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Abstract
Locking cache lines in hard real-time systems is a common means
of achieving predictability of cache access behavior and tightening
as well as reducing worst case execution time, especially ina multi-
tasking environment. However, cache locking poses a challenge
for multi-core hard real-time systems since theoreticallyoptimal
scheduling techniques on multi-core architectures assumezero cost
for task migration. Tasks with locked cache lines need to proac-
tively migrate these lines before the next invocation of thetask.
Otherwise, cache locking on multi-core architectures becomes use-
less as predictability is compromised.

This paper proposes hardware-based push-assisted cache migra-
tion as a means to retain locks on cache lines across migrations.
We extend the push-assisted migration model with several cache
migration techniques to efficiently retain locked cache lines on a
bus-based chip multi-processor architecture. We also provide de-
terministic migration delay bounds that help the schedulerdecide
which migration technique(s) to utilize to relocate a single or mul-
tiple tasks. This information also allows the scheduler to determine
feasibility of task migrations, which is critical for the safety of any
hard real-time system. Such proactive migration of locked cache
lines in multi-cores is unprecedented to our knowledge.

Categories and Subject Descriptors D.4.7 [Operating Sys-
tems]: Organization and Design—real-time systems and embed-
ded systems; D.4.1 [Operating Systems]: Process Management—
scheduling; B.4.2 [Memory Structures]: Design Styles—cache
memories

General Terms Design, Experimentation.

Keywords Real-Time Systems, Multi-Core Architectures, Timing
Analysis, Task Migration.

1. Introduction
Locking cache contents in uni-processor hard real-time systems has
been a popular option for hard real-time systems designers.Locked
cache contents are immune to cache replacement, which improves
the predictability of cache access behavior of a hard real-time task.
Additionally, real-time tasks that are usually of small cache foot-
prints and low intra-task conflicts, are able to obtain a shorter worst-
case execution time (WCET) by using locks.

Today, uni-processor designs have reached a clock frequency
wall due to their fabrication process and power/leakage con-
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straints, which has led processor vendors catering to both high-
performance and embedded computing communities to design chip
multi-processors [22]. This trend is evident in embedded hetero-
geneous multi-cores (e.g., for cell phones) and also homogeneous
multi-cores [2].

Acceptance of multi-cores in hard real-time systems has been
slow due to several reasons. One of the early hurdles was to develop
schedulability analysis for hard real-time tasks on multi-cores. By
now, real-time schedulability theory for multi-cores has advanced
and diversified to a multitude of policies for global and fairschedul-
ing [6–9,13,25].

A fundamental premise of these policies is that tasks are migrat-
able. Under such policies, the migration delay is assumed tobe con-
stant and added to the WCET of the task. Such assumptions may
lead to highly conservative migration delays. This problemworsens
with simultaneous migrations of multiple tasksthat are prevalent in
such scheduling mechanisms. Locked cache lines only add to this
problem. Prior work on cache locking has been studied only inre-
lation to uni-processors. Conventionally, the programmerincurs a
cost of loading the locked cache lines prior to the executionof the
task. Subsequently, execution of the task assumes cache hits for
locked lines. This does not hold true in context of task migrations
as they can occur during the execution of the task.

To ensure predictability, one could propose to pin hard real-
time tasks onto cores and thus partition them on multi-cores. This
approach generates sub-optimal schedules as optimal partitioning
of tasks on multi-cores has been shown to be an NP-hard prob-
lem [13]. Additionally, dynamic task admittance would require re-
partitioning that renders such a system inflexible.

Thus, we identify locked cache line mobility as a hindrance
to task migration in real-time systems. Any solution to preserve
predictability for locked cache lines has to be proactive innature to
guarantee that these lines are locked at the target core before a task
resumes execution.
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Figure 1. Cache Migration follows Pfair scheduling

This paper focuses on the migration of locked cache lines and
providing a predictable task migration scheme applicable to the-
oretically optimal PFair scheduling algorithm [17]. Cachemigra-
tions can only be initiated by the scheduler after it has mademigra-
tion decisions. All tasks are stalled until all cache migrations have
completed. The resulting migration cost will add to the scheduling
cost, as shown in Figure 1. The simplest way of performing pro-
active cache migration is by using a software model. A thread/task
is spawned at the source core to unlock the lines. Thereafter, an-
other thread spawned at the target core has to load and lock these
lines. For multiple task migrations taking place between different
cores, can execute locking/unlocking threads on those cores in par-
allel. However, such a scheme has following drawbacks:



1. While performing multiple cache migrations using migration
threads, each thread is oblivious of concurrently running cache
migrations and unaware of the bus utilization. Unsynchronized
issuance of demand requests from multiple target cores leads to
unpredictable cache-to-cache request delays.This makes paral-
lel transactions unpredictable.

2. Each demand request in a contemporary bus-based SMP will be
snooped by all caches (ignoring coherence filters for now). This
will induce multiple response actions on all cache controllers
of the system. This not only affects the bus bandwidth but
also causes useless cache accesses. Hence,parallel transactions
become highly unpredictable and inefficient.

3. Also, in hard real-time systems, a software model executes the
locking/unlocking thread on a simple in-order core. This means
that a thread that loads and locks the cache lines on the target
for a task can issue only one demand request at a time, i.e., the
subsequent demand for a cache line can only be issued after the
current demand request has completed. Thus, if there is a single
task migration taking place in a system, a thread-based model
is unable to utilize the complete bus bandwidth.

The closest work with regard to proactive cache migration is
that by Sarkar et al. [24]. Their active movement of cache content
comes at the cost of up-front migration delay in contrast to the
traditional delayed overhead at the next job activation. The authors
assume tasks are statically scheduled on every core, each core
running its own scheduler instance. They present a single task
migration scenario that triggers a task migration following dynamic
task admission. A task that has ample slack time before its next
invocation is chosen to migrate. The task’s slack time is overlapped
with proactive migration of cache lines from source to target cores.
Thus, the overhead does not contribute to task execution when
resuming on the target core, as shown in Figure 2. They also
consider a Quality of Service (QoS)-based bus to avoid conflicts
from other concurrently running tasks. However, their solution
suffers from the following drawbacks:

1. It is not applicable to global schedulers (e.g., PFair [17]). Pfair
schedules tasks on quantum basis. The scheduler is invoked
periodically and globally synchronous across all cores. Even if
a task needs to be admitted dynamically, this decision is made at
a scheduling instance only. Thus, the decision of task migration
happens just prior to the migration.In such a scenario, the
overhead cannot be overlapped with even earlier slack time.

2. Simultaneous migrations of multiple tasks has not been consid-
ered.

3. Their migration costs consider migration of whole cache con-
texts. This results in loose bounds on migration costs for prac-
tical scenarios.
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Figure 2. Scheduler Initiated Cache Migration Overlaps Slack
Time

These inadequacies led us to exploit push-based micro-
architectural cache migration. First, we enhance the current state

of the art of push-assisted cache migration to improve the perfor-
mance of individual cache migrations. Second, we develop a novel
scheme that allows the scheduler to orchestrate multiple cache mi-
grations in a seamlessly synchronized and parallel manner.We also
derive a pre-calculated bound within which migrations complete.

Our work contrasts with [24] and technically contributes inthe
following ways:

1. This work is the first one to consider mobility requirements
of locked cache lines for task migration. With such support,
impractical theoretically optimal multi-core schedulingtech-
niques thus become realistic in the context of hard real-time
systems. Prior work is not directed towards locked cache lines.

2. Prior work provides a hardware/software mechanism called Re-
gional Cache Migration (RCM) to identify and move large
contiguous memory regions specified by a limited number of
Region Registers. We extend their identification of migratable
cache lines to locked cache lines. We then expose the poten-
tial of reducing individual cache migration delays by pipelin-
ing the cache-to-cache transfers. We propose two such schemes
that work with RCM. These schemes, called Controlled Cache
Migration Pipelining (CCMP) and Streamed Cache Migration
Pipelining (SCMP), reduce migration delays by 48% and 56%,
respectively.

3. They propose a hardware mechanism called Whole Cache Mi-
gration (WCM) for cache foot prints that are sparse with respect
to memory address space. However, they deem it to be imprac-
tical as the overhead becomes proportional to the cache size
instead of the number of migratable cache lines. In this work,
we present another hardware-based mechanism called Set-Scan
Cache Migration (SSCM) that presents an efficient and practi-
cal solution to sparse locked cache footprints.

4. Their work considers single task migration. This assumption
constrains multiple task migrations to be sequential, thereby
under-utilizing the bus bandwidth. In this work, we propose
a novel mechanism where the scheduler synchronizes multiple
RCMs in order to support multiple cache migrations in parallel
without any conflicts.

5. Although SSCM works efficiently for single task migration, it
cannot be synchronized for parallel migration with RCMs. To
handle this, we propose Slotted-SSCM. It allows multiple cache
migrations based on RCM and Slotted-SSCM to progress in
parallel without transaction conflicts.

6. We also propose a Slotted-SSCM Pipelining model that reduces
the migration delay for single task migrations by 46.7% over
SSCM on average.

7. In prior work, migration costs are assessed by assuming migra-
tion of the total cache foot-print of a task without cache con-
tention. Thus, the overheads stated in [24] for RCM are too
loose to be applicable to hard real-time systems. In contrast,
our work considers inter-task contention and migrates locked
caches lines. We present deterministic migration delay bounds
for each scheme irrespective of whether cache locks are usedto
lock contiguous or sparse memory locations.

8. In Section 7, we provide insights into

(a) applying our parallel migration mechanism to SMP archi-
tecture with TDMA-based bus systems and

(b) applying our pipelined mechanisms to tile-based architec-
tures with mesh interconnects.



2. Related Work
In the past decade, there has been considerable research on cache
line locks in the context of multi-tasking real-time systems. Static
and dynamic cache locking algorithms for instruction caches have
been proposed to improve system utilization in [18,19]. Data cache
locking techniques that pin data when cache behavior is hardto an-
alyze statically have been proposed [28]. Past work presented tech-
niques for cache locking that provides comparable performance to
scratchpad allocation [20]. Recently, cache locking has also been
proposed for multi-core systems that use shared L2 caches [27]. Of
course, cache locking can also be used in conjunction with private
L2 caches. Multi-cores certainly make cache locking even more at-
tractive in terms of real-time predictability.

Choffneset al. propose migration policies for multi-core fair-
share scheduling [12]. Their technique strives to minimizemigra-
tion costs while ensuring fairness among the tasks by maintaining
balanced scheduling queues as new tasks are activated. The work is
in the context of soft real-time systems while ours focuses on hard
real-time. Calandrinoet al.propose scheduling techniques that ac-
count for co-schedulability of tasks with respect to cache behav-
ior [5, 11]. Their approach is based on organizing tasks withthe
same period into groups of cooperating tasks. While their method
improves cache performance in soft real-time systems, theydo not
specifically address issues related to task migration. Liet al.discuss
migration policies that facilitate efficient operating system schedul-
ing in asymmetric multi-core architectures [16]. Their work focuses
on fault-and-migrate techniques to handle resource-related faults in
heterogeneous cores and does not consider real-time constraints.
Eisler et al. [14] develop a cache capacity increasing scheme for
multi-cores that scavenges unused neighboring cache lines. They
consider “migration” of cache lines amounting to distribution of
data in caches while we focus on task migration combined with
data migration mechanisms that keep data local to the targetcore
and retains the locks in caches across migration.

Acquavivaet al. [4, 10] assess the cost of task migration for
soft real-time systems. They assume private memory and differ-
ent operating system instances per core on a low-end processor. In
contrast, we assume private caches with a single operating system
instance, which more accurately reflects contemporary embedded
multi-cores [2]. Their focus is on task replication and re-creation
across different memory spaces while our work focuses on task
migration within part shared, part private memory spaces. Hardyet
al. have recently proposed static cache analysis techniques toquan-
tify cache-related migration delay cost on multi-cores by estimating
re-use of cache lines that cause cache misses [15]. Our methodol-
ogy focuses upon eliminating migration delay to support cache line
locking in multi-cores and providing support for deterministic mi-
gration delay for locked cache lines.

3. Problem Analysis
Era of Multi-core architectures: The multi-tasking requirement
of real-time systems and the higher processing needs have mo-
tivated embedded system vendors to advocate multi-core proces-
sors. These designs leverage multi-processing ability instead of
only instruction-level parallelism. Thus, multi-cores have simpler
cores but complex cache architectures. Symmetric multi-processors
(SMPs) have already become popular among consumer electronics.
Figure 3 exhibits the two SMP designs that are widely deployed.
Both architectures have three levels of caches except that in Fig-
ure 3(a) L3 cache is shared among processors while, in Figure3(b),
sharing begins at L2. Thus, the latter design suffers from contention
at L2, which results in high contention as L2 is much smaller than
L3. Therefore, the former design seems more suitable for real-time
systems that execute multiple independent tasks.

Also, tile processors from Intel and Tilera with on-chip message
passing capabilities have recently been advocated [2,22].Thus, for
predictable behavior we consider the design shown in Figure3(a)
for our study.
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Figure 3. Symmetric Multi-processors

Task Migration on Multi-core Platforms: Scheduling of real-
time tasks on multiple cores has been widely studied. Researchers
have contributed by proposing global and fair scheduling algo-
rithms that assume task migrations are allowed. However, allowing
task migrations makes it necessary to consider the cost of migra-
tion. When a task migrates from one core to another, it startsex-
ecuting on the new core with a cold cache as shown in Figure 4.
This incurs a Cache-Related Migration Delay (CRMD). Hardy et
al. determined the upper bound on CRMD for shared instruction
caches [15]. However, their scheme is limited to the estimation
of CRMD and does not consider mechanisms to reduce migra-
tion overheads. Sarkar et al. propose push-based cache migration
schemes for migrating the entire cache context of a single task [24].
However, their solution of overlapping migration overheadwith
slack time within a schedule is not applicable to theoretically opti-
mal PFair scheduling, as discussed in Section 1. Furthermore, the
immobility of locked caches in multi-core real-time systems is not
addressed in literature. In contrast, we specifically focuson the im-
portance of locked caches in hard real-time systems.

Cache Locking in Hard Real-time Systems: Hard real-time
tasks have stringent deadlines that have to be met or the system may
fail. Such systems are employed in highly sensitive environments
where a missed deadlines may have catastrophic consequences.
A real-time system is usually composed of short hard real-time
tasks sharing common resources with other soft real-time tasks and
non real-time tasks. In such mixed criticality systems, onesuch
time-critical shared resource is the on-chip cache. Soft real-time
or non real-time tasks may have large memory footprints thatlead
to intra-task cache contention. In contrast, hard real-time tasks are
constructed to have smaller memory footprints. Especiallywith the
current trend of large L2 and L3 caches, Hard Real-time taskscan
fit within the cache with low or no intra-task contention. None
the less, inter-task cache contention with other non real-time tasks
hampers the cache behavior predictability of hard real-time tasks.
Thus, cache locks are necessary to improve the predictability of
cache behavior. As a side effect, it may reduce execution time of
hard real-time tasks assuming that they are small since intra-task
cache contention may be low if not eliminated.

Cache locks have long been studied for uni-processor systems.
Locks can be applied statically or dynamically. In static cache lock-
ing, the system locks the entries pertaining to a task into the cache
at start-up phase. These locked entries are resident withinthe cache
during the lifetime of the task. On the other hand, dynamic locking
requires reload points to be identified. At these reload points, cache
lines pertaining to a certain region are locked. Dynamic cache lock-
ing is more suitable for soft real-time tasks that have high intra-task
cache contention.

Impact of Cache locks on multi-tasking systems: We con-
ducted experiments on a uni-processor model with and without
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Table 1. Experimental Benchmarks
Benchmark Functionality / Hard Real-Time Routines
fft1 1024-point Fast Fourier Transform (Cooly-

Turkey algorithm)
jfdctint Discrete-cosine transformation (8x8 pixel

block)
bs Binary search (array of records)
crc Cyclic redundancy check (40 bytes of data)

cache locks for hard real-time tasks to substantiate the impact of
cache locking for hard real-time systems. Table 1 shows a subset
of Malardalen WCET Benchmarks [3] used in our experiments as
hard real-time benchmarks. Each of these benchmarks were run in-
dividually along with a non real-time Cnt benchmark.

Assumptions of this study: We chose SESC [23], a light
weight event driven simulator, to design our experiments. Our pro-
cessor model consisted of an in-order core with multi-levelinclu-
sive caches. WCET benchmarks have small memory footprints.
Therefore to model inter-task contention, we used configurations
with small caches as usually is the case in real-time systemslitera-
ture. Our experimental cache hierarchy has 2KB 4-way associative
L1 data and instruction caches, and a 8KB 8-way associative uni-
fied L2 cache, with same cache line size of 32 bytes. We have used
inclusive caches as they are common in commercial processors be-
cause they prevent write-backs of non-dirty lines during replace-
ment from L1 to L2 that are otherwise required in exclusive caches.
Also, multi-processors tend to constrain the coherence protocol to
a single level,.i.e., at L2 to simplify design. The simulated caches
were modified to support locks at both L1 and L2 levels. For inclu-
sive caches, a line locked in L1 is also locked in L2. One may argue
that such a design would lead to a waste of L2 cache space. How-
ever, we consider that such a provision allows an application devel-
oper to choose the level of cache that benefits the application. Static
locking has been used to lock cache lines. Unfortunately, there is no
static analysis tool available with unified multi-level cache locking
to select cache lines for locking to that would derive optimal WCET
bounds. Thus, we lock instruction and global data pertaining to all
the paths within the hard real-time tasks that fit within the large L2
caches. An optimal selection of cache lines to lock reduces inter
and intra task conflicts induced by locking However, lack of such a
WCET bounding tool neither prevents developers from using cache
locks in current hard real-time systems, nor does it change the prob-
lem addressed in this paper. Thus, development of such an analysis
tool is orthogonal and out of the scope for this paper. The L1,L2
and Memory access latencies have been set to 1, 10 and 100 cycles,
respectively. As for the benchmarks, bs and crc benchmarks are be-
ing executed as hard real-time tasks. The inner loops of fft1and
jfdctint have been refactored as stand-alone hard real-time tasks.

Table 2 shows the impact of cache locking when each of the
benchmarks is run in contention with the cnt benchmark that uses
streaming input data. The first column contains the benchmark
names, second and third columns show the WCET of the bench-

Table 2. Impact of Cache Locking (when contented with cnt)
Benchmark WCET WCET Number of Reduction

(No lock) (lock) Lines locked in WCET
[cycles] [cycles] (Level)

fft 13922 8302 47 (2) 59.6 %
jfdctint 6125 2143 36 (2) 34.9 %

bs 1842 590 10 (1) 32.03 %
crc 12936 9423 41 (1) 72.8 %

marks when run without locks and with static locks. The fourth
column shows the number of cache lines statically locked in L2
cache and the level at which they were originally locked. Thefifth
column quantifies the reduction in WCET percentage obtainedby
using static locks. The WCETs in this work are experimentally ob-
served maximum execution times obtained by feeding different in-
puts due to a lack of static WCET analysis tools. All benchmarks
show a considerable drop in WCET with locked lines vs. without
them. It is evident that the streaming nature of the input data in cnt
leads to inter-task conflicts, which leads to eviction of thelines in
these benchmarks. This is prevented when these lines are locked.
Notice that locks show a tighter bound and lower observed WCET
due to reduced intra-task cache contention. Such behavior is typical
for hard real-time applications.

We also take this opportunity to show that multi-level cache
locking can be beneficial when L1 cache space is scarce. fft and
jfdctint have large instruction memory footprints. Therefore, they
have been locked at the L2 level. bs and crc have small instruction
footprints. Their instructions have been locked in L1. The total
number of lines locked for crc is comparable to fft and jfdctint
because crc uses a buffer that is equivalent to the size of the
instruction footprint that gets locked in L1 data cache.

These results pose the primary advantages of cache locking
namely; immunity from inter-task contention and improvement
in execution time for short hard real-time tasks. Those are the
key reasons for cache locking to be prevalent among embedded
processors, like the IBM PowerPC 460S, Motorola MPC7400, Intel
960, ARM 940T etc. Studies on intra-task cache conflicts, andwork
on identification of locked cache lines is orthogonal to oursand
studied elsewhere [18,19,21,26,28].

Task Migration and Locked Caches on Multi-core Plat-
forms: Developers choose to use locks on memory addresses with
the assumption that when a task executes on a core, the core’scache
holds all locked lines. However, task migrations are scheduler-
triggered events that a developer has a limited control over. Thus,
developers may pin a process onto a core in a multi-core environ-
ment. This precludes the use of efficient real-time scheduling tech-
niques that rely on task migration. If tasks with locked lines were
allowed to migrate, locked lines would still remain in the source
core (abandoned by the task) while the task resumes execution on
a new (target) core. This violates the predictability assumptions of
the locking mechanism per se. As discussed in Section 1, using
threads to unlock (at the source) and lock (at the target) have sig-
nificant drawbacks. Hence, multiple cache migrations have to be
serialized to ensure predictable cache migration. On top ofthat,
each cache line is migrated sequentially due to in-order cores. Thus,
there is no scope for reducing migration costs while maintaining
predictability.

4. Proposed Solution
4.1 Assumptions on Multi-Core Real-Time System

In this paper, we assume an SMP bus-based system (see in Fig-
ure 3(a)). We further assume a PFair scheduling algorithm that syn-
chronously schedules tasks onto cores after every time quantum



at scheduling slots (see Figure 1). Cache migrations immediately
follow scheduling decisions. Tasks are stalled during scheduling
slots and resume execution only after completion of scheduling and
cache migration. This prevents all tasks from (a) accessinglocked
data lines during cache migration and (b) generating any bustraffic
during cache migration.

We assumed absence of task non-migration bus traffic during
push-based migrations to avoid the complexities of bus conflicts
when concurrent tasks execute. In Section 7, we discuss the appli-
cability of our mechanisms to systems with bus conflicts while pre-
serving the mathematical bounds derived in the rest of this section.
We assume that the target core chosen by the scheduler can accom-
modate the locked cache lines to be migrated. A study of finding
whether there is sufficient space in the target cache is orthogonal
to our work as scheduler interaction is required irrespective of the
migration type (thread-based pull or hardware-based push). Our ob-
jective is to demonstrate that we can guarantee an efficient and pre-
dictable cache migration delay once a hard real-time task has been
selected for migration.

4.2 Migration Models

In order to explain the migration model, we use “source” and “tar-
get” to refer to the core/cache where the task is currently running
and where the scheduler migrates the task to before it resumes ex-
ecution, respectively.

4.2.1 Push Model: An Overview

A Push Model is one where memory requests are initiated by the
source core in order to warm up the target cache instead of demand-
driven requests issued by the target. Sarkar et al. introduced two
such migration schemes: Whole Cache Migration (WCM) and Re-
gional Cache Migration (RCM) [24]. WCM is a hardware mecha-
nism, where every cache controller has a push logic block andeach
cache line has a PID associated with it. When the task migrates,
the target is initialized to start pushing the cache lines with a push
request. The push request is a point-to-point request. Thismeans
that a push request will be issued by a source core and referenced
by the target core only. This prevents any useless acknowledgments
or cache accesses by cores besides source and target. Therefore a
push request carries the information about the target core,along
with the data and the tag of the cache line that is being migrated.
However, the prior WCM scans through the whole cache in order
to identify each cache line that needs to be migrated. Thus, the
migration overhead is directly proportional to size of the cache.
RCM is a hardware/software approach that uses support of dedi-
cated registers called Region Registers (RR). RRs hold regions of
consecutive memory locations as pairs of start and end addresses.
Each Task Control Block (TCB) will hold region information for
RRs as identified by the programmer. The scheduler fills theselim-
ited number of registers before migration. Thereafter, a push block
unit computes sequential addresses that fall within these regions,
searches for them in the cache and pushes them to the target. Since
this scheme uses addresses to search the cache, cache lines do not
need a PID. See [24] for further details on the hardware complexity
of the push block, and integration of push requests with coherence.

Figure 5 depicts diagrammatic representation of two consec-
utive push transactions using RCM. Each transaction has a cache
read at the source, followed by a bus transaction to the target suc-
ceeded by a write at target, which finally concludes with an ac-
knowledgment request that is also monitored by the memory con-
troller (in case it carries a write back message from the target). We
use RCM scheme as our base scheme, yet with a minor modifica-
tion: we add a lock-bit check with each cache read as we migrate
only locked cache lines. In RCM, a cache read is initiated by the
push logic only after the acknowledgment has been received for the

previous transfer. This serializes each transaction. If weassume that
the worst-case cache access time is D cycles, uncontended cache-
to-cache migration takes B cycles and the number of locked cache
lines isCn, then the migration delayTm incurred by a single task
migration can be represented as

Tm = Cn × (2 × (B + D))

Read

Bus

Write

Ack

Read

Bus

Write

Ack

Read

Bus

Write

Ack

Read

Bus

Write

AckCache 
Read

Cache 
Read

Figure 5. Regional Cache Migration Operational Sequence

RCM in its current form is inefficient. Each cache read waits
for the acknowledgment to arrive. When a cache is being read or
written to, the bus is idle. When the bus is being accessed, the cache
controllers are idle. To mitigate this under-utilization of cache and
bus resources, we present our first novel scheme called Controlled
Cache Migration Pipelining.
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4.2.2 Controlled Cache Migration Pipelining (CCMP)

Subsequent cache reads can be serviced while a request has been
placed on the bus. Thus, a pending request buffer is created that
holds two pending requests at a time. This means that, at any time,
there can be only two pending push requests and no cache read
can be performed until one of the acknowledgments reaches the
source core. This is shown in Figure 6. One unique observation
of such pipelining is that bus transactions of push requestsand
acknowledgments do not interfere with each other. The migration
delay for such a scheme is

Tm = ⌊Cn/2⌋ × 2 × (B + D) + V
where V=0 when Cn is odd, V=D whenCn is even.
Figure 6 further illustrates that if the third cache read is allowed

just after the completion of the second cache read, then the push
transaction issued by the third cache read can only conflict if the bus
delay is greater than half of the cache read access. Thus, theCCMP
model is valid for processors where the bus delay is less thanor
equal to the cache access. Cache-to-cache transfers will continue to
be much faster than cache accesses due to advanced interconnect
technologies such as HyperTransport (HT) [1]. HT operates at
frequencies as high as 3.2GHz, which is much higher than any
clock frequency of a known embedded processor. Latencies within
embedded network-on-chip interconnects as low as a single cycle
have been reported, which confirm this. These observations lead
us to develop our next scheme called Streamed Cache Migration
Pipelining.
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4.2.3 Streamed Cache Migration Pipelining (SCMP)

This migration model allows a cache read to start immediately af-
ter the previous read without waiting. This scheme is extremely
efficient when the bus delay is shorter than half of the cache read
access time. As shown in Figure 7, none of the push requests con-
flict, effectively resulting in streaming behavior of cachemigration.

Thus, the migration delay for SCMP is
Tm = Cn × D + (2 × B + D).
The above schemes improve the performance of individual

cache migrations. Furthermore in situations where multiple cache
migrations are required, there is room to engage in seamlessly par-
allel cache migrations.

Read(1)

Bus

Write(2)

Ack Bus Ack

Read(3)

Bus

Write(1)

Ack

Read(3)

Bus

Write(1)

Ack

Core: 
1X2

Core: 
3X1

Read(1) Write(2)

Read(5)

Bus

Write(6)

Ack

Read(5)

Bus

Write(6)

Ack

Core: 
5X6

Figure 8. Parallel Multiple RCMs

4.2.4 Parallel Cache Migrations

When multiple hard real-time tasks are migrated simultaneously,
support for multiple cache migrations is required. Supposeall
cache migrations were using RCM. By maintaining a time dif-
ference that is a multiple of D between cache reads of any two
RCM chains, we can support multiple cache migrations without
contention (see Figure 8). Also, multiple cache migrationscan sup-
port a core to be a source as well as a target at the same time: In
RCM, source cache is idle waiting for an acknowledgment oncea
cache line has been pushed. This idle time can be used for a write
in case it is the target of another cache migration by placingthe
two transactions next to each other as shown in Figure 8. In fact,
the only scenario when synchronization does not hold true isfor
inverted source,target pairs. But PFair will never cause two simul-
taneous migrations of core pairs (1,2) and (2,1). In PFair schedul-
ing, a task is first picked to execute. If it was executing on a core
that has not been allotted to any other task yet, then it gets reserved
for that task. In case it has already been taken by another task, then
the task is migrated. To obtain pairs like (1,2) and (2,1), one of the
allotments has to precede the other. If (1,2) occurred first then core
1 has been allotted to another task. If such allotment was dueto a
task migrating from 2 to 1, then 2 has already been allotted. This
contradicts our assumption that (1,2) occurred before (2,1). Same
logic is applicable to non-existence of circular transactional paths,
like (1,2),(2,3),(3,1).

There is a limit to the number of transactions that can be sup-
ported in parallel, which is equal to⌊D/B⌋. Parallel transactions
have the ability to maximize the utilization of the bus bandwidth.
Such a scheme additionally requires synchronization across cores.

The key to this kind of a scheme is the method used by the sched-
uler to initiate and synchronize these transactions. The scheduler
and cache controllers interact as follows:

1. The scheduler determines the tasks subject to migration and
creates core pairs. Note that core pairs will have distinct targets
but can have identical sources.

2. A variation of the count sort algorithm divides these migrations
into buckets. Each migration within a bucket can run in par-
allel. Each bucket with respect to another is sequential. The
system can support maximum bucket size of⌊D/B⌋ transac-
tions that can run in parallel. Buckets with a large number of
parallel transactions are split. The complexity of this proce-
dure isO(number of cores). Partial ordering is then obtained
among transactions within each bucket to place core pairs like
(1,2) and (3,1) next to each other. The complexity of this is
O(bucket size).

3. The scheduler stores offsets into the TCB of migrated tasks.
These offsets indicate cycle times when a particular transaction
starts relative to the start of cache migrations. The scheduler
then loads the contexts onto the target cores.

4. The core with an offset of zero packs its region registers within
a data block. As we are using only 4 pairs of region registers,
they fit within the size of 32 bytes (size of a cache block). This
methodology is used because sources for two transactions in
different buckets can be same. If we allow the scheduler to
update the region registers, then the scheduler would need to
activate after every bucket finishes. This can be avoided by an
initial transfer from target to source. This requires additional 4
pairs of region registers within the push block that has to be
sent to the source. But it does not change the parallelization
of transactions because the transactions are already two-way
communication. This adds a small overhead of2 × B + D
cycles.

5. Each Snoop controller detects the very first message on thebus
and records the current cycle time. This value is then added to
the offsets. This allows all targets to determine when to issue
the request for initialization of push requests.

Note that all the offsets can be predetermined because the transac-
tion time for each cache migration is bounded. Even with parallel
transactions, the time at which a bucket of transaction finishes can
be predicted accurately to compute the offsets for next bucket of
transactions. Within a bucket, the offset values are such that the
transactions are B cycles apart. If there is a single transaction in
a bucket, it can use pipelined models like SCMP or CCMP. This
synchronization only requires an additional set of RRs, offset value
registers and minor logic to extend access to these registers.

Until now, we have considered RCM-based approaches. RCM
is useful when long sequential paths of code, global data arrays, or
closely located groups of global variables are locked. However, the
locking of sparse memory locations needs cache migration support
as well. This motivates a hardware solution called the Set-Scan
Cache Migration model.
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4.2.5 Set-Scan Cache Migration (SSCM)

The push block in SSCM identifies locked lines pertaining to the
migrated task through hardware enhancements. Since the push
block is unaware of the locked regions, it requires a ProcessIden-
tifier (PID) information associated with the cache line to determine
that the locked cache line belongs to the migrated task. Thus, each
cache line holds a PID tag to associate itself with a process.Dur-
ing a normal cache access, the contents of an entire are read.If the
searched tag matches any entry, it is forwarded to the bus. However,
multiple locked entries within a set may belong to the same process.
So, efficiency of migration may be increased by buffering therest
of the entries in the set instead of throwing them away. Thus,mul-
tiple matching entries can be identified in very short time while the
first matched entry is in transit. On receiving an acknowledgment,
the next matching entry can be transmitted immediately without
any read delays. This is shown in Figure 9, where the push request
marked 2 is placed on the bus as soon as the ACK for the push re-
quest marked 1 has arrived. This prevents the hardware mechanism
from reading a set multiple times. When there are no matchingen-
tries in a set at all (as is the case with the first read in Figure9)
extra reads may be introduced, each adding an extra read latency to
the total migration cost. The mathematical analysis of thisscheme
introduces another parameter, namely the number of sets within the
cache. It is calculated from the size of cache (Sc) and the associa-
tivity (A). The migration delayTm is

Tm = Sc/A × D + Cn × (2 × B + D)
This is deduced from the behavior of SSCM, which reads each

set once. Each migration takes two bus transactions and one cache
access at the target.
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Figure 10. Conflicts between RCM and SSCM Push Requests

So far, we discussed the parallelization of cache migrationin
terms of RCM. SSCM is a sequential cache migration scheme that
could benefit from parallelization as well. In particular, aset of
RCM migrations may issue when another set of migrations uses
SSCM. A constraint of SSCM is that a push request cannot be
overlapped with pushes of RCM. Figure 10 illustrates the reason
for this: a set read may find zero or multiple lines to migrate.Thus,
we propose an aligned version of the SSCM called Slotted-SSCM.
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4.2.6 Slotted-SSCM

This migration model regulates the progress of cache set reads
and issuance of push requests. Cache migration is now divided
into slots. Each slot has a duration of2 × (B + D). When a set
read yields only one push request, it takes one slot of time. In
Slotted-SSCM, if no match is found, it takes one slot and if multiple
matches are found then each line migrated accounts for one slot of
time. This is shown in Figure 11. Thus, such a migration can now
run in parallel with other chains of RCM cache migrations.

However, such a scheme complicates the estimation of migra-
tion delay. This is due to the delay of fake set reads added to mi-
grations of cache lines that have been identified by a prior set read

operation. The worst-case scenario occurs when locked cache lines
are locked in⌈Cn/A⌉ cache sets while the best-case cache migra-
tion delay is obtained when each cache set has one locked cache
line.

Thus, the worst-case cache migration delay experienced by
Slotted-SSCM is

Tmwc = (Sc/A − ⌈Cn/A⌉ + Cn) × 2 × (B + D).
Slotted-SSCM migration creates a deterministic behavior of the

issuance of push requests. In analogy to the parallel execution
of RCM chains under SCMP, we can develop a pipe-lined cache
migration model for Slotted-SSCM.
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4.2.7 Slotted-SSCM Pipelining

This migration model takes us back to pipelined migration, but for
Slotted-SSCM instead of RCM. This is similar to SCMP in that the
push block proceeds with the next set read without waiting for any
acknowledgments of the previous transfer. A cache access delay
is associated with every migrated line. When a cache set holds
multiple locked cache lines for a migrated task, the first migrated
line experiences a delay due to an actual set read while subsequent
transactions add a fake cache access delay as shown in Figure12.
This migration model exhibits a complexity in analytical terms. The
worst-case scenario is the same as for Slotted SSCM. Hence, the
worst-case cache migration delay for Slotted-SSCM Pipelining is

Tmwc = D × (Sc/A − ⌈Cn/A⌉ + Cn) + 2 × B + D.

4.2.8 Proactive Pull Model

The proactive pull model is a migration model where demand
requests are issued by the target core before the migrated task
resumes execution on the target. We did not consider a hardware
model for this because it is impossible to create an SSCM-like
migration model.

5. Simulation Platform

Table 3. Simulation Parameters
Component Parameter

Processor Model in-order
Cache Line Size 32B
L1 I-Cache Size/Associativity 2KB/4-way
L1 D-Cache Size/Associativity 2KB/4-way
L1 Access latency 1 cycle
Replacement Policy LRU
L2 Cache Size/Associativity 8KB/8-way
L2 Access Latency 10 cycles
L2 Replacement Policy LRU
Coherence Protocol MESI
Network Configuration Bus based
Processor To Processor Delay 2 cycles
Bus Width 256 bits
External Memory Latency 100 cycles



Our proposed solution requires micro-architectural modifica-
tions to a stable bus-based multi-core CMP architecture. Wechose
SESC [23], a light-weight event driven simulator that implements
a stable bus-based CMP supporting the MIPS instruction set.Our
base experimental model consists of a multi-core CMP architecture
where each core has private L1 and L2 caches.

The system architecture specifications are presented in Table 3.
The base simulator environment has been enhanced with a sched-
uler that triggers task migration across cores. The cache model
has been extended to allow us to support locks at different levels
of caches. The migration models have been designed and imple-
mented as part of the cache controller model. This allows thedetec-
tion of locked cache lines, issuance of push requests from “source”
core to “target” core and regulation of the rate of requests issued
according to the migration models.

6. Evaluation
RCM v/s. SSCM: First, we compare the migration delays incurred
by programmer-assisted implementations of RCM and complete
hardware solutions for cache migration in SSCM as shown in
Table 4. The first column shows the benchmarks used, the second
column shows the number of cache lines that were locked, third
column shows the migration delay experienced by RCM and fourth
expresses the same in cycles for SSCM. As can be seen that for
fft, jfdctint and crc, SSCM performed better than RCM. This is
because SSCM identifies multiple cache entries in a set through
one cache access while RCM needs to perform as many cache
reads as the number of cache lines are locked. This shows thatthe
three benchmarks have their locked lines distributed over the entire
cache. In case of bs, the migration delay experienced by SSCMis
significantly larger than for RCM. This is because the numberof
cache lines locked for bs is much lower than the number of setsin
the cache.

Table 4. Migration Delays: RCM vs SSCM
Program Number of RCM SSCM

locked cache
lines [cycles] [cycles]

fft 47 1128 978
jfdctint 36 864 824

bs 10 240 460
crc 41 912 894

Pipelined RCM techniques: In Section 4.2, we presented two
similar pipelining schemes, CCMP and SCMP. Table 5 shows
the potential of these schemes over serialized RCM scheme. The
first column shows the benchmarks used. Second, third and fifth
columns show migration delays incurred by RCM, CCMP and
SCMP in cycles, respectively. Fourth and sixth columns showre-
duction in migration delay achieved by CCMP and SCMP over
RCM in percent. These results correspond to the equations derived
in Section 4.2.

Consider the differences between the schemes. SCMP performs
well if the bus delay is less than or equal to half the cache access
delay. Once the bus delay exceeds this threshold, CCMP becomes
more efficient. This remains true till the bus delay is less than
or equal to the cache access delay. However, pipelining becomes
infeasible once the bus delay exceeds the cache access delay. This
can be mitigated by adding delays to balance cache access and
bus delays. This enables CCMP when the bus delay is marginally
greater than the cache access delay. For higher bus delays, one
may have to introduce multiple hops. A detailed analysis of such
systems is out of scope of this paper and subject to future work.

Slotted SSCM techniques: In Section 4.2, we presented the
Slotted-SSCM and Slotted-SSCM Pipelining migration models.

Table 5. Pipelined Cache Migration
Program RCM CCMP CCMP SCMP SCMP

[cycles] [cycles] Savings [cycles] Savings
fft 1128 576 48.9% 484 57.1%

jfdctint 864 442 48.8% 374 56.7%
bs 240 130 45.8% 114 52.5%

crc 912 446 48.9% 394 56.8%

Table 6 shows the experimental and worst-case migration delays
for the two schemes. The first column shows the benchmarks used.
Second, third and fifth columns show the experimental migra-
tion delay in cycles for SSCM, Slotted-SSCM and Slotted-SSCM
Pipelining, respectively. Fourth and sixth columns show the ana-
lytical worst-case migration delay for Slotted-SSCM and Slotted-
SSCM Pipelining, respectively. It can be seen that migration de-
lays are significantly reduced by pipelining. However, the worst
case migration delay for both Slotted-SSCM and Slotted-SSCM
Pipelining are considerably higher than their corresponding exper-
imental results. This is because, in practice, locked cachelines are
spread across the sets while the worst case occurs when the locked
lines are located within the smallest number of sets that canhold
those lines. Thus, we recommend that experimental migration de-
lays to be computed off-line if the distribution of locked cache lines
is known. This can be inferred from cache design parameters and
lock addresses. In order to compute the migration delay, onehas to
find the sets that the locked cache lines are mapped to.

Table 6. SSCM Variants
Program SSCM Slotted Slotted Slotted Slotted

SSCM SSCM SSCM Pipe- SSCM Pipe-
(WC) lining lining (WC)

[cycles] [cycles] [cycles] [cycles] [cycles]
fft 978 1128 1752 484 744

jfdctint 824 864 1512 374 644
bs 460 768 888 320 414

crc 894 1008 1608 434 684

The computation for Slotted-SSCM has been shown in Fig-
ure 13. Note that a set with no locked cache line causes a delay
of 2x(B+D), but once a line is found this delay covers the firstmi-
grated line. Every additional line migrated from a set incurs a de-
lay of 2x(B+D). Since migration delays for these schemes arede-
ducible off-line, we compare the experimental delays and observe
that Slotted-SSCM Pipelining is able to reduce the migration delay
over SSCM on an average by 46.7%.
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Figure 13. Offline Computation of Migration Delays for Slotted-
SSCM

Parallel vs. Pipelined Cache Migration: In this paper, we in-
troduced pipelined schemes like CCMP, SCMP and Slotted-SSCM



with pipelining. When multiple cache migrations have to be han-
dled, pipelined cache migrations for each task can be performed
one after the other. However, system-level parallelism of cache
migration can also be obtained by issuing multiple instances of
RCM and Slotted-SSCM cache migrations as shown in Figure 8.
Pipelined cache migration is useful for reducing migrationdelay
for individual migrations while parallel migrations can utilize max-
imum bandwidth. For example, our experimental model with cache
access delays of 10 and bus delays of 2 cycles supports 5 parallel
cache migrations for an aggregate bandwidth utilization of100%.

Table 7. Parallel vs Pipeline
List of Parallel Pipelined Scheduler’s

tasks Migration Migration Choice of
migrating Cost Cost Migration

[cycles] [cycles]
1,2,3,4 1128 1366 Parallel

1,2,4 1128 1252 Parallel
2,4 912 768 Pipeline

1,3,4 1128 992 Pipeline

When multiple task migrations occur, the scheduler needs to
compare the cost of running a sequence of pipelined migrations
against that of parallel migration. To illustrate, We choose a sce-
nario where fft(1), jfdctint(2), bs(3), and crc(4) are running on a
multi-core system. We assume that they all use RCM as the base
cache migration scheme and all of them can migrate in parallel
when selected. Table 7 depicts four combinations that exhibit the
behavior of parallel and pipelined migrations. The first column
shows the set of migrating tasks. The second and third columns
show the migration cost in cycles for parallel migration andseri-
alized SCMPs. The last column shows the choice that the sched-
uler makes. It can be deduced from Table 7 that when the num-
ber of cache migrations are large and all the RCM migration costs
are comparable, parallel migration exhibits shorter migration cost
(rows 1 and 2). Pipelined migration performs better when thenum-
ber of migrations are small (row 3). Parallel migration costis deter-
mined by the highest individual migration cost. Hence, it performs
worse than pipelined migration when the variance for the costs of
individual migrations is high (row 4).

7. Discussion
We have shown that under the assumptions of Section 4.1, our
push-based cache migration mechanisms can perform better than
any thread-based migration scheme by reducing the migration de-
lay while keeping it predictable. Until now, we were assuming that
none of the tasks resume execution during scheduling slots while
cache migration is in progress.
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Figure 14. Cache Migration with TDMA bus

We now describe how our cache migration schemes can be in-
corporated into hard real-time systems such that cores not involved
in cache migration may resume execution without waiting forcache
migration to complete. We assume that all cache content for agiven
task is either available in the locked caches on the same coreor are
obtained from lower-level caches. In other words, we assumethere

is no coherence traffic between cores and our cache migrationis the
only means for cache-to-cache transfers.

Literature on multi-core hard real-time systems has advocated
the use of TDMA-based buses to enhance predictability of mem-
ory access latency amid bus contention [29]. A TDMA-based bus
allows bus access to a particular core only during designated slots
in a round-robin manner. For example, given four cores and a bus
slot width equal to the bus delay (B = 2 cycles), core 0 can place a
request on the bus during time slots 0-2, 8-10, 16-18, etc. However,
if a request arrives at cycle 1, 9, 17, etc., core 0 will not be able to
place its request on the bus until its next slot. Hence, the maximum
delay,Maxd, that a core may incur for a bus access, is calculated
asMaxd = B × Ac − 1, whereAc is the number of active cores
(four in the aforementioned example).

The TDMA-based bus is operates in this manner during execu-
tion within each quantum in our system. However, the operation is
modified when cache migrations are in progress (see Figure 14).
The figure illustrates how our parallel migration mechanismcan
utilized in conjunction with actively running cores that issue mem-
ory/L2 cache requests for TDMA-based buses. Let us assume that
two cache migrations are in progress between core pairs (1,2) and
(3,4), respectively. Considering a cache delay access, D, of 12 cy-
cles and a bus delay, B, of 2 cycles. The first four cycles (or two
TDMA slots) in every 12-cycle period are dedicated for cachemi-
gration traffic. TDMA Slots apart from those are allotted to active
cores (5, 6, 7, 8) and the memory controller (9), in a round robin
sequence. Under such a scheme, the maximum delayMaxd that a
core may incur is computed by the following equation:

Maxd = Nm × B × ⌈Ac/(⌊D/B⌋ − Nm)⌉ + Ac × B − 1,
whereNm is the number of migrations occurring in parallel.

This equation for calculating the maximum delay only applies
for the duration of cache migration. Once migrations are complete,
the traditional TDMA-based bus operation resumes. Using static
analysis for each sub-task executing within a quantum, the worst-
case bus latencies can be calculated. Notice that we assume the
absence of scheduling decisions within a quantum in order tomain-
tain safety of the system. In other words, we assume a non-work-
conserving, static Pfair scheduling algorithm.
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Figure 15. Cache Migration on Tile-based Architecture

In recent times, tile-based multi-core architectures havebecome
a reality [2]. These architectures support multi-channel mesh in-
terconnects with multi-path routing features. Multi-pathrouting
allows multiple cache migrations to be routed on non-interfering
paths. This enables multiple cache migrations to proceed inparal-
lel. This has been shown in Figure 15, where three migrations(9
to 1,5 to 6,2 to 7) are taking place simultaneously. Our pipelined
mechanism can be utilized to reduce individual cache migrations
assuming requests to memory controller use a separate channel. In
this case, each cache-to-cache transfer uses multiple hopsinstead
of a single hop shown in Figure 15. The bus delay, B, thus is a
multiple of the number of hops (9 to 1: 4 hops, 5 to 6: 1 hop, 2
to 7: 2 hops). Multi-path routing can further assist our push-based
lock mechanism. We intend to pursue this line of research in future
work.



8. Conclusion
This paper promotes multi-cores in hard real-time systems under
cache locking. In hard real-time systems, cache locking increases
the predictability of worst-case execution time potentially resulting
in higher utilization. On multi-core platforms, optimal scheduling
like PFair assumes task migration as a fundamental premise.This
paper discusses support required under cache locking for proactive
lock and cache content migration. We develop a wide range of
cache migration models that provide deterministic migration delay.

We exploit pipelining for Regional Cache Migration (RCM)
through Controlled Cache Migration Pipelining (CCMP) and
Streamed Cache Migration Pipelining (SCMP) that reduce themi-
gration cost over RCM by 48% and 56%, respectively. We expose
system-wide parallelism for cache migration through a novel hard-
ware synchronization mechanism. This allows multiple cache mi-
grations to overlap and maximize system bus utilization. Wealso
present a hardware mechanism called Set-Scan Cache Migration
(SSCM) to migrate sparse cache locks that cannot be specifiedby
large memory regions by Region Registers. Slotted-SSCM, anex-
tension to SSCM, allows cache migrations to progress in parallel
with RCM-based cache migrations. Slotted-SSCM also lends itself
to pipelining that leads to Slotted-SSCM Pipelining. Slotted-SSCM
Pipelining delivers a reduction in migration cost over SSCMby
46.7%. Individually, Slotted-SSCM may seem to have high over-
head with large caches due to extra set reads. This cost can be
mitigated if Region Registers (otherwise recommended for RCM)
are used to specify a group of contiguous sets that contains locked
lines. This is based on the observation that locks that seem sparse
in large memory space may fit within a small set of cache sets. This
hybrid design of RCM and Slotted-SSCM has the potential to re-
duce the overhead of extra cache set reads significantly. We also
present novel applications of our migration mechanisms to con-
temporary multi-core real-time architectures, such as SMPwith
TDMA-based bus support and tile-based architectures with mesh
interconnects.

Single cache migrations should make use of pipelined mecha-
nisms. SCMP and Slotted-SSCM Pipelining deliver the best results.
In case of multiple cache migrations, the scheduler can choose
between parallel migration and pipelined migration based on the
knowledge of individual migration costs. Overall, our novel cache
migration schemes provide the scheduler with opportunities to de-
liver deterministic and efficient cache migrations options.
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