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ABSTRACT

We examine the problem of reliable networked control when
the communication channel between the controller and the
actuator periodically drops packets and is faulty i.e., cor-
rupts/alters data. We first examine the use of a standard
triple modular redundancy scheme (where the control input
is sent via three independent channels) with majority vot-
ing to achieve mean square stability. While such a scheme
is able to tolerate a single faulty channel when there are no
packet drops, we show that the presence of lossy channels
prevents a simple majority-voting approach from stabilizing
the system. Moreover, the number of redundant channels
that are required in order to maintain stability under ma-
jority voting increases with the probability of packet drops.
We then propose the use of a reputation management scheme
to overcome this problem, where each channel is assigned a
reputation score that predicts its potential accuracy based
on its past behavior. The reputation system builds on the
majority voting scheme and improves the overall probability
of applying correct (stabilizing) inputs to the system. Fi-
nally, we provide analytical conditions on the probabilities
of packet drops and corrupted control inputs under which
mean square stability can be maintained, generalizing exist-
ing results on stabilization under packet drops.

Categories and Subject Descriptors

B.4.5 [Reliability, Testing, and Fault-Tolerance|: Re-
dundant Design; G.1.0 [Numerical Analysis]: General—
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1. INTRODUCTION

Networked control systems are spatially distributed systems
where the communication between the sensors, actuators
and controllers takes place through a network [12]. The pres-
ence of a network within the control loop can adversely affect
the performance of the system due to the inherent unrelia-
bility of the underlying channel. For instance, the network
can drop packets with a certain probability or introduce de-
lays in transmission. Recent years have seen much work on
the problem of control in the presence of such imperfections
19, 21, 8, 13, 10, 19, 2].

While the issue of stability over relatively benign packet-
dropping channels has been well studied, the topic of main-
taining stability under faults or attacks (i.e., data alter-
ations or corruptions) in the network has not yet received
much attention. The potential for such disruptions is be-
coming greater as control networks become increasingly inte-
grated with standard corporate and data networks [23], and
an unmitigated fault or attack could have disastrous conse-
quences in safety-critical applications. The paper [1] takes a
step towards addressing this problem, studying the stability
of networked control systems under a malicious denial-of-
service attack where an attacker stops packets from reach-
ing the controller or actuator for an extended period of time.
Other recent investigations of this topic can be found in [20].

In this work, we study the problem of reliable networked
control with channels that are both packet dropping and
data-corrupting. We first examine the use of a simple major-
ity voting scheme with multiple redundant channels between
the controller and the actuator. Each of these channels may



drop packets or modify the data that they carry. We show
that a straightforward implementation of triple modular re-
dundancy may not be sufficient to ensure stability, due to
the presence of packet drops in the network. Specifically,
we show that the number of redundant channels required
in order to ensure stability increases with the probability of
packet drops by each channel. It is worth noting that [19]
also studied the use of multiple packet-dropping channels to
obtain stability in a networked control system. However,
the channels in that paper were not assumed to corrupt the
data, and redundancy was added only to increase the prob-
ability of receiving a packet at the actuator. In contrast,
we introduce redundant channels in our setup only to deal
with data-corruptions in certain channels, and show that the
combination of data corruptions and packet drops imposes
a lower bound on the number of redundant channels that
are required to stabilize the system (even if a single channel
is sufficient to stabilize the system under non-faulty condi-
tions).

To address the problem of stabilization under packet drops
and data corruptions, we introduce the use of reputation
management into the networked control setting. At its core,
this involves placing a computational element (called the
reputation manager) in the feedback loop, which examines
the values that it receives from the redundant channels and
uses the history of the channels’ (data corruption) behaviors
to assign to them a quantitative reputation ‘score’. This
score is then used to switch between the available chan-
nels (or to apply no input at all). Reputation manage-
ment schemes have been well studied in the computer sci-
ence community for the past decade for applications such
as file sharing [24], peer-to-peer networks [17], spam detec-
tion [25], and inter-domain routing [6]. The characterization
of “good” versus “bad” behavior with regard to maintaining
reputation depends on the particular application and do-
main. While reputation management systems have tradi-
tionally been used to characterize and control virtual pro-
cesses in the computing domain, in this work, we apply the
concept to a cyber-physical system revolving around the con-
trol of a plant. Consequently, we tie the performance of the
reputation manager to a physical process, namely the stabil-
ity of the plant (encapsulated by the square of the largest
eigenvalue of the system matrix, as we will show).

The principal contributions of the paper are: (1) an analyt-
ical characterization of the probabilities of packet drops and
data corruptions under which the networked control system
can maintain mean-square-stability, and (2) a demonstration
of the capability of reputation management to improve upon
triple modular redundancy schemes to provide mean square
stability (under certain conditions). In addition to the spe-
cific contributions listed above, our analysis and evaluations
are intended to lay a foundation for further integration of
reliability and security mechanisms developed by the com-
puter science community into feedback control settings.

The paper is organized as follows, Section 2 presents the nec-
essary background on networked control systems and the
fault model for this work. This is followed by Section 3,
where we describe the system model for our reliable con-
trol scheme, and Section 4 delves into the majority voting
approach and its pitfalls. Section 5 presents the reputation
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Figure 1: Networked Control

management scheme. In Section 6, we present a detailed
stability analysis for systems with a faulty channel. Finally,
Section 7 concludes the paper.

Notation: For a given matrix A, the notation A’ indicates
the transpose of the matrix. For any vector a, the notation
lal| denotes the Euclidean norm of the vector. More gener-
ally, for a given positive definite matrix P and any vector a,
the notation ||a||p denotes a’Pa. The eigenvalues of maxi-
mum and minimum modulus of a matrix A are denoted by
Amaz(A) and Apin(A), respectively. The notation F[-] de-
notes the expectation of a random variable. The notation N
denotes the set of nonnegative integers.

2. BACKGROUND AND FAULT MODEL

Consider the networked control system shown in Fig. 1. The
plant P is given by the dynamical system

x[k + 1] = Ax[k] + Bulk], y[k] = Cx[k] , (1)

where x € R™ is the system state vector, u € R™ is the
system input vector, y € R? is the system output vector, and
k denotes the time-step of the system. The matrices A, B
and C are real-valued matrices of appropriate dimensions.

To obtain the desired behavior from the plant, the output
y[k] is sent to a controller C, as shown in Fig. 1. Based
on y[k] (or perhaps the entire history of the outputs), the
controller computes an input a[k] to apply to the plant.
This value is sent through a channel (or more generally, a
network), which results in a value u[k] to be applied at the
actuators. There are multiple ways to model the channel; for
example, it may drop packets according to some probability,
introduce time-varying delays, or have dynamics that cause
the input and output to be related in complex ways. For
the Bernoulli packet-drop model commonly studied in the
literature (e.g., [12, 10, 22]), at each time-step k, we have

k] = afk] with probability 1 — p,
W= 0 with probability p,

where () denotes that no signal is received. In the latter
case, we assume that the actuators simply apply the input
ufk] = 0. This case has been studied extensively, leading
to conditions on the plant and success probability p under
which the system will be stable. Due to the probabilistic
nature of the applied inputs, the following notion of stability
is considered in the literature.

Definition 1. The system is said to be mean square stable
if E [||z[k]||*] < oo, Vk€N.

Various conditions for ensuring mean square stability have
been obtained for general plants [13, 21, 8]. When the input



matrix B is square and full rank (i.e., the system is fully
actuated), the following result has been established.

THEOREM 1 (]9, 13, 10]). Suppose that B is square and
full rank, and let p be the packet drop probability. Then, there
exists a linear controller C' such that the closed loop system
is stable if and only if | Amaz(A)|* < 1.

ExAMPLE 1. Consider the first-order plant
wlk + 1] = dz[k] + ulk], y[k] = z[k] ,

where x,u,y € R. Suppose we wish to control this plant via
the standard networked control architecture shown in Fig. 1,
where the channel has drop probability p = 0.05. Since
Pl Amaz(A)]* = 0.05(4)> = 0.8 < 1, one can find a controller
(e.g., ulk] = —4y[k]) such that the system is mean square
stable.

In this paper, we expand the discussion on networked control
systems to the case where the channel is capable of modify-
ing the data that it carries, in addition to dropping it with
a certain probability. This can happen, for example, if an
attacker takes control of one of the intermediate nodes in the
network, and executes man-in-the-middle attacks [3]. It can
also happen due to accidental faults in the network (e.g.,
when encoding or decoding during transmissions). Regard-
less of the cause of the error, we will refer to channels that
modify the data that they carry as faulty.

Definition 2. Let a[k] be the input to the channel at time-
step k, and let u[k] be the output of the channel. The chan-
nel is said to be faulty at time-step k if the channel outputs
a value that is not equal to the input (i.e., ulk] # alk] and

ulk] # 0).

REMARK 1. Note that the above definition allows the faulty
channel to change the control input arbitrarily. Also, note
that if the channel drops the packet (i.e., ulk] = 0), it is
irrelevant whether or not the data was modified en-route;
thus, we will use the term faulty to refer only to channels
that actually deliver a modified packet at a given time-step

k.

REMARK 2. In this paper, we will make the assumption
that the controller is located at the sensor (without an inter-
mediate channel), and that the controller has full access to
the state (i.e., y[k] = x[k]). The latter assumption can be
relazed if there is an acknowledgment mechanism in the net-
work, whereby the actuator can inform the controller of the
input value that is applied [13]. We will leave the full treat-
ment of more general scenarios for future work; as we will
see, even this scenario offers various challenges for control.

REMARK 3. One can readily incorporate random mnoise
wnto system (1) without affecting the property of mean square
stability that we discuss in this paper. In order to avoid
introducing additional variables and to keep the exposition
clear, we will leave noise out of our discussion.

REMARK 4. One can also consider the inclusion of cryp-
tographic mechanisms into the feedback loop to protect the
data that is being transmitted over the channels. However,
such mechanisms are primarily intended to protect the confi-
dentiality of the data, and do not typically address the issue
of what happens when the entire data packet is corrupted
(i.e., even if the actuator is able to determine that the in-
tegrity of the transmitted data is compromised, it has no way
to know what input to apply to the system). In other words,
the real-time nature of feedback control requires a mechanism
by which data is reliably delivered. As we will see in the next
section, we will achieve this by transmitting the control in-
puts along multiple independent channels, and enforce the
assumption that the packets on at most one of the chan-
nels can be corrupted by the attacker. In return, we do not
have to assume that the attacker is computationally bounded
(which is a typical assumption in cryptographic systems).
This assumption of an attacker restricted by the topology of
the network, as opposed to bounded in the computations that
he/she can perform, is also considered in the literature on
Byzantine fault tolerance [18] and information theoretic se-
curity [15].

3. NETWORKED CONTROLLER MODEL
AND ASSUMPTIONS

As a first step to addressing the problem of a faulty chan-
nel in Fig. 1, suppose we implement a standard triple mod-
ular redundancy scheme by simply sending the controller
inputs through three different channels; for example, this
could represent disjoint paths through the communication
network between the controller and the actuator. Such an
implementation is shown in Fig. 2.
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Figure 2:
Channels.

The manager block (denoted by M in Fig. 2) compares the
different channel values and makes a decision as to what
input u[k] (if any) to apply (i.e., it switches between the
available channels, or the input 0). We assume that each
channel drops its packet with probability p, and that during
the course of operation, no more than one' of the channels
can be faulty (i.e., if a channel is faulty at some time-step, a
different channel cannot be faulty at another time-step). We
also assume that each channel is independent of the other
channels. If the probability of packet drops is p = 0, the
manager M receives the outputs of all three channels at each
time-step, and can simply choose the value that is specified
by the majority of the channels as the input u[k]. The more
interesting case occurs when we have a nonzero probability

'In general, if f faulty/malicious channels are to be toler-
ated, one requires 2f + 1 channels in total.



of packet drop, and the manager must adopt some rule to
choose which input to apply among the ones it does receive.
We study this case next.

4. MAJORITY VOTING WITH PACKET
DROPS

When the manager does not receive all three signals at each
time-step, one can adopt the following natural extension of
the standard majority-voting mechanism: if the manager
receives at least two signals that match, then that signal
is applied. Otherwise, the input u[k] = 0 is applied. We
denote the number of received signals at time-step k by Rj.
Note that Ry is a binomial random variable with parameters
(3,p). Thus, Rr = t with probability (i’)p3_t(1 —p)t, for
t € {0,1,2,3}. The probability of receiving two matching
signals will depend on whether one of the channels is faulty.

4.1 No Faulty Channels

When there are no faulty channels, the correct input is ap-
plied whenever at least two signals are received, and u[k] = 0
is applied otherwise. This latter case occurs with probabil-
ity ;1 = p* + 3p*>(1 — p). One can verify that §; < p for
p € [0,0.5], and p1 > p for p € [0.5, 1]. Thus, when there are
no faulty channels, this mechanism is equivalent to a sin-
gle non-faulty channel with drop probability pi; there will
be an overall improvement when p is less than 0.5, and a
degradation when p is greater than 0.5.

4.2 One Faulty Channel

When one of the channels is faulty (i.e., its output is not
equal to the signal generated by the controller), the proba-
bility that the manager receives at least two matching sig-
nals is equal to the probability that it receives signals from
both of the non-faulty channels. This probability is given
by (1 — p)?, and thus the drop probability is given by

p2=1—(1-p)?=—p*+2p. (2)

One can verify that p2 > p for p € [0,1]. The presence of a
faulty channel therefore results in an overall degradation in
performance (i.e., the majority voting mechanism functions
as a single non-faulty channel with drop probability pa > p).
This may result in the overall system no longer being stable,
as the following example illustrates.

EXAMPLE 2. Suppose we would like to protect the plant
described in Ezxample 1 against channel faults (or attacks)
by implementing the modular redundancy scheme shown in
Fig. 2. If one of the channels is faulty, the probability that
the manager M does not receive two equal values (equal to
—4ylk]) at any time-step k is given by equation (2), namely
P2 = —(0.05)2+2(0.05) = 0.0975. However, p2|Amaz(A)|> =
0.0975(4)% = 1.56 > 1, and this violates the bound in Theo-
rem 1. Thus the plant cannot be stabilized via this majority
voting scheme when one of the channels is faulty.

The above example shows that when one considers the pos-
sibility of both faulty and packet-dropping channels, a sim-
ple triple-modular redundancy scheme with majority voting
may not be sufficient to maintain stability, even when the
probability of packet drop is low enough that a single non-
faulty channel with the same drop probability would suffice.

One way to restore the performance of the networked con-
trol scheme would be to increase the number of redundant
channels. Specifically, suppose that we consider N+ 1 chan-
nels, where one channel is allowed to be faulty. Now, the
probability that the manager does not get two (non-empty)
matching signals is:

p=p" +Np" (1 -p) . (3)

For any desired drop probability p*, we would like to find
the value of N for which p = p* (i.e., the number of chan-
nels that are required in order to obtain the desired perfor-
mance). This is given by the following theorem.

THEOREM 2. Consider a majority voting scheme with N+
1 channels, each of which can drop packets with a probabil-
ity p. Furthermore, suppose up to one of the channels can
be faulty, whereby it changes the value of the data that it
carries. The number of redundant channels N required to
maintain a drop probability of p* is given by

N= Ly (phe )P
Inp 1—p 1—p

where W (-) is the Lambert W-function.?

PROOF. In order to have p = p*, we use (3) to obtain
P+ NpY T (1 —p) =p°

S+ N1-p))p" " =p"

S(p+ N(1—p))e™ Dy = p*

1 — n *
2= (V-1 )Ny

1 ((N-D+7L5)mp _ p'Inp Inp

s((N-1)+-—)0 w=p) e - P 0P 2

(=04 2 ) aupe et
Letting f(z) = ze®, the above equation becomes

_ Inp \  p"lnp L
f((N l)lnp—kl_p)—il_pp P

The solution to the above equation is given by the expression
in the theorem. [

A plot of N versus p is shown in Fig. 3 for the case where
p* = 4% (i.e., this is the maximum drop probability able to
stabilize the scalar plant in Example 1); since the number
of channels must be integer-valued, the value of [NN] is also
shown in the plot. Note that for p = 4%, one requires N = 3
additional channels (for a total of four channels) in order to
tolerate one faulty channel and still maintain the same prob-
ability of packet drop as a single non-faulty channel. As the
packet drop probability increases, the number of channels
required also increases rapidly.® Note that, even though we

assume that at most one channel is faulty over all times, the

2This is the inverse of the function ze®, and cannot be writ-
ten in terms of more elementary functions [7].

3This result can potentially be used by an intelligent at-
tacker to execute a subtle “jamming” or denial-of-service at-
tack on the network, whereby he or she increases the rate of
packet drops to the point where four disjoint channels are
no longer sufficient to maintain stability.
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Figure 3: Number of non-faulty channels (N) re-
quired in a majority voting scheme in order to tol-
erate a single faulty channel and maintain a drop

probability of p* = 4%.

analysis presented in this section will hold for the more gen-
eral case where different channels can be faulty at different
time-steps (as long as at most one channel is faulty in any
given time-step). This is because the above majority voting
scheme is memoryless, and decisions in the present are made
without regard to past behavior of the channels.

In the next section, we will present a mechanism to address
the shortcomings of modular redundancy in control loops
with packet drops. For certain types of faults that afflict
the channels, this mechanism will provide mean-square sta-
bility without requiring the use of more than two redundant
channels i.e., it will address the problems described above
with regard to the loss of stability in triple modular redun-
dancy.

5. MAJORITY VOTING WITH A REPUTA-
TION MANAGER

In practice, the behavior of a channel at any time-step k will
be correlated with past and future behavior. For example,
if a channel is compromised by an attacker, it is likely that
the channel will misbehave for several time-steps (or perhaps
permanently). Similarly, if the channel has an internal state,
and if the state gets disturbed from its normal operating
condition for some reason, it will take several time-steps for
this error to die away. To formally capture such behavior,
we will first need a metric to evaluate “good” versus “bad”
behavior by a channel. Let C' = {c1,c2,c3} be the set of
channels between the controller and reputation manager and
I, r be the input received from a channel ¢; € C at time-
step k (this value can be 0 if the input is dropped by the
channel during the time-step).

Definition 3. An input I, . is verifiably correct if the rep-
utation manager receives at least one additional signal from
any channel ¢; € C, i # j and I, r = ch,k # (. An in-
put I, r is verifiably incorrect, if the reputation manager
receives two other signals ¢; and c¢j, such that ¢;,¢; € C,
{ 7&] 75 U, [ci,k - ]cj,k 75 @ and [Cu,k # [ci,k~

Let Gc,,r and B, i represent the sets of verifiably correct
and verifiably incorrect inputs, respectively, received from a
channel ¢; € C' up to time-step k.

Definition 4. The reputation of a channel ¢; € C at a
time-step k is a map Rep : Ge, x X Be,r — [0,1] U {6},
where ¢ denotes an unknown reputation.

To simplify the notation, we use Rep(c;) to denote the rep-
utation of a channel ¢; at a given time-step. The exact map
that is used will depend on the types of faulty behavior that
are assumed. The reputation values for each channel will be
administered and updated by a reputation manager (RM),
which we describe next.

5.1 Reputation Manager

The reputation manager is incorporated into the block la-
beled M in Fig. 2, and operates in four stages: (1) observe
the inputs from the channels at a given time-step, (2) verify
the correctness (or incorrectness) of the received inputs, (3)
update the reputation of the channels whose inputs can be
verified, and (4) use the reputation to choose between the
available channels (or apply no input at all). As we shall see,
the use of reputation management outperforms the majority
voting mechanism by increasing the probability of applying
a correct control input and reducing the probability of ap-
plying no input.

When there is only one faulty channel and the RM receives
at least two matching signals, it is certain that the input is
correct. However, there may be situations when the RM is
uncertain about the quality of the signal; this can happen,
for example, if two non-matching signals are received, and
the reputations of the two channels are identical. If the RM
randomly chooses one of the two inputs to apply, there is
a chance that an incorrect value will be applied. It would
be prudent in this case to ensure that the input applied by
the RM is bounded in some sense, so that a faulty channel
is not able to immediately increase the system state to a
large value. Rather than having the RM scale the received
inputs itself, we will instead have the controller inject two
values into each channel: one value is a state feedback in-
put —Kx[k], and the other is a bounded input u®[k] satisfy-
ing ||u®[k]|lp < b, for some matrix K, some positive definite
matrix P and some positive real number b. We will later dis-
cuss conditions under which K, P, b and u®[k] can be chosen
to ensure mean square stability, even when bounded incor-
rect inputs are applied with a certain probability. Note that
a faulty channel can corrupt both the state feedback and
bounded input injected by the controllers, but if the cor-
ruption causes the norm of the bounded input to increase
above b, this can be immediately detected and identified by
the reputation manager.

The above ideas are formally presented as Algorithm 1.
Here, i and j are indices of channels from which input is
received. The reputation value for each channel is initially
set to ¢ (i.e., unknown), and gets updated as verifiably cor-
rect or incorrect inputs are received from the channels. The
parameter © € [0,1] is a threshold value, and input from
a channel with reputation below © is not applied. A vari-
ety of mappings/functions can be used to obtain the actual
value of the reputation Rep(c;) based on the observed his-
tory He, , = Gci,k U B¢, U (Ulgczllci,g — {Gci,k @] Bc,;,k})
at any time-step k. In this section we describe two such
mappings that prove to be simple yet more effective than
majority voting. Before delving into the details, we present



Algorithm 1 Reputation Management Scheme

Require: Controller injects —Kx[k] and u®[k] into each of the three
channels. Both of these signals travel together in one packet. Let
Rj, denote the number of packets received by the RM at time-step
k.
begin
if Ry = 3 then

RM applies the value —Kx[k] specified by the majority of the
packets, and updates the reputation of all three channels accord-
ingly
else if R; = 2 and they both match then
RM applies —Kx[k] and updates the reputation of the two chan-
nels.
else if R, = 2 and they do not match then
if Rep(c;) > © and 0 < Rep(c;) < © then
RM applies the value —Kx|[k] specified by ¢;, and increases
the reputation of ¢; while decreasing that of c;.
else if Rep(c;) > © and Rep(c;) > O then
RM randomly chooses one of the two channels and applies the
input u®[k] specified by it.
else if Rep(c;) > © and Rep(c;) = ¢ then
RM applies ub[k] specified by c;.
else if (Rep(c;) = ¢ and Rep(c;) = ¢) or (Rep(c;) < © and
Rep(cj) < ©) then
RM applies ulk] = 0
end if
else if Ry = 1 then
if Rep(c;) > © then
RM applies ub[k] specified by c¢;.
else if Rep(c;) = ¢ or Rep(c;) < © then
RM applies ulk] = 0
end if
else if R;, = 0 then
RM applies ulk] = 0
end if
end

the fault model that we are considering (the analysis of other
fault models will be left as an extension for future work).

5.1.1 Fault Model

We assume that, over all time-steps, at most one channel is
faulty, and without loss of generality we take this to be c3
(of course, this is unknown to the manager).* Furthermore,
we assume that cs becomes faulty at an arbitrary time-step.
In this work, we take the faultiness of the channel to be
probabilistic and expressed as d.,, which is the probability
that channel ¢; is fault-free at any given time-step. Thus, we
consider the case where d.; =1,de;, =1and 0 <d., <1 at
any given time-step. Finally, we assume that the reputation
manager knows that at most one channel is faulty, but it
does not know a priori that cs is the faulty channel nor does
it know the probability of being c3 being faulty (i.e., 1—dc,).

5.2 Stratified Reputation

We will start by considering a simple reputation function
that switches between a finite set of reputation values. Ini-
tially all the channels have an unknown reputation ¢.

Definition 5. (Stratified Reputation) Let G, » and B,
represent the number of verifiably correct and verifiably in-
correct inputs, respectively, received from channel ¢; up to

4For instance, in a multi-hop network, the three channels
could represent three node-disjoint paths in the network be-
tween the controller and the manager, and misbehavior on
the part of nodes on only one of these paths would leave the
other paths (channels) reliable.

time-step k. Then, the reputation of the channel ¢; at time-
step k is defined as:

1 Gci,k >O&Bc7~,,k =0,

0 Be,r>0,
(]3 Bc“k =0 and Gci,k =0.

Rep(ci) =

Using the stratified reputation function, the moment we
verify that a channel is faulty, it is “black-listed” and no
unbounded input provided by that channel is ever applied
again. Since reputations can only be either 0 or 1 (when
not unknown), we can use any 0 < © < 1 as the thresh-
old in Algorithm 1. While simple, this reputation function
does not provide us with much information about the ex-
tent of faultiness of the channel (which could be useful for
identifying the cause of the fault). We will next consider a
slightly more complex reputation function that still provides
an improvement over majority voting, and also provides an
estimate of the fault probability of the channel.

5.3 Bayesian Reputation

To estimate the fault probability of the channel, we use a
Bayesian Reputation function [14]. To understand this, note
that when channel ¢; becomes faulty, each verifiable input
provided by ¢; is correct or incorrect with a Bernoulli dis-
tribution, given by the (unknown) probability d.,. Conse-
quently, given a set of verifiably correct and incorrect inputs
from a channel, the quantity d., satisfies a beta distribution,
which is the probability distribution of seeing a particular
combination of correct and incorrect inputs from a channel
[14]. The expected value of the beta distribution forms the
reputation and is given by the ratio of the number of correct
values received to the number of total values received. This
is also the required estimate of the fault-free probability of
cs (i.e., dey).

Definition 6. (Bayesian Reputation) Let G¢, x, Be, r and
Se¢; 1k represent the number of verifiably correct, verifiably
incorrect and total number of verifiable inputs, respectively,
received from the channel ¢; up to time-step k. Then, the
reputation of the channel ¢; at time-step k is defined as:

Gci,k

Rep(ci) = ,where S¢; x = Ge, 1 + Be, k- (4)

ci,k

Note that, it might be preferable in some situations to give
weight to more recent behaviors than older ones, e.g., by
introducing time decay functions for the reputation calcula-
tion. We will leave a treatment of such reputation functions
for future work.

5.3.1 Discussion

Even though both reputation functions can detect the faulty
channel, the Bayesian reputation function allows one to es-
timate the probability of the channel’s faultiness through
its reputation value. This helps system administrators per-
form better fault diagnosis. For example, if the reputation
of channel ¢; is lower than a certain value, it might im-
ply that the root cause of the faulty signal could be serious
network outage or a malicious attack, rather than random
network operation errors. Consequently, unlike the strat-
ified function, with the Bayesian reputation function, the



reputation value is constantly updated even when the RM
is aware which channel might be faulty.

Note that, these two are not the only reputation functions
that can be used here. Their choice is motivated by the
desire to demonstrate simple functions that can provide im-
provements over majority voting (as we will show below).
The choice of the reputation function is largely dictated by
the fault model assumed in the system. Identifying different
criteria for choosing appropriate reputation functions is the
focus of ongoing research.

5.4 Evaluation Metrics

From Algorithm 1 it can be seen that each of the inputs
(i.e., a full state-feedback input, a bounded correct input, a
bounded faulty input, and 0) will be applied with a certain
probability. We will characterize the probabilities of each of
these events by C,Cp, £ and N = 1—C —Cp, — &, respectively.
In the rest of the paper we refer to these collectively as EC' N
metrics. Furthermore, we use subscripts N R and R with the
EC N metrics, to indicate that the scenario being considered
does not or does use reputation, respectively.

5.4.1 Performance Without Reputation Manager

In the absence of a reputation manager (i.e., the standard
triple-modular-redundancy scheme with majority voting from
the previous section), it is easy to see that Exr = 0, Cop p, =
0,Cnr = (1-p)* +2p(1—p)*de, and Nyr = 1—[(1—p)* +
2p(1 - p)2d03}~

5.4.2 Performance With Reputation Manager
Considering our setup with reputation, Table 1 shows the
ECN metrics for different combinations of possible channel
reputation values. We omit the value of Cg, since Crp =
1 —Cvp — Er — Nr. The following example demonstrates
how the ECN probabilities are calculated.

EXAMPLE 3. Assume initially all channels behave as ex-
pected without modifying the controller inputs. This will
eventually cause the reputations of c1, c2 and cs to become
1 (i.e., perfect). Now suppose cs starts behaving in o faulty
manner with a probability 1 — dc,. As the reputation of c3
is perfect, there is a non-zero probability of applying an in-
correct input to the plant.

A bounded incorrect controller input is applied to the plant
under two conditions: (1) a value from cs alone was received,
the probability of which is given by: p*(1 — p), or (2) values
were received from ci1 and cs or ca and cs3 and in either case,
c3 was chosen at random, given by the probability %p(l —
p)? + %p(l —p)? = p(1 — p)?. Furthermore, the probability
that cs is faulty, given that its value was received, is given
by (1 —de,). Given these values, we have Er = (p(1 —p)* +

p’(1=p)(1 —dey) = p(1 —p)(1 — dey).

Similarly, given the perfect reputation values, no input will
be applied to the plant only when no value is received, i.e.,
all three channels drop their packets. The probability of this
happening is given by Nr = p°.

Finally, a bounded correct controller input is applied to the
plant under three conditions: (1) a value from c1 or co is
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Figure 4: Effect on C in a system with dynamic chan-
nel failure due to reputation

received, the probability of which is given by: 2p*(1—p); (2) a
value was received from c1 and cs or ca and cs, the values do
not match, and c1 and ca are chosen at random, respectively.
The probability of this scenario is given as: p(1—p)*(1—dey);
and (8) the value from cs alone is received and it is not
faulty, which is given by p*(1 — p)de,. Given these values,
we have Cy, = p(1 —p)(1+p+de,(2p — 1)).

Given that ¢; and ¢z are never faulty, and their reputation
is updated only when majority of the inputs are identical
(2 out of 3), the reputation ¢; and c2 can therefore only
take the values 1 or ¢. In the case of channel cs however,
the reputation can be either ¢ or 0 < Rep(cs) < 1 depend-
ing upon the faultiness of the channel, and the packet drop
characteristics of the three channels.

5.5 Simulation Results

We simulated the triple modular redundancy scheme in a
networked control system with one faulty channel. The prin-
cipal goal of the simulation was to evaluate whether the rep-
utation manager improves the probability of applying cor-
rect inputs to the plant. Each simulation run was set to
execute for 1000 time-steps with different p and d., values.
Furthermore, in order to compensate for the variation of
individual simulation cycles, the entire simulation process
was executed 10,000 times for each combination of p and
dc, values and the averages of the values are reported. Our
simulations use the Bayesian reputation function with the
threshold value of ® = 1. However, with this choice, one
can verify that Algorithm 1 performs identically under both
the Stratified and Bayesian reputation functions.

Fig. 4 shows the variation in the probability of applying
a correct state-feedback input (C). The probability of ap-
plying a correct input to the plant when reputation is used
is always higher than when it is not used (i.e., in the case
where majority voting alone is used). As the packet drop
rate increases, however, this difference is reduced consider-
ably. Note that all of the curves corresponding to the cases
where reputation is used are almost identical, which demon-
strates an important property of using reputation: perfor-
mance does not significant degrade even when the value of
dc, drops. This is a consequence of our fault model, where
at most one of the three channels is faulty. Consequently,
once the RM has identified the good channels, it automati-
cally does not consider the input from the third one (given



Table 1: ECN metrics for different channel reputation values

Reputation of Channel Metrics
c1 (Good) | c2 (Good) | c3 (Faulty) Er Nr Cvr
1 1 >0 (1 —p)p(1 —dey) P’ p(1—p)(L+p+dey(2p — 1))
$ 1 1 zp(1 —p)(1 —dey)(3—p) p°+ (1 —pp’ (L —p)(L+p 4 2dey)
1 ¢ 1 3p(1—p)(1 —dey)(3—p) p°+ (1 —pp’ 5p(1 —p)(1 +p +2dey)
1 1 ¢$or <O 0 p®+ (1 —pp’ 2p(1 —p)
¢ ¢ ¢ 0 p® +3(1 —p)p” +2(1 — p)°p(1 —dcy) 0
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Figure 6: Effect on N in a system with dynamic
channel failure due to reputation

the chosen threshold value of © = 1).

Fig. 5 shows the probability of applying a bounded cor-
rect controller input (Cp). At lower packet drop rates, the
probability of applying a full (correct) state-feedback input
to the plant is much higher, resulting in low Cp, values. As
the drop rate increases, not all inputs arrive at the repu-
tation manager. Consequently, the reputation manager has
to increasingly apply bounded inputs, resulting in the in-
crease in the value of Cp. As the packet drop rate increases
further, not enough inputs arrive which causes C, to drop
again. Again, all curves are nearly identical.

Fig. 6 shows the probability of applying no controller input
(N). This value is always lower when reputation is used,
but predictably increases with the packet drop rate. Once
again, all curves corresponding to the cases where reputation
is used are almost identical.

Fig. 7 shows the probability of applying a bounded incor-
rect input (€). The values are very close to zero when the
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Figure 7: Effect on £ in a system with dynamic chan-
nel failure due to reputation

packet drop rate is low, irrespective of the value of d.,. This
is because 2 or more identical inputs are frequently received,
causing the reputation of ¢; and c2 to reach 1 very quickly.
For higher packet drop rates, £ is greater for channels with
higher d.,. The reasons are two-fold: (1) cs amasses a bet-
ter reputation than in the case where d., is lower, and (2)
with the high packet drop rate, a relatively large number
of time-steps will have only cs’s input showing up, poten-
tially increasing the number of incorrect inputs applied to
the plant. Note that after channel cs becomes faulty and the
system has run for some time, the reputations reach their
steady state values and the probability of applying an in-
correct (bounded) input £ is always 0. In Fig. 7, the small
non-zero value of £ is due to the few incorrect (bounded)
inputs that are applied during the transient period (while
the reputations are converging). The convergence rate of
the reputations can potentially be analyzed by associating
an appropriate Markov chain with the RM and examining
its mixing time; this is the subject of ongoing research.

6. STABILITY UNDER INTERMITTENT
FAULTY INPUTS

In the previous section, we showed that a reputation man-
ager can improve the probability of applying correct inputs
to the plant under a majority voting scheme with packet
drops. However, in situations where the RM is uncertain
about the quality of the inputs that it receives, it can po-
tentially apply incorrect (bounded) inputs to the plant with
a certain probability. While this probability is zero in steady
state for the fault model (only one channel can be faulty for
all time) and reputation functions that we consider in this
paper, the same is not true for more general fault models
(e.g., where multiple channels can be faulty). In this sec-
tion, we will generalize existing results on stability under
packet dropping channels to the case where incorrect (but
bounded) inputs are periodically applied to the system. We




will then verify that for the fault model considered in this
paper, reputation management is able to satisfy the result-
ing conditions for mean square stability better than majority
voting.

To this end, suppose that system (1) operates as follows; at
each time-step k, the input is:

—Kx[k] with probability C
u’[k]  with probability Cp )
d[k]  with probability £
0 with probability 1 —C — C, — £.

ulk] =

In the above, C, Cp, and £ are the probabilities of applying a
stabilizing state-feedback input, a bounded stabilizing input
or a bounded incorrect input, respectively. The bounds on
the inputs u’[k] and d[k] are of the form ||u’[k]||p < b and
|[d[k]|lp < b for some positive definite matrix P (which we
will specify below) and for some positive value b. The input
u’[k] is taken to be designed (i.e., chosen to improve the
stability of the system), and the input d[k] is a faulty input
(perhaps chosen maliciously), satisfying the above bound.
The matrix K will be chosen to obtain mean square stability.
Under these conditions, the following theorem provides a
sufficient condition for the probabilities of applying state-
feedback control inputs and applying bounded faulty inputs
that will maintain mean square stability of the system.

THEOREM 3. Consider a system (A,B), and let C be the
probability of applying the state feedback input —Kx[k], and
E be the probability of applying an incorrect, but bounded,
input to the plant. If there exists a positive definite matrix
P and a matriz K such that

(A-BK)P(A-BK)C+A'PA(1-C+E&) <P, (6)

the system is mean square stable.

PROOF. For system (1) with inputs (5), we will examine
the quantity

orr1 £ Ellx[k +1]|7]
= B [Ellxlk+ 113 | x[k], d[k], u’[4]]
= E[l[(A — BK)X[K][2]C + E[| Ax[K] + Bu'[k]|]C,
+ E[| Ax[K] + Bd[K] )¢
+ (| Ax[K][](1 — € — €, — &),
Now, note that || Ax+Bu||p = ||Ax|%+|Bul%+2x’A’PBu

for any vectors x and u. Substituting this into the above
expression, we get

o1 = E[|[(A — BK)x[k][2]C + E[| Ax[K]|[#](1 - C)
+ E[2xX'[k]A’PBu’[k] + | Bu’[K]||p]Cs (7)
+ E2x'[k]A'PBd[k] + |Bd[k]|p]€.

Suppose now that the input u®[k] is chosen to minimize®

2x/[K]A'PBu’[K] + || Bu’[k][?,

5This is a Quadratically Constrained Quadratic Program
(QCQP), which can be solved numerically [4], but difficult
to solve analytically.

subject to the constraint ||u’[k]||p < b; note that the mini-
mum is guaranteed to be nonpositive (since choosing u®[k] =
0 produces a value of 0). Furthermore, note that since
la—blp = |al|p — 2a’Pb + ||b||3 > 0 for any vectors a
and b, we have E[a’Pb] < 1(E[|a|®] + E[||bl|3]). Thus,
we can write
E[2x'[k]A'PBdA[k]] < E[||Ax[k][[p] + E[|BA[K][?] -
Substituting these facts into (7), we get
orer < ElI(A — BR)X[HIIC + EAX[E]I3](1 - C + €)
+2E[|Bd[K]|[p]€
< E[||(A = BK)x[¥]|[B]C + E[|| Ax[k]||B](1 - C + &)
+ 26 Amas (B'PB) E[|d[H]||]
< E[|[(A - BK)x[¥]||p]C + E[|Ax[K][B](1 - C +€)
Amaz(B'PB)

Now, examine the quantity

+2€ b°. (8)

I(A = BK)x[K][[BC + | Ax[K]|[p(1 - C + &) =
x'[k] (A — BK)'P(A — BK)C + A'PA(1 — C + €)) x[k].

If we can choose the positive definite matrix P and matrix
K to satisfy

(A-BK)P(A-BK)C+A'PA(1-C+&) <P,
then we would obtain E[||(A — BK)x[k]||pC+ || Ax[k]||p (1 —
C+&)] < E[||x[k]||%], and (8) would become
for some 0 < o < 1. This signifies a stable system (provided
that b < c0), which proves mean square stability. [

Opt1 < o + 2E b? < aoy + 2E 62,

Equation (6) in the above theorem can be readily trans-
formed to a linear matriz inequality (LMI), which can then
be solved to determine whether there exists a feasible pair
(P,K) [4]. When the matrix B is square and full rank, we
can easily choose K = B™' A, in which case (6) becomes

A'PA(1-C+&) -P<O. (9)

This is a Lyapunov function, and admits a positive defi-
nite matrix P if and only if the matrix +/1 —C + £A has
all eigenvalues inside the unit circle [11]. This immediately
leads to the following result.

COROLLARY 1. Consider a system (A, B) with matriz B
being square and full rank. Let C be the probability that the
input —B~rAx[k] is applied to the system, and let £ be the
probability that an incorrect (but bounded) input is applied
to the system. Then, the system is mean square stable if

(1= (C=E)Amaz(A)? <1 . (10)

It is instructive to compare this condition to that in The-
orem 1: the term C — £ indicates that incorrect inputs es-
sentially ‘cancel out’ a certain number of the correct inputs.
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Figure 8: Stability condition (1 — C + &) with and
without reputation for different p and d values

As expected, this is worse than a channel that simply drops
inputs, which only limits the number of correct inputs that
are applied. Note that the value of the bound b does not
impact the mean square stability of the system as long as
b < oo; the proof of the theorem reveals, however, that the
bound on the second moment of the state increases with b.

Finally, to verify that the reputation manager described in
Section 5 improves the metric 1 — C + £ for stability from
equation (10), Fig. 8 shows the variation in the value of
1 —C+ & with respect to p, for a few representative d., val-
ues. The main point to note in the graph is that the value
of 1 — C + £ with no reputation is invariably higher com-
pared to reputation-based networked control. The difference
in performance decreases with the increase in packet-drop
rates. Note that reputation management is not guaranteed
to stabilize the system for all drop probabilities; this work
is intended to demonstrate that reputation management can
provide mean square stability under larger drop probabilities
than majority voting. In summary, these results collectively
demonstrate the utility of using even a very simple reputa-
tion scheme to augment networked controller with modular
redundancy to compensate for faults.

7. CONCLUSIONS & FUTURE WORK

In this paper we studied a reliable networked control scheme
to ensure mean square stability when the channel between
the controller and actuator is faulty, in addition to dropping
packets. To achieve this, we first studied the use of triple
modular redundancy, but showed that due to the potential
for packet drops, a straightforward application of major-
ity voting in such a scheme may not be sufficient to ensure
stability. We characterized the amount of additional redun-
dancy that would be required in order to rectify this situ-
ation. We then provided a reputation management scheme
to reduce the amount of redundancy required. The scheme
builds on majority voting and improves the probability of
applying correct inputs to the system, but potentially injects
(bounded) incorrect inputs as well. We then generalized ex-
isting results on networked control to show that mean square
stability will be maintained as long as the bounded incorrect
inputs are applied to the plant infrequently enough.

Having introduced a reputation management scheme for net-
worked control systems, there are a variety of avenues for
future research. First, we intend to study the effects of

other control policies on the ability to stabilize the system in
the presence of data-corrupting channels (e.g., allowing the
manager to apply the previously applied input when unver-
ifiable values are received, instead of applying an input of
zero). Second, we intend to perform a detailed analysis of
the convergence of the channel reputations to their steady
states (i.e., how quickly the reputations go from being ‘un-
known’ to providing an accurate representation of the chan-
nels’ reliability). One approach would be to model each
possible combination of channel reputations as the states
of a Markov Chain, and then to analyze the mixing time
of the chain. We also intend to study more general net-
worked control architectures, where the plant’s sensors are
no longer located at a single point, but instead geographi-
cally dispersed. This would necessitate the use of different
state-estimators or controllers at each of those locations, and
would require a scheme to fuse these different values appro-
priately (perhaps by making connections with recent work
on trust-based distributed Kalman filtering [16]). In cases
where the values received by the reputation manager are
noisy, or are transmitted asynchronously through the net-
work. A new metric would have to be defined in order to
determine which values “agree”, and which value is suffi-
ciently different from the others that it can be tagged as
incorrect. The work on bounded-delay and threshold ma-
jority voting from [5] would be of interest in this regard.
Finally, the chosen reputation functions were well-suited for
the fault model assumed for this work. However, more elab-
orate fault models may require more elaborate reputation
functions to ensure stability. It would be interesting to see
what specific mathematical properties reputation functions
should possess to ensure the plant is stabilized. Ultimately,
our goal is to build a complete foundational framework for
reputation-based networked control.

8. ACKNOWLEDGMENT

This research was supported in part by a grant from
NSERC, ONR MURI N00014-07-1-0907, NSF CNS-0834524
and NSF CNS-0931239. Chinwendu Enyioha is supported
by a Ford Fellowship administered by the National Research
Council of the National Academies.

9. REFERENCES

[1] S. Amin, A. Cardenas, and S. Sastry. Safe and secure
networked control systems under denial-of-service
attacks. In R. Majumdar and P. Tabuada, editors,
Hybrid Systems: Computation and Control, volume
5469 of Lecture Notes in Computer Science, pages
31-45. 2009.

[2] A. Bemporad, W. Heemels, and M. J. (eds).
Networked Control Systems, volume 406. Lecture
Notes in Control and Information Sciences,
Springer-Verlag, 2010.

[3] M. Bishop. Introduction to Computer Security.
Pearson Education Inc., 2005.

[4] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[5] P. Caspi and R. Salem. Threshold and bounded-delay
voting in critical control systems. In M. Joseph,
editor, Formal Techniques in Real-Time and
Fault-Tolerant Systems, volume 1926 of Lecture Notes
in Computer Science, pages 70-81. 2000.



[6]

[9]

[10]

[11]

[12]

[22]

[23]

J. Chang, K. Venkatasubramanian, A. G. West,

S. Kannan, I. Lee, B. Loo, and O. Sokolsky.
AS-CRED: Reputation service for trustworthy
inter-domain routing. In University of Pennsylvania
Technical Report, MS-CIS-10-17, April 2010.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J.
Jeffrey, and D. E. Knuth. On the Lambert W
function. Advances in Computational Mathematics,
5(1):329-359, Dec. 1996.

V. Gupta, A. F. Dana, J. Hespanha, R. M. Murray,
and B. Hassibi. Data transmission over networks for
estimation and control. IEEE Transactions on
Automatic Control, 54(8):1807-1819, Aug. 2009.

V. Gupta and N. C. Martins. On stability in the
presence of analog erasure channels. In Proc. of the
47th IEEE Conference on Decision and Control, pages
429-434, 2008.

C. N. Hadjicostis and R. Touri. Feedback control
utilizing packet dropping network links. In Proc. of the
41st IEEE Conference on Decision and Control, pages
1205-1210, 2002.

J. P. Hespanha. Linear Systems Theory. Princeton
University Press, 2009.

J. P. Hespanha, P. Naghshtabrizi, and Y. Xu. A
survey of recent results in networked control systems.
Proc. of the IEEE, 95(1):138-162, Jan. 2007.

O. C. Imer, S. Yuksel, and T. Basar. Optimal control
of LTI systems over unreliable communication links.
Automatica, 42(9):1429-1439, Sep. 2006.

R. Ismail and A. Josang. The beta reputation system.
In the 15th BLED FElectronic Commerce Conference,
page 41, 2002.

K. Jain. Security based on network topology against
the wiretapping attack. IEEE Wireless
Communications, 11(1):68-71, Feb. 2004.

T. Jiang, I. Matei, and J. S. Baras. A trust based
distributed Kalman filtering approach for mode
estimation in power systems. In S. S. Sastry and

M. McQueen, editors, Proc. of the First Workshop on
Secure Control Systems. 2010.

S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.
The Eigentrust algorithm for reputation management
in P2P networks. In Proc. of the 12th Int. Conf. on
the World Wide Web, pages 640-651, 2003.

N. A. Lynch. Distributed Algorithms. Morgan
Kaufmann Publishers, Inc., 1996.

A. Mesquita, J. Hespanha, and G. Nair. Redundant
data transmission in control/estimation over wireless
networks. In Proc. of the 2009 American Control
Conference, pages 3378-3383, 2009.

S. S. Sastry and M. McQueen. Proceedings of the first
workshop on secure control systems, 2010.

L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla,
and S. S. Sastry. Foundations of control and
estimation over lossy networks. Proc. of the IEEE,
95(1):163-187, Jan. 2007.

P. Seiler and R. Sengupta. Analysis of communication
losses in vehicle control problems. In Proc. of the 2001
American Control Conference, pages 1491-1496, 2001.
K. Stouffer, J. Falco, and K. Scarfone. Guide to
industrial control systems (ICS) security. Technical

(25]

Report 800-82, National Institute of Standards and
Technology, Sep. 2008.

K. Walsh and E. G. Sirer. Experience with an object
reputation system for peer-to-peer filesharing. In
NSDI’06: Proc. of the 3rd conference on Networked
Systems Design € Implementation, pages 1-1.
USENIX Association, 2006.

A. G. West, A. J. Aviv, J. Chang, and 1. Lee. Spam
mitigation using spatio-temporal reputations from
blacklist history. In Proceedings of ACSAC 2010,
pages 161-170, 2010.



