
Service and User Interface Transfer from Nomadic Devices
to Car Infotainment Systems

Jan Sonnenberg
Technische Universität Braunschweig

Institute for Communications
Technology

sonnenberg [at] ifn.ing.tu-bs.de

ABSTRACT
Many of the emerging software applications for nomadic devices
are useful in the car as well. In order to use these applications
safely in the car, it is necessary to couple them with the vehicle’s
infotainment system and its user interface which is optimized for
use by the driver. This paper describes a new approach to
exchange services and user interfaces between cars and nomadic
devices. Services are exchanged through dynamically generated
Web Services. HTML 5 based user interface descriptions are used
to access shared vehicle software interfaces as well as the remote
application’s logic with the help of additional mechanisms for
device communication. Make and model specific design is
ensured by Stylesheets that are specific for the car model. Our
solution combines in-vehicle infotainment systems with external
applications in a safe and secure way. Especially, there is no need
for pre-defined service specific interfaces, because all interfaces
are exchanged dynamically. The paper starts with a motivation,
an overview of related work and outstanding challenges followed
by a presentation of our approach for in-vehicle device coupling.
The user interface exchange is described in detail in the third
paragraph. The paper finishes with an example scenario and a
conclusion.

Categories and Subject Descriptors
D.2.8 [Human Machine Interaction],

H.5.2 [Information Interfaces and presentation]: User
Interfaces.

General Terms
Design, Reliability, Human Factors.

Keywords
In-car infotainment; Web Services; automotive user interfaces.

1. INTRODUCTION
Today, the integration of nomadic devices into cars is based on
well defined service interfaces and corresponding user interfaces.
Examples are hands-free telephony integration or audio streaming
based on Bluetooth profiles. These profiles are known at the time
when cars are being developed, so a tight integration into the

respective hardware and software is possible. While early
handheld devices relied on embedded functionality, today’s more
powerful Smartphones and Multimedia Players include software
abstraction layers as known from stationary computers. Network
hardware, graphics hardware and sensors are accessed through
detailed abstraction layers. These abstraction layers allow to build
intermediate software layers, like application specific protocols,
rendering engines and sensor data interpretation. As a
consequence, such handhelds can be adapted to the latest
communication and application protocols, which is often
impossible for embedded car software. While this fact illustrates
the well known life cycle gap between automotive and consumer
electronics, another disadvantage arises as the result of the advent
of mobile software platforms that target third party developers.
With the emerging growth of third party and user generated
software on handheld devices such as “Apps”, it becomes
challenging to integrate these services in the car. Nevertheless,
latest personal Smartphones host many services and personal data
that are of interest in the car as well. There are e.g. location based
services to find dynamic points of interest such as free parking
lots or gas stations with lowest prices. Targeting mobile usage,
the latest Smartphones’ user interfaces own features that make
them ideal for being used in the car: multi-modality, high
resolution graphics, support of different screen orientations, etc.

1.1 Approaches for Remote Data and Service
Integration
Data exchange between different devices is possible through
storage media exchange and wired or wireless device connections.
While storage media transfers only static data, device connections
allow the exchange of dynamic data. Another advantage of device
connections is the possibility to access remote service logic, like
data decoding. Connected devices may even act as a gateway and
pass data from one of their network connections to another.
Wireless device connections gain increasing popularity, as they
are easily or even automatically set up. The protocols used to
couple connected devices vary in flexibility:

1. Vendor specific protocols are used to couple devices of
the same type with each other or to couple them with
vendor specific services on other devices. An example
are interconnected handheld game consoles. Such
protocols couple only certain services and platforms.

2. Standardized, service specific protocols are used to
couple device functions of certain types. Examples are
the already mentioned Bluetooth profiles for wireless

Copyright held by author(s)
AutomotiveUI'10, November 11-12, 2010, Pittsburgh, Pennsylvania
ACM 978-1-4503-0437-5

Proceedings of the Second International Conference on Automotive User Interfaces and Interactive Vehicular Applications
 (AutomotiveUI 2010), November 11-12, 2010, Pittsburgh, Pennsylvania, USA

162

connections or USB device classes for wired
connections. These protocols couple services with
specified interfaces that may reside on arbitrary
platforms.

3. Standardized, service unspecific protocols are used to
couple self-descriptive services. Examples are Web
Applications that bring their own user interfaces.

The first approach is rarely used for automotive device integration
although some car manufacturers signed contracts with consumer
device manufacturers to add coupling mechanisms for a certain
device type. More often, the second approach is used which is
based on established communication protocols. Modern
implementations combine different connectivity features by
software and add additional vendor specific online services like
e.g. voice recognition and route calculation. First car
manufacturers announced plans to license interfaces and
development kits to third party developers in order to distribute
software add-ons through their own application stores [1]. The
European project AIDE developed a Bluetooth based device
integration protocol with an emphasis on safe device integration
[2]. Its nomadic device integration mechanism is part of a
comprehensive infotainment system that prevents driver
distraction by inappropriate or competing I/O events. Therefore it
takes the driving situation into account and integrates handheld
device communication accordingly. For example, it redirects
phone calls to a voicemail message system when the driver
performs a stressful driving task.

There are some interim solutions that combine the second and the
third approach. An example is Universal Plug and Play (UPnP)
which is based on the Simple Object Access Protocol (SOAP) and
device specific control protocols [3]. In order to offer control of
unknown services, devices may optionally offer Web Interfaces.
Such a self-descriptive device coupling is currently only used in
consumer electronic devices like e.g. network routers that offer
remote configuration features.

In order to bridge the lifecycle gap between automotive and
consumer electronics, a solution for the integration of current and
future devices and services is the ultimate goal. While updates
and extensions to the vehicle software are a solution that is
currently worked on (through download and installation of
verified applications into the car), this paper focuses on the third
approach – self-descriptive services that bring their own user
interface which is verified dynamically. A first and very simple
solution for this approach is a remote frame buffer that displays
the graphical user interface of the handheld in the car and
provides a static mapping between vehicular and handheld
controls. The benefits of this approach are limited as orientation,
widget sizes, styling, and layout are not adapted to the car’s user
interface. More promising are Web Interfaces that are rendered
through an automotive browser. While some of the above-
mentioned disadvantages are solved, some still remain.
Uncontrollable distraction through animations and contrast
changes may appear as well as response delays that decrease
driver attention. As such, an important request for the integration
of self-descriptive services from foreign devices is the seamless
integration into the vehicle’s user interface. For this purpose,
there are different proposals that base on UI model conversion
[4], [5]. Some proposals even interconnect remote and local user
interfaces and service logic in a smart way [6]. These approaches

depend on abstract user interface descriptions that are transformed
to different target platforms with the help of certain rules and
patterns. While descriptions and conversions are quite complex,
the resulting automatic conversion can only be as good as the
considered conversion rules. On the other hand, additional work is
necessary to describe the user interfaces in an abstract way.

Although there are ongoing aims for standardization of
automotive protocols for device integration, the use in future
mobile application software is questionable. As a matter of fact,
community generated software is usually based on popular
standards which is why even open automotive standards cannot
guarantee that popular Smartphone applications support
standardized automotive interfaces. Hence, our approach bases on
existing standards and technologies that are already used for
handheld application development.

1.2 Challenges and Requirements
As additional information decreases the driver’s attention, several
requirements need to be taken into account for device coupling
and remote user interface integration. While some of them are
already mentioned, there are some more [2], [6], [7]. Among
others, the following requirements are especially important for
device coupling and UI transfer:

- The driver should not be distracted through visual
entertainment while driving. It shall be possible to
switch off any dynamic information.

- Contrast, font and widget sizes shall be compliant to
automotive standards.

- Information shall be presented timely and shall be
prioritized where appropriate.

- Distraction by long and uninterruptible system
interaction shall be avoided as well as time critical input
requests. It shall be possible to resume interrupted tasks.

- The system shall respond in a clear, predictable and
consistent way and report status and failure messages.

Furthermore, car manufacturers have some additional
requirements concerning the layout [6]. The UI transfer shall be
decoupled from HMI concepts of different models and still
maintain the look and feel of the automotive infotainment system.

2. INTEGRATION OF FOREIGN
APPLICATIONS INTO CARS
In order to meet the described requirements, we use some well-
known technologies and extend them suitably. Firstly, we use the
Devices Profile for Web Services (DPWS) for user-friendly and
service independent device coupling [8]. It offers device and
service discovery mechanisms as well as service independent
remote method invocation based on SOAP. In addition to UPnP, it
can address internet services and optionally provide secure
communication. While existing coupling mechanisms use service
specific communication protocols, DPWS uses IP-based
communication. Thus, it is possible to describe and even generate
service interfaces for remote access dynamically in software [9].
Another advantage is the use of MIME based data exchange in
order to support different popular content formats and encodings.
Just as UPnP, DPWS may optionally provide a Web Interface for
remote control. Unfortunately, plain HTML Web Interfaces may
introduce the disadvantages described earlier. A way out is the

Proceedings of the Second International Conference on Automotive User Interfaces and Interactive Vehicular Applications
 (AutomotiveUI 2010), November 11-12, 2010, Pittsburgh, Pennsylvania, USA

163

mapping of HTML elements to basic automotive widgets and a
coupling of these widgets to the remote service in a way that is
controllable by the vehicular software. This allows the car
infotainment system to control the user interface layout as well as
remote service interaction and the display of results. Therefore, no
styling information is transferred. The styling information is
shipped with the car and adapted dynamically to meet car UI
design directives. The car infotainment system suppresses
animations and renders fonts and widgets in an appropriate size.
Depending on the light conditions, different day and night designs
are used. As latest Smartphones support landscape and portrait
orientation, many services are designed to support both
orientations. Thus, a basic HTML structure optimized for
different orientations can be used to render a service on a
handheld device and in the car whatever orientation is used.
Nevertheless, there might be complex widgets, that cannot be
used in the car directly. As all widgets are described by
hierarchical widget classes inside the HTML based user interface
description, it is up to the car to use an alternative widget that fits
to the needs or to omit the element. If a widget is known to be
handheld specific, it is also possible to provide an alternative in
the user interface description. It might even be better to change
the modality, e.g. to change from text to speech for pop-ups.
In order to support multiple handheld devices and access their
hardware capabilities, an adapted web based application
framework is used as additional middleware layer. While classic
HTML based applications cannot access device features, such a
framework provides access to certain platform APIs via
JavaScript. So it is possible for HTML based applications to
access geo location interfaces, address books, media archives, etc.
[10] In the following, these HTML applications that access device
APIs through a middleware layer are called Web Applications.
The term ‘Web Service’, on the other hand, is used for server
applications with direct device API access.

3. USER INTERFACE EXCHANGE

Figure 1: Service and user interface exchange
As depicted in figure 1, our approach for user interface transfer is
based on the following two characteristics:

1. A device dependent Web Application Framework is
used to offer access to a set of generic device APIs.
Additionally, device dependent DPWS Web Services
are used to offer these generic device APIs to remote
devices without providing a user interface. Both the
Web Application Framework and the DPWS Web
Services need to be implemented for each supported
platform.

2. Device independent Web Applications implement
applications that access device APIs through the Web
Application Framework. These Web Applications are
rendered with device specific stylings and can be used
on multiple platforms.

To share such a Web Application with other devices, an
additional Web Service is generated which links to the Web
Application and thereby provides a user interface. This Web
Application is downloaded to the remote device and rendered
according to its local styling. As this downloaded Web
Application is known to be a remote service, it behaves
differently in comparison to local Web Applications: Special
indicators within the HTML describe whether remote APIs shall
be used or local APIs shall be preferred, if available. Depending
on these indicators, the Web Application Framework decides
whether to use the generic remote APIs coupled through Web
Services or the local device APIs.

4. EXAMPLE SCENARIO
Consider an Economic Driving Application that uses the hardware
accelerometer of a Smartphone to collect information on the
intensity of the acceleration and braking while driving1. In this
paper we present a similar example application that has two
views, the first view is showing a colored smiley indicating the
current driving behavior, the second one is showing a table listing
records of the driving behavior over time. Such an application can
run by its own on a Smartphone, all necessary sensor equipment
being present. As this application is driving related, it is also
interesting to integrate it into the car’s infotainment system.

Figure 2: User interface of the economic driving application
on the handheld and on the car infotainment
Our application consists of an HTML user interface description
and a JavaScript routine that retrieves the accelerometer data from
the handheld hardware through the web application framework.
Based on this data, it calculates the driving behavior and
visualizes it with a smiley. In order to use this Web Application in
the car, the DPWS stack creates a new Web Service proxy and
advertises it to other devices active in the local network. Besides a
general description of the application, this DPWS service offers
access to the application data and to the required interfaces of the

1 Several comparable applications of this type exist:

Toyota Sweden AB,“A glass of water”, www.aglassofwater.org
Fiat Group Automobiles, “eco:Drive”, www.fiat.com/ecodrive
DriveGain Ltd., “DriveGain”, www.drivegain.com
(all September 2010)

Proceedings of the Second International Conference on Automotive User Interfaces and Interactive Vehicular Applications
 (AutomotiveUI 2010), November 11-12, 2010, Pittsburgh, Pennsylvania, USA

164

Web Application Framework. Knowing the name and origin of
the application, the car infotainment system can download the
remote application and display a button to start it. During the
DPWS export process, the JavaScript routine is modified. The
method to access the accelerometer is indicated as a remote
function. Once the application is executed as a remote web
application in the car, this indication allows the Automotive Web
Application Framework to forward accelerometer data requests to
the handheld through DPWS communication. However, if a local
accelerometer is available, the Automotive Web Application
Framework may also use that. Additionally, the Economic
Driving Application has an optional entry for the average fuel
consumption per time period. While this data is not available on
the handheld and is omitted there, the application can access this
data when it is running in the car and it can show this optional
entry. The different representations are depicted in figure 2 which
shows the table view on the Smartphone and in the car
infotainment. Although both representations are based on the
same logic, resources and HTML UI structure, model specific
Stylesheets and widgets are used for rendering the application in
the car.

5. RESULT AND CONCLUSION
The presented coupling and user interface transfer mechanisms
allow seamless mapping of different input controls and widgets to
multi-platform applications. Applications may access local data
and logic as well as remote data and logic. Beyond that,
applications may access specific automotive APIs that may be
standardized in future. Fallbacks are included for the case that
certain hardware features and corresponding service APIs are not
available. The requirements described in section 1.2 are met:

- Driver distraction through visual entertainment is
suppressed because widgets are rendered in an
automotive styling without animations.

- Contrast, font and widget sizes are adapted to the car by
special Stylesheets combined with dynamic styling.

- Although the Automotive Web Application Framework
cannot increase service response times, it can prioritize
information and offer feedback like a please-wait-
message.

- The automotive Application Framework may interrupt
interaction at any time and may resume it accordingly.

- A consistent feedback output is achieved and additional
status and failure messages may be given.

Web Applications however cannot be as tailored to the
automotive platform as services developed by the car
manufacturer, but it is still better to access handheld services
through the car’s HMI than using services directly on the
handheld while driving. In the end, the user decides if he likes to
use certain services. Nevertheless, the car manufacturer keeps the
influence on control and service verification.

Future work will focus on the transcoding of platform specific
user interface descriptions that are used on modern Smartphone
platforms into HTML in order to couple arbitrary applications
with the car. Another outstanding task is the evaluation of the
driver distraction.

6. ACKNOWLEDGMENTS
Thanks to all my colleagues at the Institute for Communications
Technology and to all my project partners within the research
project “Connected Cars in a Connected World” (C3World).

7. REFERENCES
[1] Ford Motor Company, “Ford SYNC (R)”,

http://www.fordvehicles.com/technology/sync/, July 2010.
[2] Callum, S et. al.; Integration of Nomadic Devices: The AIDE

Use Case, AIDE Deliverable D3.4.3, Information Society
Technologies (IST) Programme, July 2008

[3] UPnP Device Architecture 1.0, v.1.0.1, UPnP Forum, 2006.
[4] Breiner, K.; Maschino, O.; Görlich, D.; Meixner, G.,

Towards automatically interfacing application services
integrated into an automated, model-based user interface
generation process, 4th International Workshop on Model
Driven Development of Advanced User Interfaces.
International Workshop on Model Driven Development of
Advanced User Interfaces (MDDAUI-2009), February 8,
Sanibel Island, Florida, United States

[5] de Melo, G.; Honold, F. Weber, M.; Poguntke, M.; Berton,
A.; Towards a Flexible UI Model for Automotive Human-
Machine Interaction, Proceedings of the First International
Conference on Automotive User Interfaces and Interactive
Vehicular Applications (AutomotiveUI 2009), p. 47-50,
September 21-22 2009, Essen, Germany. DOI=
http://doi.acm.org/10.1145/1620509.1620518

[6] Stolle, R.; Saad, A.; Weyl, D.; Wagner, M., Integrating CE-
based Applications into the Automotive HMI, SAE World
Congress 2007, April 16-19, 2007, Detroit, Michigan.

[7] Commission Recommendation of 22 December 2006 on safe
and efficient in-vehicle information and communications
systems: update of the European Statement of Principles on
human machine interface, Official Journal of the European
Union, February 2007, Brussels, Belgium

[8] Devices Profile for Web Services (DPWS), OASIS Standard,
July 2009.

[9] Sonnenberg, J.; A distributed in-vehicle service architecture
using dynamically created Web Services, 14th IEEE
International Symposium on Consumer Electronics, June
07-10, 2010, Braunschweig, Germany.

[10] Stark, J., Building iPhone Apps with HTML, CSS, and
JavaScript, O’Reilly Media, Sebastopol, California, February
2010

Proceedings of the Second International Conference on Automotive User Interfaces and Interactive Vehicular Applications
 (AutomotiveUI 2010), November 11-12, 2010, Pittsburgh, Pennsylvania, USA

165

