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ABSTRACT

We address the cost of adding value joins to tree-pattern queries and
monadic second-order queries over trees in terms of the tractability
of query evaluation over two data models: XML and probabilistic
XML. Our results show that the data complexity rises from linear,
for join-free queries, to intractable, for queries with value joins,
while combined complexity remains essentially the same. For tree-
pattern queries with joins (TPJ) the complexity jump is only on
probabilistic XML, while for monadic second-order logic over trees
with joins (TMSOJ) it already appears for deterministic XML docu-
ments. Moreover, for TPJ queries that have a single join, we show
a dichotomy: every query is either essentially join-free, and in this
case it is tractable over probabilistic XML, or it is intractable. In
this light we study the problem of deciding whether a query with
joins is essentially join-free. For TMSOJ we prove that this problem
is undecidable and for TPJ it is ΠP

2-complete. Finally, for TPJ we
provide a conceptually simple criterion to check whether a given
query is essentially join free.

1. INTRODUCTION
Uncertainty is ubiquitous in data and many applications must

cope with this: information extraction from the World Wide Web [7]
or automatic schema matching in information integration [23] are
inherently imprecise. This uncertainty is sometimes represented as
the probability that the data is correct, as with conditional random
fields [19] in information extraction, or uncertain schema mappings
in information integration [12]. In other cases, only confidence in
the information is provided by the system, which can be seen after
renormalization as an approximation of the probability. It makes
sense to manipulate this probabilistic information in a probabilistic

database management system [9].
Recent work has proposed models for probabilistic data, both in

the relational [29, 10, 18] and XML [22, 2, 17] settings. We focus
here on the latter, which is particularly adapted in the case, common
on the Web, when the information is not strictly constrained by a
schema, or when it is inherently tree-like (mailing lists, parse trees of
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natural language sentences, etc.). A number of works on probabilis-
tic XML have dealt with query answering for a variety of models
and query languages [22, 17, 1, 4]. On the other hand, queries with
value joins, equating character data in different fragments of XML
documents, have received far less attention, with the exception of [1].
This is despite the fact that value joins proved their importance in
SQL: joins are at the core of SELECT-PROJECT-JOIN, the most
used fragment of SQL. We propose in this article a general study
of the complexity of query answering in both XML and probabilis-
tic XML with hierarchical probabilistic dependencies [27, 2] (see
Section 2 for details).

The first work addressing join queries for probabilistic XML data
is [1] where we showed that adding joins to tree-pattern queries (TP)
significantly increases complexity of query answering. This is a
data complexity [28] result, i.e, we measured the complexity in the
size of the input probabilistic XML data, and the query is assumed
to be fixed, in contrast to combined complexity, where both the data
and the query are parts of the input.

The complexity shift was shown by exhibiting a #P-hard query
(see Section 3 for details), which shows that the whole class of
tree-pattern queries with joins (TPJ), is intractable. Recall that for
TP, and, indeed, for all of monadic second-order logic over trees
(TMSO), which subsumes TP, query evaluation is linear in data
complexity. This raises a number of questions about query language
with joins, that this work aims at answering:

∙ What is the precise complexity of query evaluation, over XML
and probabilistic XML, for TPJ and TMSO extended with
joins (TMSOJ), both in data and combined complexity?

∙ We say that a TMSOJ (resp., TPJ) query has an essential join

if it is not equivalent to a TMSO (resp., TP query). A query
without essential join is called an essentially join-free query.
Is it possible to decide, given a TMSOJ or TPJ query, whether
this query really has any essential join?

∙ Is the fact that a query has an essential join responsible for
making it hard? In other words, are all queries with essential
joins hard to evaluate?

The rest of the paper is devoted to answering these questions. In
Section 2 we introduce deterministic and probabilistic data models,
tree-pattern and monadic second-order queries, and review related
work on query answering for these models. In Section 3 we extend
the query models with joins. In Sections 4 and 5 we study the
complexity of joins over XML and probabilistic XML as well as
the complexity of deciding essential joins. Due to lack of space we

omit some proofs that can be found in a technical report [16].

2. PRELIMINARIES
We briefly define in this section the data model (see, e.g., [2] for

more details) and the query languages we use.
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Figure 1: Example p-document �︀PER, possible document �PER of �︀PER, TP query �RBON and TPJ query �SBON

Documents. We assume a countable set of labels ℒ. We model
an XML document � as an unranked, labeled, and unordered tree.
Results of this paper can be extended to ordered trees. We say
that two documents �1 and �2 are equivalent, denoted �1 ∼ �2, if
they share the same structure and labels, i.e., if there is a bijection
between the nodes of �1 and �2 preserving the edges, root, and
labels.

EXAMPLE 1. Consider the document �PER in Figure 1 (top-left)

describing the personnel of an IT department and the bonuses for

different projects. It indicates that Rick worked under two projects

(laptop and pda) and got bonuses of 44 and 50 in the former project

and 50 in the latter one. Identifiers are in brackets before labels.

We define a finite probability space of XML documents, or px-

space for short, as a pair (�,Pr) with � a set of pairwise non-
equivalent documents and Pr mapping every document � to a prob-
ability Pr(�) such that

︀
{Pr(�) | � ∈ �} = 1.

Probabilistic documents. Following [2], p-documents are a
general syntax for compactly representing px-spaces. Like a docu-
ment, a p-document is a tree but is has two kinds of nodes: ordinary

nodes, which have labels and are the same as in documents, and dis-

tributional nodes, which are used to define the probabilistic process
for generating random documents. We consider in this work two
kinds of distributional nodes, namely, mux (for mutually exclusive)
and det (for deterministic). Other kinds of distributional nodes are
studied in [2], but as shown there, mux and det alone are enough to
represent all px-spaces as p-documents, and mux-det p-documents
can be seen as XML counterparts of the block-independent databases
of Dalvi, Ré, and Suciu [9]. An important characteristic of these
distributional nodes that will play a fundamental role in the tractabil-
ity of query evaluation is the fact that they only describe local

probabilistic dependencies in the tree.

Formally, a p-document �︀ is an unranked, unordered tree, with
labels in ℒ ∪ {mux(Pr)} ∪ {det}. If a node � is labeled with
mux(Prv) then Prv assigns to each child �′ of � a probability
Prv(�′) with

︀
v′ Prv(�′) ≤ 1. We require the leaves and the

root of a p-document to be ordinary nodes, that is, with labels in ℒ.
The class of all mux-det p-documents is denoted PrXMLmux,det.

EXAMPLE 2. Figure 1 (right) shows a p-document �︀PER that

has mux and det distributional nodes, shown on gray background.

Node �52 is a mux node with two children �53 and �56, where

Prn52
(�53) = 0.7 and Prn52

(�56) = 0.3.

A p-document �︀ has as associated semantics a px-space J�︀K
defined by the following random process. Independently for each
mux(Prv) node, we select at most one of its children �′ and delete

all other children with their descendants. We do not delete any of
the children of det nodes. We then remove in turn each distributional
node, connecting its ordinary children with their lowest ordinary
ancestors. The result of this process is a random document � , and
the probability of a specific run �� is the product of all Prv(�′) for
each chosen child �′ of a mux node �; when we choose no children
for a mux node �, we multiply by 1 −

︀
v′ Prv(�′) instead. Since

there may be several different ways to generate a document equiva-
lent to � , we define the probability Pr(�) of a random document
� as: Pr(�) :=

︀
d∼� �d. It is easy to see that if we select one

representative of each equivalence class, we obtain a px-space.

EXAMPLE 3. The only way to obtain a document equivalent to

�PER at Figure 1 from �︀PER is to choose: the left child of �11, the

right child of �21, and the left one of �52. The probability of these

choices, and the probability of �PER, is 0.4725 = 0.75× 0.9× 0.7.

Queries over documents. We now define two Boolean query
languages over XML documents, namely monadic second-order
queries and tree-pattern queries. We first define join-free versions of
these query languages and add value joins in Section 3. A Boolean
query over documents can be seen as a mapping from every XML
document to either true or false. We thus say that a query � is true

in a document �, or that � is a model of �, and we note � |= �.
Given two queries � and �′, we say that � is contained in �′, denoted
� ⊑ �′, if all models of � are also models of �′. Two Boolean
queries are equivalent, denoted � ≡ �′, if � ⊑ �′ and �′ ⊑ �.

Monadic second-order queries. The first query language we
consider is monadic second-order logic over trees (TMSO for short),
a general query language that has the property of having linear
data complexity, due to the fact that every TMSO query can be
converted (in non-elementary time) into a deterministic bottom-up
tree automaton [25]. TMSO is more expressive than other classical
join-free XML query languages such as tree-pattern queries with
Boolean operators [17] or navigational XPath [5].

TMSO is the logic built up from: (i) unary predicates for labels:
for every � ∈ ℒ there is a unary predicate Labell(·); (ii) the binary
child relation Ch(·, ·); (iii) node variables; and (iv) monadic (i.e.,
unary) predicate variables via Boolean connectors, and first and
second-order quantifiers ∃�, ∃�. Since we consider only Boolean
queries, we assume all variables occurring in a TMSO query are
bound by a quantifier. The semantics of TMSO is standard [25]. A
descendant predicate Desc can be expressed in TMSO using the
Ch predicate and quantifiers; we will use Desc when needed as if
it were part of TMSO. The language TFO of first-order queries on
trees is TMSO without any second-order quantifiers.



Tree-pattern queries. Monadic second-order logic is a very
expressive query language on trees. The language of tree-pattern

queries (TP), roughly the subset of navigational XPath with only
child and descendant axes, has more limited expressive power, but,
as we shall discuss, more efficient query evaluation algorithms.
Let � be a countable set of variables, disjoint from ℒ. A tree-
pattern query is an unordered, unranked tree, with labels in ℒ ∪ � ,
where edges are labeled either with child, or descendant types. A
variable from � may not be used twice in the same query (we will
obviously remove this assumption when we introduce joins). Note
that in TMSO variables denote nodes, while in TP, with a slight
overloading, they denote (unknown) labels of nodes. A subquery

of � ∈ TP is any subtree of �. A TP query � is true in a document
� if and only if there is a mapping � from the nodes of the query
to the nodes of � such that: (i) if � is the root of �, then �(�)
is the root of �; (ii) if �, � are two nodes of � connected by a
child edge, �(�) is a child of �(�); (iii) if �, � are two nodes of
� connected by a descendant edge, �(�) is a descendant of �(�);
(iv) unless � is labeled with a variable of � , � and �(�) have the
same labels. A mapping satisfying all these conditions is also called
a homomorphism.

EXAMPLE 4. Consider the query �RBON in Figure 1 (bottom-

right) asking whether Rick has received any bonus, i.e., a bonus �.

Single lines denote child edges and double lines descendant edges.

Querying p-documents. Up to now, we have seen Boolean
queries as Boolean functions over documents. Over a p-document,
a Boolean query naturally yields a probability: the probability this
query is true in the set of possible documents defined by this doc-

ument. More formally, given a query � and a p-document �︀ , the

semantics of � over �︀ is the probability �(�︀) :=
︀

d∈J�︀K
d|=q

Pr(�).

This definition yields an algorithm for computing the probability
of a Boolean query over a p-document, given an algorithm for
determining whether a query is true in a document: just enumerate
all possible worlds, evaluate the query over each of these, and sum
up the probability of documents satisfying the query. This algorithm
is exponential-time, however, and it is often possible to be more
efficient than that.

EXAMPLE 5. The query �RBON is true in �PER since Rick in-

deed received bonuses. Evaluation of �RBON over �︀PER returns

true if and only if one chooses the left child of the distributional

node �11. Consequently, �RBON(�︀PER) = 0.75.

The complexity of join-free queries. Before reviewing the
complexity of query answering for the aforementioned query lan-
guages, we make some preliminary remarks on complexity classes.
Note first that for XML all problems are decision problems, i.e.,
to decide whether a query matches a document. In contrast, for
p-documents all problems are computational, i.e., to compute the
probability value. We thus need computational complexity classes
such as FP (resp., FPSpace), the class of computational problems
that can be solved by a Turing machine with output tape in polyno-
mial time (resp., polynomial space), instead of the decision classes
PTime or PSpace. The class #P is the class of computational
problems that can be computed by counting the number of accept-
ing runs of a nondeterministic polynomial-time Turing machine.
Following [8], we say that a function is FP#P-hard if there is a
polynomial-time Turing reduction (that is, a reduction with access
to an oracle to the problem reduced to) from every function in FP#P

to it. Hardness for #P is defined in a standard way using Karp
(many-one) reductions. For example, the function that counts for a

propositional 2-DNF formula its number of satisfying assignments
is #P-complete.We note that the use of Turing reductions in the
definition of FP#P-hardness implies that any #P-hard problem
is also FP#P-hard. Therefore, to prove FP#P-completeness it is
enough to show FP#P-membership and #P-hardness.

We summarize in Table 1 the results that were obtained in the
literature on the complexity of query answering of TMSO and TP
queries over documents and p-documents. In terms of data complex-
ity, evaluating a Boolean query over a document or a p-document
can be done in linear time; this is a consequence of the formulation
of TMSO in terms of tree automata [25], together with the possibil-
ity of coding a p-document as a probabilistic tree automaton [8, 4].
In terms of combined complexity, all computation can be made in
polynomial space [4] and TMSO evaluation is PSpace-hard [20].
For tree-pattern queries, the situation is more interesting: they can
also be evaluated linearly in the query size [5] on XML documents,
but they become intractable over p-documents [17] under combined
complexity.

3. QUERIES WITH VALUE JOINS
We explain now how to add joins to the query languages we have

presented in the previous section. We motivate our study of these
query languages with joins by noting that adding value joins to the
language dramatically increases the complexity of query answering
over probabilistic document.

We want to extend the ability of query languages on trees by
allowing value joins, i.e., allowing to test for equality of the labels
of nodes of the document. This is a very useful feature of query
languages on trees, available in full in XPath 2.0, and, in a restricted
form in XPath 1.0.

Joins add non-locality to the query language: it becomes neces-
sary to remember the values of some nodes to compare them with
the values of nodes elsewhere in the document. As we shall see, this
has for consequence that tree-automata based techniques and their
corresponding linear algorithms for query evaluation are no longer
possible. Thus, joins cannot be expressed with a regular TMSO
query; one could try to write some disjunction of Labell predicates,
but in the general case of an infinite set of values this would require
infinitely many of them. For instance, to test that nodes � and �
have the same value:

︀
v∈ℒ (Labelv(�) ∧ Labelv(�)) .

Therefore, in order to express joins in MSO, an extra binary
predicate SameL(·, ·) is required, whose interpretation consists of
pairs of nodes which have the same label, as defined by the preceding
infinite disjunction. Since the joins considered are value joins, we
further require that nodes whose labels are compared using the
SameL predicate are document leaves, not internal nodes. Most
results presented here extend to comparison of labels of internal
nodes as well, with the exception of the dichotomy that we obtain in
Section 5, as discussed there. The extension of TMSO with SameL

is denoted TMSOJ. Similarly, TFOJ is the extension of TFO with
SameL.

The language of tree-pattern queries with joins, TPJ, can be
defined similarly but it is simpler to allow in the TP language a
variable to be used multiple times. However, since we also consider
only value joins, a variable used multiple times necessarily refers
to a leaf in the documents and may consequently only appear as a
leaf of the query. The class TPJ{/,[]} consist of TPJ queries without
descendant edges.

EXAMPLE 6. Consider the query �SBON in Figure 1. The query

asks whether Rick and Mary have received a bonus of the same

value �. Clearly, �SBON is true in �PER since Rick and Mary both

received a bonus of 44. Evaluation of �SBON over �︀PER returns

true in only one world of J�︀PERK, �PER, since in all other worlds



TMSO TP

Data Combined Data Combined

XML �(|�|) [25] PSpace-complete [20] �(|�|) [25] �(|�| × |�|) [5]

PrXMLmux,det �(|�︀|) [8] FPSpace-complete [4] �(|�︀|) [17] FP#P-complete [17]

Table 1: Complexity of query evaluation for join-free queries, with � a document, � a query, and �︀ a p-document

either the first person is not Rick, or there is no bonus of the same

value for Rick and Mary: �SBON(�︀PER) = Pr(�PER) = 0.4725.

Our interest for joins comes from the following observation:

FACT 7 (LEMMA 9 OF [1]). There is a Boolean TPJ query

with #P-hard data complexity over PrXMLmux,det.

Recall that for TP, and, indeed, for all MSO queries, the same
problem is linear in the data size. Thus, adding joins to the language
significantly increases the complexity of query evaluation. In the
next sections we have a closer look at this problem.

4. TREE-MSO QUERIES WITH JOINS
In the previous section we saw that joins in tree-pattern queries

come with a high cost: worst-case data complexity of querying p-
documents goes from polynomial-time to #P-hard. In this section
we investigate the cost of joins in TMSO queries.

Results of this section and the following one are summarized in
Tables 2 (query evaluation) and 3 (deciding essential joins).

Querying p-documents. We first show that combined complex-
ity of TMSOJ over p-documents remains as in the join-free case.

PROPOSITION 8. Query evaluation for TMSOJ over PrXMLmux,det

is #P-hard in data complexity and FPSpace-complete in combined

complexity.

PROOF. Hardness of data complexity comes form Fact 7. Hard-
ness of combined complexity comes from the FPSpace-hardness of
TMSO over PrXMLmux,det [4]. Let us now show the corresponding

upper bound. Let �︀ be a p-document and � a TMSOJ query with �
different variables. Since every TMSOJ query can be transformed
in prenex normal form in polynomial time, we assume that � is
in such a form and �′ is its matrix, i.e., the quantifier-free part of

�. We describe an FPSpace algorithm to evaluate � over �︀ . One

enumerates all triples (�, �, �) with (1) a document � ∈ J�︀K; (2) an
assignment � of first-order variables of � to nodes of �; (3) an
assignment � of second-order variables of � to sets of nodes of
�. For each triple one performs a polynomial time check whether
�, �, � |= �′.

This check is clearly polynomial time in the size of both the
query and the document, since it boils down to checking that nodes

of �︀ given by � and sets of nodes given by � satisfy Ch, Label,
and SameL conditions of �′. The size of each triple (�, �, �) is
polynomial in the size of both � and �. Indeed, |�| is bounded by

|�︀|, and assignments � and � are vectors (of length bounded by
|�|) of node identifiers or sets of node identifiers of �.

Querying documents. The hardness of query evaluation for
TMSOJ over probabilistic data is not surprising, since it is inherited
from the hardness of TPJ queries. What is slightly more surprising is,
as we immediately show, that query answering becomes intractable
even over deterministic data.

PROPOSITION 9. Query evaluation for TMSOJ over XML is

PSpace-complete in combined complexity. Moreover, for each � ∈
N, there are queries �1 and �2 of TMSOJ such that query evaluation

of �1 (resp., �2) over an XML document is ΠP
k-complete (resp., ΣP

k-

complete).

The combined complexity result is a direct consequence of the
one for the join-free variant of the problem. To show the more
interesting data complexity result, we present a way to encode
arbitrary monadic second-order formulas on relational structures
(MSO) into TMSOJ formulas on trees.

LEMMA 10. There are two linear-time functions � and � s.t.

(i) for every finite relational structure �, �(�) is a document and

(ii) for every sentence � of MSO, �(�) is a TMSOJ sentence
such that �(�) |= �(�) if and only if � |= �.

PROOF. We start with � . See an example of �(�) in Figure 2,
left, where we encode the relation �� = {�⃗1, �⃗2}, for � of ar-
ity 2, and �⃗1 = (�, �), �⃗2 = (�, �). To generalize, let � be
a finite structure over relations �1, . . . , �n. Then �(�) has a
root labeled db with � children, one for each relation �i, labeled
�i. If ��

i = {�⃗1, . . . , �⃗m}, then the node labeled �i has �
children, one for each tuple �⃗j , labeled �⃗j . Every node labeled
�⃗j has arity(�i) children, where the �-th child is labeled �, for
� ∈ {1, . . . , arity(�i)}, and has only one child labeled with the
value of the �-th attribute of �⃗j . The described function � is obvi-
ously linear-time in the size of the input relation �.

We now exhibit �. Let � be a second-order logic sentence. We
first preprocess �. Let � be a join (first-order) variable of � that
has � occurrences. Then �x is � where the �-th occurrence of � is
substituted with a fresh variable �i, quantification ��, where � ∈
{∃, ∀}, is substituted with ��1, . . . , �m, and the resulting formula
is conjuncted with the condition

︀m−1
i=1 (�i = �i+1). Application

of this transformation to all join variables of � yields a formula �′

where all joins are “moved” to equality conditions and � ≡ �′.
Let �(�1, . . . , �n) be an atom of �′, such that � is not a sec-

ond order variable in �′, where, w.l.o.g, the terms �1, . . . , �i are
constants, and �i+1, . . . , �n are variables. Note that due to the pre-
processing construction of �′ all the variables in �i+1, . . . , �n are
different. Let �, �, �, �1, . . . , �n, �i+1, . . . �n be variables that do
not occur in �′. One substitutes in �′ every occurrence of the atom
�(�1, . . . , �n) with the following formula:

�R(t1,...,tn)(�, �R) = ∃�1 . . . �n∃�i+1 . . . �n Labeldb(�)

∧Ch(�, �R)∧LabelR(�R)∧Ch(�R, �)∧

︃
n︁

j=1

Ch(�, �j) ∧ Labelj(�j)

︃

∧

︃
i︁

j=1

Ch(�j , �j) ∧ Labeltj
(�j)

︃
∧

︃
n︁

j=i+1

Ch(�j , �j)

︃
,

where � is the same across all atoms of �′ and �R is the same
for all atoms with the predicate name �. If �1, . . . , �l are all
the predicate names of �′, then one adds to the resulting formula
the prefix ∃�∃�R1

· · · ∃�Rl
. The next step is to substitute in the

resulting formula every occurrence of the equality condition (� = �)
with the atom SameL(�, �), which yields �′′. Let � be an encoding



TMSOJ TPJ

Data Combined Data Combined

XML ΣP
k-complete, ΠP

k-complete ∀� ∈ N PSpace-complete PTime NP-complete

PrXMLmux,det #P-hard, in FPSpace FPSpace-complete FP#P-complete #P-hard, in FPSpace

Table 2: Complexity of query evaluation for queries with joins
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Figure 2: Left: translation from a finite relational structure

� = {�(�, �), �(�, �)} into a tree �(�) (Lemma 10). Center:

a TPJ query with an essential join (Theorem 11). Right: a doc-

ument � (Theorem 11).

of the tree structure that the function � above imposes on all �(�).
One can easily construct such a �. Finally, �(�) = �′′ ∧ �.

The described transformation is obviously linear time and trans-
lates second-order logic formulas over arbitrary relations into
TMSOJ formulas. By construction, �(�) |= �(�) if and only
if � |= �.

Note that the function � from Lemma 10 applied to FO formulas
returns TFOJ formulas. This property will be used later on to prove
Theorem 11. We are now ready to prove Proposition 9.

PROOF OF PROPOSITION 9. Combined complexity has been dis-
cussed. As shown by Ajtai, Fagin, and Stockmeyer in [3] (Theo-
rem 11.2) there are MSO queries over graphs whose evaluation
is monadic ΣP

k-complete for every � (monadic ΣP
k is the class of

MSO-expressible problems with a prefix of � alternations of second-

order predicates starting with ∃, and an arbitrary first-order matrix,
disregarding the number of alternations of first-order predicates);
their negation is thus monadic ΠP

k-complete. This gives a ΣP
k lower

bound for MSO query evaluation over arbitrary structures. At the
same time Lemma 10 allows to reduce the latter problem to the one
of TMSOJ, which immediately gives us the lower bound for data
complexity. The upper bound for data complexity follows from [24]
where Stockmeyer showed that monadic ΣP

k is in ΣP
k.

Deciding essential joins. As we saw, joins are expensive in
TMSOJ for querying documents and p-documents. In contrast
TMSO queries are tractable over both deterministic and probabilistic
documents. What we study now is the problem of determining
whether a TMSOJ query is essentially join-free and, consequently,
can be evaluated efficiently.

THEOREM 11. Deciding if a query has an essential join is un-

decidable for TFOJ and TMSOJ.

We will prove this theorem by reduction from finite satisfiability
for first order logic formulas, which is known to be undecidable [26].

The next lemma shows that TFO queries are insensitive to the
multiplicity of constants that occur in the documents but not in the
queries. We need the following notions. Let � be a document where
a label � occurs � times. We denote by �a a document obtained
from � by replacing each occurrence of � with a distinct fresh
constant. A canonical document �q for a TPJ query � is a document
that is obtained from � by replacing every descendant edge with
a child edge and by replacing each different variable with a fresh
constant.

Query Language Deciding Joins

TMSOJ undecidable
TFOJ undecidable

TPJ ΠP
2-complete

TPJ{/,[]} NP-complete

Table 3: Complexity of deciding essential joins

LEMMA 12. Let � be a TFO or TP query, � a document and

� ∈ ℒ a label occurring in � multiple times, but not occurring in �.

Then � |= � if and only if �a |= �.

For TP queries the proof follows from the fact that only nodes of
� labeled with variables can be mapped to the nodes of � labeled
with �. For TFO queries the proof can be done by induction on �.

Now we can prove Theorem 11.

PROOF OF THEOREM 11. By reduction from finite satisfiability
of first-order formulas over relational structures.

Let � be an FO formula and �(�) be the corresponding TFOJ
formula constructed as described in Lemma 10. Consider the TPJ
query � in Figure 2, center; with a slight abuse of notation, we
denote its TFOJ encoding also as �. Assume that � and �(�) have
no common labels. It is easy to see that � has an essential join.

We now show that
1. If the TFOJ formula (�(�) → �) has no essential joins, then
� is not finitely satisfiable.

2. If the TFOJ formula (�(�) → �) has an essential join, then
� is finitely satisfiable.

Assume �(�) → � has no essential joins, that is, (�(�) → �) ≡
�, where � ∈ FO. If � is finitely satisfiable, then there is a finite
structure �, s.t., � |= �. Let � = �(�) be the document computed
from � as described in Lemma 10. W.l.o.g. we can assume that �
has no labels occurring in �. By this lemma, � |= �(�).

Consider a new document �1, that is a combination of � and �q ,
a canonical document of �, as in Figure 2, right, where � does not
occur in �. Clearly �1 |= � holds and consequently by Lemma 12,
�e
1 |= � also holds. Since by construction �e

1 |= �(�), we conclude
�e
1 |= �. At the same time, since � has a join variable, �e

1 ̸|= �. We
obtain a contradiction.

Assume �(�) → � has an essential join. If � is not finitely satis-
fiable, then, due to Lemma 10, we conclude that �(�) is not finitely
satisfiable. Therefore, the implication �(�) → � is a tautology,
expressible without joins, and consequently the implication has no
essential joins. We obtain a contradiction.

The proof shows that the set of formulas with essential joins is
not co-recursively enumerable. On the other hand, the set of finitely
satisfiable FO formulas is recursively enumerable, but we do not
know if this is also true of deciding essential joins: a TFOJ query �
has essential joins iff for every TFO query �′, there exists a finite
tree modeling of one but not the other. This alternation of quantifiers
does not lend itself to a straightforward enumerability proof.



5. TREE-PATTERN QUERIES WITH JOINS
In the previous section we showed that joins increase worst-case

data complexity of TMSO, while they do not affect combined com-
plexity. What we do not know is whether all queries in TMSOJ not
in TMSO are hard, or whether there are some queries with essential
joins that are still tractable. A TPJ query is a basic join query if it
has exactly one join variable and this variable occurs exactly twice.
As we now show, in the case of basic join queries, every query that
is not equivalent to a query in TP is FP#P-hard for probabilistic
documents.

Querying documents. We first study data and combined com-
plexity of TPJ query evaluation over deterministic documents. Re-
call that TP query answering over XML is polynomial in combined
complexity. The situation changes for TPJ: we now show that evalu-
ation of TPJ queries over XML is essentially the same as querying
relational structures with conjunctive queries.

PROPOSITION 13. Query evaluation for TPJ over XML is PTime

in data complexity and NP-complete in combined complexity.

Our proof is based on the observation that TPJ over XML behaves
in the same way as the class of conjunctive queries over arbitrary
relational structures.

LEMMA 14. Let Σ = {Ch,Desc, Label}. Then there exist func-

tions � and � computable in PTime such that

(i) for every document �, �(�) is a relational structure over Σ and

(ii) for every TPJ query �, �(�) is a conjunctive query over Σ,
such that � |= � if and only if �(�) |= �(�).

PROOF OF PROPOSITION 13. Lemma 10 restricted to conjunc-
tive queries gives their encoding in TPJ and the NP-hardness of
combined complexity, since the combined complexity of query eval-
uation over relational structures is NP-complete for conjunctive
queries [6]. NP-membership holds since one can guess a mapping
from the nodes of a TPJ query to the nodes of a document and check
in polynomial time that the mapping is a valuation.

It is known that data complexity of query evaluation for conjunc-
tive queries is in PTime [15]. Combining this result with Lemma 14
gives the data complexity for TPJ.

Gottlob et al. in [13] studied conjunctive queries over trees that
are related to TPJ. In their setting joins can be done on identical
nodes only, while we can join arbitrary nodes as long as they carry
the same label. As we showed in Lemma 9, this allows us to encode
queries about arbitrary relational structures into our query model
and data model. Therefore, our Proposition 13 follows from well-
known results about relational conjunctive queries, which is not true
for the results in [13].

Querying p-documents. We show that for basic join queries,
there is a dichotomy between tractable and intractable queries. It is
promising that this dichotomy has a very simple characterization,
even more so when it is contrasted with the dichotomy of conjunc-
tive queries over tuple-independent probabilistic databases [10],
where the condition for hardness is much more involved.

THEOREM 15 (DICHOTOMY). For every basic join query �,

evaluation over PrXMLmux,det is

∙ feasible in time linear if � is essentially join-free;

∙ FP#P-complete in data complexity otherwise.

To show the data complexity upper bound we need the following
lemma, that can be proved by adopting the techniques developed by
Grädel, Gurevich, and Hirsch in [14].

LEMMA 16. Let � be a query language with polynomial-time

data complexity over XML. Then � is of FP#P data complexity

over PrXMLmux,det.

PROOF OF THEOREM 15. Lemma 16 and Proposition 13 give
the upper bound, while an extension of the proof for Lemma 9 [1]
gives hardness by reduction from #2-DNF satisfiability.

We first exhibit a #P-hard TPJ query � and then show how to
generalize the construction to TPJ queries with just one variable
that occurs twice. Consider the TPJ query � in Figure 3 (left), that
clearly has an essential join.

Consider an encoding of the 2-DNF formula:

� = (�1 ∧ �) ∨ (¬� ∧ �2) ∨ (¬� ∧ �3) ∨ (�4 ∧ ¬�)

as a p-document �︀ϕ in Figure 3 (left) that one can immediately
generalize to arbitrary 2-DNF formulas. Observe that every � ∈

J�︀ϕK has the same probability, say �, and Pr(�︀ϕ |= �) = � ×
�, where � is the number of satisfying assignments for �. Thus,
answering TPJ queries over PrXMLmux,det is #P-hard.

We now show the #P-hardness using the same kind of reduction
as for the query � above. Let � be a TPJ query with one variable �
occurring twice. To distinguish these two occurrences we refer to
them as �1 (labeling a node �1 of �) and �2 (labeling �2). We now

exhibit a p-document �︀ ′
ϕ such that computation of Pr(� ′

ϕ |= �) is

#P-hard. �︀ ′
ϕ is composed of two parts: the first one, �︀ ′′

ϕ , is for the
subqueries �x1

and �x2
of �′ related to �1 and �2, and the second

one, �, for the remaining part of �′, that is, �′ without �x1
and �x2

.

We now present �xi
’s, then �︀ ′′

ϕ and finally �.
Let � be the root of �. Since in TPJ queries join variables label

only leaves, there are two paths in �: from � to the leaf �1 and from
� to �2. These paths may share some nodes, thus, assume the node
� labeled � is the least common ancestor of �1 and �2, see Figure 3
(right). Let �x1

be the maximal subquery of � such that (i) its root is
the child of �, (ii) its root is between � and �1. A query �x2

for �2

is defined analogously.
Now observe that � cannot be a parent of both �1 and �2 in �,

otherwise � is not an essential join. Indeed, if � is the parent of both
�1 and �2, then by deleting one of the nodes labeled �i one obtains
a query equivalent to �, which contradicts the essentialness of �.
Let �1 and �2 be documents such that �1 |= �x1

while �1 ̸|= �x2
,

and �2 |= �2 while �2 ̸|= �1. Such �i’s always exist and can be
constructed in EXPTime in the size of the �i’s due to Proposition 3
of [21].

We modify �1 further as �′1 by adding a child node with a fresh
label to all leaf nodes of �1 except for one given homomorphic
image �1 of �1 from �x1

into �1. This will ensure that the value
join will necessarily involve this specific node and not another one
of �1, thanks to our condition that joins only match document leaves.
We transform similarly �2 into �′2.

Assume � is a proper ancestor (ancestor but not a parent) of either

�1 or �2. Consider the p-document �︀ ′′
ϕ obtained from �︀ϕ by (i) re-

labeling the root with �, (ii) substituting every node labeled � with
the document �′1 (if �1 is empty, then � is substituted with a det

node), and (iii) every node labeled � with �′2 (if �2 is empty, then
� is substituted with a det node). Here, substituting a node labeled
� with �′1 means the following. Let node � be labeled �. Then (i) a
copy of �′1 is inserted below the parent of � (that is, � is replaced
with �′1); (ii) for the homomorphic image �1 of �1 that has been
previously chosen, we insert a new det node into �′1 as a sibling of
�i; and (iii) copy all children of � below that det node. In a similar
fashion, we substitute � with �′2.

Let the query �′ be a obtained from � by deleting �x1
and �x2

together with �1 and �2. Since � is essential in �, we have �′ ̸⊑ �,
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Figure 3: For Theorem 15. Left: a TPJ query � with an essential join and a p-document �︀ϕ encoding � = (�1 ∧ �) ∨ (¬� ∧ �2) ∨
(¬� ∧ �3) ∨ (�4 ∧ ¬�). Right: a general pattern �′ of a TPJ query with an essential join.

hence, there is a document � such that � |= �′ and � ̸|= �. Let � be
a homomorphism from �′ to � and � = �(�).

Finally, the p-document �︀ ′
ϕ is obtained from � by inserting at

the node � the subtrees of �︀ ′′
ϕ rooted at its root. Observe that by

construction of �︀ ′
ϕ, the probability of every �′ ∈ J�︀ ′

ϕK is again �.

We now show that Pr(�︀ ′
ϕ |= �′) = � × �, where � is the

number of satisfying assignments for �. Indeed, observe that in the
query composed of �x1

and �x2
rooted at � � is an essential join.

Moreover, this query can not be homomorphically embedded in �

(due to construction of �) and in a document �′′ ∈ J�︀ ′′
ϕK in a way

that none of �1 and �2 is mapped to�i, for some clause � (due to the

fact that � is essential). This gives us that for every �′ ∈ J�︀ ′
ϕK: � is

a homomorphism from � to �′ iff the label of �(�1) = �(�2) = �i,

for some clause �. Thus, by construction of �︀ ′
ϕ, there is a bijection

� between the set of worlds of J�︀ ′
ϕK that satisfy � and the set � of

satisfying assignments of �, which yields:

Pr(�︀ ′
ϕ |= �) =

︁

µ∈M

Pr(�(�)) =
︁

µ∈M

� = � · |� |,

and concludes the proof.

It is open whether this dichotomy theorem can be extended to
the general case of multiple variables with possibly more than two
occurrences. Another important limitation of this result is that it
only holds when join variables are required to be on query leaves
(value joins). It is for instance easy to see that if two join variables
label nodes in a parent-child relationship, the query can be evaluated
efficiently even if the join is essential. This comes from the fact
that given a p-document node, it is possible to deterministically get
the label of its parent. In a more general setting where the label
of internal nodes can be given by a probability distribution, the
dichotomy proof can be adapted.

Now we know that essential joins are an important criterion to
determine whether queries are intractable. Thus, it is important to
be able to detect whether a TPJ query is essentially join-free. In the
next section we present a conceptually simple test for essential joins.
Unfortunately, as we also show, this test is intractable.

Deciding essential joins. We define the core of a TPJ query �,
denoted cr(�), as the TP query obtained from � by replacing every
occurrence of a join variable with a distinct fresh variable.

THEOREM 17. A TPJ query � has no essential joins iff � ≡ cr(�).

To prove this we use the following fact due to Miklau and Su-
ciu [21]. Let � be a TPJ query and � the length of �’s longest chain
of nodes, where all nodes are labeled with wildcards (i.e., non-join
variables) and all edges are child edges. Let � ∈ ℒ be a label that
does not occur in � and�a,q is the set of documents obtained from �
by (i) expanding every descendant-edge into a chain of child-edges
of length at most �+1, (ii) labeling every node of these chains with
�, and (iii) substituting every variable with a fresh label.

FACT 18 ([21]). Let �1 and �2 be TP queries and let � be a

label that does not occur in �1 and �2. Then �1 ⊑ �2 if and only if

� |= �2 for every document � ∈ �a,q1 .

PROOF OF THEOREM 17. The if direction is obvious. For only-

if, assume � ≡ �̂ for a TP query �̂. We show that � ≡ cr(�). Since
� ⊑ cr(�) obviously holds, we will prove cr(�) ⊑ �.

Assume that � has exactly one join variable, that is, there is
exactly one variable � occurring in � more than once. Let � be all
nodes in � labeled with �.

Let � and � be fresh constants for both � and �̂. Consider the
set of documents �a,q , where, w.l.o.g., we assume that in every
� ∈ �a,q all the nodes of � are labeled with �. By construction, for
every � ∈ �a,q we have � |= �. Hence, � |= �̂ also holds and, by
Lemma 12, we obtain �b |= �̂. Let us collect all such �b’s in �b

a,q ,

that is, �b
a,q = {�b | � ∈ �a,q}. By construction �b

a,q = �a,cr(q),
and we are in the conditions of Fact 18: �1 = cr(�) and �2 = �̂
are two TP queries such that for every � ∈ �a,cr(q) it holds � |= �̂.
Hence, cr(�) ⊑ �̂ and, due to equivalence of � and �̂, we obtain
cr(�) ⊑ �.

The proof can be extended to the general case, when � has more
than one join variable, by iterating the construction above over all
join variables.

We have a conceptually simple test for essential joins: it is suffi-
cient to test that a query is equivalent to its core to guarantee that
it is essentially join-free. The next theorem shows that this test is
expensive for the class of queries with at least child navigation and
branching.

THEOREM 19. Deciding if a query has an essential join is ΠP
2-

complete for TPJ and NP-complete for TPJ{/,[]}.

A proof can be done using similar construction as by Deutsch
and Tannen in [11] for the problem of query containment for XPath
extensions.

6. CONCLUSION AND DIRECTIONS
We studied complexity of query evaluation over XML and prob-

abilistic XML for tree-pattern and monadic second-order queries
with joins. We also investigated the complexity of deciding essential
joins. Our results are summarized in Tables 2 and 3.

There are a number of open questions remaining in our study:
a tight complexity bound for combined complexity of TPJ over
PrXML, semi-decidability of essential joins for TMSOJ, and a
criterion for deciding essential joins in TMSOJ.

Another major open question is whether the dichotomy of tracta-
bility for basic TPJ queries extend to arbitrary ones, still relying
on the notion of essential join. If it does, we have a remarkable
contrast with what happens for relational probabilistic data. Our
dichotomy is conceptually very simple: it is sufficient to test that
a query is equivalent to its core to guarantee that it is tractable,
but this test itself is intractable in the query size. In the relational



setting, Dalvi and Suciu proved a dichotomy for conjunctive que-
ries [10] over block-independent databases which guarantees tracta-
bility of queries, but involves a conceptually complicated, though
polynomial-time testable, characterization of queries. We would
like to understand better the connections between these dichotomy
results, if any.

Continuing with the discussion after the proof of Theorem 15 on
the dichotomy, another further direction to study is a more general
form of joins in queries. In our query model we allow for joins on
document leaves only, while one may also think of structural joins,
that is, joins which can be imposed on the labels of intermediate

nodes in trees and not only on the leaves. One way of preserving the
results of this paper in the setting of both value and structural joins
is to consider a slightly different data model. The current model
allows for distributional nodes that define structural probabilistic
alternatives, that is, it allows for distributions on children of nodes
only. What we need are non-structural probabilistic alternatives,
that is, distributional nodes that define alternatives of labels for a
given node. For example, we should be able to express that a node
� of a document is labeled either with � or �.

Another direction is a more general study of joins in the context
of both queries and data. Recall, when queries and probabilistic data
are tree-shaped, query answering is tractable, while adding joins to
queries makes it hard. An analogous situation happens when we
add a form of joins in data, as it is done in [2], where probabilistic
XML is defined by means of probabilistic annotations (that are
conjunctions of literals over Boolean random variables) on the nodes
of documents. For such probabilistic data query answering becomes
hard for tree-shaped queries: every TP query is either trivial, i.e.,
it retrieves just the root of the data, or it is FP#P-complete [17],
and we again have a dichotomy. Note that the probabilistic data
of [2] is tree-shaped, but the dependencies between the annotations
are graph structured. Another way of introducing joins in data is
by considering data graphs, where MSO query answering is ΣP

k-
complete [3]. To sum up, joins can be seen as a way to add graph
structure either to queries, or to data (on the level of data itself or on
the level of probabilistic dependancies), and we are missing a study
that bridges these alternatives.
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