Predictable Task Migration for

L ocked Cachesin Multi-Core

Systems *
Abhik Sarkat, Frank Muellet, Harini Ramapraséd

'North Carolina State UniversifiSouthern Illlinois University
!asarkar@ncsu.edu, mueller@cs.ncsu.edu,?harinir@siu.edu

Abstract

Locking cache lines in hard real-time systems is a commomsiea
of achieving predictability of cache access behavior agluténing
as well as reducing worst case execution time, especiadynilti-
tasking environment. However, cache locking poses a aiggle
for multi-core hard real-time systems since theoreticalbyimal
scheduling techniques on multi-core architectures ass@necost
for task migration. Tasks with locked cache lines need tapro
tively migrate these lines before the next invocation of taek.
Otherwise, cache locking on multi-core architectures bexouse-
less as predictability is compromised.

This paper proposes hardware-based push-assisted caplae mi
tion as a means to retain locks on cache lines across migsatio
We extend the push-assisted migration model with severdieca
migration techniques to efficiently retain locked cachediron a
bus-based chip multi-processor architecture. We alsoigeoste-
terministic migration delay bounds that help the scheddéide
which migration technique(s) to utilize to relocate a singt mul-
tiple tasks. This information also allows the schedulereatedmine
feasibility of task migrations, which is critical for thefety of any
hard real-time system. Such proactive migration of lockache
lines in multi-cores is unprecedented to our knowledge.

Categories and Subject Descriptors D.4.7 [Operating Sys-
temg: Organization and Design—real-time systems and embed-
ded systems; D.4.XJperating SystenfisProcess Management—
scheduling; B.4.2 Memory Structurds Design Styles—cache
memories

General Terms Design, Experimentation.

Keywords Real-Time Systems, Multi-Core Architectures, Timing
Analysis, Task Migration.

1. Introduction

Locking cache contents in uni-processor hard real-timegys has
been a popular option for hard real-time systems desighecked
cache contents are immune to cache replacement, which wegro
the predictability of cache access behavior of a hard ieed-task.
Additionally, real-time tasks that are usually of small lvadoot-
prints and low intra-task conflicts, are able to obtain atgravorst-
case execution time (WCET) by using locks.

Today, uni-processor designs have reached a clock freguenc
wall due to their fabrication process and power/leakage- con

* This work was supported in part by NSF grants CNS-0720496Ci8-
0905181.

LCTES’11, April 11-14, 2011, Chicago, lllinois, USA.
Copyright(© 2011 ACM 978-1-4503-0555-6/11/04. . . $5.00

straints, which has led processor vendors catering to bigh- h
performance and embedded computing communities to dekign ¢
multi-processors [22]. This trend is evident in embeddetkrioe
geneous multi-cores(g, for cell phones) and also homogeneous
multi-cores [2].

Acceptance of multi-cores in hard real-time systems has bee
slow due to several reasons. One of the early hurdles waséboge
schedulability analysis for hard real-time tasks on mcities. By
now, real-time schedulability theory for multi-cores halvanced
and diversified to a multitude of policies for global and faihedul-
ing [6-9,13, 25].

A fundamental premise of these policies is that tasks areatig
able. Under such policies, the migration delay is assumbd tmn-
stant and added to the WCET of the task. Such assumptions may
lead to highly conservative migration delays. This probileonsens
with simultaneous migrations of multiple tagksit are prevalent in
such scheduling mechanisms. Locked cache lines only adusto t
problem. Prior work on cache locking has been studied onfg-in
lation to uni-processors. Conventionally, the programimeurs a
cost of loading the locked cache lines prior to the execubitine
task. Subsequently, execution of the task assumes cachéohit
locked lines. This does not hold true in context of task ntigres
as they can occur during the execution of the task.

To ensure predictability, one could propose to pin hard-real
time tasks onto cores and thus partition them on multi-corbs
approach generates sub-optimal schedules as optimaiigarg
of tasks on multi-cores has been shown to be an NP-hard prob-
lem [13]. Additionally, dynamic task admittance would r&@gue-
partitioning that renders such a system inflexible.

Thus, we identify locked cache line mobility as a hindrance
to task migration in real-time systems. Any solution to pres
predictability for locked cache lines has to be proactiveature to
guarantee that these lines are locked at the target coregheefask

resumes execution. Migration Delay

for tasks B and D

Processors
FNERRVINN
®|®(mM|O|

[[] Task Execution
[l Scheduler Execution
Cache Migration

Scheduling Points

Figurel. Cache Migration follows Pfair scheduling

This paper focuses on the migration of locked cache lines and
providing a predictable task migration scheme applicabléne-
oretically optimal PFair scheduling algorithm [17]. Cadhéegra-
tions can only be initiated by the scheduler after it has nmaidga-
tion decisions. All tasks are stalled until all cache miignas have
completed. The resulting migration cost will add to the sithieg
cost, as shown in Figure 1. The simplest way of performing pro
active cache migration is by using a software model. A thitaak
is spawned at the source core to unlock the lines. Thereafter
other thread spawned at the target core has to load and lesk th
lines. For multiple task migrations taking place betweefedint
cores, can execute locking/unlocking threads on thosesdongar-
allel. However, such a scheme has following drawbacks:

1. While performing multiple cache migrations using migvat
threads, each thread is oblivious of concurrently runnimghe
migrations and unaware of the bus utilization. Unsyncltredi
issuance of demand requests from multiple target cores tead
unpredictable cache-to-cache request del@ljis makes paral-
lel transactions unpredictable.

of the art of push-assisted cache migration to improve thfope
mance of individual cache migrations. Second, we developvaln
scheme that allows the scheduler to orchestrate multigleeceni-

grations in a seamlessly synchronized and parallel maWealso

derive a pre-calculated bound within which migrations ctete

Our work contrasts with [24] and technically contributegtie

2. Each demand request in a contemporary bus-based SMRewill b following ways:

snooped by all caches (ignoring coherence filters for nowis T
will induce multiple response actions on all cache corgrgl|

of the system. This not only affects the bus bandwidth but

also causes useless cache accesses. Haredlel transactions
become highly unpredictable and inefficient.

3. Also, in hard real-time systems, a software model exsdiie
locking/unlocking thread on a simple in-order core. Thisamse

that a thread that loads and locks the cache lines on thet targe
for a task can issue only one demand request at a time, ie., th
subsequent demand for a cache line can only be issued ater th <

current demand request has completed. Thus, if there igkesin

task migration taking place in a system, a thread-based imode

is unable to utilize the complete bus bandwidth.

The closest work with regard to proactive cache migration is

that by Sarkar et al. [24]. Their active movement of cacheamn
comes at the cost of up-front migration delay in contrasthi® t
traditional delayed overhead at the next job activatiore atithors

assume tasks are statically scheduled on every core, eaeh co

running its own scheduler instance. They present a single ta
migration scenario that triggers a task migration follogvitynamic
task admission. A task that has ample slack time before its ne
invocation is chosen to migrate. The task’s slack time islapped
with proactive migration of cache lines from source to taagees.

Thus, the overhead does not contribute to task executiomwhe
resuming on the target core, as shown in Figure 2. They also

consider a Quality of Service (QoS)-based bus to avoid aisfli
from other concurrently running tasks. However, their sotu
suffers from the following drawbacks:

1. Itis not applicable to global schedulers (e.g., PFait)[1Hfair

1.

This work is the first one to consider mobility requirensent
of locked cache lines for task migration. With such support,
impractical theoretically optimal multi-core schedulitech-
nigues thus become realistic in the context of hard readtim
systems. Prior work is not directed towards locked cacteslin

2. Prior work provides a hardware/software mechanismdatie-

gional Cache Migration (RCM) to identify and move large
contiguous memory regions specified by a limited number of
Region Registers. We extend their identification of midskta
cache lines to locked cache lines. We then expose the poten-
tial of reducing individual cache migration delays by pipel

ing the cache-to-cache transfers. We propose two such sshem
that work with RCM. These schemes, called Controlled Cache
Migration Pipelining (CCMP) and Streamed Cache Migration
Pipelining (SCMP), reduce migration delays by 48% and 56%,
respectively.

3. They propose a hardware mechanism called Whole Cache Mi-

schedules tasks on quantum basis. The scheduler is invoked

periodically and globally synchronous across all coregrgf

atask needs to be admitted dynamically, this decision israad
a scheduling instance only. Thus, the decision of task riara
happens just prior to the migratiom such a scenario, the
overhead cannot be overlapped with even earlier slack time.

2. Simultaneous migrations of multiple tasks has not beenidons
ered.

3. Their migration costs consider migration of whole cacbe-c
texts. This results in loose bounds on migration costs facpr
tical scenarios.

Migration

A
T"ﬂe—'aﬂ

I
Scheduler Initializes |
Cache Migration !

|
I
1

Job n+1

| Cache Migration
! Concluded

Slack
Time

Figure 2. Scheduler Initiated Cache Migration Overlaps Slack

Time

These inadequacies led us to exploit push-based micro-

architectural cache migration. First, we enhance the nustate

gration (WCM) for cache foot prints that are sparse with eesp

to memory address space. However, they deem it to be imprac-
tical as the overhead becomes proportional to the cache size
instead of the number of migratable cache lines. In this work
we present another hardware-based mechanism called 8et-Sc
Cache Migration (SSCM) that presents an efficient and practi
cal solution to sparse locked cache footprints.

. Their work considers single task migration. This assumnpt

constrains multiple task migrations to be sequential, efyer
under-utilizing the bus bandwidth. In this work, we propose
a novel mechanism where the scheduler synchronizes naultipl
RCMs in order to support multiple cache migrations in patall
without any conflicts.

5. Although SSCM works efficiently for single task migration

6.

cannot be synchronized for parallel migration with RCMs. To
handle this, we propose Slotted-SSCM. It allows multiplehea
migrations based on RCM and Slotted-SSCM to progress in
parallel without transaction conflicts.

We also propose a Slotted-SSCM Pipelining model thatoesiu
the migration delay for single task migrations by 46.7% over
SSCM on average.

. In prior work, migration costs are assessed by assumiggami

tion of the total cache foot-print of a task without cache-con
tention. Thus, the overheads stated in [24] for RCM are too
loose to be applicable to hard real-time systems. In cantras
our work considers inter-task contention and migratesddck
caches lines. We present deterministic migration delaydsu
for each scheme irrespective of whether cache locks aretased
lock contiguous or sparse memory locations.

. In Section 7, we provide insights into

(a) applying our parallel migration mechanism to SMP archi-
tecture with TDMA-based bus systems and

(b) applying our pipelined mechanisms to tile-based aechit
tures with mesh interconnects.

2. Related Work

In the past decade, there has been considerable researelstun ¢
line locks in the context of multi-tasking real-time systerftatic
and dynamic cache locking algorithms for instruction cachave
been proposed to improve system utilization in [18,19].a3=tche
locking techniques that pin data when cache behavior istiosad-
alyze statically have been proposed [28]. Past work predesth-
nigues for cache locking that provides comparable perfan@ao
scratchpad allocation [20]. Recently, cache locking hae Bken
proposed for multi-core systems that use shared L2 cacfigs)2
course, cache locking can also be used in conjunction witlater
L2 caches. Multi-cores certainly make cache locking everemat-
tractive in terms of real-time predictability.

Choffneset al. propose migration policies for multi-core fair-
share scheduling [12]. Their technique strives to mininmidgra-
tion costs while ensuring fairness among the tasks by niainta
balanced scheduling queues as new tasks are activated.ofkésw
in the context of soft real-time systems while ours focusebard
real-time. Calandrinet al. propose scheduling techniques that ac-
count for co-schedulability of tasks with respect to cachbay-
ior [5, 11]. Their approach is based on organizing tasks with
same period into groups of cooperating tasks. While thethote
improves cache performance in soft real-time systems,dbayot
specifically address issues related to task migratioat &l.discuss
migration policies that facilitate efficient operating ®m schedul-
ing in asymmetric multi-core architectures [16]. Their Wéocuses
on fault-and-migrate techniques to handle resourceawfaults in
heterogeneous cores and does not consider real-time @ionstr
Eisler et al. [14] develop a cache capacity increasing scheme for
multi-cores that scavenges unused neighboring cache ey
consider “migration” of cache lines amounting to distribat of
data in caches while we focus on task migration combined with
data migration mechanisms that keep data local to the taoget
and retains the locks in caches across migration.

Acquavivaet al. [4, 10] assess the cost of task migration for
soft real-time systems. They assume private memory andrdiff
ent operating system instances per core on a low-end parcéss
contrast, we assume private caches with a single operatsign
instance, which more accurately reflects contemporary dddse
multi-cores [2]. Their focus is on task replication and reation
across different memory spaces while our work focuses dn tas
migration within part shared, part private memory spacesdiiet
al. have recently proposed static cache analysis techniqupste
tify cache-related migration delay cost on multi-cores $tyreating
re-use of cache lines that cause cache misses [15]. Our dwtho
ogy focuses upon eliminating migration delay to supporhedine
locking in multi-cores and providing support for deterrsiic mi-
gration delay for locked cache lines.

3. Problem Analysis
Era of Multi-core architectures: The multi-tasking requirement

Also, tile processors from Intel and Tilera with on-chip s&ge
passing capabilities have recently been advocated [2T2&], for
predictable behavior we consider the design shown in Fig(ag

for our study.
o[[s]ps] - [ie] @
\
\ |

Core Core
0 1
o od [
L2 Cache
‘ L3 Cache ‘

Core Core
2

8 5

Unified L2 | | Unified L2
Cache Cache

Unified L2 | | Unified L2
Cache Cache

‘ L3 Cache ‘

(@) (b)

Figure 3. Symmetric Multi-processors

Task Migration on Multi-core Platforms. Scheduling of real-
time tasks on multiple cores has been widely studied. Relsees
have contributed by proposing global and fair schedulirgp-al
rithms that assume task migrations are allowed. HoweJexyiig
task migrations makes it necessary to consider the cost griami
tion. When a task migrates from one core to another, it seats
ecuting on the new core with a cold cache as shown in Figure 4.
This incurs a Cache-Related Migration Delay (CRMD). Hartly e
al. determined the upper bound on CRMD for shared instractio
caches [15]. However, their scheme is limited to the estomat
of CRMD and does not consider mechanisms to reduce migra-
tion overheads. Sarkar et al. propose push-based cachatimigr
schemes for migrating the entire cache context of a single[2#].
However, their solution of overlapping migration overheaith
slack time within a schedule is not applicable to theorétiaapti-
mal PFair scheduling, as discussed in Section 1. Furthexntioe
immobility of locked caches in multi-core real-time systeis not
addressed in literature. In contrast, we specifically fanuthe im-
portance of locked caches in hard real-time systems.

Cache Locking in Hard Real-time Systems: Hard real-time
tasks have stringent deadlines that have to be met or trensysay
fail. Such systems are employed in highly sensitive envirents
where a missed deadlines may have catastrophic conseguence
A real-time system is usually composed of short hard reaéti
tasks sharing common resources with other soft real-tistestand
non real-time tasks. In such mixed criticality systems, soeh
time-critical shared resource is the on-chip cache. Safttime
or non real-time tasks may have large memory footprints|dzat
to intra-task cache contention. In contrast, hard reattiasks are
constructed to have smaller memory footprints. Especiaillly the
current trend of large L2 and L3 caches, Hard Real-time taaks
fit within the cache with low or no intra-task contention. Non
the less, inter-task cache contention with other non iea-tasks
hampers the cache behavior predictability of hard readtiasks.
Thus, cache locks are necessary to improve the predidjabfii
cache behavior. As a side effect, it may reduce executioa tifn

of real-time systems and the higher processing needs have mo hard real-time tasks assuming that they are small since-task

tivated embedded system vendors to advocate multi-coreepro
sors. These designs leverage multi-processing abilitiedus of
only instruction-level parallelism. Thus, multi-coresvhasimpler
cores but complex cache architectures. Symmetric mubicgssors
(SMPs) have already become popular among consumer el@stron
Figure 3 exhibits the two SMP designs that are widely demloye
Both architectures have three levels of caches except rihaigi
ure 3(a) L3 cache is shared among processors while, in F&jbje
sharing begins at L2. Thus, the latter design suffers frontestion
at L2, which results in high contention as L2 is much smaant
L3. Therefore, the former design seems more suitable fotirae
systems that execute multiple independent tasks.

cache contention may be low if not eliminated.

Cache locks have long been studied for uni-processor sgstem
Locks can be applied statically or dynamically. In statictealock-
ing, the system locks the entries pertaining to a task ireactithe
at start-up phase. These locked entries are resident whithicache
during the lifetime of the task. On the other hand, dynamikitag
requires reload points to be identified. At these reloadtppaache
lines pertaining to a certain region are locked. Dynamitiedock-
ing is more suitable for soft real-time tasks that have higraitask
cache contention.

Impact of Cache locks on multi-tasking systems. We con-
ducted experiments on a uni-processor model with and withou

|
Cold$
Misses| EX°°

Job 2

Timeline

Figure4. Impact of Task Migration on Execution Time

Tablel. Experimental Benchmarks

Benchmark | Functionality / Hard Real-Time Routines

fftl 1024-point Fast Fourier Transform (Cooly-
Turkey algorithm)

jfdctint Discrete-cosine transformation (8x8 pixgl
block)

bs Binary search (array of records)

crc Cyclic redundancy check (40 bytes of data)

cache locks for hard real-time tasks to substantiate thedtmgf
cache locking for hard real-time systems. Table 1 shows aesub
of Malardalen WCET Benchmarks [3] used in our experiments as
hard real-time benchmarks. Each of these benchmarks wefia-ru
dividually along with a non real-time Cnt benchmark.

Assumptions of this study: We chose SESC [23], a light
weight event driven simulator, to design our experiments. o-
cessor model consisted of an in-order core with multi-léwelu-
sive caches. WCET benchmarks have small memory footprints.
Therefore to model inter-task contention, we used configuma
with small caches as usually is the case in real-time sysliéens-
ture. Our experimental cache hierarchy has 2KB 4-way asteei
L1 data and instruction caches, and a 8KB 8-way associatiire u
fied L2 cache, with same cache line size of 32 bytes. We hawk use
inclusive caches as they are common in commercial procebser
cause they prevent write-backs of non-dirty lines duringlaee-
ment from L1 to L2 that are otherwise required in exclusivehes.
Also, multi-processors tend to constrain the coherenctopobto
a single level,.i.e., at L2 to simplify design. The simuthtaches
were modified to support locks at both L1 and L2 levels. Foluinc
sive caches, aline locked in L1 is also locked in L2. One mgyear

Table 2. Impact of Cache Locking (when contented with cnt)

Benchmark WCET| WCET| Number off Reduction
(Nolock)| (lock) | Lines locked in WCET
[cycles]| [cycles] (Level)
fft 13922] 8302 47 (2)] 59.6 %
jfdctint 6125 2143 36(2)] 34.9%
bs 1842 590 10 (1)| 32.03%
crc 12936 9423 41 (1) 72.8%

marks when run without locks and with static locks. The fourt
column shows the number of cache lines statically lockedan L
cache and the level at which they were originally locked. fittle
column quantifies the reduction in WCET percentage obtaiyed
using static locks. The WCETS in this work are experimeytali-
served maximum execution times obtained by feeding diffieire
puts due to a lack of static WCET analysis tools. All benctksar
show a considerable drop in WCET with locked lines vs. withou
them. It is evident that the streaming nature of the inpua datnt
leads to inter-task conflicts, which leads to eviction oflihes in
these benchmarks. This is prevented when these lines ddedloc
Notice that locks show a tighter bound and lower observed WCE
due to reduced intra-task cache contention. Such behavigpical
for hard real-time applications.

We also take this opportunity to show that multi-level cache
locking can be beneficial when L1 cache space is scarce. dft an
jfdctint have large instruction memory footprints. Thenef, they
have been locked at the L2 level. bs and crc have small ingiruc
footprints. Their instructions have been locked in L1. Thealt
number of lines locked for crc is comparable to fft and jfdtti
because crc uses a buffer that is equivalent to the size of the
instruction footprint that gets locked in L1 data cache.

These results pose the primary advantages of cache locking
namely; immunity from inter-task contention and improveme
in execution time for short hard real-time tasks. Those hee t
key reasons for cache locking to be prevalent among embedded
processors, like the IBM PowerPC 460S, Motorola MPC740@] In
960, ARM 940T etc. Studies on intra-task cache conflicts vemrd
on identification of locked cache lines is orthogonal to ocamsl
studied elsewhere [18,19, 21, 26, 28].

Task Migration and Locked Caches on Multi-core Plat-
forms: Developers choose to use locks on memory addresses with
the assumption that when a task executes on a core, the cach’s

that such a design would lead to a waste of L2 cache space. How-holds all locked lines. However, task migrations are schedu

ever, we consider that such a provision allows an applinatavel-
oper to choose the level of cache that benefits the applicaSiatic
locking has been used to lock cache lines. Unfortunatedyetts no
static analysis tool available with unified multi-level badocking
to select cache lines for locking to that would derive optW&ET
bounds. Thus, we lock instruction and global data pertgitonall
the paths within the hard real-time tasks that fit within tugé L2
caches. An optimal selection of cache lines to lock redunts i
and intra task conflicts induced by locking However, lackwaftsa
WCET bounding tool neither prevents developers from usauie
locks in current hard real-time systems, nor does it chamgerob-
lem addressed in this paper. Thus, development of such dysena
tool is orthogonal and out of the scope for this paper. Thell21,
and Memory access latencies have been setto 1, 10 and 1@8.cycl
respectively. As for the benchmarks, bs and crc benchmagkdsea
ing executed as hard real-time tasks. The inner loops ofaffid
jfdctint have been refactored as stand-alone hard rea-t#asks.
Table 2 shows the impact of cache locking when each of the
benchmarks is run in contention with the cnt benchmark teasu
streaming input data. The first column contains the benchmar

names, second and third columns show the WCET of the bench-

triggered events that a developer has a limited control. Gvuaus,
developers may pin a process onto a core in a multi-core @mvir
ment. This precludes the use of efficient real-time schagukch-
niques that rely on task migration. If tasks with locked $irneeere
allowed to migrate, locked lines would still remain in theusze
core (abandoned by the task) while the task resumes exaautio
a new (target) core. This violates the predictability agstions of
the locking mechanism per se. As discussed in Section 1gusin
threads to unlock (at the source) and lock (at the targe® bay
nificant drawbacks. Hence, multiple cache migrations havieet
serialized to ensure predictable cache migration. On tothaff
each cache line is migrated sequentially due to in-ordexdrhus,
there is no scope for reducing migration costs while maiigi
predictability.

4. Proposed Solution
4.1 Assumptionson Multi-Core Real-Time System

In this paper, we assume an SMP bus-based system (see in Fig-
ure 3(a)). We further assume a PFair scheduling algoritansyn-
chronously schedules tasks onto cores after every timetaguman

at scheduling slots (see Figure 1). Cache migrations imetelgi
follow scheduling decisions. Tasks are stalled during dualieg
slots and resume execution only after completion of sclireglaind
cache migration. This prevents all tasks from (a) accedsickged
data lines during cache migration and (b) generating anyrbffic
during cache migration.

We assumed absence of task non-migration bus traffic during

previous transfer. This serializes each transaction. Hsgeime that
the worst-case cache access time is D cycles, uncontendbd-ca
to-cache migration takes B cycles and the number of lockebeca
lines isC,, then the migration dela¥.,, incurred by a single task
migration can be represented as

Tm =Ch x (2% (B+ D))

push-based migrations to avoid the complexities of bus it fl Cache

when concurrent tasks execute. In Section 7, we discuspfiie a Read

cability of our mechanisms to systems with bus conflicts e/pite- Read Write Read Write
serving the mathematical bounds derived in the rest of gasan. / L] L] L]

We assume that the target core chosen by the scheduler aan-acc Cacte Bus Ack Bus Ack
modate the locked cache lines to be migrated. A study of fghdin Read

whether there is sufficient space in the target cache is gotiel
to our work as scheduler interaction is required irrespeati the
migration type (thread-based pull or hardware-based p@air)ob-
jective is to demonstrate that we can guarantee an efficehpee-
dictable cache migration delay once a hard real-time taslbban
selected for migration.

Figure5. Regional Cache Migration Operational Sequence

RCM in its current form is inefficient. Each cache read waits
for the acknowledgment to arrive. When a cache is being read o
written to, the bus is idle. When the bus is being accesseaabhe
controllers are idle. To mitigate this under-utilizatiohcache and
bus resources, we present our first novel scheme called dlenitr
Cache Migration Pipelining.

4.2 Migration Models

In order to explain the migration model, we use “source” atadl-“
get” to refer to the core/cache where the task is currentiying
and where the scheduler migrates the task to before it resarie
ecution, respectively.

421 Push Modd: An Overview

A Push Model is one where memory requests are initiated by the
source core in order to warm up the target cache instead cdaigm
driven requests issued by the target. Sarkar et al. intextitwo
such migration schemes: Whole Cache Migration (WCM) and Re- f
gional Cache Migration (RCM) [24]. WCM is a hardware mecha- reading f
nism, where every cache controller has a push logic blocleact SSEJ?L;'LZ;
cache line has a PID associated with it. When the task migrate arrived
the target is initialized to start pushing the cache linethwaipush Figure 6. Controlled Cache Migration Pipelining Operational Se-
request. The push request is a point-to-point request. mbins quence

that a push request will be issued by a source core and refaten
by the target core only. This prevents any useless ackngwiedts
or cache accesses by cores besides source and target.ofderef . . .
push request carries the information about the target aioag 4.2.2 Controlled Cache Migration Pipelining (CCMP)

with the data and the tag of the cache line that is being negrat Subsequent cache reads can be serviced while a requestdras be
However, the prior WCM scans through the whole cache in order placed on the bus. Thus, a pending request buffer is crehsed t

to identify each cache line that needs to be migrated. Thes, t holds two pending requests at a time. This means that, aiasy t
migration overhead is directly proportional to size of trehe. there can be only two pending push requests and no cache read
RCM is a hardware/software approach that uses support of ded can be performed until one of the acknowledgments reactees th
cated registers called Region Registers (RR). RRs holomsegif source core. This is shown in Figure 6. One unique observatio
consecutive memory locations as pairs of start and end sskke of such pipelining is that bus transactions of push requasts

rite

Ack

Second read Read Write
issued as
soon as first

line finishes Third read Bus Ack _
Read rite

issued after

Bus Ack

Each Task Control Block (TCB) will hold region informationrf
RRs as identified by the programmer. The scheduler fills these
ited number of registers before migration. Thereafter, shpalock
unit computes sequential addresses that fall within theg®mns,

searches for them in the cache and pushes them to the tairge. S
this scheme uses addresses to search the cache, cachelmats d

need a PID. See [24] for further details on the hardware cexityl
of the push block, and integration of push requests with @oiwe.

acknowledgments do not interfere with each other. The ri@ra
delay for such a scheme is

T =|Cn/2] x2%x (B+D)+V

where V=0 when Cn is odd, V=D whefl, is even.

Figure 6 further illustrates that if the third cache readlseed

just after the completion of the second cache read, thenukbk p

transaction issued by the third cache read can only corffthet bus
delay is greater than half of the cache read access. ThuSGNP

Figure 5 depicts diagrammatic representation of two consec model is valid for processors where the bus delay is less dnan
utive push transactions using RCM. Each transaction hasteeca equal to the cache access. Cache-to-cache transfers mtithae to
read at the source, followed by a bus transaction to thettatge be much faster than cache accesses due to advanced in>onn
ceeded by a write at target, which finally concludes with an ac technologies such as HyperTransport (HT) [1]. HT operates a
knowledgment request that is also monitored by the memany co frequencies as high as 3.2GHz, which is much higher than any
troller (in case it carries a write back message from thestarjVe clock frequency of a known embedded processor. Latencigénwi
use RCM scheme as our base scheme, yet with a minor modifica-embedded network-on-chip interconnects as low as a sigle ¢
tion: we add a lock-bit check with each cache read as we neigrat have been reported, which confirm this. These observatiess |
only locked cache lines. In RCM, a cache read is initiatedigy t us to develop our next scheme called Streamed Cache Migratio
push logic only after the acknowledgment has been receovettié Pipelining.

Read Write
Bus Ack
Read Write
Bus Ack
Read Write

L

Bus

L

Ack

Figure 7. Streamed Cache Migration Pipelining Operational Se-
guence

4.2.3 Streamed Cache Migration Pipelining (SCMP)

This migration model allows a cache read to start immediaél

ter the previous read without waiting. This scheme is exélgm
efficient when the bus delay is shorter than half of the caehd r
access time. As shown in Figure 7, none of the push requests co
flict, effectively resulting in streaming behavior of cachigration.

Thus, the migration delay for SCMP is

Tm =CnxD+(2x B+ D).

The above schemes improve the performance of individual
cache migrations. Furthermore in situations where maltgaiche
migrations are required, there is room to engage in sealyless
allel cache migrations.

Core:

1>2 Read(1) Write(2) Read(1) Write(2)
Bus Ack Bus Ack
Core: X .
331 Read(3) Write(1) Read(3) Write(1)
Bus Ack Bus Ack
Core:) .
5> Read(5) Write(6) Read(5) Write(6)

L

Bus

Figure 8. Parallel Multiple RCMs

L]

Ack

L

Bus

L

Ack

424 Paralle CacheMigrations

When multiple hard real-time tasks are migrated simultasgo
support for multiple cache migrations is required. Suppable
cache migrations were using RCM. By maintaining a time dif-
ference that is a multiple of D between cache reads of any two
RCM chains, we can support multiple cache migrations withou
contention (see Figure 8). Also, multiple cache migraticers sup-

The key to this kind of a scheme is the method used by the sched-
uler to initiate and synchronize these transactions. Thedder
and cache controllers interact as follows:

1. The scheduler determines the tasks subject to migratidn a
creates core pairs. Note that core pairs will have distarctdts
but can have identical sources.

A variation of the count sort algorithm divides these ratgms
into buckets. Each migration within a bucket can run in par-
allel. Each bucket with respect to another is sequentiaé Th
system can support maximum bucket size| 8f/B| transac-
tions that can run in parallel. Buckets with a large number of
parallel transactions are split. The complexity of thisgero
dure isO(number_of _cores). Partial ordering is then obtained
among transactions within each bucket to place core pais li
(1,2) and (3,1) next to each other. The complexity of this is
O(bucket_size).

3. The scheduler stores offsets into the TCB of migratedstask
These offsets indicate cycle times when a particular tictisa
starts relative to the start of cache migrations. The sdeedu
then loads the contexts onto the target cores.

The core with an offset of zero packs its region registetisinv

a data block. As we are using only 4 pairs of region registers,
they fit within the size of 32 bytes (size of a cache block).sThi
methodology is used because sources for two transactions in
different buckets can be same. If we allow the scheduler to
update the region registers, then the scheduler would reed t
activate after every bucket finishes. This can be avoidedhby a
initial transfer from target to source. This requires addil 4
pairs of region registers within the push block that has to be
sent to the source. But it does not change the parallelizatio
of transactions because the transactions are already awo-w
communication. This adds a small overhead2ok B + D
cycles.

2.

4,

. Each Snoop controller detects the very first message diuthe
and records the current cycle time. This value is then adoled t
the offsets. This allows all targets to determine when tadss
the request for initialization of push requests.

Note that all the offsets can be predetermined becauseahsait-
tion time for each cache migration is bounded. Even with Ifra
transactions, the time at which a bucket of transactiontfegsan
be predicted accurately to compute the offsets for next déuok

port a core to be a source as well as a target at the same time: Inransactions. Within a bucket, the offset values are suah ttie

RCM, source cache is idle waiting for an acknowledgment @nce
cache line has been pushed. This idle time can be used fote wri
in case it is the target of another cache migration by platireg
two transactions next to each other as shown in Figure 8.cin fa
the only scenario when synchronization does not hold trderis
inverted source,target pairs. But PFair will never cause gimul-
taneous migrations of core pairs (1,2) and (2,1). In PF&iedual-
ing, a task is first picked to execute. If it was executing orogec
that has not been allotted to any other task yet, then it gstrved
for that task. In case it has already been taken by anothertteen
the task is migrated. To obtain pairs like (1,2) and (2,1§ ofithe
allotments has to precede the other. If (1,2) occurred fiest tore

1 has been allotted to another task. If such allotment wasalae
task migrating from 2 to 1, then 2 has already been allottéis T
contradicts our assumption that (1,2) occurred before) (8ame
logic is applicable to non-existence of circular transawi paths,
like (1,2),(2,3),(3,1).

There is a limit to the number of transactions that can be sup-
ported in parallel, which is equal taD/B]|. Parallel transactions
have the ability to maximize the utilization of the bus baiudttv.
Such a scheme additionally requires synchronization aaroges.

transactions are B cycles apart. If there is a single traimsam
a bucket, it can use pipelined models like SCMP or CCMP. This
synchronization only requires an additional set of RRsaiffalue
registers and minor logic to extend access to these regjister

Until now, we have considered RCM-based approaches. RCM
is useful when long sequential paths of code, global datysyor
closely located groups of global variables are locked. Harehe
locking of sparse memory locations needs cache migratippati
as well. This motivates a hardware solution called the $eaRS
Cache Migration model.

Two lines
found in
second
set
Read | Read\ Write Write Read Write
/l Bus @
No fine Ack Bus @ Ack one Bus
in first

line

set found

Figure9. Set-Scan Cache Migration Operational Sequence

425 Set-Scan Cache Migration (SSCM)

The push block in SSCM identifies locked lines pertainingh® t
migrated task through hardware enhancements. Since the pus
block is unaware of the locked regions, it requires a Prot=s
tifier (PID) information associated with the cache line ttedmine
that the locked cache line belongs to the migrated task., Tdach
cache line holds a PID tag to associate itself with a prodess.
ing a normal cache access, the contents of an entire arelféael.
searched tag matches any entry, it is forwarded to the bugetrr,
multiple locked entries within a set may belong to the samegss.
So, efficiency of migration may be increased by buffering rist
of the entries in the set instead of throwing them away. Thus;
tiple matching entries can be identified in very short timélevtihe
first matched entry is in transit. On receiving an acknowieenqt,
the next matching entry can be transmitted immediately auth
any read delays. This is shown in Figure 9, where the pustestqu

marked 2 is placed on the bus as soon as the ACK for the push re-

quest marked 1 has arrived. This prevents the hardware mischa
from reading a set multiple times. When there are no matching
tries in a set at all (as is the case with the first read in Fi@)re
extra reads may be introduced, each adding an extra readyate
the total migration cost. The mathematical analysis of $hteeme
introduces another parameter, namely the number of sétgulite
cache. Itis calculated from the size of cactde)(and the associa-
tivity (A). The migration delayr,, is

T =8S./AXxD+Cynx(2xB+D)

This is deduced from the behavior of SSCM, which reads each
set once. Each migration takes two bus transactions andemte c
access at the target.

Core 0-1
Read |

Write

Two Bus

lines
found

Core 2-4

Figure 10. Conflicts between RCM and SSCM Push Requests

So far, we discussed the parallelization of cache migration
terms of RCM. SSCM is a sequential cache migration schente tha
could benefit from parallelization as well. In particularset of
RCM migrations may issue when another set of migrations uses
SSCM. A constraint of SSCM is that a push request cannot be
overlapped with pushes of RCM. Figure 10 illustrates thesaaa
for this: a set read may find zero or multiple lines to migrateus,
we propose an aligned version of the SSCM called SlottedMeSC

Added Delay Write
-

Write T TEC h
1 1 1 1 1 1

Ack

Bus Bus

No linein
this set

Two lines
found

Figure 11. Slotted-SSCM Operational Sequence
4.2.6 Slotted-SSCM

This migration model regulates the progress of cache selsrea
and issuance of push requests. Cache migration is now divide
into slots. Each slot has a duration®fx (B + D). When a set
read yields only one push request, it takes one slot of time. |
Slotted-SSCM, if no match is found, it takes one slot and ifiiple
matches are found then each line migrated accounts for ohefsl
time. This is shown in Figure 11. Thus, such a migration cam no
run in parallel with other chains of RCM cache migrations.
However, such a scheme complicates the estimation of migra-
tion delay. This is due to the delay of fake set reads addedito m
grations of cache lines that have been identified by a prioresel

operation. The worst-case scenario occurs when lockeddads
are locked in[Cn/A] cache sets while the best-case cache migra-
tion delay is obtained when each cache set has one lockeé cach
line.

Thus, the worst-case cache migration delay experienced by
Slotted-SSCM is

Tmwe = (Sc/A— [Cr /Al + Cpn) x 2 x (B+ D).

Slotted-SSCM migration creates a deterministic behavitne
issuance of push requests. In analogy to the parallel erecut
of RCM chains under SCMP, we can develop a pipe-lined cache
migration model for Slotted-SSCM.

Read

No
line
in
this
set

Ack
Write

Fake Set
Read

Read

Bus
Next Set read here

Read Write

One'lineg ¢
found

Figure12. Slotted-SSCM Pipelining Operational Sequence

4.2.7 Slotted-SSCM Pipéelining

This migration model takes us back to pipelined migratiart,for
Slotted-SSCM instead of RCM. This is similar to SCMP in theg t
push block proceeds with the next set read without waitimgfty
acknowledgments of the previous transfer. A cache accday de
is associated with every migrated line. When a cache setshold
multiple locked cache lines for a migrated task, the firstratied
line experiences a delay due to an actual set read while guese
transactions add a fake cache access delay as shown in ERure
This migration model exhibits a complexity in analyticaites. The
worst-case scenario is the same as for Slotted SSCM. Hdmee, t
worst-case cache migration delay for Slotted-SSCM Pipaliis
Tmwe=D X (Sc/A—[Cn/Al+Cr)+2x B+ D.

4.2.8 Proactive Pull Model

The proactive pull model is a migration model where demand
requests are issued by the target core before the migraséd ta
resumes execution on the target. We did not consider a hegdwa
model for this because it is impossible to create an SSCM-lik
migration model.

5. Simulation Platform

Table 3. Simulation Parameters

[Component | Parameter
Processor Model in-order
Cache Line Size 32B
L1 I-Cache Size/Associativity 2KB/4-way
L1 D-Cache Size/Associativity 2KB/4-way
L1 Access latency 1 cycle
Replacement Policy LRU
L2 Cache Size/Associativity 8KB/8-way
L2 Access Latency 10 cycles
L2 Replacement Policy LRU
Coherence Protocol MESI
Network Configuration Bus based
Processor To Processor Delay 2 cycles
Bus Width 256 bits
External Memory Latency 100 cycles

Our proposed solution requires micro-architectural modifi
tions to a stable bus-based multi-core CMP architecturechidse
SESC [23], a light-weight event driven simulator that impents
a stable bus-based CMP supporting the MIPS instructionCaat.
base experimental model consists of a multi-core CMP achite
where each core has private L1 and L2 caches.

The system architecture specifications are presented ie Bab
The base simulator environment has been enhanced with d-sche
uler that triggers task migration across cores. The cachdemo
has been extended to allow us to support locks at differeetde
of caches. The migration models have been designed and-imple
mented as part of the cache controller model. This allows¢tec-
tion of locked cache lines, issuance of push requests fromrte”
core to “target” core and regulation of the rate of requesssied
according to the migration models.

6. Evaluation

RCM v/s. SSCM: First, we compare the migration delays incurred
by programmer-assisted implementations of RCM and complet
hardware solutions for cache migration in SSCM as shown in
Table 4. The first column shows the benchmarks used, the decon
column shows the number of cache lines that were locked] thir
column shows the migration delay experienced by RCM andfiour

Table5. Pipelined Cache Migration

Program RCM | CCMP| CCMP | SCMP| SCMP
[cycles] | [cycles] | Savings| [cycles] | Savings

fft 1128 576 | 48.9% 484 57.1%
jfdctint 864 442 | 48.8% 374 | 56.7%
bs 240 130 | 45.8% 114 | 52.5%

cre 912 446 | 48.9% 394 | 56.8%

Table 6 shows the experimental and worst-case migraticaysel
for the two schemes. The first column shows the benchmarks use
Second, third and fifth columns show the experimental migra-
tion delay in cycles for SSCM, Slotted-SSCM and Slotted-BISC
Pipelining, respectively. Fourth and sixth columns show &ma-
lytical worst-case migration delay for Slotted-SSCM andt®id-
SSCM Pipelining, respectively. It can be seen that mignatie-
lays are significantly reduced by pipelining. However, therst
case migration delay for both Slotted-SSCM and Slottedd8SC
Pipelining are considerably higher than their correspogdixper-
imental results. This is because, in practice, locked ctinks are
spread across the sets while the worst case occurs wherciezllo
lines are located within the smallest number of sets thathcdah
those lines. Thus, we recommend that experimental migraté
lays to be computed off-line if the distribution of lockedtba lines

expresses the same in cycles for SSCM. As can be seen that foris known. This can be inferred from cache design parametefs a

fft, jfdctint and crc, SSCM performed better than RCM. Thés i
because SSCM identifies multiple cache entries in a set ghrou

one cache access while RCM needs to perform as many cache

reads as the number of cache lines are locked. This showththat
three benchmarks have their locked lines distributed dweentire
cache. In case of bs, the migration delay experienced by SSCM
significantly larger than for RCM. This is because the nundfer
cache lines locked for bs is much lower than the number ofisets
the cache.

Table 4. Migration Delays: RCM vs SSCM

Program Number of RCM SSCM
locked cache

lines | [cycles] | [cycles]

fft a7 1128 978

jfdctint 36 864 824

bs 10 240 460

crc 41 912 894

Pipelined RCM techniques: In Section 4.2, we presented two
similar pipelining schemes, CCMP and SCMP. Table 5 shows
the potential of these schemes over serialized RCM schehree. T
first column shows the benchmarks used. Second, third aid fift
columns show migration delays incurred by RCM, CCMP and
SCMP in cycles, respectively. Fourth and sixth columns shew
duction in migration delay achieved by CCMP and SCMP over
RCM in percent. These results correspond to the equationgede
in Section 4.2.

Consider the differences between the schemes. SCMP parform
well if the bus delay is less than or equal to half the cachesxc
delay. Once the bus delay exceeds this threshold, CCMP lescom
more efficient. This remains true till the bus delay is lesanth
or equal to the cache access delay. However, pipeliningrbeso
infeasible once the bus delay exceeds the cache access Ty

can be mitigated by adding delays to balance cache access and

bus delays. This enables CCMP when the bus delay is marnginall
greater than the cache access delay. For higher bus delags, o
may have to introduce multiple hops. A detailed analysisuzhs
systems is out of scope of this paper and subject to futur&.wor
Slotted SSCM techniques: In Section 4.2, we presented the
Slotted-SSCM and Slotted-SSCM Pipelining migration medel

lock addresses. In order to compute the migration delayhasdo
find the sets that the locked cache lines are mapped to.

Table6. SSCM Variants

Program| SSCM| Slotted| Slotted Slotted Slotted
SSCM| SSCM|SSCM Pipe{ SSCM Pipe-

(WC) lining | lining (WC)

[cycles]| [cycles]| [cycles] [cycles] [cycles]

fft 978 1128 1752 484 744
jfdctint 824 864 1512 374 644
bs 460 768 888 320 414

crc 894 1008 1608 434 684

The computation for Slotted-SSCM has been shown in Fig-
ure 13. Note that a set with no locked cache line causes a delay
of 2x(B+D), but once a line is found this delay covers the finst
grated line. Every additional line migrated from a set irscarde-
lay of 2x(B+D). Since migration delays for these schemesdare
ducible off-line, we compare the experimental delays arebolke
that Slotted-SSCM Pipelining is able to reduce the migretielay
over SSCM on an average by 46.7%.

E Locked Cache Line D Un-locked Cache Line

Set 0 2x (B+D)
Set 1 4x (B+D)
Set 2 2x (B+D)
Set 3[2x (B+D)
(a) Experimental Case: 10 x (B+D)
Set 0 [8x (B+D)
Set 1 2x (B+D)
Set 2 2x (B+D)
Set 3 2x (B+D)
(b) Worst Case: 14 x (B+D)

Figure 13. Offline Computation of Migration Delays for Slotted-
SSCM

Parallel vs. Pipelined Cache Migration: In this paper, we in-
troduced pipelined schemes like CCMP, SCMP and SlottedM6SC

with pipelining. When multiple cache migrations have to laa-h is no coherence traffic between cores and our cache migiiatiba
dled, pipelined cache migrations for each task can be pagdr only means for cache-to-cache transfers.

one after the other. However, system-level parallelism aifhe Literature on multi-core hard real-time systems has adeoca
migration can also be obtained by issuing multiple instance the use of TDMA-based buses to enhance predictability of mem
RCM and Slotted-SSCM cache migrations as shown in Figure 8. ory access latency amid bus contention [29]. A TDMA-basesl bu
Pipelined cache migration is useful for reducing migratiteay allows bus access to a particular core only during desigrsitgs

for individual migrations while parallel migrations carilize max- in a round-robin manner. For example, given four cores andsa b
imum bandwidth. For example, our experimental model witthea slot width equal to the bus delay (B = 2 cycles), core 0 canepéac
access delays of 10 and bus delays of 2 cycles supports Bgbaral request on the bus during time slots 0-2, 8-10, 16-18, etaeier,

cache migrations for an aggregate bandwidth utilizatiohQ8f%. if a request arrives at cycle 1, 9, 17, etc., core 0 will not bie &0
place its request on the bus until its next slot. Hence, thamam
Table 7. Parallel vs Pipeline delay, Maz4, that a core may incur for a bus access, is calculated
Listof| Parallel] Pipelined] Schedulery asMaxq = B x A. — 1, where A, is the number of active cores
tasks| Migration | Migration| Choice of (four in the aforementioned example).
migrating Cost Cost| Migration The TDMA-based bus is operates in this manner during execu-
[cycles]| [cycles] tion within each quantum in our system. However, the openat
1234 1128 1366| Parallel modified when cache migrations are in progress (see Figure 14
124 1128 1252 Parallel The figure illustrates how our parallel migration mechanisan
1 %'i 1%?3 ;gg g:gg::ﬂg utilized in conjunction with actively running cores thagig mem-
= ory/L2 cache requests for TDMA-based buses. Let us assuahe th

two cache migrations are in progress between core pairs gt
When multiple task migrations occur, the scheduler needs to (3,4), respect%/ely. Consideripr)lg g cache delay accest [gagyc_ﬂ
compare the cost of running a sequence of pipelined Migsitio jas and a bus delay, B, of 2 cycles. The first four cycles (ar tw
against that of parallel migration. To illustrate, We cl®assce- Ty a siots) in every 12-cycle period are dedicated for cagtie
nario where fft(1), jfdctint(2), bs(3), and crc(4) are rimpon a gration traffic. TDMA Slots apart from those are allotted tivze
multi-core system. We assume that they all use RCM as the base,j ag (5, 6, 7, 8) and the memory controller (9), in a roundrrob

cache migration scheme and all of them can migrate in paralle sequence. Under such a scheme, the maximum délay,; that a

when selected. Table 7 depicts four combinations that éxié core may incur is computed by the following equation:

behavior of parallel and pipelined migrations. The firstucoh Mazg = Na x B x [Ac/(|D/B| — Ny)] + Ac x B — 1,
shows the set of migrating tasks. The second and third cadumn whereN,,, is the number of migrations occurring in parallel.
show the migration cost in cycles for parallel migration aeali- This equation for calculating the maximum delay only applie

alized SCMPs. The last column shows the choice that the sched for the duration of cache migration. Once migrations arefete

uler makes. It can be deduced from Table 7 that when the num- e raditional TDMA-based bus operation resumes. Usiagjcst
ber of cache migrations are large and all the RCM migratisiso analysis for each sub-task executing within a quantum, estw

are comparable, parallel migration exhibits shorter migracost a6 pys latencies can be calculated. Notice that we as$ume t
(rows 1 and 2). Pipelined migration performs better whemiima- absence of scheduling decisions within a quantum in ordeigio-

ber of migrations are small (row 3). Parallel migration desteter- tain safety of the system. In other words, we assume a nok-wor
mined by the highest individual migration cost. Hence, ifgens conserving, static Pfair scheduling algorithm.

worse than pipelined migration when the variance for thescok
individual migrations is high (row 4).

7. Discussion

We have shown that under the assumptions of Section 4.1, our
push-based cache migration mechanisms can perform better t

any thread-based migration scheme by reducing the migrdge Core 8ff==|Core 9 Core 10'—{Core 1 I
lay while keeping it predictable. Until now, we were assugrinat | I I |
none of the tasks resume execution during scheduling slbiig w
cache migration is in progress. ‘C"’e 12H°°'e 13HC°’e . I Core 16'
1—2 Figure 15. Cache Migration on Tile-based Architecture
Parallel { u u u u . . . :
Cache 3—4 In recent times, tile-based multi-core architectures leeme
Migrations L] L] 1] a reality [2]. These architectures support multi-channebkimin-
terconnects with multi-path routing features. Multi-pathuting
slelzlel loklsll lelolsle allows multiple cache migrations to be routed on non-ireng

paths. This enables multiple cache migrations to procegaiial-
TDMA SI lel. This has been shown in Figure 15, where three migrat{®ns
ots for
Active Cores to 1,5 to 6,2 to 7) are taking place simultaneously. Our jmeel
: . . mechanism can be utilized to reduce individual cache mimrat
Figure 14. Cache Migration with TDMA bus assuming requests to memory controller use a separateaihémn
We now describe how our cache migration schemes can be in-this case, each cache-to-cache transfer uses multipleihsiesd

corporated into hard real-time systems such that coresolvied of a single hop shown in Figure 15. The bus delay, B, thus is a
in cache migration may resume execution without waitingémhe multiple of the number of hops (9 to 1: 4 hops, 5 to 6: 1 hop, 2
migration to complete. We assume that all cache contentdives to 7: 2 hops). Multi-path routing can further assist our pbaked
task is either available in the locked caches on the sameoc@ne lock mechanism. We intend to pursue this line of researchturé

obtained from lower-level caches. In other words, we assher® work.

8. Conclusion

This paper promotes multi-cores in hard real-time systenueu
cache locking. In hard real-time systems, cache lockingeaeses
the predictability of worst-case execution time potehtiedsulting
in higher utilization. On multi-core platforms, optimaltsxduling
like PFair assumes task migration as a fundamental prefigs.
paper discusses support required under cache lockingdactive
lock and cache content migration. We develop a wide range of
cache migration models that provide deterministic migratielay.
We exploit pipelining for Regional Cache Migration (RCM)
through Controlled Cache Migration Pipelining (CCMP) and
Streamed Cache Migration Pipelining (SCMP) that reducerthe
gration cost over RCM by 48% and 56%, respectively. We expose
system-wide parallelism for cache migration through a hbaed-
ware synchronization mechanism. This allows multiple eacti-
grations to overlap and maximize system bus utilization.al¢e
present a hardware mechanism called Set-Scan Cache Migrati
(SSCM) to migrate sparse cache locks that cannot be spebified
large memory regions by Region Registers. Slotted-SSCMxan
tension to SSCM, allows cache migrations to progress inllgara
with RCM-based cache migrations. Slotted-SSCM also letsadf i
to pipelining that leads to Slotted-SSCM Pipelining. SId#6SSCM
Pipelining delivers a reduction in migration cost over SSGW
46.7%. Individually, Slotted-SSCM may seem to have highrove

head with large caches due to extra set reads. This cost can b

mitigated if Region Registers (otherwise recommended fOMR
are used to specify a group of contiguous sets that contadiked
lines. This is based on the observation that locks that seanss

in large memory space may fit within a small set of cache séiis. T
hybrid design of RCM and Slotted-SSCM has the potential to re
duce the overhead of extra cache set reads significantly.|$tle a
present novel applications of our migration mechanismsoio- c
temporary multi-core real-time architectures, such as Siith
TDMA-based bus support and tile-based architectures wkhm
interconnects.

Single cache migrations should make use of pipelined mecha-

nisms. SCMP and Slotted-SSCM Pipelining deliver the bestite.

In case of multiple cache migrations, the scheduler can shoo
between parallel migration and pipelined migration basedhe
knowledge of individual migration costs. Overall, our nbwache
migration schemes provide the scheduler with opportunitiede-
liver deterministic and efficient cache migrations options

References
[1] Hypertransport technology. http://www.hypertrangpmrg.

[2] Tilera processor family.
http://www.tilera.com/products/processors.php.

[3] Wcet project benchmarks, 2007. http://www.mrtc.me¥psojects/-
wcetbenchmarks.html.

[4] A. Acquaviva, A. Alimonda, S. Carta, and M. Pittau. Assieg task
migration impact on embedded soft real-time streaming imeliia
applications.EURASIP J. Embedded Syf008(2):1-15, 2008.

[5] J. Anderson, J. Calandrino, and U. Devi. Real-time salieg on
multicore platforms. INEEE Real-Time Embedded Technology and
Applications Symposiurpages 179-190, April 2006.

[6] J. Anderson and A. Srinivasan. Early-release fair sahlieg. In
Euromicro Conference on Real-Time Systepagies 35-43, June 2000.

[7] J. Anderson and A. Srinivasan. Mixed pfair/erfair schi@ty of
asynchronous periodic tasks. Huromicro Conference on Real-Time
Systemgpages 76-85, June 2001.

[8] S. Baruah. Techniques for multiprocessor global scladility
analysis. INEEE Real-Time Systems Symposiano7.

[9] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Prdapoate

progress: A notion of fairness in resource allocatigkigorithmica
15:600-625, 1996.

[10] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. PoggiaBupporting
task migration in multi-processor systems-on-chip: aifslity study.
In Design, Automation and Test in Eurggages 15-20, 2006.

[11] J. Calandrino and J. Anderson. Cache-aware real-ttheduling
on multicore platforms: Heuristics and a case study.Etmomicro
Conference on Real-Time Systepages 209-308, July 2008.

[12] D. Choffnes, M. Astley, and M. J. Ward. Migration pobsi for multi-
core fair-share schedulingACM SIGOPS Operating Systems Reyiew
42:92-93, 2008.

[13] S.K. Dhall and C.L. Liu. On a real-time scheduling preril.
Operations Researci26(1):127-140, 1978.

[14] Noel Eisley, Li-Shiuan Peh, and Li Shang. Leveragingcbip
networks for data cache migration in chip multiprocessois.
International conference on Parallel architectures andnglation
techniquespages 197-207, 2008.

[15] D. Hardy and I. Puaut. Estimation of cache related ntigradelays
for multi-core processors with shared instruction cacheBroceedings
of the 17th Real-Time and Network SysteReris, France, 2009.

[16] Tong Li, Dan Baumberger, David A. Koufaty, and Scott Haleffi-
cient operating system scheduling for performance-asymcrmaulti-
core architectures. Im ACM/IEEE conference on Supercomputing
pages 1-11, November 2007.

?17] M. Moir and S. Ramamurthy. Pfair scheduling of fixed anigmating

periodic tasks on multiple resources. IBEE Real-Time Systems
Symposiumpages 294-303, December 1999.

[18] Isabelle Puaut. Wcet-centric software-controllestinction caches
for hard real-time systems. IECRTS '06: Proceedings of the
18th Euromicro Conference on Real-Time Systgmages 217-226,
Washington, DC, USA, 2006. IEEE Computer Society.

[19] Isabelle Puaut and David Decotigny. Low-complexitgaithms for
static cache locking in multitasking hard real-time systeinin IEEE
Real-Time Systems Symposiyages 114-123, 2002.

[20] Isabelle Puaut and Christophe Pais. Scratchpad memusilocked
caches in hard real-time systems: a quantitative comparlsdesign,
Automation and Test in Europpages 1484-1489, San Jose, CA, USA,
2007. EDA Consortium.

[21] H. Ramaprasad and F. Mueller. Tightening the boundseasible
preemptionsTransactions on Embedded Computing Syst@®@8.

[22] J. Rattner. Tera-scale research progranintal Dev. Forum 2006.

[23] J. Renau, B. Fragela, J. Tuck, W. Liu, L. Ceze, S. Sarangi
P. Sack, and and P. Montesinos K. Strauss. Sesc simulator.
http://sesc.sourceforge.net, Jan. 2005.

[24] A. Sarkar, F. Mueller, H. Ramaprasad, and S. Mohan. Rgsisted
migration of real-time tasks in multi-core processorsAG@M SIGPLAN
Conference on Language, Compiler, and Tool Support for i
Systemgpages 80-89, New York, NY, USA, 2009. ACM.

[25] A. Srinivasan and J. Anderson. Optimal rate-based didivey on
multiprocessors. IMCM Symposium on Theory of Computipgges
189-198, May 2002.

[26] J. Staschulat, S. Schliecker, and R. Ernst. Schedwamagysis of
real-time systems with precise modeling of cache relategmption
delay. InEuromicro Conference on Real-Time Systepages 41-48,
2005.

[27] Vivy Suhendra and Tulika Mitra. Exploring locking & géroning
for predictable shared caches on multi-cores.Désign Automation
Conferencepages 300-303, New York, NY, USA, 2008. ACM.

[28] X. Vera, B. Lisper, and J. Xue. Data caches in multitagkhard
real-time systems. IFEEE Real-Time Systems Symposigae03.

[29] E. Wandeler and L. Thiele. Optimal tdma time slot andieyength
allocation for hard real-time systems. Pmoceedings of Asia and South
Pacific Design Automation Conferen¢éokohama, Japan, 2006.

