, t3))⇒
δ(Y, t1, t2, t3)}

where

δ(X, t1, t2, t3) = ∀A(X)(t1.A = t2.A ∧ t3.A = t2.A ∧ ¬(t1 =
t2) ∧ ¬(t2 = t3) ∧ ¬(t1 = t3))

Qefd extends the definition of FD with three tuples instead
of two. Let r0 be the following relation:

r0 A B C D
0 1 1 1
0 1 2 1
0 1 3 2
1 2 4 2
1 1 5 3

We can see that Qefd is a RLR-query and consequently is
Armstrong-compliant.

Let ansmin(Qefd, r0) (resp. ansmin(Qfd, r0)) be a smallest
equivalent subset of ans(Qefd, r0) (resp. ans(Qfd, r0)).

Here we have:
ansmin(Qefd, r0) = {A → B,B → A,C → ABD,D →
ABC}

ansmin(Qfd, r0) = {C → ABD,AD → B,BD → A}.

6. CONCLUSION
In this article, we have proposed an extension of the rela-
tional calculus and we have introduced RL-language, a sim-
ple logical query language that allows to express different
“kinds of rule”. We have shown some undecidability results
related to RL -queries and Armstrong-compliance.

We have bounced on this result and have defined the RLR
-language as a restriction of the RL-language. We have
pointed out that queries of this sublanguage “enjoy” Arm-
strong’s axioms. From the last result, we have easily de-
duced RLR-queries are amenable to a levelwise strategy,
i.e. the Apriori trick can be used to compute the result of
RLR-queries.

Many open questions remain to be addressed.

First, we focus on this paper on a very simple logical query
language, which may appear to be a bit restrictive to be use-
ful in practice. Nevertheless, it is worth noting that more
expressivity is possible for instance by defining weaker form
of equality in atomic formulas such as |A− B| ≤ ε for han-
dling numerical attributes.

Then, our language offers new opportunities to apply database
query processing techniques in a data mining setting. Arm-



strong’s axioms could be used to enumerate efficiently the
results of RLR-queries.

One may also question about a larger class of Armstrong-
compliant queries. Clearly, some queries not inRLR-language
still satisfy Armstrong’s axioms. A toy example is Q =
{〈X,Y 〉 | ∀t(∀A(X)(t.A = 1)⇒ ∀B(Y )(¬(¬(t.B = 1))))}.

Finally, other axiomatizations than Armstrong’s axioms could
be chosen as target of some new query languages.
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