
Scheduling Large Jobs by Abstraction Refinement

Thomas A. Henzinger Vasu Singh Thomas Wies Damien Zufferey ∗

Institute of Science and Technology, Austria
{tah,vsingh,wies,zufferey}@ist.ac.at

Abstract
The static scheduling problem often arises as a fundamen-
tal problem in real-time systems and grid computing. We
consider the problem of statically scheduling a large job
expressed as a task graph on a large number of computing
nodes, such as a data center.

This paper solves the large-scale static scheduling prob-
lem using abstraction refinement, a technique commonly
used in formal verification to efficiently solve computa-
tionally hard problems. A scheduler based on abstraction
refinement first attempts to solve the scheduling problem
with abstract representations of the job and the computing
resources. As abstract representations are generally small,
the scheduling can be done reasonably fast. If the obtained
schedule does not meet specified quality conditions (like
data center utilization or schedule makespan) then the sched-
uler refines the job and data center abstractions and, again
solves the scheduling problem. We develop different sched-
ulers based on abstraction refinement. We implemented
these schedulers and used them to schedule task graphs from
various computing domains on simulated data centers with
realistic topologies. We compared the speed of scheduling
and the quality of the produced schedules with our abstrac-
tion refinement schedulers against a baseline scheduler that
does not use any abstraction. We conclude that abstraction
refinement techniques give a significant speed-up compared
to traditional static scheduling heuristics, at a reasonable cost
in the quality of the produced schedules. We further used our
static schedulers in an actual system that we deployed on
Amazon EC2 and compared it against the Hadoop dynamic
scheduler for large MapReduce jobs. Our experiments indi-
cate that there is great potential for static scheduling tech-
niques.

∗ The authors are listed in alphabetical order.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys’11, April 10–13, 2011, Salzburg, Austria.
Copyright c© 2011 ACM 978-1-4503-0634-8/11/04. . . $10.00

Categories and Subject Descriptors D.4.1 [Operating Sys-
tems]: Process Management—Scheduling

General Terms Algorithms, Design, Performance

Keywords Data centers, Scheduling, Abstraction refine-
ment

1. Introduction
The trend in computing goes towards many parallel units of
computation, like multicore processors and large data cen-
ters. This trend calls for new techniques that enable the effec-
tive utilization of the available computational resources. One
such technique is advanced resource allocation (Burchard
[2004], Lee [1997], Smith [2000], Stone [1977]) where one
computes, in advance, a schedule for each job that is to be
executed on a cluster of computation nodes. The computed
schedule guarantees at the same time a certain quality of ser-
vice and an effective use of the resources provided by the
data center. In this paper we present a novel technique to ef-
ficiently solve large instances of such static scheduling prob-
lems.

In an environment where perfect information about the
resources and the job requirements is available, a static
scheduler can produce better schedules than a dynamic
scheduler, simply because it uses more information for mak-
ing its scheduling decisions. However, perfect information
is often an unrealistic assumption because (1) resource re-
quirements of jobs cannot be predicted well enough in ad-
vance, (2) the resources in the data center rapidly change
over time, and (3) it is not possible to gather all informa-
tion at a central location. Many systems therefore rely ex-
clusively on dynamic and distributed scheduling techniques
such as work stealing (Blumofe [1994]). Still, hybrid ap-
proaches that combine static and dynamic scheduling can
help to increase performance even in incomplete informa-
tion environments (Kwok [1999b]). Our technique provides
many opportunities for exploring such hybrid approaches.

We consider a setting where jobs are given by directed
acyclic graphs whose nodes are individual computation tasks
and whose edges between tasks denote data dependencies.
Likewise the data center is modeled as a graph with nodes
corresponding to computation units and edges to network
links. The available resources are considered to be hetero-

geneous, i.e., computing power and network bandwidth may
vary throughout the data center. Computing optimal static
schedules in this setting boils down to solving computa-
tionally hard optimization problems (Papadimitriou [1988]),
which is practically infeasible even for small problem in-
stances.

To make static scheduling feasible, a number of schedul-
ing heuristics (Gerasoulis [1992], Topcuouglu [2002], Yu
[2006; 2005]) have been proposed in the past that can com-
pute reasonable approximations of optimal static schedules.
There are two problems with the practicality of these heuris-
tics. First, due to the sheer number of parameters of the
underlying optimization problem, each of these heuristics
makes different assumptions on the topology of the task
graph and the data center respectively. Consequently, their
performance can vary significantly in practice and there
is no single heuristic that performs best in all situations
(Braun [1999], Munir [2008]). It therefore seems neces-
sary to develop techniques that are able to automatically
choose a scheduling heuristic that is appropriate for a partic-
ular problem instance or automatically adapt the parameters
of a heuristic to the problem at hand. Second, the existing
scheduling heuristics typically have nonlinear time complex-
ity in the number of tasks in the task graph and the number of
computation nodes in the data center. For large data centers
with thousands of computation nodes and large jobs such as
MapReduce jobs (Dean [2008]) with thousands of individ-
ual tasks, these heuristics simply get too expensive, if they
are used without careful optimizations.

We propose a new scheduling technique that addresses
these problems. Our technique is based on the idea of ab-
straction refinement (Clarke [2000], Kurshan [1994]), which
has been originally developed for tackling computationally
hard or even undecidable problems in the context of formal
verification.

Our technique works as follows: instead of solving the
concrete instances of the scheduling problem directly, the
scheduler first computes an abstract instance that hides all
information in a concrete instance that is seemingly irrele-
vant or redundant for finding a good schedule. For example,
an abstract instance may group together independent tasks of
a job with similar resource requirements, so that they can be
scheduled in bulk. Similar abstractions can be applied to the
data center representation. For example, the network topol-
ogy of a data center is typically a tree with heterogeneous
network links. This complicates scheduling. The abstract in-
stance may now abstract entire subtrees of this tree by fully
connected graphs with homogeneous network links, thereby
grouping together machines that are physically close to each
other in the data center. The abstractions applied to the con-
crete instance are not arbitrary: rather, they provide certain
guarantees such as, if a schedule for the abstract instance
exists, then a schedule for the concrete instance also exists.

After the abstract instance has been computed it is solved,
e.g., by using an existing scheduling heuristic. As abstract
instances are generally small, the scheduling can be done
fast. If the obtained schedule does not meet certain qual-
ity conditions (like data center utilization and schedule
makespan), then the scheduler refines the abstraction, yield-
ing a new abstract instance that can again be solved. This
process is repeated iteratively until a good schedule has been
found, or the concrete instance is reached.

We present a general framework of abstraction refinement
scheduling that formalizes the notion of abstract instances
of task graph scheduling problems and what it means for
an abstract instance to be a refinement of another one. We
then develop two different schedulers, FISCH and BLIND,
that are instances of this framework. FISCH (Free Interval
Scheduler) efficiently stores the free intervals (where new
tasks can be scheduled) in the data center in sorted order,
and allocates these intervals to groups of tasks. FISCH main-
tains a fixed abstraction of the data center, and refines the
job abstraction if the quality conditions are not met. On the
other hand, BLIND relies on a coarse view of the data cen-
ter. BLIND uses a fixed abstraction of the job, and refines
the data center abstraction when necessary. We implemented
the two schedulers and used them to schedule task graphs
of different schemas: MapReduce, wavefront, FFT, Laplace,
and generic fork-join computation, on simulated data centers
with realistic topologies like meshes and trees. We compare
our schedulers with a baseline scheduler that uses a greedy
heuristic on the concrete job and the data center. Our sched-
ulers outperform the baseline scheduler by more than 100x
in scheduling speed, while the utilization for the different
schedulers is comparable. We experiment with the scalabil-
ity of our schedulers by evaluating their performance on data
centers of up to 8000 nodes. Our schedulers can efficiently
schedule a sequence of 1000 jobs (where each job consists
of 1000 tasks on average) on a data center of 8000 nodes in
up to two seconds per job.

We further integrated our static schedulers in an actual
system and compared it against the Hadoop system (Apache
Hadoop) that dynamically schedules large MapReduce jobs.
We deployed both systems on Amazon EC2 and used them
for scheduling image processing jobs. In the static descrip-
tions of the MapReduce jobs that we gave as input to our
system, we conservatively overestimated the running times
of the individual image processing tasks of each job. To ac-
count for this imprecision in the job descriptions, our system
combines our static abstraction refinement schedulers with
dynamic scheduling techniques such as backfilling (Feitel-
son [1998]). In our experiments we observed that the sched-
ules produced by our system have a smaller makespan than
the schedules produced by the Hadoop system. We therefore
see great potential for hybrid systems that combine efficient
static schedulers with dynamic scheduling techniques.

The paper is organized as follows. Section 2 describes the
theoretical framework. Section 3 describes the FISCH sched-
uler and Section 4 the BLIND scheduler. The two schedulers
are then evaluated in Section 5. Section 6 discusses related
work and Section 7 concludes the paper.

2. Framework
In this section we present our general framework of abstrac-
tion refinement scheduling.

2.1 Jobs, Data Centers, and Schedules
We model a job as a dataflow of tasks and a data center
as a set of computation nodes connected by communication
links. The scheduling problem concerns assigning nodes and
time intervals to tasks in a job in a manner such that the
tasks start at a time only when all its preceding tasks are
finished, and the task’s inputs are available at the assigned
node. We now describe jobs, data centers, schedules, and
their abstractions in more detail.

Jobs and Job Abstractions. A job is a directed acyclic graph
(DAG), where the vertices in the graph represent pieces of
computation, called tasks, and the edges represent the data
transfered between tasks, which we call objects. Each task
has an associated duration and each object an associated
size.

Often, a job is the result of unfolding a much smaller
structure. For example, MapReduce jobs result from unfold-
ing a single operation (mapper), in parallel, on a set of data.
A topological sort on a MapReduce job (with possibly mul-
tiple mapper layers) results in blocks of independent tasks.
Grouping tasks by their level in the topological sort, we get
an abstract job much smaller than the actual concrete job.

Abstractions of concrete jobs are again represented as di-
rected acyclic graphs. In an abstract job we call the vertices
abstract tasks and the edges abstract objects. An abstract job
is obtained from a concrete job by grouping together tasks
to abstract tasks (called blocks), ignoring the data dependen-
cies between the tasks in each group. The duration of a block
is the maximal duration of the represented concrete tasks. In
addition to the duration we further associate a multiplicity
with each block that denotes the number of concrete tasks
that it represents. In an abstract job that is obtained from a
concrete job there is an abstract object between two blocks
whenever there is an object between two representatives of
the blocks. The size of the abstract object is the maximal size
of all such concrete objects between representatives.

Figure 1 shows examples of different jobs. J1 is a con-
crete MapReduce job, where t1 . . . t8 are mappers in two
stages, and t9 is a reducer. The jobs J2 and J3 are abstrac-
tions of J1, and the job J2 is also an abstraction of J3. Note
that our job abstraction over-approximates the requirements
of a job, namely the transfer time for the data objects and
the durations of tasks within each group. We call this pes-
simistic abstraction. Pessimistic abstraction guarantees that

t1

t2

t3

Out
10

100

90

40

30

t4

In3

15

20

45

50

30

40

90

100 t5

t6

t7

t8

t9

(a) Concrete job J1

Out
10

In3 t9
t1
t2
t3
t4

t5
t6
t7
t8

50 100 100

(b) An abstract job J2

Out
10

40
In3

20
40

50 100
100

t9

t7
t8

t5
t6

t1
t2

t3
t4

(c) An abstract job J3

Figure 1. An examples of a concrete MapReduce job J1 and
two possible abstractions J2 and J3

we can efficiently compute well-formed concrete schedules
from well-formed abstract schedules.

The abstraction of a job is parameterized by the way
in which tasks are grouped together into blocks. One can
formalize this grouping in terms of an equivalence relation
that induces equivalence classes (i.e., blocks) of tasks. We
say that an abstract job J# abstracts a concrete job J , if
there exists an equivalence relation ≈ on the tasks of J such
that J# is obtained from J by grouping tasks according
to ≈, as described above. We let t# denote an abstract
task, and T# denote a set of abstract tasks. In principle the
equivalence relation can group tasks arbitrarily. However, we
require that the resulting abstract jobs are still acyclic graphs.
We now describe two specific job abstractions that we will
use later.

Topological Job Abstraction. A particularly useful job ab-
straction is the topological abstraction. Given a job J we
can assign each task t in J a number level(t) that denotes
the minimal length of all paths from t to a source of the task
graph of J . We then define the topological job abstraction
relation ≈t that relates two tasks in J iff they have the same
level. The relation ≈t is also the largest job abstraction rela-
tion. For a job with n tasks and m objects, creating a topo-
logical job abstraction requires O(n+m) time.

Similar Duration Job Abstraction. As we over-approximate
the duration of each block by the duration of the longest
task, it is meaningful to produce blocks where all tasks have
similar durations. An α-similar duration job abstraction is a
partition of the topological abstraction such that the longest
task is at most α times the shortest task in every block. For

3

1

3

1

2

1

2

3

1

2

1

2

1

2

2 3

1

2 3

1

1 1

2 6

1

C1 C2 C3

Figure 2. An example of a concrete data center C1 and two
possible abstractions C2 and C3

small jobs, one can use a computationally intensive quality
threshold clustering algorithm (Heyer [1999]). In our case
this takes time O(k3) per block, where k is the number of
tasks in a block. For larger jobs, it is practical to sort the tasks
according to their duration and group them on traversal,
which takes time O(k log k) per block.

Data Centers and Data Center Abstractions. Similar to jobs
we represent data centers and their abstractions as connected
graphs where vertices correspond to computation nodes and
edges to network links. Each computation node in a data cen-
ter has an associated computing power and multiplicity (used
for the abstraction), and each network link has an associated
bandwidth. The abstraction of a data center is defined by
abstracting heterogeneous connected subgraphs in the data
center by fully connected homogeneous graphs. These fully
connected graphs are represented by abstract computation
nodes (called groups) that are labeled by the minimal com-
puting power of all nodes in the abstracted subgraph and a
self-loop whose bandwidth is given by the minimal band-
width of all links in the subgraph. The multiplicity of the
abstract node corresponds to the number of nodes in the
abstracted subgraph. As for job abstraction, the data center
abstraction is parameterized by the way in which compute
nodes are grouped together, which one can again formalize
in terms of an equivalence relation on nodes. We say that an
abstract data center C# abstracts a concrete data center C if
an equivalence relation ≈ on the nodes in C exists such that
C# is obtained from C by grouping nodes according to ≈,
as described above. We let n# denote an abstract node in the
data center, and N# denote a set of abstract nodes.

A common network topology found in data centers is a
tree. Figure 2 shows such a data center C1 with one top-level
router, two rack level routers where each rack contains three
machines. The nodes contain the cpu power factor, the edges
are annotated with the bandwidth. We represent routers as
computation nodes with multiplicity 0. The abstract data
centers C2 and C3 both abstract C1. In C2 the nodes in the
two subtrees are grouped together into two groups. In C3

the entire tree is collapsed to a single group. Note that data
center abstractions are again pessimistic, which means that
an abstract data center under-approximates the resources of
the concrete data centers that it abstracts.

Schedules. Given a (concrete or abstract) job J and a (con-
crete or abstract) data center C, a schedule s for J,C assigns
to each task in J a node in C together with a time interval,
indicating where and when the task is to be executed. We call
s a concrete schedule if both J and C are concrete. A sched-
ule is well-formed if (i) the time slot assigned to each task
is sufficient for the task to finish, i.e., it is consistent with
the duration of the task and the computation power of the
assigned node, (ii) for each task t, all its predecessor tasks
finish in time so that t can fetch all its input objects before
its assigned time slot starts, (iii) the schedule respects the
multiplicity of the nodes and tasks, i.e., at any time point the
number of tasks (respectively, the sum of their multiplicities
in case of abstract tasks) assigned to each node does not ex-
ceed the node’s multiplicity.

Let J, J# be jobs and C,C# data centers such that J#

abstracts J and C# abstracts C. For every task t of J
we denote by t# the abstract task in J# that contains it,
and similarly, for every node n of C we denote by n# the
containing abstract node in C#. We then say that a schedule
s for J,C refines a schedule s# for J#, C# if s assigns
task t to node n then s# assigns t# to n# and the time
slot assigned to t# by s# contains the time slot assigned
to t by s. The key property of pessimistic abstraction is that
if s# is a well-formed schedule for J#, C# then a well-
formed schedule s for J,C that refines s# is guaranteed to
exist. Moreover, s can be computed from s# in time linear
in the size of J and C. Thus, given a solution to an abstract
scheduling problem, we can efficiently obtain a solution to
the original concrete scheduling problem.

Developing Good Abstractions. Intuitively, a ”good” ab-
straction is one that represents the concrete problem instance
concisely with little loss of relevant information for finding
schedules that meet the quality conditions. Natural abstrac-
tions are, e.g., symmetry reductions where tasks with similar
durations and I/O dependencies are grouped together or, in
the case of data center abstractions, nodes with similar per-
formance characteristics. The real strength of the abstrac-
tion principle is that it separates the problem of encoding
domain-specific knowledge from the problem of implement-
ing the actual scheduling heuristics. For instance, the data
center abstraction illustrated in Figure 2 specifically exploits
the tree topology of the network and enforces the underlying
scheduling heuristic to schedule jobs on machines that are
physically close to each other, thereby reducing the overall
network traffic. Also, abstractions do not need to be defined
statically but may depend on the state of the system. For in-
stance, in order to compute a good job abstraction one can
keep track of the sizes of free intervals of individual nodes
in the system and then group tasks with sequential data de-
pendencies to blocks that can best fit into these intervals. In-
dividual abstractions that cover different aspects of domain-
specific knowledge can be developed in isolation and then
combined together. For instance, for abstracting a job one

Algorithm 1 Generic abstraction refinement scheduler
J#, C# ← InitialAbstraction(J ,C)
loop
s# ← Schedule(J#,C#)
compute well-formed schedule s for J,C from s#

if Φ(s) then return s
else J#

1 , C#
1 ← Refine(Φ,J ,C,J#,C#,s)

if J#
1 = J# ∧ C#

1 = C# then return s
else J#, C# ← J#

1 , C
#
1

end loop

can first apply a topological abstraction grouping tasks with
specific data dependencies and then a symmetry reduction
that merges similar blocks into super blocks.

2.2 Abstraction Refinement Scheduling
Our generic abstraction refinement scheduler is now given
in Algorithm 1. The algorithm takes a concrete job J , a
concrete data center C, and a quality condition on sched-
ules Φ as input. The condition Φ can, e.g., check whether a
schedule s meets a given deadline. However, Φ might also
use more sophisticated quality measures that implicitly de-
pend on C or J . The output of the algorithm is a complete
well-formed schedule s for J,C. The algorithm starts from
an initial coarse abstraction J#, C# of J,C and then iter-
atively computes abstract schedules s# for J#, C#. If the
computed schedule s# can be refined into a concrete sched-
ule for J,C that satisfies Φ then this schedule is returned.
Otherwise the current job and data center abstractions are
refined.

Any specific instance of our generic abstraction refine-
ment scheduler provides its own implementation of the sub-
routines InitialAbstraction, Schedule, and Refine. The success
of an abstraction refinement algorithm depends on the qual-
ity of the abstractions, that is, how well an abstraction cap-
tures the essence of the concrete instance without keep-
ing track of too much information. In Sections 3 and 4 we
present two specific instances of our generic abstraction re-
finement scheduler that exploit these opportunities.

Our concrete abstraction refinement schedulers actually
consider the more general problem of how to schedule entire
streams of jobs on a data center. Also, our concrete imple-
mentations treat the quality conditions only as a soft mea-
sure. If after a certain number of refinement steps no sched-
ule has been found that meets the quality condition then the
best schedule obtained so far is returned. This ensures that
for very large problem instances the refinement algorithm
does not end up solving the original concrete scheduling
problem.

Pessimistic abstraction ensures that the best solution for
a given scheduling instance is at least as good as the best
solution for any other instance that abstracts it. Thus, in the-
ory our algorithm guarantees that the quality of the produced

schedules improves monotonically with each iteration of the
refinement loop. In practice, however, this is not always true
because we employ heuristics instead of computing optimal
solutions. In rare cases the quality of the produced schedules
can therefore degrade. To avoid this problem we keep track
of all schedules that have been produced in previous itera-
tions of the refinement loop and always return the best of all
computed schedules.
Quality Measures. In this paper, we consider two quality
measures for refinement: data center utilization and sched-
ule makespan. These measures correspond to concrete data
centers and jobs. The data center utilization is defined as the
arithmetic mean of the utilization of the individual nodes in
the data center. Given a concrete schedule s, the utilization
of a concrete node n is defined as the sum over the lengths
of all busy intervals of n in s, divided by the total length
of the schedule on n. The schedule makespan is defined as
the difference of the finish time of the last finishing task and
the start time of the earliest starting task in the schedule.
Note that these two quality measures are chosen because of
their complementary nature. A completely sequential sched-
ule for a job results in 100% data center utilization, and
large schedule makespan. On the other hand, a highly par-
allelized schedule results in a relatively poor utilization (as
parallelism requires data transfer which leads to unutilized
intervals), but a short makespan.
Refining the Model. We assume a rather simple model for
jobs and data centers. For instance, the configuration of a
node only captures the computation power, which is as-
sumed to be independent of the load of the system. As we
show in Section 5.2, using such a simple model is sufficient
to generate static schedules for MapReduce jobs that outper-
form dynamic schedules. However, we can also easily ex-
tend our abstractions and algorithms to more realistic models
where computation power is a function of the load of the sys-
tem, and that take into account additional parameters such
as I/O bandwidth, memory footprint of tasks, and amount of
RAM provided by nodes. What is important for abstraction
techniques to work well is that there is a certain regularity in
the distribution of these parameters. If, e.g., the performance
characteristics of computation nodes are extremely hetero-
geneous then abstraction will either lose too much informa-
tion to produce good schedules, or the complexity reduction
obtained by abstraction will be insignificant.

3. Job Refinement Scheduler: FISCH
We now present our first scheduler, Free Intervals Scheduler
(FISCH). Basically, FISCH keeps track of the free intervals
on all computing nodes in the data center in an efficient
manner, and uses that information to schedule the blocks of
tasks in the job. FISCH uses a fixed abstraction of the data
center. In the description below, we refer to an abstract node
as a group. We first explain the motivation for designing
FISCH. Then, we analyze the complexity of FISCH for a

given abstraction. Then, we describe how refinement works
in FISCH, and discuss various optimizations.

3.1 Design Principle
The design of FISCH is inspired by an observation that inde-
pendent tasks in a data parallel job can be scheduled simulta-
neously, which leads to the idea that the cost of maintaining
the set of the free intervals on the nodes in the data center
is amortized across the independent tasks. We draw an anal-
ogy to the inverted indices used in search algorithms (Knuth
[1973]). An inverted index algorithm maintains a data struc-
ture that records for every word in the dictionary, the loca-
tion of the occurrences of the word. When a new word is to
be searched, the field corresponding to the input word in the
data structure is read. While creating the inverted index is
expensive, the cost is amortized across the number of words
searched for.

FISCH works similarly. While a conventional scheduling
algorithm would search for free intervals on the nodes to
schedule a new task, FISCH maintains the list of all free inter-
vals per group of nodes. When a new task is to be scheduled,
FISCH simply returns the first free interval. The interesting
point is that when k new tasks are to be scheduled, FISCH re-
turns the first k free intervals. However, note that apart from
searching for free intervals, FISCH also needs to update the
set of free intervals whenever a new task is scheduled. We
shall see how this is efficiently achieved.

Before we delve into the various algorithmic and imple-
mentation challenges of FISCH, we describe the above idea
in Algorithm 2. The algorithm uses the following notation.
For a job we denote by T the set of its tasks respectively
blocks. Data objects of J are encoded by a function O that
maps the input and output tasks of an object to the size of
the object. By D(t) we denote the duration of a task t. For a
data center C we denote by N the set of its nodes. The func-
tion L(n1, n2) denotes the bandwidth of the network link
between the nodes n1 and n2 and P (n) denotes the compu-
tation power of node n. The scheduler keeps track of both
the concrete job J and its current abstraction J#. We al-
ways use the superscript # to distinguish the constituents of
J from those of J#. The algorithm further uses the func-
tions fin : T# → N, which gives the finish time of each
block, and loc : T# → N#, which gives the location of
each scheduled block. Let fi be a representation of a free in-
terval. The function intv : N# → fi∗ denotes the sequence
of free intervals on the concrete nodes within a group. A
block is called ready when all the predecessors of the block
are scheduled. The algorithm picks the blocks one by one,
and schedules them in a group that finishes the execution the
earliest. The scheduling of a block depends on the following:
the finish time and the location of the predecessor blocks,
and the size of the data transferred from the predecessor
blocks. The function get(b, k, d , intv(n#)) returns the first
k intervals after time b of size d from the set intv(n#) of
free intervals.

Algorithm 2 The FISCH scheduler
while T# is not empty

choose a ready block t# ∈ T#

for each predecessor block t#p of t#

let fin(t#p) = latest finish time of tasks in t#p
let loc(t#p) = group where the block t#p is scheduled

for each group n# ∈ N#

b = maxt#p
(fin(t#p) +O(t#p , t

#)/L(loc(t#p), n#))

d = D(t#)/P (n#)
〈first(n#), rem(n#)〉 = get(b, |t#|, d , intv(n#))

n#c = argminn# latest finish time in first(n#)
schedule tasks in t# on first(n#c)
update intv(n#c)) as rem(n#c)
remove t# from T#

3.2 Implementation of FISCH

We now describe how to design the free intervals data struc-
ture so that the above algorithm is efficient. Basically, we
want fast implementations for the get function described
above.

We represent a free interval fi as (n, s, e) or (n, s), where
n is a concrete node of the data center, s is the start time
of the free interval, and e, if given, is the end time of the
free interval. If e is not given, then the node is free forever,
starting from time s. For every group n# ∈ N#, FISCH
stores the set intv(n#) of all free intervals as a queue sorted
by the start times of the intervals.

FISCH implements get using Algorithm 3. The algorithm
uses three additional sets frags , leftovers , and smaller of
free intervals. These are also implemented as sorted queues.
For a given interval fi , we refer to its concrete node, start
time, and end time as n(fi), s(fi), and e(fi) respectively.

The algorithm for get starts as follows: it first marks the
intervals from 0 to b busy. This is done as follows: all inter-
vals that end before b are removed, and for others, if the start
time is less than b, then it is set to b. This ensures that only
intervals after b are returned as free intervals. Then, FISCH
looks at the first free interval fi in intv(n#). If the length
of fi is smaller than the required duration d, it is put into the
queue smaller . Otherwise, an interval of length d is cut from
fi , and the remaining interval fi ′ is put into the queue frags
if the length of fi ′ is at least d, and into the queue leftovers
otherwise. From the next iteration onwards, FISCH consid-
ers the minimum of the first intervals in frags and intv(n#).
Note that this allows FISCH to find the earliest k intervals
of size at least d. After k intervals have been found, FISCH
merges together the sorted queues. The interesting part of
the implementation is that the four queues smaller , frags ,
leftovers , and intv(n#) are individually sorted, and so they
can be merged together in linear time. So, get requires, in
the worst case, O(|intv(n#)|) time. The size of intv(n#)
depends on the number of tasks already scheduled on group

Algorithm 3 get(b, k, d, intv(n#))

frags = first(n#) = leftovers = smaller = ∅
mark the interval (0, b) as busy in intv(n#)
while |first(n#)| < k

if s(head(frags)) > s(head(intv(n#))) then
fi = pick and remove head of intv(n#)

else
fi = pick and remove head of frags

if length(fi) ≥ d then
fi ′ = (n(fi), s(fi), s(fi) + d)
add fi ′ to first(n#)
fi ′′ = (n(fi), s(fi) + d, e(fi))
if length(fi ′′) > d then

add fi ′′ to frags
else

add fi ′′ to leftovers
else

add fi to smaller
rem(n#) = frags ∪ smaller ∪ leftovers ∪ intv(n#)
return 〈first(n#), rem(n#)〉

n#. This immediately leads us to the worst-case complex-
ity of FISCH as O(l · k + m · o), where l is the number of
tasks scheduled on the data center, o is the number of objects
in the abstract job, k is the number of blocks in the abstract
job, and m is the number of groups in the abstract cloud.

3.3 Optimizations
There are various optimizations that do not improve the
worst-case complexity of FISCH, but indeed improve the
performance in realistic settings.
Preferred nodes. Consider a MapReduce job with multiple
map stages as shown in Figure 1(a). It is intuitive to schedule
the second stage mapper task on the same concrete node as
the corresponding first stage mapper task. For example, t5
should be scheduled on the same node as t1. This eliminates
any data transfer between the stages, and the second stage
can start as soon as the first stage finishes. While scheduling
a particular block, we look whether all dependencies of a
concrete task within the block are scheduled on a particular
concrete node. If so, we mark the node as preferred. While
searching for free intervals in a group, we divide the group
into the set of preferred and other nodes.
Storing free intervals as a duration-indexed map. A second
optimization is to represent intv(n#) as a hashmap instead
of a list. Let integers k1 . . . kn be the keys of the hashmap.
Then, corresponding to key ki, we store a sorted queue
of free intervals on the group, such that each interval has
duration in the range [ki, ki+1). This eliminates the effort of
searching the free intervals corresponding to key ki if the
duration we are looking for is more than ki+1.

3.4 The Refinement Step
Till now, we have described how FISCH works at a given
abstraction of the job. FISCH starts with the topological ab-
straction of the task graph as the coarsest abstraction. How-
ever, different tasks in a block may have varying durations
in the topological abstraction. This may lead to poor utiliza-
tion of the resources, as FISCH searches for intervals of the
maximum duration in the block. As an example, consider
the job J1 in Figure 1(a). FISCH shall start with the topo-
logical abstraction J2 (Figure 1(b)), which can degrade uti-
lization or increase the schedule makespan. If FISCH finds
that the obtained schedule does not satisfy these quality con-
ditions, then FISCH iteratively reduces the parameter α and
computes a similar-duration job abstraction. Note that at the
concrete level of the job (when α = 1), FISCH considers ev-
ery concrete task one by one, and schedules it in the group
in which the task shall finish the earliest. This is similar to a
conventional greedy scheduling heuristic.

4. Data Center Refinement Scheduler: BLIND
We now present our second scheduler, BLIND. The BLIND
scheduler starts with an initial abstract job, which is obtained
from the input job by using the job duration abstraction de-
scribed in Section 2.1. The initial abstract data center is ob-
tained from the input data structure by collapsing all compu-
tation nodes into a single node. The scheduler keeps the job
abstraction constant but refines the data center abstraction as
required. We now describe the scheduler in detail.

4.1 Design Principle
BLIND is inspired by the idea of buddy lists used in garbage
collection (Knowlton [1965]). A buddy memory allocator
maintains a partition of the memory. For each allocation
request the allocator recursively refines the partition in order
to find the best suitable free memory block. Each refinement
step splits some block into two new blocks. The partition
is therefore represented as a binary tree. One advantage of
this data structure is that when allocated memory is freed
then compaction can be easily done by collapsing the tree.
BLIND generalizes the idea of buddy lists from a binary tree
to the tree induced by the topology of the data center. A
best-fit allocation is used to schedule tasks from one job
to machines close to each other. As for a traditional buddy
list, the representation of the data center changes with each
allocation.

Consider a data center with a tree topology as shown in
Figure 2. A buddy list abstraction of the data center can be
viewed as cutting the tree at a certain depth, and summariz-
ing the subtrees below the cut at the respective router. The
summary keeps track of the number of compute nodes in the
subtree, the number of free nodes in a subtree starting at n#

(which we denote by A#(n#)), and events corresponding to
allocation and release of these nodes. In order to fully ex-
ploit these abstract nodes we group the data parallel parts

of the jobs by bulk and we modify the scheduler to allocate
bulks of tasks to the abstracted nodes. The scheduler uses
the counters contained in the abstract nodes along with the
events to know when an allocation is possible.

The challenge in this approach is to match the size of
the group of machines allocated to a set of parallel tasks.
Allocating a large group to a small set of tasks would lead to
poor utilization. To address this issue, we refine the partition
of the data center as and when required. The refinement step
decides the depth at which the tree is cut depending on the
data center, the current schedule, the values of the quality
measures, and the job to be scheduled.

4.2 Implementation
We use an existing scheduling heuristic to do the actual
scheduling of the abstract job on the abstract data center rep-
resentation. The implementation of the scheduling heuris-
tic requires two operations on the data center representation,
which we discuss in detail. Algorithm 4 answers queries for
finding a free interval of duration d for a group of m tasks
on a given abstract node. The algorithm returns the start time
is of such an interval. The algorithm uses the counters and
events that are stored in the abstract node. Events can be ei-
ther allocation or free events. Each event carries the time of
the event and the information required for its execution. We
use the following notation: c is the number of currently free
nodes, evts is the queue of events associated with the ab-
stract node, sorted by their start time, and evts ′ is a reversed
priority queue of events (lowest priority first). To be sure
that nodes are free for at least d time, we shift the allocation
events by −d (i.e., doing some look ahead). This trick guar-
antees that for any allocation of nodes for already scheduled
tasks, it will still be possible to find a free node. However,
this technique is not optimal in the sense that many small
tasks scheduled on the same node can prevent the schedul-
ing of a long task on some other node. Later we will see an
optimization that solves this issue.

Algorithm 5 describes how to insert an allocation event
to a node n# in the abstract data center. The goal is to find
a mapping for a group of tasks scheduled on n# to concrete
nodes. Since the counting abstraction does not provide the
information which nodes are busy or occupied, we need to
actually find these nodes. If we allocate a bulk to an abstract
node that has a child big enough to contain the bulk, we ex-
pand the abstract node and the allocation is forwarded to the
appropriate child. If there are multiple candidate children,
we select one of them using a best-fit policy.

Complexity. Assume that the compute nodes are the leaves
of a balanced n-ary tree. Let d be the depth of that tree. The
tree contains O(nd) nodes. In that setting the data center
abstraction will summarize blocks of nk nodes (k ∈ [0; d]).
Assume that k is fixed. Then the scheduler sees only a tree
of size O(nd−k). We will assume that the rate of incoming
jobs does not exceed the capacity of the data center. This

Algorithm 4 The BLIND find free interval on a node n#

In: m : the number of nodes, d : the duration
Ensure: [is; is + d] is interval with m free nodes
c← A#(n#)
is← current time
for all e ∈ evts

if isAlloc(e) then prio ← time(e)− d
else prio ← time(e)
if prio < is then c← c− size(e)
else push(evts ′, prio, e)

while c < m
e← pop(evts ′)
if isAlloc(e) then c← c− size(e)
else c← c+ size(e)
is←max(is, priority(e))

return is

Algorithm 5 The BLIND allocation on an abstract node n#

In: e : an allocation event
Out: the node where to perform e
if there exists c ∈ children(n#) s.t. A#(c) ≥ size(e)
then allocate(e, c) {recursive call}
else return n#

assumption is needed to bound the time it takes to traverse
the list of events in the abstract nodes. We denote by O#

the set of objects that link the abstract tasks in T#. We
assume that the used scheduling heuristic has the following
complexity O((|T#| + |O#|)nd). This corresponds to a
heuristic that chooses one node for each task and does not
do any backtracking.

To determine the complexity of the whole scheduler, we
consider both the scheduling operation and the allocation
operation. Since the scheduling heuristic is assumed to be
linear in the number of nodes, the complexity is reduced
by a factor of nk. The allocation itself is in the worst case
O(|T |k). The total worst case complexity is thusO((|T#|+
|O#|)nd−k + |T |k). Depending on the value of k, the speed-
up can be exponential. Using refinement and abstraction to
adjust k, it is possible to explore the full complexity range.

4.3 Optimizations
We next describe several optimizations that we implemented
in the BLIND scheduler.

Persistent Abstraction and Coarsening. Unlike the job
abstraction we keep the data center abstraction persistent
throughout successive calls to the scheduler, so that we can
efficiently schedule streams of jobs. The problem is that the
refinement of the data center partition (i.e., the unfolding of
subtrees during allocation) is a one-way process: it eventu-
ally ends up with a representation of the concrete data cen-
ter. To keep the scheduling of job streams efficient, we use a

coarsening operation that can undo refinement steps between
successive calls to the scheduler.

Unlike refinement, coarsening the abstraction is not
straightforward. An arbitrary coarsening does not necessar-
ily preserve the well-formedness of the schedules of already
scheduled jobs. Allocations that are already made at a more
refined level need to be kept. To realize this, we introduce
a temporary coarsening view. This view keeps track of two
abstraction levels. New allocations are made in the coarse
abstraction and checked to be compatible with what exists
in the finer abstraction. When the finer abstraction does no
longer contain allocations that have to be executed, we can
switch to the coarse abstraction only. Since the abstraction
guarantees the existence of a valid schedule for any already
planned allocation, we can simply project the events of the
finer abstraction onto the coarser abstraction.

Delayed Allocation. We previously saw that scheduling on
abstract nodes by only keeping track of the multiplicities
of each abstract node is not optimal. The corresponding
counters do not tell us whether a particular node is busy or
free. However, the counter gives us precisely the information
about how many nodes are needed. If we have the freedom
to reschedule later allocations, we can produce much better
schedules.

To support this, we split the scheduling process into two
parts: booking and allocation. First, the counters are used
by the scheduler to decide whether there are enough nodes
available in one abstract node. The scheduler can book some
nodes, and the counters will be updated accordingly. How-
ever, the actual allocation is done only in a second phase,
at dispatch time. Using the counters and update events it is
possible to derive a simple condition to check whether an al-
location is possible, without knowing precisely which node
will be free at that time. At dispatch time, it is possible to
check the current status to find the required nodes. The new
condition for the scheduling operation of BLIND is to find the
first interval of length at least d where the number of avail-
able nodes is greater or equal to m.

This optimization works well except for the coarsening
process. The coarsening view has some constraints on the
tasks booked on the finer abstraction. Therefore, whenever
we use the coarsening view we must use the weaker condi-
tion.

5. Experiments
First, we conducted several experiments on our schedulers
to evaluate their performance and scalability for different
jobs and data centers. Then, we compare the scheduling
makespan obtained with our schedulers with that obtained
with the Hadoop scheduler on Amazon EC2.

5.1 Simulation results

Jobs. We considered different classical schemas for data-
parallel computing. Figure 3 shows these schemas. In ad-

dition to these schemas, we also considered generic fork-
join computation jobs. We used these schemas to instantiate
jobs of different sizes, ranging from 200 to 4000 tasks. The
duration of the tasks ranged from 40 to 120 seconds, and
the size of the objects ranged from 3 to 10 MB. For each
schema, we classify jobs into two types: uniform and non-
uniform. Uniform jobs are characterized by equal durations
for all parallel tasks and equally sized data objects on all par-
allel edges. In non-uniform jobs, the duration of each task in
the job differs, and different amounts of data is transfered
on each edge. Intuitively, uniform jobs are amenable to effi-
cient abstraction, while non-uniform jobs may lead to poor
utilization and large scheduling latencies.

Data centers. In our experiments we used data centers with
different sizes and network topologies. We give names to
these data centers to be referred in the remaining section. C0

is a small three-tier data center consisting of 210 nodes. The
core router is connected to 3 intermediate routers, which are
connected to 7 leaf switches each. Each leaf switch connects
to 10 compute nodes. Five of the leaf switches connect to
1x speed nodes, and two of them to 1.5x speed nodes. We
use this small data center for comparison against a baseline
greedy scheduler. C1 is a three-tier data center consisting
of 1000 compute nodes. C2 is a two-tier data center with
1600 nodes, with 40 leaf switches, and 40 compute nodes
at every leaf switch. C3 and C4 are three-tier data centers
with 4000 and 8000 nodes each. Finally, C5 is a data center
with a mesh topology, consisting of 1000 nodes. In all the
above data centers, we assign half of the compute nodes to
the speed 1x, and the other half to 1.5x.

Infrastructure setup. We performed our simulation experi-
ments on a 2.4 GHz PC with 4 GB RAM. The input rate of
the jobs was chosen such that if jobs are preemptive then we
get 95% utilization. In other words, if jobs are not preemp-
tive, then an optimal offline scheduler can at most achieve
95% utilization. This is basically done to avoid a bias to-
wards increased utilization caused by submitting too many
jobs simultaneously, and at the same time, preventing the
schedule from diverging (finishing very far in the future).

Comparison with a baseline scheduler. In our first experi-
ment we compared the utilization of our two schedulers with
a baseline scheduler: one that applies a greedy scheduling
heuristic on the concrete levels of the data center and the job.
We created a sequence of 100 non-uniform jobs correspond-
ing to different schemas, with an average 1000 tasks, on the
data center C0. Figure 4 shows the utilization plot for the
schedules obtained with the three different schedulers. The
numerical value of the data center utilization after schedul-
ing the 100 jobs is 92% for FISCH, 91% for BLIND, and
96% for the baseline scheduler. The average scheduling la-
tency per task is 0.27ms for FISCH, 0.16ms for BLIND, and
293 ms for the baseline scheduler. The schedulers based on
abstraction refinement improve the scheduling latency ap-

(a) MapReduce (b) Matrix mul-
tiplication (c) Fast Fourier transform

(d) Wavefront

(e) Discrete Laplace transform

Figure 3. Different job schema

 0

 50

 100

 150

 200

 0 500 1000 1500 2000

N
o
d
e

i
d

Time (in seconds)

1

(a) FISCH

 0

 50

 100

 150

 200

 0 500 1000 1500 2000

N
o
d
e

i
d

Time (in seconds)

(b) BLIND

 0

 50

 100

 150

 200

 0 500 1000 1500 2000

N
o
d
e

i
d

Time (in seconds)

(c) Base

Figure 4. Comparison of data center utilization against the baseline scheduler

proximately by a factor of 1000, with a reasonably low re-
duction in the data center utilization.

Performance on individual job schemas. Next, we applied
our schedulers on different job schemas individually to
evaluate how the schedulers scale to specific job schema
sequences. We created a uniform and a non-uniform se-
quence consisting of 1000 jobs corresponding to each kind
of schema shown in Figure 3. On average each job consisted
of approximately 1000 tasks, i.e., the total number of tasks
per sequence was around 1 million. We measured the data
center utilization and the average scheduling latency per
task. For all the experiments, we used the data center C2.
The results of the experiments are shown in Table 1.

Performance on different data centers. In our next experi-
ment we evaluated the effect of the data center size on the
utilization and the scheduling latency. Table 2 lists the av-
erage utilization of the different data centers with the two
schedulers, for the same non-uniform job sequence as in the
previous experiment. Figure 5 shows the average scheduling
latency per task for the different data centers. Note that the
average scheduling latency increases linearly with the num-
ber of jobs already scheduled on the data center.

Analysis of the schedulers. We now analyze the scheduling
latency in more detail. Figure 6 shows how much time the
schedulers spent for the scheduling, for the abstraction, and
for the refinement. We observe that FISCH spent up to 40%
of the time in controlling the quality of the schedules. For
the BLIND scheduler, the most expensive operation was pro-
cessing the list of events to find free nodes.

Job FISCH BLIND
Latency Util. Latency Util.

FFT 0.94 81% 0.56 92%
1.89 68% 1.40 78%

Generic 2.94 64% 1.7 68%
1.95 60% 1.60 61%

Laplace 1.07 81% 0.55 91%
1.63 69% 0.7 78%

MapReduce 0.27 87% 0.36 84%
0.34 86% 0.32 93%

Matrix 0.63 73% 0.31 71%
1.34 55% 1.95 77%

Wavefront 1.42 59% 0.61 80%
1.57 49% 0.706 62%

Table 1. Performance of the schedulers on individual jobs.
The latency is given in milliseconds per task, and the utiliza-
tion is given in percent. For every job schema, the first row
evaluates the schedulers for a uniform job sequence, and the
second row for a non-uniform job sequence.

Scheduler C1 C2 C3 C4 C5

FISCH 90% 71% 73% 76% 65%
BLIND 85% 80% 77% 79% 76%

Table 2. The data center utilization of the schedules pro-
duced by FISCH and BLIND on different data centers.

5.2 Comparison with Hadoop
In our final experiment, we evaluated the quality of the
schedulers in terms of their makespan. We considered an
image processing MapReduce job (Dean [2008]), and com-
puted schedules for the job using FISCH and BLIND.

F
F
T
G
e
n
e
r
i
c

L
a
p
l
a
c
e

M
a
t
r
i
x

M
R
W
a
v
e
f
r
o
n
t

%

o
f

t
o
t
a
l

t
i
m
e

Job type

finding nodes
other
adding node
quality control

(a) Breakup of time for FISCH

F
F
T
G
e
n
e
r
i
c

L
a
p
l
a
c
e

M
a
t
r
i
x

M
R
W
a
v
e
f
r
o
n
t

%

o
f

t
o
t
a
l

t
i
m
e

Job type

scheduling
refinement
allocation
choosing view

(b) Breakup of time for BLIND

Figure 6. Comparing the amount of time spent by the schedulers on different tasks.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 200 400 600 800 1000

A
v
e
r
a
g
e

l
a
t
e
n
c
y

Jobs

Latency

FISCH on C1
FISCH on C2
FISCH on C3
FISCH on C4
FISCH on C5

(a) The FISCH scheduler

 0

 1

 2

 3

 4

 5

 0 200 400 600 800 1000

A
v
e
r
a
g
e

l
a
t
e
n
c
y

Jobs

Latency

BLIND on C1
BLIND on C2
BLIND on C3
BLIND on C4
BLIND on C5

(b) The BLIND scheduler

Figure 5. Comparison of average scheduling latency com-
puted in milliseconds per task for different data centers

We compared the quality of the schedules (in terms of
makespan) with that obtained with Hadoop (Apache Hadoop),
a dynamic scheduler for large MapReduce jobs.

Experimental setup. We created a mapper task using an Im-
ageMagick convert that performs a paint transformation. The
reducer task is an identity function. The input to the job is a
set of images stored in Amazon S3. The average running
time for the mapper task at an EC2 compute node with 2
EC2 compute units is 8.1 seconds. This includes the time
to fetch the image from the Amazon S3 database, perform-
ing the paint transformation, and storing back the image to
the database. We rented EC2 instances of type m1.xlarge,
characterized by 15 GB of memory, 4 virtual cores with 2
EC2 compute units each, 1690 GB of local storage, and a
64-bit platform (Amazon). We varied the number of images
given as input to the job according to the number of com-
pute nodes in the experiment. With N instances, we chose
the input size to be 50 · N images. An optimal scheduling
heuristic would keep the scheduling makespan constant as
we increase N . We use Hadoop (version 0.19.0) streaming
to perform the MapReduce job. We gave as input to Hadoop
the list of images to be transformed. We fixed the maximum
number of mapper tasks per TaskTracker to be four. This is
because each EC2 instance has four virtual cores.

For our schedulers, we fixed the duration of the mapper
task equal to 40 seconds: this is a conservative estimate of
the maximum time it can take to perform a transformation.
In order to execute the job on Amazon EC2 according to the
obtained schedule, we use the infrastructure we developed
for Flextic (Henzinger [2010]). This consists of a daemon
that runs on every EC2 instance, and takes as input an ex-
ecutable file and a starting time for executing the file. The
daemon uses backfilling techniques (Feitelson [1998]) on the
compute nodes to utilize free slots in the schedules. Further-
more, the static schedules allow our system to prefetch the
input files of a given task t from the database. Therefore, t
can start as soon as the task scheduled before t finishes.

Figure 8. Comparison of network input and output for Hadoop and FISCH schedulers. The job is executed using Hadoop at
14.58 and using FISCH at 15.04.

Figure 7. Comparison of scheduling makespan on different
schedulers. The jobs consist of 50 mapper tasks per instance.

Observations. Figure 7 compares the scheduling makespan
of the MapReduce job obtained with our schedulers, FISCH
and BLIND, with that of Hadoop. We observe that dy-
namic scheduling in Hadoop causes a significant perfor-
mance penalty as compared to static scheduling. Figure 8
shows the screen shots of the network input and output (us-
ing Amazon CloudWatch) for Hadoop and FISCH. Note that
the Hadoop communication data is negligible as compared
to the large image files. The higher network throughput of
FISCH implies that it performs more mapper tasks per unit
time.

At this point, we do not compare the cloud utilization
obtained with the schedules. However, note that our static
scheduling technique relies on instance-local backfilling,
while the TaskTracker nodes in Hadoop communicate with
the JobTracker node in order to obtain new tasks for process-
ing. We have yet to investigate how our schedulers compare
with Hadoop on sequences of jobs.

6. Related Work
Scheduling is fundamental to the achievement of high per-
formance in parallel and distributed systems. Work on
static multiprocessor scheduling dates back to 1977 (Stone
[1977]), where the problem of scheduling a directed acyclic
graph of tasks to two processors is solved using network
flow algorithms. Further research in this direction focused
on scheduling distributed applications on a network of ho-
mogeneous processors (Lee [1997]). As optimal multipro-
cessor scheduling of directed task graphs is an NP-complete
problem (Papadimitriou [1988]), heuristics are vastly used.
A wide range of such static scheduling heuristics have
been classified and rigorously studied (Braun [1999], Kwok
[1999a], Munir [2008]).

The idea of partitioning the task graph is fundamental to
our job abstraction. Many existing heuristics already use the
idea of clustering groups of tasks in the task graph to sim-
plify the scheduling problem (e.g, Ding [2009], Gerasoulis
[1992], Yu [2005]). However, we are not aware of any ex-
isting scheduling heuristics that applies the same principle
to the data center representation, or that systematically ex-
plores the idea of pessimistic abstraction to get coarser par-
titions and, thus, improved scalability. Also we are not aware
of any clustering heuristic that uses a refinement loop to
change the partition and increase the quality of the produced
schedules.

Many generic heuristics for solving optimization prob-
lems such as genetic algorithms and simulated annealing
have been used for scheduling (Hou [1994]). Like our tech-
nique these techniques iteratively search for local opti-
mal solutions but directly solve the concrete problem in-
stance and do not use abstraction. While these generic
approaches produce good schedules, their performance is
rather poor (Braun [1999]).

Systems like Hadoop (Apache Hadoop) and DryadLINQ
(Yu [2008]) use dynamic scheduling techniques in favor
of static scheduling because they are designed for environ-

ments with incomplete information about both the require-
ments of executed jobs and the available resources. Hy-
brid approaches that combine static and dynamic schedul-
ing can help to increase performance even in incomplete
information environments (Kwok [1999b]). Our framework
provides many opportunities for exploring such hybrid ap-
proaches. By design, our schedulers already work with in-
complete information. One can use the idea of a schedul-
ing horizon (Deelman [2005]) where only tasks that are to
be executed in the immediate future are dispatched to their
scheduled nodes. For tasks that are to be executed later one
can then compute abstract schedules that only provide an
approximate plan for their execution. These abstract sched-
ules can be refined dynamically as more precise information
about depending task becomes available. Also note that both
the FISCH and the BLIND scheduler work hierarchically, so
they can be decomposed into different levels, which enables
distributed scheduling. Finally, both schedulers can easily
integrate dynamic scheduling techniques such as backfill-
ing (Lifka [1995]).

7. Discussion and Conclusion
We find abstraction refinement as promising a technique in
scheduling as in formal verification. In formal verification,
one often needs to check whether a system satisfies a cor-
rectness property. Systems with large state spaces can often
not be explored exhaustively. Thus, a conservative abstrac-
tion of the state space obtained by merging together multiple
states into one abstract state is explored instead. While this
merge loses certain information, the problem becomes easier
to solve. In verification, this loss of information often shows
up as spurious counterexamples, i.e., an error state is reach-
able in the abstract but not in the concrete system. The art of
abstraction lies in defining one, where solving the abstract
problem often gives a solution to the concrete problem. In
the framework of scheduling, the loss of information results
in elimination of some schedules. For example, in our sched-
uler, solving the problem at an abstract level forces indepen-
dent tasks in a block to be scheduled in the same group. The
intuition behind such abstractions is that abstract schedules
still ensure locality of computation.

An important assumption behind static scheduling tech-
niques is that the characteristics of the jobs (e.g. duration,
object sizes) are known in advance. We believe that a large
class of jobs in different domains of computing (e.g. image
processing, machine learning, natural language processing)
satisfy this assumption. Note that instead of accurate charac-
terization, our technique requires estimates of upper bounds.
Efficiency can then be obtained using dynamic scheduling
techniques like backfilling. At the same time, we admit that
for certain classes of jobs, the duration of the job cannot
be determined before execution. For example, computing
the duration of software testing jobs is undecidable (Candea

[2011]). Such jobs cannot directly use our technique, and
call for dynamic scheduling and load balancing.

We are eager to explore the possibilities that our frame-
work provides for improving the performance of schedulers
in practice. In particular, we will further investigate syner-
gies between abstraction refinement scheduling and dynamic
scheduling techniques.

Acknowledgments
We are thankful to our shepherd, George Candea, and the
anonymous reviewers for their helpful comments on the pa-
per. We are also thankful to Amazon Web Services for sup-
porting our experiments on Amazon EC2 through a research
grant.

References
[Amazon] Amazon. Amazon Elastic Compute Cloud. http:

//aws.amazon.com/ec2, February 2011.

[Apache Hadoop] Apache Hadoop. Apache Hadoop. http:

//wiki.apache.org/hadoop, February 2011.

[Blumofe 1994] Robert D. Blumofe. Scheduling multithreaded
computations by work stealing. In 35th Annual Symposium on
Foundations of Computer Science, FOCS’94, pages 356–368,
1994.

[Braun 1999] Tracy D. Braun, Howard Jay Siegel, Noah Beck,
Ladislau L. Bölóni, Albert I. Reuther, Mitchell D. Theys, Bin
Yao, Richard F. Freund, Muthucumaru Maheswaran, James P.
Robertson, and Debra Hensgen. A comparison study of static
mapping heuristics for a class of meta-tasks on heterogeneous
computing systems. In HCW ’99: Proceedings of the Eighth
Heterogeneous Computing Workshop, page 15. IEEE Computer
Society, 1999.

[Burchard 2004] Lars-Olof Burchard, Matthias Hovestadt, Odej
Kao, Axel Keller, and Barry Linnert. The virtual resource man-
ager: An architecture for SLA-aware resource management. In
4th IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGRID 2004), pages 126–133, 2004.

[Candea 2011] G. Candea, S. Bucur, and C. Zamfir. Parallel sym-
bolic execution for automated real-world software testing. In
Proceedings of the 6th ACM SIGOPS/EuroSys European Con-
ference on Computer Systems (EuroSys), 2011.

[Clarke 2000] Edmund M. Clarke, Orna Grumberg, Somesh Jha,
Yuan Lu, and Helmut Veith. Counterexample-guided abstraction
refinement. In Computer Aided Verification, 12th International
Conference, CAV’00, pages 154–169. Springer, 2000.

[Dean 2008] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. Communications of the ACM,
pages 107–113, 2008.

[Deelman 2005] Ewa Deelman, Gurmeet Singh, Mei-Hui Su,
James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta,
Karan Vahi, G. Bruce Berriman, John Good, Anastasia Laity,
Joseph C. Jacob, and Daniel S. Katz. Pegasus: A framework for
mapping complex scientific workflows onto distributed systems.
Sci. Program., 13(3):219–237, 2005.

[Ding 2009] Ding Ding, Siwei Luo, and Zhan Gao. A dual heuris-
tic scheduling strategy based on task partition in grid environ-
ments. In CSO ’09: Proceedings of the 2009 International Joint
Conference on Computational Sciences and Optimization, pages
63–67. IEEE Computer Society, 2009.

[Feitelson 1998] Dror G. Feitelson and Ahuva Mu’alem Weil. Uti-
lization and predictability in scheduling the IBM SP2 with back-
filling. In IPPS/SPDP, pages 542–546, 1998.

[Gerasoulis 1992] A. Gerasoulis and T. Yang. A comparison of
clustering heuristics for scheduling directed acycle graphs on
multiprocessors. Journal of Parallel and Distributed Computing,
pages 276–291, 1992.

[Henzinger 2010] T. A. Henzinger, A. V. Singh, V. Singh, T. Wies,
and D. Zufferey. Flextic: Trading time for discounts in cloud
computing. Technical report, IST Austria, 2010. Available at:
http://pub.ist.ac.at/~vsingh/flextic.pdf.

[Heyer 1999] Laurie J. Heyer, Semyon Kruglyak, and Shibu
Yooseph. Exploring Expression Data: Identification and Anal-
ysis of Coexpressed Genes. Genome Research, 9(11):1106–
1115, 1999. URL http://genome.cshlp.org/content/9/

11/1106.abstract.

[Hou 1994] E. S. H. Hou, N. Ansari, and H. Ren. A genetic
algorithm for multiprocessor scheduling. IEEE Trans. Parallel
Distrib. Syst., pages 113–120, 1994.

[Knowlton 1965] Kenneth C. Knowlton. A fast storage allocator.
Commun. ACM, 8(10):623–624, 1965. ISSN 0001-0782.

[Knuth 1973] Donald E. Knuth. The Art of Computer Program-
ming, Volume III: Sorting and Searching. Addison-Wesley,
1973. ISBN 0-201-03803-X.

[Kurshan 1994] Robert P. Kurshan. Computer-Aided Verification of
Coordinating Processes. Princeton Series in Computer Science.
Princeton Uiversity Press, 1994.

[Kwok 1999a] Y-K. Kwok and I. Ahmad. Static scheduling al-
gorithms for allocating directed task graphs to multiprocessors.
ACM Computing Surveys, pages 406–471, 1999.

[Kwok 1999b] Yu-Kwong Kwok, Anthony A. Maciejewski,
Howard Jay Siegel, Arif Ghafoor, and Ishfaq Ahmad. Evalu-
ation of a semi-static approach to mapping dynamic iterative
tasks onto heterogeneous computing systems. In ISPAN ’99:
Proceedings of the 1999 International Symposium on Parallel
Architectures, Algorithms and Networks, page 204. IEEE Com-
puter Society, 1999.

[Lee 1997] C-H. Lee and K. G. Shin. Optimal task assignment
in homogeneous networks. IEEE Transactions on Parallel and
Distributed Systems, pages 119–129, 1997.

[Lifka 1995] David A. Lifka. The ANL/IBM SP scheduling system.
In Job Scheduling Strategies for Parallel Processing, pages 295–
303, 1995.

[Munir 2008] Ehsan Ullah Munir, Jianzhong Li, Shengfei Shi,
Zhaonian Zou, and Qaisar Rasool. A performance study of task
scheduling heuristics in hc environment. In Proceedings of the
2nd International Conference on Modelling, Computation and
Optimization in Information Systems and Management Sciences
(MCO 2008), pages 214–223, 2008.

[Papadimitriou 1988] Christos Papadimitriou and Mihalis Yan-
nakakis. Towards an architecture-independent analysis of par-
allel algorithms. In STOC ’88: Proceedings of the twentieth an-
nual ACM symposium on Theory of computing, pages 510–513,
New York, NY, USA, 1988. ACM. ISBN 0-89791-264-0.

[Smith 2000] Warren Smith, Ian T. Foster, and Valerie E. Taylor.
Scheduling with advanced reservations. In Proceedings of the
14th International Parallel & Distributed Processing Sympo-
sium (IPDPS’00), pages 127–132, 2000.

[Stone 1977] H. S. Stone. Multiprocessor scheduling with the aid
of network flow algorithms. IEEE Transactions on Software
Engineering, pages 85–93, 1977.

[Topcuouglu 2002] Haluk Topcuouglu, Salim Hariri, and Min-you
Wu. Performance-effective and low-complexity task scheduling
for heterogeneous computing. IEEE Trans. Parallel Distrib.
Syst., 13(3):260–274, 2002.

[Yu 2006] J. Yu and R. Buyya. A budget constraint scheduling of
workflow applications on utility grids using genetic algorithms.
In Workshop on Workflows in Support of Large-Scale Science,
2006.

[Yu 2005] J. Yu, R. Buyya, and C. K. Tham. Cost-based schedul-
ing of scientific workflow application on utility grids. In Inter-
national Conference on e-Science and Grid Computing, pages
140–147. IEEE Computer Society, 2005.

[Yu 2008] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson,
P. K. Gunda, and J. Currey. DryadLINQ: A system for general-
purpose distributed data-parallel computing using a high-level
language. In USENIX Symposium on Operating Systems Design
and Implementation, pages 1–14, 2008.

