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ABSTRACT

‘We present abstraction techniques that transform a given non-linear
dynamical system into a linear system, such that, invariant proper-
ties of the resulting linear abstraction can be used to infer invari-
ants for the original system. The abstraction techniques rely on a
change of bases transformation that associates each state variable
of the abstract system with a function involving the state variables
of the original system. We present conditions under which a given
change of basis transformation for a non-linear system can define
an abstraction.

Furthermore, we present a technique to discover, given a non-
linear system, if a change of bases transformation involving degree-
bounded polynomials yielding a linear system abstraction exists.
If so, our technique yields the resulting abstract linear system, as
well. This approach is further extended to search for a change of
bases transformation that abstracts a given non-linear system into
a system of linear differential inclusions. Our techniques enable
the use of analysis techniques for linear systems to infer invariants
for non-linear systems. We present preliminary evidence of the
practical feasibility of our ideas using a prototype implementation.
Categories and Subject Descriptors: F.3.1(Specifying and Veri-
fying and Reasoning about Programs):Invariants,
C.1.m(Miscellaneous): Hybrid Systems.

Terms: Theory, Verification.

Keywords: Ordinary Differential Equations, Hybrid Systems, Al-
gebraic Geometry, Invariants, Verification, Abstraction.

1. INTRODUCTION

. the purpose of abstracting is not to be vague, but
to create a new semantic level in which one can be
absolutely precise. ~ — Edsger Dijkstra (ACM Turing
Lecture, 1972).
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In this paper, we present techniques to search for a “linear sys-
tem within” a given non-linear system. Specifically, we wish to dis-
cover affine differential abstractions of continuous systems defined
by non-linear differential equations. Given a system of non-linear
differential equations, we seek a change of bases transformation,
mapping the trajectories of the non-linear system into those of a
linear abstraction. We present conditions under which a change
of bases transformation defines an abstraction. Therefore, we can
use the invariants for the abstraction to infer invariants for the orig-
inal system. In this regard, an affine system abstraction is quite
useful. Numerous techniques have been proposed to verify safety
properties of affine systems efficiently, including zonotopes [10],
template polyhedra [25] and support functions [31, 11]. These
techniques have been implemented in tools such as HyTech [12],
Phaver [9] and TimePass [25, 27]. However, these techniques are
mostly restricted to systems with affine dynamics. Relying on these
techniques to infer properties of non-linear systems is, therefore, a
natural step forward. In this paper, we make the following contri-
butions:

1. We first present techniques for discovering a linearizing change
of bases transformation that results in a linear abstraction
whose dynamics are described by affine ordinary differential
equations (ODEs). We prove that a linearizing transforma-
tion for a non-linear system corresponds one-to-one to a fi-
nite dimensional vector space of functions that also contains
the (Lie) derivatives of its elements. The basis functions of
a vector space satisfying this closure property yields the de-
sired change of bases transformation. This, in turn, yields the
desired linear abstraction.

2. We extend our technique to discover transformations of non-
linear ODEs into differential inequalities. We show that these
transformations are closely related to finitely generated cones
of functions that satisfy the property of closure with a pos-
itive semi-definite residue. We consider two approaches for
discovering such cones: one based on the Sum-of-Squares
(SOS) relaxation for finding positive semi-definite polynomi-
als [18], and the other based on a simpler, heuristic approach
using polyhedral cones over a finite set of posynomials. The
result of this abstraction is a non-autonomous linear system
with non-negative (disturbance) inputs.

We have implemented our approaches and present interesting
preliminary results on finding abstractions for non-linear ODEs.
Our implementation, the benchmarks used in the evaluation and
the outputs are available on-line or upon request. We motivate our
approach on a simple non-linear system.

Example 1.1 (Motivating Example). Consider a continuous
system over {x,y}: ¢ = xy + 2z, y = f%yQ + Ty + 1, with



initial conditions given by the set x € [0,1], y € [0, 1]. Consider
the function o« : (z,y) — (w1, w2, ws) wherein a1(z,y) = z,
asz(z,y) = xy and as(x,y) = xy>. The Lie derivatives of
a1, g, as W.rt the system of ODEs are

% = zy+2

= a(z,y) + 20 (z,y)
d(% = x4 92y + %JJyQ

= o1+ 92 + %063
% = 2zxy+ 16zy°

= 20(2 + 160[3

We find that the dynamics over W can be written as
1
w1 = 2w + wa, W2 = wy + 9w + iwg,wg = 2wz + 16ws

Its initial conditions are given by w1 € [0,1], wa € [0,1], ws €
[0,1]. We analyze the system using the TimePass tool as presented
in our previous work [27] to obtain polyhedral invariants:

—w1 + 2wz > —1, w3 >0, w2 >0
*1671)1 +3QU)2 — W2 2 *17, 327.[)2 — W3 2 *1, w1 2 0
2wy — 4wz + 17wz > —4, 286w — 32wz + ws > —32

Substituting back, we can infer polynomial inequality invariants on
the original system including,

—z+2zy > —1,zy® > 0, —16x + 32zy — xy® > —17,
x>0, 2z — 4oy + 17zy? > —4, - -

Note that not every transformation yields a linear abstraction. In
fact, most transformations will not define an abstraction. The con-
ditions for an abstraction are discussed in Section 3.

1.1 Related Work

Many different types of discrete abstractions have been stud-
ied for hybrid systems [2] including predicate abstraction [28] and
abstractions based on invariants [17]. The use of counter-example
guided abstraction-refinement for iterative refinement has also been
investigated in the past (Cf. Alur et al. [1] and Clarke et al. [5],
for example). In this paper, we consider continuous abstractions
for continuous systems specified as ODEs using a change of bases
transformation. As noted above, not all transformations can be used
for this purpose. Our abstractions bear similarities to the notion
of topological semi-conjugacy between flows of dynamical sys-
tems [15].

Reasoning about the reachable set of states for flows of non-
linear systems is an important primitive that is used repeatedly
in the analysis of non-linear hybrid systems. This has been ad-
dressed using a wide variety of techniques in the past, including
algebraic and semi-algebraic geometric techniques, interval anal-
ysis, constraint propagation and Bernstein polynomials [26, 29,
21, 16, 23, 19, 20, 14, 22, 8]. In particular, the hybridization of
non-linear systems is an important approach for converting it into
affine systems by subdividing the invariant region into numerous
sub-regions and approximating the dynamics as a hybrid system by
means of a linear differential inclusion in each region [12, 3, 7].
However, such a subdivision can be expensive as the number of di-
mensions increases and may not be feasible if the invariant region
is unbounded. Our techniques can work on unbounded invariant
regions. On the other hand, our abstraction search is incomplete.
As a result, the techniques presented here may result in a trivial
abstraction that does not yield useful information about the sys-
tem. Nevertheless, we have been able to present some preliminary
evidence of usefulness of our ideas over some complex non-linear
system benchmarks.

Previous work on invariant generation for hybrid system by the
author constructs invariants by assuming a desired template form
(ansatz) with unknown parameters and applying the “consecution”
conditions such as strong consecution and constant scale conse-
cution [26]. Matringe et al. present generalizations of these con-
ditions using morphisms [14]. Therein, they observe that strong
and constant scale consecution conditions correspond to a linear
abstraction of the original non-linear system of a restrictive form.
Specif}ically, the original system is abstracted by a system of the

X

form %7 = 0 for strong consecution, and a system of the form
dx

% = Az for constant-scale consecution. This paper builds upon
this observation by Matringe et al. using fixed-point computation
techniques to search for a general linear abstraction that is related
to the original system by a change of basis transformation. Moving
from equality invariants to inequalities, our work is closely related
to the technique of differential invariants proposed by Platzer et al.
A key primitive used in this technique can be cast as a search for
abstractions of the form % > 0[20]. The approach presented here
uses fixed-point computation over cones to search for generalized
linear differential inequality abstractions.

Fixed point techniques for deriving invariants of differential equa-
tions have been proposed by the author in previous papers [27, 24]
These techniques have addressed the derivation of polyhedral in-
variants for affine systems [27] and algebraic invariants for sys-
tems with polynomial right-hand sides [24]. In this technique, we
employ the machinery of fixed-points. Our primary goal is not to
derive invariants, per se, but to search for abstractions of non-linear
systems into linear systems.

Finally, our approach for polynomials is closely related to Car-
lemann embedding that can be used to linearize a given differential
equation with polynomial right-hand sides [13]. The standard Car-
lemann embedding technique creates an infinite dimensional linear
system, wherein, each dimension corresponds to a monomial or a
basis polynomial. In practice, it is possible to create a linear ap-
proximation with known error bounds by truncating the monomial
terms beyond a degree cutoff. Our approach for differential equa-
tion abstractions can be seen as a search for a “finite submatrix”
inside the infinite matrix created by the Carleman linearization.
The rows and columns of this submatrix correspond to monomi-
als such that the derivative of each monomial in the submatrix is a
linear combination of monomials that belong the submatrix. Our
approach of differential inequalities allows for a residue involv-
ing monomials outside the submatrix that is required to be positive
semi-definite.

2. PRELIMINARIES

In this section, we briefly introduce some basic concepts behind
multivariate polynomials and hybrid systems. Let R denote the
field of real numbers. Let x1, . .., x, denote a set of variables, col-
lectively represented as Z. The R[Z] denotes the ring of multivariate
polynomials over R.

A monomial over T is of the form xj'z5? - -z, succinctly
written as T , wherein each r; € N. A ferm is of the form c -
m where ¢ € R, ¢ # 0 and m is a monomial. The degree of
a monomial Z" is given by ST = T.7 The degree of a
multivariate polynomial p is the maximum over the degrees of all
monomials m that occur in p with a non-zero coefficient.

Vector Fields: A vector field F' over a manifold X C R" is a map
F : X — R" from each & € X to a vector FI(Z) € R" (F(Z) €
T, (X), the tangent space of X at Z). A vector field F is continuous
if the map F' is continuous. A polynomial vector field ' : X —
R[Z]™ is specified by a map F(Z) = (p1(Z), p2(Z),...,pn(E)),



wherein pi,...,pn € R[Z]. A system of ordinary differential
: dzy __ de, _
equations D, <71 = pi(z1,...,%n), -+, G = pa(T1,...,Tn),
specifies the evolution of variables (x1,...,2,) € X over time ¢.
The system defines a vector field F/(Z) : (p1(Z), ..., pn(Z)).
Def. 2.1 (Lie Derivative). Foravectorfield F : (fi,..., fm),

the Lie derivative of a smooth function f (%) is given by

tr(n =0 F@ =3 (2 1)

i=1

Henceforth, wherever the vector field F' is clear from the context,
we will drop subscripts and use £(p) to denote the Lie derivative
of pw.rt F.

We assume that all vector fields F' considered in this paper are
(locally) Lipschitz continuous over the domain X. In general, all
polynomial vector fields are locally Lipschitz continuous, but not
necessarily globally Lipschitz continuous over an unbounded do-
main X. The Lipschitz continuity of the vector field F', ensures
that given & = Zo, there exists a time 7" > 0 and a unique time
trajectory 7 : [0,7") — R" such that 7(¢) = Zo [15].

Def. 2.2 (Continuous System). A continuous system over vari-
ables x1,...,x, consists of a tuple S : (Xo, F, X1) wherein
Xo C R" is the set of initial states, F is a vector field over the
domain X; C R".

Note that in the context of hybrid systems, the set X7 is often re-
ferred to as the state invariant or the domain.

2.1 Hybrid Systems

Hybrid systems consists of continuous state variables and a fi-
nite set of discrete modes. The dynamics of the continuous state
variables are a function of the system’s current discrete mode. Fur-
thermore, the system performs (instantaneous) mode changes upon
encountering a switching condition (or a transition guard).

Def. 2.3 (Hybrid System). An hybrid system is a tuple (S, T),
wherein S = {S1, ..., Sk} consists of k discrete modes and T de-
notes discrete transitions between the modes. Each mode S; € S is
a continuous sub-system (Xo i, F;, X;), defined by the vector field
Fi, the initial conditions Xy ; and the invariance condition X;.

Each transition 7 : (Si, S, Pij) € T consists of an edge S; —
S; along with an transition relation P;;[Z, ] specifying the next
state T in relation to the previous state T. Note that the transition
is guarded by the assertion 37 P;;[%, T'].

3. CHANGE OF BASES TRANSFORMATION

In this section, we will present change of bases (CoB) abstrac-
tions and some of their properties.

Consider a map « : RF — R'. Given a set S C R”, let a(S)
denote the set obtained by applying « to all the elements of S.
Similarly, the inverse map over sets is o ' (T) : {s | a(s) €
T}. Let S : (Xo,F, Xr) be a continuous system over variables
Z: (z1,...,zn)and T : (Yo, G, Y1) be a continuous system over
variables 7 : (y1,...,Ym)-

Def. 3.1 (Simulation). We say that T simulates S iff there ex-
ists a smooth mapping o : R™ — R™ such that

1. Yo O a(Xo) and Y1 2 a(Xr).

2. Forany trajectory T : [0,T) — X1 of S, aoT is a trajectory
of T.

A simulation relation implies that any time trajectory of S can
be mapped to a trajectory of T through . However, since « need
not be invertible, the converse need not hold. Le, 7 may exhibit
time trajectories that are not mapped onto by any trajectory in S.

Let S and T be defined by Lipschitz continuous vector fields.
The following theorem enables us to check given S and 7, whether
T simulates S.

Theorem 3.1. 7 simulates S if the following conditions hold:
1. Yy O a(Xo).

2. Yr O a(Xr).

3. G(a(D)) = Jo.F(Z), wherein, Jq is the Jacobian

day . Do

oxq Oxn
Jo(T1,...,xn) = ,

dam . dam

oz Oz,

and o(Z) = (o1 (Z), -+, am (), a; : R" — R.

PROOF. Let 7, be a trajectory over & for system S. Note that at
any time instant ¢ € [0,t), 4= = F(r(t)).

We wish to show that 7, (t) = (7= (t)) is a time trajectory for
the system 7. Since, 7,(0) € Xo, we conclude that 7,(0) =
a(12(0)) € Yo. Since 7,(t) € X forall t € [0,T"), we have that
7y (t) = a(74(t)) € Y1. Differentiating 7, we get,

Jo - F(72(t))

dry — do(7a(t)) — Ja L dry —

"2 Galn®) = Gn(D).

Therefore 7, = a.oT,, conforms to the dynamics of 7. By Lipschitz
continuity of G, we obtain that 7, is the unique trajectory starting
from a0 7(0). [

Note that, in general, a trajectory 7, (t) = a(72(t)) may exist
for a longer interval of time than the interval [0,7") over which 7,
is assumed to be defined.

Theorem 3.2. Let T simulate S through a map o. If Y C Y;
is a positive invariant set for T then ofl(Y) N X7 is a positive
invariant set for S.

PROOF. Assuming otherwise, let 7, be a time trajectory that
starts from inside a~'(Y) N X and has a time instant ¢ such
that 7,.(t) € o~ *(Y) N X;. Since we defined time trajectories
so that 7,,(¢) € X7, it follows that 7,,(t) € o~ *(Y). As a result,
a(7:(t)) € Y. Therefore, corresponding to 7, we define a new
trajectory 7, = « o 7, which violates the positive invariance of Y.
This leads to a contradiction. []

An application of the Theorem above is illustrated in Example 1.1.

Example 3.1. Consider a mechanical system S expressed in
generalized position coordinates (q1, q2) and momenta (p1, p2) de-
fined using the following vector field:

F(p1,p2,q1,42) : { —2q143, —2qiq2, 2p1, 2p2 )

with the initial conditions: (p1,p2) € [—1,1]x[—1,1] A (g1, q2) :
(2,2). Using the transformation a(p1,p2,q1,q2) : p; + ps +
G2 q32, we see that S is simulated by a linear system T over y, with
dynamics given by ‘;—t =0, y(0) € [16,18].

Incidentally, the form of the system T above indicates that « is
an expression for a conserved quantity (in this case, the Hamilto-
nian) of the system.



3.1 Linearizing CoB Transformations

In this section, we define the notion of a linearizing CoB trans-
formation. An affine system 7 is described by an affine vector field
Z—f = Ay + b for an m x m matrix A and an m x 1 vector b.

Def. 3.2 (Linearizing CoB Transformation). Let S be a (non-
linear) system. We say that o is a linearizing CoB transformation if
it maps each trajectory of S to that of an affine system T. In other
words, o ensures that S is simulated by an affine system 7T .

The above definition of a linearizing CoB seems useful, in prac-
tice, only if o and 7 are already known. We may then use known
techniques for safely bounding the reachable set of an affine sys-
tem, given some initial conditions, and transform the result back
through o~ to obtain a bound on the reachable set for S.

We now present a technique that searches for a map « to obtain
an affine system 7 that simulates a given system S through .. We
ignore the initial condition and invariant, for the time being, and
simply focus on the dynamics of 7. In other words, we will search
for a map « that satisfies

Jo(T) - F(Z) = Aa(T) + b

for some constant matrices A,b. Having found such a map, we
can always find appropriate initial and invariance conditions for the
simulating system 7, whose dynamics will be given by G(%) =
Ay + b so that Definition 3.1 holds.

We proceed by recasting a linearizing CoB transformation in
terms of a vector space that is closed under the action of taking
Lie-derivatives.

3.2 Vector Spaces Closed Under Lie Deriva-
tives.

Recall the requirement for « serving as a linearizing change of
variables transformation for a vector field F:

Jo(T) - F(T) = Aa(T) + b

for some constant matrices A, b.

Let a(Z) : (a1 (%), ..., am(Z)) be a smooth mapping o : R™ +—
R™, wherein each a; : R™ — R. Recall that Lr(a;(Z)) =
(Vau) - F(&) denotes the Lie derivative of the function a; (%) w.r.t
vector field F.

Lr(on (7))
Lr(a2(Z))
Lemma 3.1. J, - F(Z) = .
Lr(am(T))
PROOF. Recall the definition of the Jacobian J,:
g% . gx% Vai
Ja(Z1,...,20) = = :
%Lﬁ oo guTn Vtm
It follows that,
(Vau) - (F) Lrp(oa(Z))
(Vaz) - (F) Lp(a2(T))
Ja~-7: = . = .
(Vam) - (F) L (am(Z))

Given functions a1, . . ., am : R™ — R, and the special constant
function 1 : R™ — {1}, we consider the vector space generated by
these functions:

Span (1,01, ..., 0m) = {co-lJchiaﬂco,...,cm GR} .
i=1

Theorem 3.3 (Vector Space Closure Theorem). A map « :
(a1,...,am) represents a linearizing CoB transformation for a
system iff the vector space V' : Span(1l,ai,...,an) is closed
under the operation of Lie-derivatives. L.e,Ng € V, Lr(g) € V.

PROOF. Let « be a linearizing CoB transformation mapping tra-

jectories of F onto G : ‘;—f = Ay + b. Therefore, for each a;,

Lr(ag) =0b; + Z Asjay (D

J

Any element 5 € V can be written as § = co + »_, ckax (a
linear combination of the bases of the vector space). Using (1),
L () can be written, once again, as a linear combination of a;s
and 1. Therefore Lr(3) € V.

Conversely, if V' is closed under the action of a Lie-derivative,
then its bases 1, a1, . . . , i, satisfy the condition £p(o;) = b;1+
Zj Q505

Lr(on(Z))
Lr(a2(7)) .

From Lemma 3.1, Jo F (%) = . = Aa(Z)+0,

Lr(am(T))
wherein, A = [a;;] and b = (b;). This proves that « is a linearizing
CoB transformation. []

Example 3.2. Consider the ODE from Example 1.1 recalled
below:

% = zy+2

Y -3y +Ty+1
We claim that the vector space V generated by the set of func-
tions {1, zy, xy?, x} is closed under the operation of computing

Lie derivatives. To verify, we compute the Lie derivative of a func-
tion of the form co + c1x + cazy + caxy? to obtain

1
ci(zy + 2x) + 02(§xy2 + 92y + x) + c3(9zy® + 2zy)

which is seen to belong to V. As a result the CoB abstraction
a(z,y) : (z, vy, zy?) linearizes the system.

4. SEARCHING FOR ABSTRACTIONS

In this section, we will present search strategies for finding a
linearizing change of bases abstraction, if one exists. Following
Theorem 3.3, our goal is to find a vector space generated by some
functions a1, . . ., a that are closed under the action of taking Lie
derivatives. Given a set of functions B = {f1,..., fi}, we write
Span(B) to denote the vector space spanned by the functions in B:

k
Span(B) = {Zajfj(f) la; € R}

We will proceed using a subspace iteration as follows:

1. Choose an initial vector space Vo = Span ({ao,...,an}).
For instance, Vy can be generated by all monomial terms
whose degrees are less than a cutoff. In general, any ansatz
of the form ), ¢; fs, for functions f;(Z) and parameters c;,
can be written as a vector space Vo = Span({fo,..., fx}).



2. At each step, iteratively refine V; for ¢ > 0 to yield Vi1, a
subspace of V;.

3. Stop when V41 = V. If V,, is a non-trivial vector space
then, a non-trivial, linearizing change of bases transforma-
tion can be extracted along with the resulting system from
the generators of V/,.

Initial Basis: For ODEs with polynomial right-hand sides, the ini-
tial basis can be generated by all monomial terms up to some de-
gree bound d. However, our technique can be extended to handle
other types of functions including trigonometric functions as long
as these functions are continuous and differentiable.

Let Vo : Span ({1, ao, . .., an}) be the initial basis.

Refining the Basis: Let {1, a1, ..., ax} be the basis of the vector
space V; for the 4*" iteration. Our goal is to refine this basis to find
a subspace V;+1 C V; such that

Vier =D(Vi) ={f € Vi | Lr(f) € Vi}

Note that by definition, V41 is a subset of V;. It remains to show
that Vj41 is a vector space.

Lemma 4.1. If V; is a vector space, then Viz1 = D(V;) is a
subspace of V.

PROOF. Let V; be generated by the basis {1, a1, ..., ar}. That
Viz1 C V; follows from its definition. It remains to show that
Vit+1 is a vector space. First 1 € V;41. Let fi,..., f; be func-
tions in Vj41. Therefore, by definition, Lz (f1),...,Lr(fi) € Vi.
Consider their affine combination f : agl + Z;zl a; fj for some
ap,ai,...,a; € R. Its Lie derivative is

! l
Lr(ao + Zajfj) =aj ZﬁF(fj) .
=1 i=1

Therefore, L (f) can be written as a linear combination of the Lie
derivatives of fi,..., f; which are themselves in V;. Therefore,
Lr(f) € V; and therefore f € Vj41. Thus, any linear combination
of elements of V;1 also belongs to Viy1. [

Theorem 4.1. Given an initial vector space Vo and vector field
F, the subspace iteration converges in finitely many steps to a sub-
space V¥ C Vo. Let aa, . . ., aum, be the basis functions that gener-
ate V™.

1. The transformation o : (a1, . . ., aum ) generated by the basis
functions of the final vector space is linearizing.

2. For every linearizing CoB transformation 3 : (B1,. .., Bk),
wherein each B; € Vy, it follows that 3; € V™.

PROOF. The convergence of the iteration follows from the ob-
servation that if V;11 C Vj;, the dimension of V1, is at least one
less than that of V;. Since V4 is finite dimensional, the number of
iterations is upper bounded by the number of basis functions in Vj.

The first statement follows directly from Theorem 3.3.

Finally, us assume that a linearizing transformation 3 exists such
that 8; € Vo. We note that the space U generated by 1, S1, ..., Ok
is a subset of V. We can also prove thatif U C V;,thenU C V4.
As a result, we prove by induction that U C V*. [

Example 4.1. Consider the system F from Example 1.1 recalled
below:

Ty + 2x
P+ Ty+1

dz
&y
dt

The initial basis for Vi can be chosen to be the set of all mono-
mials whose degree is less than some limit d. For simplicity, let us
choose the basis for Vo to be: {1,z,y, zy, 2,9, 2y, xy*}. Any
element of Vo can be written as

fricol+ciz+ coy + csxy + C4m2 + C5y2 + 06x2y + C7xy2 .
Its Lie derivative can be written as:

c2 + (2¢1 + c3)x + (Tea + 2¢5)y+

(c1 4 9cz + 2¢c7)zy + (2¢4 + c6 )2
—2(c2 + 14e5)y® + (2c4 + 11ce) 2’ y+
(%c;; + 1607)xy2 — 05y3 + S%ngf

Lr(f):

We note that Lr(f) € Vo iff cs = 0, c6 = 0 (so that terms
corresponding to y2, £2y? vanish. This yields the bases for Vi :

{17x’y7 xy7 x27my2}

Once again, computing the Lie derivative yields the constraint:
c2 = 0, c4 = 0, yielding the basis:

{17 x’ xy7 xy2}

The iteration converges in two steps, yielding the linearizing
transformation o : (z, zy,y>), as expected.

Note that it is possible for the converged result V™ to be trivial.
Le, it is generated by the constant function 1.

Example 4.2. Consider the van der Pol oscillator whose dy-
namics are given by
. . 1
b=y, g=ply— 3y’ — ).
Our search for polynomials (i = 1) of degree up to 20 did not yield
a non-trivial transformation.

For a trivial system, the resulting affine system 7 is % = 0 under
the map a(Z) = 0. Naturally, this situation is not quite interesting
but will often result, depending on the system S and the initial ba-
sis chosen V. We now discuss common situations where the vec-
tor space V'™ obtained as the result is guaranteed to be non-trivial.
Section 5 presents techniques that can search for a broader class of
affine differential inequations instead of just equations.

4.1 Strong and Constant Scale Consecution

The notion of “strong” consecution, “constant scale” consecu-
tion and “polynomial scale” consecution were defined for equality
invariants of differential equations in our previous work [26] and
subsequently expanded upon by Matringe et al. [14] using the no-
tion of morphisms. We now show that the techniques presented in
this section can capture these notions, ensuring that all the systems
handled by the techniques presented in our previous work [26] can
be handled by the techniques here (but not vice-versa).

Def. 4.1 (Strong and Constant Scale Invariants). A function
f satisfies the strong scale consecution requirement for a vector
field F iff Lr(f) = 0. In other words, f is a conserved quantiry.

Similarly, f satisfies the constant scale consecution iff A\ €

R, Lr(f) = Af.

The following theorem is a corollary of Theorem 4.1 and shows
that the ideas presented in this section can capture the notion of
strong and constant scale consecution without requiring quantifier
elimination, solving an eigenvalue problem [26] or finding roots of
a univariate polynomial [14].



Theorem 4.2. The result of the iteration V'* starting from an
initial space Vy contains all the strong and constant scale invariant
Sfunctions in Vj.

PROOF. This is a direct consequence of Theorem 4.1 by noting
that for a constant scale consecuting function f, the subspace U C
Vb spanned by f is closed under Lie derivatives. [

Furthermore, if such functions exist in Vj the result after conver-
gence V'™ is guaranteed to be a non-trivial vector space (of positive
dimension). Finally, constant scale and strong scale functions can
be extracted by computing the affine equality invariants of the lin-
ear system 7 that can be extracted from V™.

4.1.1 Stability

We briefly address the issue of deducing stability (or instability)
of a system S using an abstraction to a system 7. Note that ev-
ery equilibrium of S maps onto an equilibrium of 7, but not vice-
versa. Furthermore, the map a(Z) = (0, ..., 0) is an abstraction
from any non-linear system to one with an equilibrium at origin.
Therefore, unless restrictions are placed on «, we are unable to
draw conclusions on liveness properties for S based on 7. If «
has a continuous inverse, then 7 is topologically diffeomorphic to
S [15]. This allows us to correlate equilibria of 7~ with those of S.
The preservation of stability under mappings of state variables has
been studied by Vassilyev and Ul’yanov [32]. We are currently in-
vestigating restrictions that will allow us to draw conclusions about
liveness properties of S from those of 7.

S. DIFFERENTIAL INEQUALITIES

In this section, we extend our results to search for transforma-
tions that result in an affine differential inequality rather than an
equality. Affine differential inequalities represent a broader class of
systems that include equalities. Therefore, we expect to find non-
trivial affine differential inequality abstractions for a larger class of
non-linear systems.

A function f(Z) : R" — R is positive semi-definite (psd) iff
f(Z) > 0for all Z € dom(f). A function is positive definite iff it
is positive semi-definite and non-zero everywhere.

Def. 5.1 (Affine Differential Inequality). An affine differen-
tial inequality is a non-autonomous system of the form:

= Aj+b+a
d ;= Ay +b+a(t),
for m x m matrix A, m x 1 vector b and disturbance inputs @(t) :
R>o — R™. The disturbance inputs are assumed to be integrable
and positive semi-definite. Since the lnput a is psd we write the
differential inequality informally as: dt > Ay + b.

In order to define a transformation that results in an abstract sys-
tem of differential inequalities, we first define the notion of a set
of functions that are closed under a Lie derivative with a positive
semi-definite residue.

Def. 5.2 (Closure with PSD Residue). A finite set of functions
S : {au,...,ar} is closed under Lie derivatives with a positive
semi-definite residue iff for all a; € S, the Lie derivative of «; is
of the form:

Lr(as) =bil+ Y aia;+pi(@),
J
wherein, a;;,b; are real-valued constants, and p; is a continuous,
positive semi-definite function over .

Example 5.1 (Projectile with Energy Dissipation). Consider
the dynamics of a projectile moving “upwards” (v, < 0) with dis-
sipation of its kinetic energy due to friction. The variables (x,y)
represent the position and (v, vy) its velocity vector. We assume
that the drag due to friction is a p()lym)mial functi()n of the ve-
loctty The dynamics are given by T = Vg, Y = Uy, Vg =

mvgc — 150%, vy = —10 — mvy — 150% The system op-
erates in the region vy > 0 and vy < 0.

Consider the functions a1 : —10vy — y and a2 : —10v; — .
We have L(a1) = 100 + . 1v = 100 + p1, wherein p1 = 11}
psd. Similarly, L(a2) = pz,forpsd p2 = 102, Therefore, the set
S = {au, az} satisfies the conditions of Def. 5.2.

We now establish the connection between sets of functions that
are closed under Lie derivatives with a psd residue and affine dif-
ferential inequalities. Consider a Lipschitz continuous vector field
Fover Xr. Let S : {au,...,a,} be afinite set of continuous and
differentiable functions that are closed under Lie derivatives with a
psd residue (Def. 5.2).

For a differential 1nequal1ty J > Ay—|—b we let sy, : [0, T')

R™ denote the unique time trajectory for the ODE dy = Ay+ b+
4(t), with initial conditions s(0) = g and with a contmuous input
@(t) (such that @(¢) > 0 for all ¢t > 0).

Theorem 5.1. If a finite set S : {au,...,am} exists that is
closed under Lie derivatives with a psd residue, then there exists
an affine differential inequality ‘;—; > Ay + b over m variables
Y1, - - -, Ym, such that for each time trajectory 7 : [0,T) — R"
for F, there exists a continuous, positive semi-definite input func-

tion €(t) : [0,T) — R™ such that
a(72(t)) = Sa(zy)u(t), VE €1[0,T)

PROOF. Consider the Lie derivative for each ;. It can be writ-
tenas Lp(a;) = b; + Z?:l ajra; + p;. Fixing some trajectory
7:[0,T) — R™ for F, let @(t) : (p1(7(t)),...,pr(T(t))) be ob-
tained by evaluating the residues over the trajectory 7. The continu-
ity of 7 and p; imply the continuity and thus, the integrability of .
As aresult, the trajectory 7 is mapped by « : (a1(Z),. .., an())
to a trajectory of the ODE dy = Ay+b+u( ), which is a trajectory
of the inequality 24 o J > Ay + b, O

A set Y is a positive invariant set for a differential inequality
i > Ay + biff starting from any point 7o € Y and for any in-
put function (¢) that is integrable and positive semi-definite, the
resulting trajectory sy, . lies entirely in Y.

Theorem 5.2. Let'Y be an invariant set for the differential in-
equality if' > Af + b that abstracts a system S : (Xo, F, X1)
through a map o. It follows that o™ * (Y)N X7 is a positive invari-
ant set for S.

Example 5.2. Continuing with the system in Ex. 5.1, we find
that the differential inequality: dyl > 100, dy2 > 0 abstracts the
dynamics of the system.

Example 5.3. Consider the system:

d—xzm—i—Qazy, dy

=1+43y—14°
di at LTV TY

A simple examination suggests that ao(x,y) = —y has a posi-
tive semi-definite residue. However, consider the functions a1 (z,y) :
2?2 and sz (x,y) : 22y — x2. We find that L(o) : 2% + 4o’y =



20i2 + 41, L(a) : 62y + 622y? = 3ag + 31 + p, wherein
p = 6a2y>. Therefore, the system

dy: dy 3
— >-1-3 — =4 2 >3 3
P Y1, it Y2 + 2ys, P Y2 + 3ys,

is obtained from the map o as an abstraction.

dys

Having described CoB transformations for differential inequal-
ities, we now focus on a best-effort algorithm for finding a CoB
transformation. The difficulty in discovering an abstraction arises
from the fact that (a) finding if a given polynomial is psd is NP-
hard ! and (b) the components of the mapping o do not form a
structure such as vector spaces over which a terminating iteration
can be readily defined.

5.1 Finding Polynomial Abstractions

For the remainder of this section, we focus on discovering in-
equality abstractions for ODEs with polynomial right-hand sides
through maps « that involve polynomials. Note that the term posyn-
omial refers to a positive semi-definite polynomial. Before pro-
ceeding, we recall the definition finitely generated cones.

Def. 5.3 (Finitely Generated Cone). A finitely generated cone
C = cone(aw, . . ., o) is the set of all functions obtained as conic
combinations of its generators: C = {f : Z?:o Ajag | A >
0, \; € R}.

A finitely generated cone C' : cone(au, ..., ay) is closed under
Lie derivatives w.r.t a vector field F with a positive semidefinite
(psd) residue iff

Vel Lr(f)= ao+z a;ci;+p, for positive semi-definite p .

k3

Lemma 5.1. AsetS = {a,...
tives w.r.t F with a psd residue iff the cone(S) is also closed with
a psd residue.

5.1.1 Approach

Along the lines of our approach in Section 4, we adopt the fol-
lowing strategy:

1. Choose a finitely generated cone Cy : cone(1, a1, ..., )
of functions. In practice, we form the initial cone by choos-
ing all monomials m of degree at most d and adding the poly-
nomials +m and —m to the generators of Cl.

2. We refine the cone C; at step i, starting from ¢ = 0, to obtain
acone Ciy1 C Cy. If Ci41 = Cj, we stop and use the
generators of the cone to extract a mapping.

3. Unlike vector spaces, the iteration over cones need not neces-
sarily converge even for finitely generated (polyhedral) cones.
Therefore, we will use a heuristic “widening” operator that
will force convergence in finitely many steps [6].

Let us assume that a cone C' : cone(1, a1,. .., ax) fails to be
closed (with psd residues). Our goal is to derive a sub-cone D C C
that is finitely generated and satisfies the closure conditions:

Dg{f€C|£p(f):co+Zciai+p, ¢ ER, pispsd}.

A naive strategy for finding D is to drop those generators («;s)
in the basis that fail the closure condition. However, this strategy
fails to find interesting cones in practice.

'The problem is harder if trigonometric functions are involved.
Therefore, we restrict our focus to polynomials.

, a } is closed under Lie deriva-

5.1.2  Using Sum-Of-Squares Programming

Sum-Of-Squares relaxation is a well known technique that al-
lows us to relax nonlinear programs involving polynomial inequal-
ities into semi-definite programs. Originally discovered by Shor,
the SOS relaxation has been applied widely in control theory and
verification [18, 21].

Let C : cone(1, aq,..
element of the cone can be written as f(X, ©) :
Ak > 0.

., ax) be a finitely generated cone. Any
Xo+ 38 N,
for multipliers X Aoy - -

1. Consider the ansatz f (X, Z), with parameters X representing
the non-negative multipliers.

2. Compute its Lie derivative w.r.t F, to obtain the polynomial
Lr(f(A, Z)).

3. Equate Lr(f) with the form g = co + S.F_, ciai + p,
wherein co, . . ., ¢, are real-valued parameters (not necessar-
ily non-negative) and p is an unknown generic polynomial
template over parameters di, . .., dn that we require to be a
posynomial.

4. We derive constraints by comparing monomial terms in Lz (f)
and g. The positive semi-definiteness of p is encoded using
the SOS relaxation. The resulting system of constraints has
the following form:

—

AX+b=Pé+Qd, X > 0, Z(d) = 0.

for matrices A, P, @, b over reals, unknowns ), ¢, d and ma-

trix Z(d) whose entries are linear expressions over d. Z is
constrained to be a positive semi-definite matrix.

Unfortunately, the set of values of X for which the semi-definite
program above is feasible need not form a finitely generated cone
(the cone may have infinitely many generators). Therefore, we need
to underapproximate the cone by extracting finitely many genera-
tors. This can be performed in many ways, including finding op-
timal solutions to the SDP for various randomly chosen values for
the objective function.

5.1.3 Using Convex Polyhedral Cones

A weaker alternative to using SOS relaxation to characterize a
finitely generated cone of positive semi-definite polynomials by
starting from a finite set of known posynomials of bounded degree.
Let POS = {pi,...,pm} be a finite set of posynomials. Then
any conic combination of polynomials in POS is also a posynomial,
yielding us a finitely generated cone of posynomials.

A polynomial all of whose monomials have variables with even
powers of the form H?:lx?” , i € N, and all of whose coefficients
are non-negative is a posynomial. Collecting all these monomials
up to some degree and forming the cone generated by these mono-
mials yields a polyhedral cone of posynomials.

Alternatively, we may derive a finite set by extracting finitely
many feasible solutions to a SOS program that encodes that an un-
known template polynomial is positive semi-definite.

Given a cone C' : cone(1,a1,...,a), we wish to refine the
cone to obtain a new cone D that satisfies

DC{feC|Lr(f) :Co+Zciai + p, pispsd}.
i
Assuming a cone of posynomials generated by POS, we proceed as
follows:

1. Create an ansatz f(X, &) : Ao + Do i



2. Compute the Lie derivative: L (f). This will be a polyno-
mial over A, Z.

3. We equate L (f) with a template polynomial g,

gzco+zciai+Z’Yjpj7 where y; > 0,

J

and each p; € P is a known posynomial.

4. Finally, we obtain linear constraints of the form:

AX=PZ+Q7,7>0,X>0.

5. Eliminating ¢, yields linear inequality constraints over X
whose generators yield the new cone D.

The technique, as described above, requires a set POS of posyn-
omials and uses polyhedral projection, which can be expensive in
practice. The following example illustrates how this can be avoided
in practice.

Example 5.4. We recall the system in Example 5.3.

dx dy
g 2 -9
T+ 2zy, at

=143y —y°
dt +3y -y

Consider the cone C' generated by

. 2 . 2 . . B 2
{Lan: 2%,2: y°, az: z,a4: —y,a5: T Y}.

A generic polynomial inside the cone can be written as
£ do+ Mz + Xy + Asz + My + Asz’y .
Its Lie derivative is given by:

=+ A3z + (222 — 3 )y + (2>\1 + >\5)$2+
2X3zy + (5As + 4M1) 22y + 3As2%9% — 2)ay®

To avoid an expensive elimination, we heuristically split the lie
derivative into two types of terms: (a) terms that need to be linear
combinations of ai;s and (b) terms that belong to the posynomial.
Our heuristic collects all the monomial terms that are part of each
polynomial o;. The corresponding terms in the Lie derivative along
with their coefficients are constrained to be a linear combination of
«;s. The remainder is constrained to be a posynomial.

In this example, the posynomial part is 2X3xy + 3Asz’y? —
2Xay>. We note that this is a posynomial if

A3 =0,22=0,15>0.

We now add constraints that force the remainder of the Lie deriva-
tive to be a linear combination of the a;s:

—Aa A+ A3z 4 (202 — 30y + (2A1 + X5)2? + (BAs + 4\ zly

co+c1x® + oy’ + 3+ cay + o5

This yields linear equality constraints with X and & The ¢ vari-
ables can be eliminated by Gaussian elimination. In this instance,
the resulting constraint after elimination of ¢ variables is true.
Combining, the overall constraint is A3 = 0, A2 =0, X > 0. This
yields the cone generated by {1, a1 : 22, as: —y, as x2y},
as a result of the refinement operation.

5.1.4 Ensuring Termination

The iterative process of refinement starts from some initial cone
Co that contains all monomial terms and their negations upto some
degree cutoffs. At each step, we perform a refinement to com-
pute a refined cone C 1 from the current cone C;. The refinement
can be performed either by formulating a semidefinite program and
extracting finitely many feasible solutions or by using polyhedral
cones generated by a finite set of posynomials (eg., all monomials
which are squares with non-negative coefficients).

In both cases, the refinement iteration is not guaranteed to con-
verge in finitely many steps. To force convergence, we use a widen-
ing operator [6].

The widening operator V applied to two successive iterates C' :
C;V i1 produces a new finitely generated cone C satisfies C' C
C;, C C Ci4+1 and furthermore, for any sequence Co 2 C7 2

Ca D - - -, the widened sequence
Co, Cl, D1 : C’()VC&7 D2 : 191VC'27 ey Di : Di,lvcy», .

is always guaranteed to converge in finitely many steps.

Def. 5.4 (Widening Over (Dual) Cones). Given two finitely gen-

erated cones C1,C5 such that Co C C4, the standard widening
C1VCy is defined as cone({f € Generators(C1) | f € Ca2}).

In other words, the standard widening drops those generators in
C that do not belong to C. It is easy to see why a widened itera-
tion using standard widening terminates in finitely many steps. At
each widening step D;41 : D; V41, we drop a generator from
the cone D; that do not belong to C;41. Since there are finitely
many generators to begin with in D, the widened iteration termi-
nates in finitely many steps.

5.1.5 Abstractions over Domains

Thus far, our techniques have considered the dynamics of the
system S : (Xo, F, X1) being abstracted, without using knowl-
edge of its invariant set (or domain) X;. Often, the abstraction
being sought is over some domain X; C R"™. Our techniques for
finding inequality abstractions can be readily modified to treat in-
variant domains that need not necessarily be bounded. We now
briefly present the generalizations to the definitions and the itera-
tive refinement technique to operate over domains X7.

Def. 5.5 (Closure over Domain). A finite set of functions S :
{ai,...,ax} is closed under Lie derivatives with a positive semi-
definite residue over a domain X; iff for all a; € S, the Lie
derivative of o is of the form: ¥ & € X1, Lr(a;)(Z) = b1 +
Zj ai;a; + pi(Z), wherein, a;j,b; € R, and p; is psd.

In contrast to Def. 5.2, the Lie derivative of o; equals a linear
combination with positive residue over the domain X7, as opposed
to everywhere. The iterative refinement techniques incorporate the
generalized definition. The refinement of the cone C' has to guar-
antee that the refined cone D satisfies

DC{feC|(YZeXr), Lr(f) =) aja;tp, p(f) > 0}.

The iteration using SOS relaxation is easily modified under the
assumption that X7 is represented as the feasible region of a system
of polynomial inequalities. The approach using a finitely generated
cone of posynomials can be modified by allowing the cone to in-
clude monomials that are known to be positive over X7 (as opposed
to everywhere).

If the domain X is bounded, our technique defaults to a trun-
cated Carleman linearization involving all monomials upto a de-
gree cutoff. Soundness of the truncation is ensured by obtaining



interval bounds on the residues for each monomial. This approach
can form the basis for a hybridization abstraction wherein accuracy
can be improved by repeatedly subdividing the domain X7. [7].

5.1.6 Application to Hybrid Systems

Thus far, we have presented our techniques for abstracting con-
tinuous system. The continuous system abstraction for the dynam-
ics corresponding to a mode can be directly employed to compute
reachable sets for a given initial condition. This can be used repeat-
edly as a primitive inside hybrid systems analysis tools.

It is possible to extend the notion of change of bases transfor-
mations to discrete transitions using closure under the weakest pre-
condition operator as opposed to Lie derivatives. As a result, we
can integrate the conditions for closure under Lie derivatives for
continuous systems and the closure under pre-conditions for dis-
crete transitions to yield an extension of our theories for hybrid
systems. The full technique for hybrid systems will be described in
an extended version of this paper.

6. EXPERIMENTAL EVALUATION

In this section, we describe a prototype implementation of some
of the ideas presented thus far. We also report on the experimental
evaluation of some benchmark systems using our implementation.
Our implementation, the benchmark systems and the outputs are
available on-line for review 2.

6.1 Implementation

We have implemented the search for a change of bases transfor-
mation using vector space iteration as well as iteration over poly-
hedral cones using monomials of the form Hm?” as the generator
of the cone of posynomials. Our implementation (in OCaml) reads
in the description of a continuous system and a degree bound for
the abstraction search. It then performs a vector space iteration fol-
lowed by a polyhedral iteration. The polyhedral iteration uses the
Parma Polyhedral Library [4]. However, polyhedral cone opera-
tions such as computing the generators is worst-case exponential
in the number of variables. We implement an optimized version of
the iteration over polyhedral cones that separates the linear equality
and inequality constraints. The equality constraints are maintained
in a triangular form so that we may minimize the number of vari-
ables involved in the inequalities. This enables us to handle systems
with upwards of 5000 basis polynomials. To improve the quality of
the result, we use a delayed widening strategy that starts applying
the widening operator only after there are no more linear equality
constraints to be added.

6.2 Experimental Evaluation

In this section, we describe the results of our technique on some
benchmarks. Table 1 summarizes the results of our analysis and
the performance of our implementation over various benchmarks
assuming various degree bounds. We discuss some of these bench-
marks below, briefly. The details of the invariants discovered are
part of our release and will be discussed in an extended version.

Two Spring Mass System With Friction We model a mechanical
system with two masses that are connected to each other and to a
fixed end using springs with constants k1, k2 and masses m1, mo

adjusted so that T% = 7% = k. Furthermore, we assume that
my = 5mg. The variables & : (x1,x2,v1,v2, k) representing

the displacements, velocities and the spring constant. We assume

2Cf. http://www.cs.colorado.edu/~srirams/code/
nlsys—-release.tar.gz.

Table 1: Summary of experimental results over benchmark sys-
tems. Legend: Var: number of variables, deg: degree bound,
T: time taken (seconds), iter: number of iterations, eq: number
of equalities, ineq: number of inequalities, {: transformations

purely involving the system parameters were removed.

Sys Vars || deg | T iter | eq ineq
proj-drag 4 3 5 15 |5 2
spr-mass2 | 5 3 .1 10 |17 1
spr-mass2 5 4 .6 15 | 1f 4
spr-mass2 | 5 7 |e617 |28 |1f 5
coll-avoid2 | 14 |[2 |2 |7 |14 0
coll-avoid-2 | 14 4 144 | 23 | 1607 0
bio-net 12 3 49 |18 |1 2
bio-net 12 4 112 | 19 |1 2
bio-net-par | 26 2 1.7 | 4 161 1
bio-net-par | 26 3 181 | 5 ~ 100 | ~ 14

that the drag due to friction is proportional to the velocity. The
dynamics are described by the vector field

k
(’Ul,’UQ7 —k‘CEl — g(CEl — CCQ) — .1’[)1, k(:rl — :172) — .11)2,0) .

The search for degree bound 3 yields the transformation below:

ao: k, a1 —10v1vs + 50 + 23k — 12z 20k 4+ 11275k .

The Lie derivative of a1 is v3, a posynomial. The application of our
technique to the conservative system without friction also discovers
non-trivial transformations in the form of conserved quantities and
inequality invariants.

Collision Avoidance We consider the algebraic abstraction of the
collision avoidance system analyzed recently by Platzer et al. [20]
and earlier by Tomlin et al. [30]. The two airplane collision avoid-
ance system consists of the variables (x1, x2) denoting the position
of the first aircraft, (y1,y2) for the second aircraft, (d1, d2) repre-
senting the velocity vector for aircraft 1 and (e, e2) for aircraft 2.
w, O abstract the trigonometric terms. In addition, the parameters
a, b, 1, ro are also represented as system variables. The dynamics
are modeled by the following differential equations:

.'I}ll =d; .’1}’2 = ds2 l1: —wda dlg = wd;
/ ! / ’

yi=e1 Ys=e2 €3 =—0ex e5=0e;
! / ! !

a =0 b'=0 r1=20 ry =0

A search for transformations of degree 2 yields a closed vector
space with 27 basis functions within 0.2 seconds. The basis func-
tions include a, b, r1, 72 and all degree two terms involving these.
Removing these from the basis, gives us 14 basis functions that
yield a transformation to a 14 dimensional affine ODE.

Biochemical reaction network: Finally, we analyze a biochemical
reaction network benchmark from Dang et al. [7]. The ODE along
with the values are parameters in our model coincide with those
used by Dang et al. The ODE consists of 12 variables. Our search
for degree bound < 2 discovers a transformation generated by three
basis functions (in roughly .3 seconds). This leads to two differen-
tial equalities and one inequality. Note that our analysis does not
assume any information about the invariant region. Searching for
an abstraction over the invariant region may help us derive a finer
abstraction of this ODE along the lines of Dang et al. [7]. Table 1
reports on the results of two versions of the system: with numerical
values for the various parameters involved and by encoding these



parameters as extra variables whose derivatives are zero. The abil-
ity to treat a 26 dimensional system (reasoning over vector-spaces
and cones of dimension ~ 3600) is quite a promising result for our
approach.

7.

CONCLUSION

Thus far, we have presented some techniques for discovering lin-
ear abstractions through a change of bases transformation and an
evaluation of our techniques using a prototype implementation. In
the future, we wish to implement our techniques to search for ab-
straction over domains. The extension of our techniques to handle
non-linear switched and hybrid systems is ongoing.
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