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Efficient and Deterministic Parallel Placement for FPGAs
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We describe a parallel simulated annealing algorithm for FPGA placement. The algorithm proposes and
evaluates multiple moves in parallel, and has been incorporated into Altera’s Quartus II CAD system.
Across a set of 18 industrial benchmark circuits, we achieve geometric average speedups during the quench
of 2.7x and 4.0x on four and eight processors, respectively, with individual circuits achieving speedups of
up to 3.6x and 5.9x. Over the course of the entire anneal, we achieve speedups of up to 2.8x and 3.7x, with
geometric average speedups of 2.1x and 2.4x.

Our algorithm is the first parallel placer to optimize for criteria other than wirelength, such as critical
path length, and is one of the few deterministic parallel placement algorithms. We discuss the challenges
involved in combining these two features and the new techniques we used to overcome them. We also
quantify the impact of maintaining determinism on eight cores, and find that while it reduces performance
by approximately 15% relative to an ideal speedup of 8.0x, hardware limitations are a larger factor and
reduce performance by 30–40%. We then suggest possible enhancements to allow our approach to scale to
16 cores and beyond.
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1. INTRODUCTION

The Quartus II design software is a commercial CAD tool used to implement designs
on Altera FPGA devices. This article describes the parallel simulated annealing algo-
rithm used by Quartus II and improves on the approaches described in Ludwin et al.
[2008].

1.1 Motivation

Since 1998, FPGA device size has increased at nearly four times the rate of per-core
processor performance (Figure 1). In addition, there is now broad agreement that
growth in per-core performance is slowing, and that future processors will have more
cores to compensate for this reduction in per-core progress [Sutter 2005].
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Fig. 1. FPGA size vs. per-core performance.

There are three possible approaches to keeping the runtime of FPGA CAD
reasonable.

(1) Discourage flat compilation of the entire design, and instead force users to com-
pile partitions of their designs incrementally and assemble the partitions to form
the entire design [Altera 2010]. This approach, taken by many ASIC flows, can
mitigate runtime but at the cost of increased design complexity and disallowed
optimizations between partitions.

(2) Find faster single-threaded algorithms, while sacrificing little or no quality. This
approach has been very productive but it is risky to depend entirely on this ap-
proach to offset the exponential growth in FPGA cell counts.

(3) Create parallel algorithms, possibly by modifying existing ones, to take advan-
tage of the multicore processors which are now becoming common. Commodity PC
processors now contain four to eight cores. Since the number of cores is expected to
increase exponentially for the foreseeable future, parallel algorithms may be well
suited to handle the increasing size of FPGAs. This is the approach we explore
here.

There are several computationally complex steps in converting an HDL description
of a design into the set of bit settings needed to program an FPGA to implement the
design [Hutton and Betz 2006]. Usually placement, which involves choosing a good
location for every circuit element in the design, is the largest single consumer of CPU
time in the FPGA CAD flow. For the largest 28 nm FPGAs, placement involves choos-
ing the location of about a million circuit elements (cells), and can require one or more
CPU hours. Consequently this work focuses on accelerating the placement problem.

1.2 Constraints

Parallelizing a commercial FPGA placement tool involves respecting several con-
straints which are not commonly encountered in prior parallel placement work.
Firstly, it must run on commodity hardware such as Windows and Linux desktops,
which are the predominant platforms in the FPGA design community.

Secondly, most FPGA designers will not tolerate a significant degradation in quality
relative to existing tools. The Quartus II placement algorithm optimizes wirelength,
critical path delay, localized routing congestion, and power, as described in Section 3.
Furthermore, key Intellectual Property (IP) cores, such as high-speed memory inter-
faces, require particularly high-quality timing optimization. Finally, commercial tools
must handle complicated circuits that include elements such as arithmetic chains,
RAM and DSP blocks, and sophisticated floorplanning constraints. Therefore, while
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the prior work only considers wirelength-driven optimization on relatively simple ar-
chitectures, our algorithm targets complex architectures and delivers equivalent qual-
ity and features to those of the existing algorithm.

Thirdly, the placer must be deterministic. That is, when run multiple times, it must
always return exactly the same result. This constraint is rarely studied in prior work
(two exceptions are Chandy et al. [1997] and Sun and Sechen [1997]), but is vital in a
commercial context for several reasons.

— When a bug is reported, we must be able to reproduce the problem. Nondeterminism
makes this extremely difficult, even if the problem is not caused by the parallel
algorithm.

— We run tens of thousands of regression tests prior to each release of Quartus II. It
would be difficult to diagnose failing tests whose results changed randomly.

— In our experience, many FPGA designers do not accept nondeterministic tools.
Security-conscious designers consider nondeterminism to be inherently untrustwor-
thy, and nondeterminism can complicate timing closure by making it impossible to
reproduce an earlier placement.

In addition to determinism, there is an even stronger constraint we can apply to our
algorithm, known as serial equivalency. This is the property that the algorithm must
give exactly the same answer, regardless of how many processing cores are used. A
serially equivalent algorithm is clearly deterministic as well.

While serial equivalency is not as critical as determinism, it has three clear advan-
tages. Firstly, the quality of the parallel algorithm is easily shown to be identical to
that of the original, serial algorithm1, thus meeting our second constraint. Secondly,
testing can be simplified (and automated) since any difference between serial and par-
allel results proves, by definition, the existence of a bug. Finally, we have found that
designers appreciate serial equivalency, since it allows them to move their designs be-
tween different machines, or to temporarily reduce the number of processors devoted
to Quartus II, and still be assured that they will get the same answer. As we will show
in the remainder of this article, achieving serial equivalency had an acceptable impact
on the speedups obtained by our algorithm. Therefore, the algorithm presented in this
article is serially equivalent.

1.3 Article Organization

This article is organized as follows. The next section summarizes relevant prior work.
Section 3 describes the serial Quartus II placement algorithm, and Section 4 describes
our parallel algorithm. Section 5 describes the hardware platforms on which we test
our algorithm, and Section 6 details our results. Section 7 summarizes our contribu-
tions and suggests areas for future work.

2. PRIOR WORK

An earlier, less advanced version of this work appeared in Ludwin et al. [2008]. This
article advances our work in several ways. We develop a new, more scalable method
for resolving “collisions” between cores. We apply our parallel techniques to the entire
anneal, rather than just to the quench. We present speedup results on more recent
multicore processors, including two eight-core machines. Finally, we develop a new,
more useful method to determine and quantify the sources of efficiency loss that reduce
our speedup from the ideal.

1In practice, some minor modifications were made to the serial algorithm to make parallel development
possible. These had no impact on any of our quality metrics.
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Fig. 2. High-level algorithm for simulated annealing placement, adapted from Betz [2007].

With regards to other published work, we advance the state-of-the-art in several
ways. Firstly, we optimize many placement objectives, including timing, whereas the
previous published work in parallel placement optimizes only for wirelength. Secondly,
our algorithm is deterministic, while most previously published algorithms with good
performance are nondeterministic. Combining these two features represents a signifi-
cant advance, as discussed in Sections 3 and 4.

2.1 Placement Algorithms

Considerable research has been performed into the placement problem. The most
popular approaches include recursive partitioning [Alpert et al. 1996; Caldwell et al.
1999; Sarrafzadeh et al. 2003], analytic [Chan et al. 2000; Kleinhans et al. 1991;
Viswanathan and Chu 2004], genetic [Borra et al. 2003], and simulated annealing
[Betz et al. 1999; Kirkpatrick et al. 1983; Sechen and Sangiovanni-Vincentelli 1985].
There have also been attempts to parallelize these various approaches for over twenty
years. Recursive partitioning is parallelizable in a reasonably obvious way, at least
after the first cut, provided there are enough cutlines to occupy all available cores.
Analytic placement can benefit from parallelized matrix operations, and higher-level
parallelism has also been extracted in Chan and Schlag [2003].

However, simulated annealing is the most-studied algorithm for FPGA placement,
mainly since it directly handles FPGAs’ complex legality constraints, while other ap-
proaches require sophisticated legalization steps [Hutton and Betz 2006]. The Quartus
II placement algorithm (hereafter referred to as “Q2P”) is based on simulated anneal-
ing and is more fully described in Section 3. In the remainder of this section, we
provide an overview of simulated annealing and prior research into parallel simulated
annealing.

Figure 2 gives a high-level overview of placement via simulated annealing. An ini-
tial poor-quality placement is iteratively modified by proposing small perturbations,
or moves, to the placement state. The moves are then evaluated for their costs, which
are heuristics to measure quality, such as the wirelength expected to be needed to
route the placement or the critical path delay. Moves that reduce the placement’s costs
are always accepted. Those that make the placement worse still have some probabil-
ity of being accepted, to allow the algorithm to escape local minima. As the anneal
progresses, the “temperature” is reduced, which gradually reduces the probability of
accepting moves that increase the placement cost. Furthermore, the distance across
which cells are moved is steadily reduced as the quality of the placement improves.
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When the temperature reaches 0, we are said to be “quenching” the placement, and
only changes that reduce cost will be accepted.

2.2 Parallelizing Simulated Annealing Moves

The most popular approach to parallelizing simulated annealing has been to paral-
lelize the execution of individual moves. Some less-popular methods are described in
Section 2.3, though some of those methods may overlap somewhat as the lines between
different parallelization strategies can be blurred.

To parallelize moves, entire moves are proposed and evaluated in parallel by cores
all working on the same placement. Clearly, this could lead to conflicts if multiple
processors accept moves that affect the same cells or nets, a situation known as a
collision. There are several published approaches to resolving this problem.

(1) Find an independent (noncolliding) set of moves and process them all in parallel,
(2) Assign each core a partition in the placement area such that different processors’

moves tend not to interact, or
(3) Make assumptions about future decisions of the annealer and speculatively process

moves based on these assumptions.

2.2.1 Independent Set Finding. In the parallel moves algorithm described in Kravitz
and Rutenbar [1987], the first core to accept a move forces all other cores to reject
the moves they have in progress. This does not significantly affect the quality of the
final result and achieves a 3.5x speedup on four cores when the acceptance rate is
low. A more recent attempt uses one core to propose moves with noncolliding locations
and nets, but is slower than the serial algorithm due to synchronization overhead
[Haldar et al. 2000]. Similarly, moves with noncolliding nets are proposed in Banerjee
et al. [1990] using a cell-coloring heuristic to reduce collisions between nets, but the
placement is still partitioned into rows to prevent cell collisions. The parallel speedup
is not reported. These algorithms are nondeterministic [Banerjee et al. 1990; Kravitz
and Rutenbar 1987] or at best not serially equivalent [Haldar et al. 2000].

In Ludwin et al. [2008], we presented a serially equivalent algorithm that found
independent move sets on-the-fly, and achieved a speedup of 2.2x at low acceptance
rates. In this article, we present two improved versions of this algorithm. The first
makes incremental improvements to [Ludwin et al. 2008] to eliminate false sharing
and achieves a speedup of 2.5x on the same platform, at low acceptance rates. The sec-
ond version is more decentralized but still maintains serial equivalency, and achieves
a speedup of 2.9x on the same platform at low acceptance rates.

2.2.2 Partitioned Placements. In this approach, the placement area is divided into mul-
tiple partitions. Errors in the costs of nets that span partitions are usually tolerated,
and updates are broadcast periodically to prevent the errors from becoming too large.
Some implementations occasionally modify the partitions to allow cells to migrate
across the entire chip [Haldar et al. 2000; Sun and Sechen 1997] while others allow
cells to be transferred to other partitions at any time [Chandy and Banerjee 1996;
Kim et al. 1994]. Some authors report speedups of 2–2.5x on four cores at a cost of
slightly increased wirelength [Chandy and Banerjee 1996; Kim et al. 1994], and many
of these implementations are nondeterministic. However, Sun and Sechen [1997] ob-
tained excellent speedups of 5.3x using six cores linked by a LAN, with no impact in
wirelength quality. Their approach is also deterministic since cores are fully isolated
from one other, except during updates that occur at predetermined times. The authors
also show that the cross-partition error in their bounding box cost tends towards zero
over the course of the anneal.
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Unfortunately, this approach was not directly applicable to our algorithm. Sun
and Sechen heavily exploit spatial locality, but as we describe in Section 3, this lo-
cality is not present to the same degree in Q2P. Firstly, Q2P proposes large moves,
whereas partitioning depends on the ability to improve placement using only localized
moves within a single partition. Secondly, Q2P disproportionately proposes moves for
a small number of cells; if these cells are located in a small number of partitions, much
of the advantage from parallelization will be lost. Lastly, it is far from certain that
the error in a timing cost (particularly a path-based timing cost) would converge in a
similar fashion to that of a bounding box cost. Therefore, we have not used this ap-
proach, though we discuss ways we might adapt partitioning to Q2P in future work in
Section 7.

2.2.3 Speculative Computation. In this approach, first described in Witte et al. [1991]
for the task assignment problem, the decision tree of the annealer is mapped to the
number of available cores. For example, on a three-core system, while core C0 evalu-
ates move M1, cores C1 and C2 propose and evaluate move M2, with C1 assuming that
M1 will be accepted and C2 that it will be rejected. Once a decision is reached for M1,
the result for M2 is immediately selected and the annealer proceeds to M3. This tech-
nique preserves serial equivalency. With N cores, we can speculate between log2 N and
N moves into the future, depending on the ratio of accepted to rejected moves. High
speedups are indeed reported in Witte et al. [1991], but significant slowdowns are re-
ported when applied to placement in Chandy et al. [1997]. The largest cause, once
again, is synchronization overhead, and furthermore, it takes as long to speculatively
perform a placement move as it does to fully evaluate it, limiting speedups when the
acceptance rate is high.

Both of the algorithms in this article speculatively propose moves, but they do not
require that previous moves are rejected. Instead, a dependency checker is used to
ensure that speculatively proposed moves do not interact with any accepted moves.

2.3 Other Parallelization Strategies

Move acceleration, as described in Kravitz and Rutenbar [1987], parallelizes the evalu-
ation of each move by evaluating different parts of the costs on two cores, and addition-
ally by using a third core to propose the next move. This algorithm yields a speedup of
2x on three cores, but is not easily scalable to larger numbers of cores and has been lit-
tle studied since it was originally proposed. In addition, we were unable to successfully
parallelize our own cost evaluation function, due to the high synchronization overhead
we discuss in our previous paper [Ludwin et al. 2008].

In this previous paper, we did use a similar strategy to “pipeline” our algorithm into
two cores, one to propose future moves and another to evaluate them. We were only
able to achieve speedups of up to 1.3x due to cache and memory bandwidth limitations,
and had no success in attempting to scale the algorithm further by using multiple
pipelined stages. Therefore, we do not further develop it in this article.

At the other extreme, by assigning different cores to completely different place-
ments, more parallelism can be introduced. This technique is known as the parallel
Markov chain [Aarts et al. 1986]. Every so often, the core with the lowest-cost place-
ment broadcasts its solution to the other cores. To obtain a speedup of X , the number
of moves per core is simply divided by that number, though quality may suffer. Broad-
casts are typically sent asynchronously to increase efficiency [Chandy and Banerjee
1996; Haldar et al. 2000].

Most authors have attempted to find the best speedup for similar quality of the
serial version. Using four cores, speedups between 2.5x–2.9x are reported, at the cost
of some wirelength increase [Chandy and Banerjee 1996; Haldar et al. 2000]. This
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technique cannot be serially equivalent without excessive runtime overhead and is
nondeterministic if asynchronous updates are used. It is not further explored here.

More exotic parallel placement algorithms have been proposed, including hardware-
assisted simulated annealing [Wrighton and DeHon 2003]. However, this approach is
currently unable to handle circuits larger than about 400 cells when implemented on
modern FPGAs. While interesting for future research, it is not explored here.

3. THE QUARTUS II PLACEMENT ALGORITHM

The core Quartus II placement algorithm (Q2P) is derived from VPR 4.30 [Betz et al.
1999], and as such uses simulated annealing as its main component. In the ten years of
development since it branched from VPR2, many advances have been incorporated into
the algorithm, which make extracting parallelism from our algorithm considerably
more difficult than in the prior work.

In this section, we describe the new features of Q2P relative to VPR and their impact
on parallelization. We also attempt to compare the serial performance of Q2P to VPR
and other published algorithms.

3.1 New Features

Q2P has three major areas of improvement over VPR: directed moves, improved costs,
and multilevel placement. The first two of these challenge any attempt to parallelize
our algorithm as will be discussed shortly.

— Directed moves. Traditional simulated annealing algorithms propose moves entirely
at random within a window that shrinks as the anneal progresses. In Q2P, the vast
majority of our moves are directed; that is, while they are partially random, both the
selection of the block(s) to move and the destination location(s) are heavily biased.
This allows Q2P to explore the search space far more efficiently than with purely
random moves. Furthermore, the blocks can move much farther than is possible
in conventional simulated annealing, as described shortly. A similar technique was
first described in Vorwerk et al. [2007, 2009]; Q2P does not use the moves described
in those articles, but uses approximately ten different types of directed moves. In
particular, about a quarter of our moves target the 1% of cells that are on the most
critical paths in the circuit.

— Improved costs. Q2P uses eight costs to optimize wirelength, timing, power and
localized congestion; they are combined linearly to produce an overall cost used to
accept or reject moves. The wirelength and congestion costs are calculated using
bounding boxes conceptually similar to those of VPR, with the latter also making
use of periodic congestion analyses. The power costs are specific to Altera devices.
The timing costs are substantially more complex than those of VPR, and combine
aspects of edge-based and path-based approaches.

— Multilevel placement. VPR uses clustering to create logic blocks of several LUTs and
registers. Similarly, Q2P also clusters the netlist into logic, RAM, and DSP blocks,
and performs much of its placement with these large blocks. In addition, Q2P is
able to decompose its logic clusters back into their component LUTs and registers
late in the placement process, allowing for “fine-tuning” of the placement details.
This technique first appeared in Timberwolf [Sun and Sechen 1995] and has also
been proposed as an extension to VPR [Chen and Cong 2004]. This results in a

2For the remainder of this article, “VPR” refers to VPR 4.30, not VPR 5.0 [Luu et al. 2009] unless otherwise
noted.
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Fig. 3. High costs in intermediate placements.

substantial improvement in various quality metrics, but since it greatly increases
the effective size of the placement problem, it comes at a significant runtime cost.

The overall effect of the first two of these improvements is somewhat akin to embed-
ding many local improvement placers in a simulated annealing framework, thereby
combining the best features of each into a unified algorithm.

We now describe why Q2P moves cells across wider distances than in conventional
simulated annealing. Prior work assumes that a placement can be continuously im-
proved by making many small steps, so even when only very localized moves are al-
lowed, the placement can change considerably as cells slowly migrate towards better
destinations. However, the routing architecture of modern FPGA devices inhibits the
ability to make changes in small increments.

An illustration of this problem is shown in Figure 3(a), which shows a short path
of three logic cells. Cells “a” and “c” cannot be moved (for example, because they may
be device IOs fixed by board constraints, or have other critical fanout), but “b” is free
to move between them. In addition, cell “b” should ideally be towards the right of the
device (for example, due to additional nets not shown here), so we should accept moves
that move it towards the position in Figure 3(c).

This device uses two types of wire for routing: slow, short wires with high connectiv-
ity and fast, long wires with limited connectivity. In our illustration, the short wires
have length two and a 100ps delay, and the long wires have length six and a delay
of 150ps. The longer wires are only connected to each other and to the short wires,
and cannot drive or be driven directly by logic cells. Due to this architecture, while
the initial path delay from “a” to “c” is only 450ps, the path in Figure 3(b) has a much
higher delay of 600ps. Therefore, the timing cost will discourage any move from the
left to the center of the device, even though this is a necessary step when moving to
the right using localized moves.

While this illustration is simplistic, similar situations do occur in real circuits, and
cells would become trapped in deep local minima3 when only localized moves are al-
lowed. However, Q2P’s directed moves can skip such intermediate positions, and these
moves are more likely to be accepted.

Finally, in addition to the three areas outlined earlier, we have made a large num-
ber of runtime optimizations to the code. For example, as we are evaluating the costs,
we are able to detect that a move will have a very small chance of being accepted,
and therefore abort the rest of the calculations. We have also made a large number
of changes that are necessary to support Altera-specific devices4. Key among these is
support for dedicated device-wide routing resources that are used to distribute high-
fanout signals such as clocks. Since these resources are limited, the placement algo-
rithm must take care not to place too many signal sinks in a given region.

3Theoretically, a slower annealing schedule would be able to escape such local minima. In practice, the
runtime required for such a schedule would be prohibitive.
4Some of these improvements, such as heterogeneity, are also present in VPR 5.0.
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In summary, Q2P contains many changes relative to VPR that are required to pro-
duce high-quality results in a reasonable runtime on modern FPGA devices. Un-
fortunately, many of these changes directly impede our ability to parallelize the
algorithm.

— The timing-driven moves disproportionately target a very small number of cells. All
prior work described in Section 2.2 assume that the placer has an equal probability
of moving any cell from any region of the chip at any time. By reducing the number
of cells that are targeted for moves, we reduce the amount of inherent parallelization
available for exploitation.

— The directed moves may move cells across a wide distance. Localized moves improve
spatial locality and hence increase parallelization, but our directed moves reduce
spatial locality.

— The path-based components in our timing cost imply that changes in one region
of the device may impact costs in a physically distant region. Similarly, tracking
the restricted clocking resources must be done across the entire region spanned by
the resources, which can be a significant portion of the chip. These further reduce
spatial locality (and therefore the available parallelism) since fewer parts of the
design are fully independent of each other.

Despite these limitations, we found that we are still able to extract a considerable
amount of parallelism from our algorithm without simplifying it. The methods in-
volved were considerably more complex than those that have been studied in prior
work, and are fully described in Section 4.

3.2 Performance Comparison to Published Algorithms

To show that Q2P has high result quality, and hence is a worthy target for paralleliza-
tion, we compare its performance to that of other published algorithms, including VPR.
Simulated annealing is often believed to scale more poorly than other approaches, such
as partitioning or analytic placement. However, thanks to the improvements we out-
lined before, we show that our placer scales well to larger problems.

It is difficult to directly compare the quality of Q2P to VPR or any other published
algorithm, as it is very tightly integrated into the rest of Quartus II and is specialized
for Altera devices. Other placers (such as VPR) either work on idealized devices or for
standard cell circuits that our placer does not support (such as FastPlace [Viswanathan
and Chu 2004]). However, since Q2P is derived from VPR, it is possible to disable the
various algorithmic enhancements that are not needed to produce a result on Altera
devices, leaving us with an approximation of the VPR placement algorithm5 that we
can use for a comparison. To expand this comparison, we can compare our results to
those in Bian et al. [2010], who adapted three state-of-the-art ASIC placers to target
simplified FPGA architectures and compared them to VPR.

We believe our comparison is conservative for Q2P relative to VPR, since it is not ac-
tually possible to remove all optimizations we have made to the algorithm. Similarly,
the comparison by Bian et al. is conservative for VPR relative to the ASIC placers,
since VPR optimizes for wirelength and critical delay but the ASIC placers only opti-
mize for wirelength. Therefore, the comparison between the Q2P and the alternatives
are weighted in favor of the alternative algorithms.

We compared our placer to our approximated VPR (hereafter “qVPR”) using the
same industrial circuits described in Section 6.1. We ran the two algorithms in both

5As this article is not concerned with the performance of the clusterer or router, we used the Quartus II
versions of these algorithms for all experiments in order to isolate the effects of the changes to the annealer.
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Table I. Comparison of Q2P versus qVPR: Default Settings

crit. path (ns) wire (1e5) time (s) relative

circuit % LABs qVPR Q2P qVPR Q2P qVPR Q2P path wire time
circuit1 34% 3.6 3.4 2.6 2.4 135 82 0.926 0.916 0.607
circuit2 37% 3.6 3.3 3.3 3.1 209 107 0.920 0.958 0.513
circuit3 26% 2.9 2.5 3.4 3.1 291 174 0.862 0.904 0.597
circuit4 20% 3.8 3.6 4.8 4.5 517 208 0.939 0.946 0.403
circuit5 71% 3.9 3.7 3.0 2.8 136 88 0.940 0.938 0.644
circuit6 46% 6.0 5.0 8.2 8.0 686 271 0.842 0.978 0.395
circuit7 91% 3.9 3.6 4.9 4.4 325 221 0.914 0.896 0.681
circuit8 100% 4.0 3.5 5.1 4.7 401 287 0.880 0.920 0.717
circuit9 35% 3.5 3.1 5.9 5.5 658 443 0.871 0.933 0.674
circuit10 73% 3.2 2.9 8.4 8.4 828 411 0.895 0.998 0.497
circuit11 99% 3.9 3.6 9.5 9.1 935 542 0.926 0.956 0.580
circuit12 96% 6.5 6.2 15.0 14.5 1497 700 0.955 0.966 0.467
circuit13 90% 3.5 3.0 8.5 8.5 1061 1514 0.852 0.996 1.426
circuit14 100% 2.9 2.4 20.3 17.6 1180 1035 0.831 0.863 0.877
circuit15 100% 7.0 5.2 14.7 13.0 1329 1886 0.745 0.886 1.419
circuit16 75% 5.4 3.1 14.6 14.1 2511 1341 0.564 0.965 0.534
circuit17 99% 3.4 3.0 14.6 13.5 1217 1054 0.903 0.924 0.866
circuit18 100% 3.7 2.5 25.2 20.2 3426 1638 0.655 0.802 0.478
Average 0.850 0.929 0.641
High-utilization average 0.818 0.891 0.774

Table II. Comparison of Q2P to Other Placers

inner-num relative
qVPR Q2P path wire time

timing-driven:
1 1 0.850 0.929 0.641

10 1 0.883 0.984 0.065
10 10 0.882 0.874 0.611

wirelength-driven:
1 0.1 – 1.244 0.087
1 1 – 0.917 0.674

10 1 – 0.968 0.069
10 10 – 0.863 0.589

(a) Q2P vs. qVPR

placer wire time
IBM, 1 cell/LAB:

Capo 1.053 0.541
mPL 1.149 0.296
FastPlace 1.316 0.048
FastPlace+MDP 1.064 0.023

QUIP/IWLS, 10 LUTs/LAB:
Capo 0.990 1.887
mPL 1.124 2.439
FastPlace 1.299 0.085
FastPlace+MDP 1.149 0.039

Industrial, 20 LUTs/LAB:
Q2P in = 1 0.917 0.674
Q2P in = 0.1 1.244 0.087
(b) Bian et al. and Q2P vs. VPR/qVPR

timing-driven and wirelength-only mode, and varied their effort levels by adjusting
the number of moves performed per temperature (a parameter called “inner-num”).
The per-circuit results with default effort levels and timing-driven optimization are
shown in Table I, and the results of varying the effort levels are shown in Table II(a).
For all relative numbers, qVPR is used as the denominator, which means that lower
numbers are better for Q2P for critical path length, wire usage, and runtime. As in
Section 6.1, we only consider the runtime of the moves themselves, not of other steps
such as timing analysis.

We found that Q2P significantly outperforms qVPR in timing, wirelength, and run-
time. In fact, we outperform qVPR’s timing and wirelength results in every single
circuit, and simultaneously outperform its runtime in all but two circuits. On av-
erage, Q2P achieves an 15% better critical path length, with the best results in the
circuits with the highest utilization (over 99% of all LABs fully or partially used). It
also achieves 7% better wirelength usage and about 35% lower runtime. Most notably,
qVPR is unable to match Q2P’s wirelength or critical path results, even when it was
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given 10x the runtime to do so. This indicates that Q2P has been fundamentally im-
proved relative to qVPR, and presumably to VPR as well.

Finally, in Table II(b), we indirectly compare Q2P to the ASIC placement algorithms
studied in Bian et al. [2010]. In that work, the authors ran each algorithm on four
different benchmark sets with varying amounts of available whitespace. We summa-
rize the results of two of these benchmarks here: the IBM ASIC circuit set and the
QUIP/IWLS set with a cluster size of 10 LUTs6. In addition, we have only shown
the near-zero whitespace results. In our experience, designers typically purchase the
smallest devices possible, so this is the most realistic testcase.

Our results suggest that Q2P is at least competitive with other published algo-
rithms, even when it is restricted to only optimizing wire. Using VPR/qVPR as a com-
mon baseline, and using default effort levels, Q2P matches or outperforms all other
algorithms with respect to wirelength use. Compared to Capo [Caldwell et al. 1999]
and mPL [Chan et al. 2000], its runtime is worse on the IBM circuit set but signif-
icantly better on the 10-LUT QUIP set that more closely approximates real FPGA
circuits. In addition, by reducing the effort level of Q2P by a factor of ten, we achieve
similar results to FastPlace in terms of both wirelength and runtime, so long as its
“native” detailed placer is used.

We cannot match the results of FastPlace when using the MDP detailed placer de-
scribed by [Bian et al. 2010]. However, we believe these results show that Q2P is
competitive with other published algorithms, even when using the wirelength-only
comparison that ignores much of the value of our own placer, and that does not cap-
ture the full complexity of a modern FPGA device. Consequently, these results moti-
vate our decision to parallelize Q2P rather than attempting to use an entirely different
approach.

4. PARALLEL ALGORITHM DESCRIPTION

4.1 Overview

As described in the preceding section, the Quartus II placer algorithm (Q2P) is a vari-
ant of simulated annealing that uses highly directed moves and many cost components,
both of which significantly reduce the spatial locality that many prior works exploit to
introduce parallelism. Consequently, parallelization strategies such as partitioning
(which directly exploit spatial locality) or precomputing noncolliding moves (which ex-
ploit the simplicity of random moves) are not appropriate for our algorithm. Instead,
we use a novel variant of independent set finding (Section 2.2.1) that identifies col-
liding moves on-the-fly, instead of in advance. We also include features that allow us
to “repair” colliding moves to ensure determinism and serial equivalency. These two
features allow us to use the existing directed moves and costs that are essential for our
algorithm’s high quality.

At a high level, our parallelized annealer can loosely be thought of as a master-
worker configuration, where the worker cores propose moves and evaluate their costs
in parallel, and a single master core resolves collisions between moves in serial. We
call the parallel portion of a move’s lifetime processing, and the resolution phase final-
ization. The finalization phase includes the decision as to whether the move should be
accepted or rejected, based on the results of the processing phase. To be deterministic,

6Bian et al. [2010] did find that the ASIC placers tended to perform better on the QUIP/IWLS benchmark
sets when using smaller cluster sizes, but the size of 10 LUTs most closely approximates modern FPGA
devices. For example, Altera’s Stratix IV devices support 20 LUTs per cluster.
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a move must have all of its collisions resolved before it can be finalized. Threads use
message passing for most of their communication.

Processing comprises about 99% of a move’s runtime in a serial compilation, as
finalization is usually extremely fast. For this reason, we found that a true master-
worker-style algorithm was impractical. Devoting an entire core to finalization was
wasteful, as it would be idle for the majority of the time. Even using a thread turned
out to be inefficient, due to the time it took to “wake” a thread that had been sleeping.
Instead, we use two methods to control the flow of moves through our algorithm, which
are described in Sections 4.4 and 4.5.

When a move is accepted, a database containing the location of each cell must be
updated. If this database were shared among all of the cores, any change made by
one core would be immediately seen by all other cores, which may be partway through
proposing or evaluating a move. This could lead to us proposing absurd moves, such
as exchanging a cell with itself in another location. Even if this move were never
evaluated, it would likely violate an assertion and crash the program as it was being
proposed. Therefore, each core receives its own copy of the database, and a core that
accepts a move must send a message to the other cores, who update their own data-
bases in between processing moves. This is similar to Sun and Sechen [1997], who
were forced to duplicate their placement database because it was parallelized across
completely different machines.

4.2 Repairing Colliding Moves

As described in Section 2.2, speculatively processed moves may collide. By duplicating
the placement databases, we ensure the algorithm will not crash, but the algorithm
will be nondeterministic unless further action is taken. We cannot simply reject moves
that may be invalidated by the accepted move, as do Kravitz and Rutenbar [1987],
since moves are completed asynchronously.

Instead, we must “repair” the move in a deterministic fashion. One way to do this is
by fully reprocessing a move if there is any chance it has collided with an earlier move.
For example, as move MN is first proposed, we could record the last previous move
that was accepted (“MP”). If we eventually find that another move later than MP (but
before MN) in serial order had been committed by another core, we observe that there
is a chance that MN may have been involved in a collision. We might then discard
MN’s speculative results, and reprocess it from scratch.

Through careful treatment of random numbers, it is fairly easy to ensure that the re-
processed move is identical to the same move in the serial placer. Each move consumes
several random numbers: the type of directed move, the source cell, and its destination
location require a minimum of three random numbers, but in practice many more may
be required based on the type of move and the state of the placement. This makes it
difficult or impossible to use a single PseudoRandom Number Generator (PRNG) for
the algorithm, or even to use a single PRNG per core, since we do not know in advance
which move will be processed by which core. Instead, we use a new PRNG for every
move, each of which is seeded by a combination of the move’s ID and a user-specified
seed. When a move needs to be reprocessed, we simply reset its own PRNG back to its
initial state. This ensures that the last time a move is reprocessed, the same stream of
random numbers is generated as in the serial algorithm, and as long as the rest of the
placement is identical to the serial algorithm, the proposed move and all of its costs
will be identical to the equivalent serial move as well.

The linear congruent PRNG, used by VPR and the C runtime library, turned out
to be inappropriate when seeded with the moves’ IDs, as it produced pseudorandom
sequences that were offset by one for every move. We found that the Coveyou PRNG
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Fig. 4. Collisions types.

[Knuth 1997] gave equivalent quality of results as the linear congruent PRNG, was
simple to implement, and performed well for our purposes when seeded by consecutive
integers.

4.3 The Dependency Checker

Fully reprocessing any moves that may have collided only works well at extremely
low acceptance rates (well under 1%), but we found it inefficient for higher acceptance
rates. In designs with hundreds of thousands of cells or more, many moves do not actu-
ally collide, so this approach throws away valid moves and recomputes them, wasting
CPU time. Therefore, we have created a dependency checker to track each move’s de-
pendencies, and only reprocess any part of the move found invalid.

There are two types of collisions the dependency checker must detect and repair effi-
ciently. The first involves cells and their locations. If two moves affect either the same
cell (Figure 4(b)) or the same location (Figure (4(a)), then if one move is committed,
the other cannot be performed. Moreover, in the equivalent serial flow, the later move
would never have been proposed in the first place. These dependencies7 are called
proposal dependencies, and can only be resolved by a full reprocessing, in other words,
reproposing the later move from scratch and recomputing any costs that had already
been calculated.

The second kind of collision involves elements of the cost computation. In this case,
if the earlier move is committed, the later move can still be performed. However, the
cost delta that was computed for the later move relied on state that is now out-of-date,
and hence the delta may be incorrect, which may affect the decision to accept or reject
the move. For example, if one cells feeds another (Figure 4(c)) and both are moved in
parallel, the decision to accept or reject the later move should take into account the
result of the earlier move. This may occur even if the cells do not communicate with
each other but are fed by the same source (Figure 4(d)), since either move may change
the Half-Perimeter Wire Length (HPWL) of the net, shown here in grey. These depen-
dencies are called evaluation dependencies. If one is encountered, the move does not
have to be reproposed nor does it even have to be fully reevaluated. Instead, only those
portions of the cost function involving the affected elements must be recalculated. We
call this a partial reprocessing.

As shown in the previous examples, the exact resources tracked by the depen-
dency checker vary depending on the cost. For example, if a small net counts to-
wards the HPWL cost but a clock net does not, only the former will be tracked by the

7In practice, the affected cells themselves do not need to be tracked, since if two moves affect the same cell,
they must also affect the same location.
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Fig. 5. Finalization strategies.

dependency checker. The programmer must manually track all resources used to eval-
uate a move, as the specific implementation of the costs determines exactly what must
be tracked.

It is helpful to think of the dependency checker as a limited implementation of a
transactional memory system. The only difference is that modified locations in mem-
ory are tracked manually, rather than being automatically handled by the platform.
Since only a tiny fraction of the memory accessed by the algorithm can cause depen-
dencies, this is also more efficient, as others have found in similar physical design
problems (for example, Watson et al. [2007]).

4.4 Centralized Finalization

For the dependency checker to work correctly, moves may only be finalized once we are
certain that no other move will be accepted. Our first approach to ensuring this is to
insert every move into a reorder buffer after processing. This buffer allows moves to be
inserted in any order, but only allows them to be removed in strictly ascending order.
Then, instead of having a single “master” core (or thread) responsible for removing
moves from this queue and finalizing them, we allow any one core to take on this role
at a given time. We call this core the supervisor while it is performing this role. As a
part of finalization, the supervisor also performs dependency checks and reprocesses
moves as described in Sections 4.2 and 4.3. Only one core may behave as the supervisor
at a time; we enforce this through a shared variable as we found message passing to
be too slow for this purpose.

An illustration of this process can be found in Figure 5(a). When core C0 completes
moves M0, it will become the supervisor and finalize moves M0 to M3, and broadcast
the results back to the other cores. Note that if M0 is accepted, moves M1 and M3
must have their dependencies checked by the supervisor before they can be finalized.
The supervisor also performs any reprocessing that is required.

Each move is described by a significant amount of state (and hence memory), and so
we found it essential to limit the number of moves that are active at a time. If all in-
flight moves are currently waiting in the reorder buffer, the cores must stall and wait
for one to be finalized. We have found that four moves per core gives good performance,
and discuss the implications of varying this number in Section 6.1.

4.5 Decentralized Finalization

During the latter parts of the anneal, including the quench, the vast majority of all
moves proposed are rejected. While a rejected move has no impact on any other
core, the centralized strategy of Section 4.4 ensures that many such moves will be
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examined by at least two cores. This requires that move data be transferred between
different caches. In addition, we found that a single move that took a long time to
process could cause the other cores to become idle as their moves sat in the reorder
buffer, even if all the moves might eventually be rejected. To address these limitations,
we developed a method that avoids the need for any centralized control to finalize a
rejected move.

This approach works as follows. Threads continue to use message passing for the
majority of their communication, but they add two additional means of communica-
tion: a shared counter to indicate the ID of the next move to perform, and per-core
variables containing the move currently being processed by that core, known as the
progress of the core. The shared counter allows moves to be started independently of
the supervisor, and the progress variables are used to inform other cores when it is
safe to finalize a move, as described next.

If all moves are being rejected, each core updates its own progress, and no core ever
checks the progress of another core. Thus, with the exception of the shared counter,
there is very little intercore communication.

If a core wishes to accept a move, only then does it insert the move into the reorder
buffer. As in Section 4.4, the core will then attempt to supervise the algorithm unless
another core is already doing so. The supervisor then reads the progress of all cores to
determine whether all other cores are working on later moves. If this is the case, the
move is finalized and, if accepted, it is broadcast to the other cores to allow them to
update their local states. Otherwise, the slowest core is told to become the supervisor
after it completes its current move.

For example, in Figure 5(b), move M2 is likely to be accepted and is waiting to
be finalized. Core C1, the supervisor, examines the progress of all the cores. Cores
C2 and C3 are processing moves M5 and M6, which are ahead of M2, but C0 is still
processing M0. Hence C2 knows it cannot finalize M2 as not all earlier moves have
been processed. Instead, it sends a message to C0 to supervise once it has finished
M0, and goes back to processing regular moves. Assuming that C0 rejects M0, C0 will
become the supervisor and will observe that all other cores are now working on moves
later than M2. It will therefore be safe to finalize M2. In this way, the progress is used
to enforce serial equivalency.

While the multiple methods of communication make this algorithm somewhat more
difficult to implement than the centralized version, the basic principles remain largely
unchanged. The most significant exception is that, since rejected moves are no
longer supervised, we must provide a way for them to be reprocessed when neces-
sary. To accomplish this, each core maintains a queue of rejected records of moves it
has provisionally rejected, consisting of the moves’ IDs and some statistics used for
profiling.

When a move is committed, all records in the queue before the committed move have
their statistics collected and then are discarded. All records after the committed move
are transferred to a reprocessing queue, since they were proposed and rejected based
on speculative state that we now know was incorrect. The moves they represent can
be reprocessed before the core attempts to process any new moves.

To speed reprocessing, each core also maintains a cache of recent moves. As cores
examine each record in the reprocess queue, they also check their cache to determine
whether the move itself is still available. If it is, the dependency checker can be called
as it is in the supervisor, to skip as much of the reprocessing as possible. If the move is
not available in the cache (for example, if it had been evicted to process a newer move)
it must be reprocessed by scratch.

As in Section 4.4, we chose a cache size of four moves per core, and discuss the
impact of this choice in the next section.
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Fig. 6. Hardware diagrams.

Table III. Hardware Specifications

Name Processor C N Shared$ Bus Memory
hpt Intel Xeon E5450 4 2 6MB FSB@1.3GHz DDR2@333MHZ

3.0GHz “Harpertown” L2/C2 42GB/s 10.6GB/s
opt AMD Opteron 275 2 2 n/a HT@600MHz DDR@200MHz

2.2GHz “Italy” 9.6GB/s 6.4GB/s
gnt Intel Xeon E5570 4 2 8MB QPI@3.2GHz DDR3@400MHz

2.9GHz “Gainstown” L3/4C 102.4GB/s 51.2GB/s

5. TEST ENVIRONMENT

All results given in this article were collected using 64-bit executables on Windows
XP. The algorithms in this work were also tested on Linux using the 2.6 version of the
kernel, and the results were comparable.

Three machines are used to test our algorithm. Their block diagrams are shown in
Figure 6, and their specifications are given in Table III. In this table, “C” is the num-
ber of cores per processor, “N” is the number of processors, and “Shared$” describes
the shared cache in the form “type of cache/number of cores sharing cache.” “Bus”
and “Memory” describe the capabilities of the bus and memory subsystems, respec-
tively: “FSB” is a front-side bus, “HT” is AMD’s HyperTransport, and “QPI” is Intel’s
QuickPath Interconnect. All three systems are cache coherent; the FSB is bidirec-
tional whereas HT and QPI use multiple unidirectional links. The bus memory band-
widths are the aggregate theoretical bandwidth of the entire system. For example,
opt contains two unidirectional HT links, each with a nominal bandwidth of 4.8GB/s;
therefore, the total bus bandwidth is 9.6GB/s. For its part, hpt contains two front-
side buses, each with a nominal bandwidth of 21GB/s; however, they share the same
10.6GB/s connection to memory.

One interesting note is that hpt has uniform access to main memory from all cores,
while cores in opt and gnt have direct access to some memory and only indirect access
to other memory. This type of configuration is known as “NonUniform Memory Access,”
or NUMA. We did not attempt to exploit NUMA in our algorithm.

When all the cores in a system were being used, we found that constraining software
threads to specific cores had no effect, but this was not true when only some cores were
in use. We typically achieved the higher performance when constraining the cores to
be close together, that is, when sharing caches, or failing that, when they were on the
same processor. The one exception was hpt where we got better results with two pairs
of threads on each processor, with each pair sharing a cache. We believe this is because
an hpt “quad-core” is in fact two dual-core dies that share a set of pins to the FSB,
so moving threads to a separate processor doubles the effective memory bandwidth.
Regardless, we always constrain the threads to adjacent cores, unless otherwise noted,
since this most closely duplicates a machine with only the specified number of cores.
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Fig. 7. Quench results.

Fig. 8. Anneal results: gnt only.

6. RESULTS

6.1 Overall Performance

The following results were collected using an internal build of Quartus II 10.0 on a set
of 18 Stratix IV circuits. These circuits are a collection of IP and customer circuits used
internally for product development at Altera, and range in size from approximately
20,000–300,000 cells. The averages shown are geometric averages unless otherwise
noted.

The quench results are shown in Figure 7. During the quench, the centralized
method achieved average speedups of up to 1.7x, 2.7x and 2.8x, on two, four, and
eight processors, respectively, showing good performance at four processors and very
poor scalability to eight. By contrast, the decentralized method achieved better per-
formance and scalability with speedups of 1.8x, 2.9x, and 4.0x, respectively, showing
good performance at four processors and moderate scalability to eight.

Decentralized finalization also outperformed the centralized method at all stages of
the anneal (Figure 8), with the highest advantage occurring at the lower acceptance
rates that characterize the quench. This is expected since the decentralized method
was designed to work well when a large number of moves are being rejected.

As can be seen in Figure 8, the best annealing performance was achieved at four
cores, while the best quench performance was achieved at eight. Therefore, our over-
all speedups were obtained by limiting ourselves to four processors during the an-
neal but switching to eight for the quench. Our best overall speedups are 1.5x, 2.1x,
and 2.4x on two, four, and eight processors, respectively, using the decentralized fi-
nalization method. Note that these speedups are only for the moves performed during
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Table IV. Per-Circuit Speedups (total, anneal, and quench) on gnt
Using Decentralized Finalization

two cores four cores eight cores

name kCells t a q t a q t a q
circuit1 19.7 1.5 1.4 1.7 2.2 1.7 3.0 2.1 1.4 4.2
circuit2 28.7 1.6 1.4 1.7 2.5 1.8 3.2 2.7 1.5 5.4
circuit3 35.3 1.4 1.3 1.6 1.8 1.5 2.6 1.6 1.2 3.0
circuit4 42.1 1.4 1.3 1.6 2.0 1.6 2.9 1.8 1.2 3.9
circuit5 43.6 1.5 1.4 1.6 2.3 2.0 2.8 1.9 1.3 3.7
circuit6 58.2 1.3 1.2 1.6 1.6 1.3 2.6 1.4 1.1 2.7
circuit7 60.9 1.6 1.4 1.8 2.5 1.9 3.2 2.8 1.7 5.1
circuit8 68.6 1.4 1.2 1.7 2.0 1.5 3.1 1.9 1.3 4.6
circuit9 73.2 1.5 1.3 1.7 2.2 1.7 3.0 2.0 1.4 4.4
circuit10 110.2 1.3 1.2 1.6 1.6 1.4 2.4 1.5 1.2 2.7
circuit11 112.3 1.5 1.3 1.7 2.3 1.7 3.1 2.5 1.5 4.5
circuit12 120.4 1.3 1.3 1.6 1.9 1.7 2.7 1.7 1.4 3.4
circuit13 129.4 1.5 1.3 1.6 2.2 1.8 2.4 2.2 1.5 2.6
circuit14 151.9 1.4 1.3 1.7 2.1 1.9 3.1 1.9 1.6 4.3
circuit15 190.6 1.6 1.3 1.9 2.8 1.9 3.6 3.7 2.0 5.9
circuit16 192.2 1.4 1.2 1.7 2.1 1.7 3.0 2.2 1.5 4.6
circuit17 199.1 1.4 1.2 1.7 2.4 2.1 3.1 2.4 1.8 4.5
circuit18 300.4 1.4 1.2 1.7 2.4 1.9 2.9 2.6 1.7 4.1
geomean 1.4 1.3 1.7 2.1 1.7 2.9 2.1 1.4 4.0

simulated annealing, as is reported in most prior work; our overall placement speedups
are slightly lower due to some compile time being spent in less frequent operations
such as timing analysis, not all of which have been parallelized.

Per-circuit results are also given for the decentralized method on gnt in Table IV.
Quench speedups at eight cores ranged from a low of 2.6x to a high of 5.9x. There was
no strong relationship between circuit size and speedup.

The discrepancies in performance between hpt, opt, and gnt are explained by their
differing memory subsystems. opt and gnt use dedicated point-to-point links (Hy-
perTransport and QuickPath Interconnect, respectively) for intercore communication,
in addition to dedicated on-chip memory controllers. On the other hand, hpt must
use the same front-side bus for both memory bandwidth and intercore communica-
tion. In addition, gnt has a much higher bandwidth relative to clock speed than
does hpt.

The only tuneable parameter is the number of moves that can be in flight at any
one time. We found that reducing this number below four per core significantly hurt
performance using both centralized and decentralized finalization, as the cores were
forced to stall until the memory associated with the moves was released. Under some
circumstances, we did find a modest improvement in performance by raising the num-
ber of moves in flight during the quench. By contrast, during the anneal, this reduced
performance due to an increase in move collisions; that is, it was better for the cores to
stall than to occupy themselves with work that was likely to be rejected by the depen-
dency checker. Even during the quench, increasing the number of moves in flight too
high eventually resulted in a drop in performance. We found that a limit in the range
of four to eight moves in flight per core was reasonable in practice.

6.2 Attributing overhead

Our decentralized speedup of 4.0x on eight processors on gnt implies a 50% reduction
in performance, or an overhead of roughly 100% versus the ideal speedup. That is, we
doubled the runtime before reducing it by eight through parallelization. It is useful to
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determine the cause of this overhead to suggest future improvements8. In particular,
we wish to identify the importance of each of the following factors.

(1) Algorithmic. What is the overhead involved with ensuring deterministic results?
What is the overhead caused by resolving collisions?

(2) Infrastructure. What is the intrinsic overhead of adding parallelism to the an-
nealer, for example, from synchronization primitives?

(3) Hardware. Are there any fundamental limitations of the computer itself which
make it impossible to achieve a perfect speedup?

In Ludwin et al. [2008], we describe a method of attribution which worked well
for a small number of processors. However, as the number of cores increases and
the algorithms becomes more complex, we found that this method did not produce
interesting results. Instead, we found it useful to investigate the sources of overhead
by removing features from our algorithm. We show the results of this procedure shortly
on a representative circuit (circuit14 in Table IV) which exhibited a speedup of 4.2x on
gnt during the quench, or an overhead of 92%. The experiments were performed only
during the quench, since (as described next) the experiments were significantly easier
to perform. However, in our experience, we have found that the conclusions derived
from the quench apply relatively well to the rest of the anneal.

6.2.1 Algorithmic Overhead. As described in Section 4.2, we maintain determinism by
reprocessing moves that were invalidated. However, during the quench, the vast ma-
jority of moves are rejected, and reprocessing rarely changes this decision. By simply
discarding moves that are speculatively rejected, we can investigate the effect of giving
up determinism with minimal impact on the quality of results.

When we perform this experiment on our test circuit, the speedup improves from
4.2x to 4.8x, which corresponds to a decrease in overhead from 92% to 67%, a reduction
of 25 points. However, we also observed a 2.5% reduction in the number of moves that
are actually accepted. Therefore, to maintain equivalent QoR, we must increase the
base number of moves we perform by the same amount. This reduces the speedup from
4.8x to 4.7x (an overhead of 71%). In other words, sacrificing determinism in this way
reduced our overhead by approximately 20 points.

What happens if we stop reprocessing moves completely, as in Kravitz and Rutenbar
[1987]? That is, when one move is accepted, we discard all later moves that are already
in flight, even if they had been speculatively accepted as well. This allows us to remove
the dependency checker and its associated overhead, and also to ignore the relative
ordering of the moves, asynchronously committing the first move that was accepted
and rejecting all others. While this experiment does improve the speedup to 5.4x (an
overhead of 49%, or a drop of 18 points), it also reduces the number of accepted moves
by a full 20%9, at the cost of a noticeable increase in wirelength and critical path
delay. When we increase the number of moves performed to compensate, we find that
the speedup is reduced to 4.4x, that is, less than we observed when only discarding the
speculatively rejected moves (4.7x).

The reason for this result is that it is far faster to reprocess a move that was likely
to be accepted than it is to start a new move from scratch. Therefore, we could treat

8During our development, a similar set of experiments actually provided the impetus to develop the decen-
tralized finalization method.
9Recall that these experiments are being performed only during the quench. Applying this approach to the
anneal would result in a much higher drop in the number of accepted moves.
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this reprocessing (for speculatively accepted moves) as a performance enhancement.
However, consider what would happen if our algorithm only proposed noncolliding
moves so that the speculative accept/reject decision was always correct. In this sce-
nario, reprocessing would become redundant, so the unadjusted speedup result of 5.4x
would represent the true performance. Therefore, this experiment shows the impact
of proposing moves with collisions that must be resolved.

This hypothetical, collision-free algorithm would have an overhead of 49%, whereas
our actual deterministic algorithm has an overhead of 92%. This 43-point reduction
represents the maximum improvement that might be achieved through the elimina-
tion or faster detection of collisions. From the results of our first experiment, we
believe it is reasonable to attribute approximately 20 points of this overhead to our
requirement to maintain determinism, and the remaining 20–25 points to the effect of
collisions. However, the 20% overhead for determinism itself could be reduced through
better move generation.

6.2.2 Other Sources of Overhead. As shown in Section 6.1, the performance of our al-
gorithm is strongly correlated with the number of moves accepted. We have found it
instructive to observe the performance of the algorithm when no moves at all are ac-
cepted; that is, we propose and evaluate the same number of moves, but reject them
regardless of the result. Of course, the resulting algorithm is no longer of any use, but
we have found that when applied only in the quench, it does not significantly change
the distribution of moves that are performed, and therefore is a reasonable way to
investigate the algorithm’s overhead.

Rejecting every move results in a speedup of 5.6x, relative to a serial algorithm that
also rejects every move. This corresponds to an overhead of 44%, or a reduction 5
points. This represents an estimate of the amount of quality that can be sacrificed for
increased performance during the quench, for example, by not accepting moves that
showed only a small improvement in quality.

Now, since state never changes, we remove the per-core copies of the placement data-
base and allow only one move per core, to examine the impact that the multiple copies
have on processor cache and memory bandwidth usage. This improves performance to
5.8x, reducing overhead 6 points to 38%. Since the algorithm itself is unchanged by
this step, all of this impact is due to improved cache efficiency and decreased band-
width needs.

Finally, we can statically assign sets of moves to each core, since they are now by
definition noncolliding. This allows us to remove the last forms of intercore communi-
cation: the message passing system as well as the shared move counter. The algorithm
is now reduced to a set of simple for loops, processing and immediately discarding
moves. This improves performance to 6.2x, reducing the overhead to 29%, a drop of
9 points. We attribute this 9% overhead to the algorithm’s infrastructure.

At this point, the cores are no longer communicating in any way. It is therefore most
likely that the remaining overhead of 29% is due to the inability of the hardware to
supply the cores with enough memory bandwidth and cache10.

The summary of our findings for this one circuit on both eight-core platforms is
shown in Table V, with all figures rounded to the nearest 5%. While there is some
discrepancy between the two platforms, they both show similar patterns.

— Both show the overhead of determinism to be relatively small, with an upper limit
of 15%–20% of the serial algorithm.

10Some processors can throttle their clock speeds when multiple cores are in use, to reduce power consump-
tion and heat generation. However, we did not observe this effect.
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Table V. Approximate Overhead at Eight Cores (one circuit)

Factor hpt gnt

Determinism (upper limit) 15% 20%
Collisions (lower limit) 15% 25%
Quality 0% 5%
Increased memory 15% 5%
Infrastructure 20% 10%
Inherent memory limitations 60% 30%
Total 125% 90%

— To achieve a result of similar quality to our current algorithm, resolving collisions
costs an overhead of approximately 15%–25% by forcing us to reprocess moves that
had been speculatively accepted.

— Inherent memory limitations are a significant factor, with an overhead of 30% on
the more modern gnt architecture and 60% on the older hpt. When combined with
the increased memory required for thread safety, memory limitations account for an
overhead of 35% and 75%, respectively, on these two architectures.

The implications of these results are discussed in our conclusion.

7. CONCLUSIONS AND FUTURE WORK

We have described a complex parallel simulated annealing algorithm that achieves
good performance on multiple objectives, while still maintaining determinism and ser-
ial equivalency. We used two methods to maintain serial equivalency, and showed that
the more decentralized algorithm achieved significantly higher performance, scaling
well to four cores and moderately well to eight cores.

The Quartus II placement algorithm has had many tens of person years invested in
it to achieve high QoR in a reasonable CPU time. Despite its complexity, we were able
to parallelize the algorithm without simplifying it. Interestingly, while we have not
made any changes to try to minimize the interaction between moves, we have found
large amounts of parallelism to exploit, even at eight cores.

In addition, we have quantified the overhead required to maintain serial equiva-
lency, communicate state updates between cores, and maintain thread safety. At eight
cores, we found that maintaining determinism added an overhead of at most 15–20%
relative to the unmodified serial algorithm. The cost of recovering from collisions was
somewhat larger with at least 15–25% overhead, and the limitations of our comput-
ers’ memory subsystems cost between 30–60%, with modern computers showing lower
overhead.

It is likely that hardware vendors will continue to improve their multicore memory
bandwidth. But it is also clear that unequal memory access will become increasingly
prominent as we progress to sixteen and more cores per system, due to both shared
caches and NUMA effects. To take advantage of emerging platforms, developers will
therefore need to pay increasing attention to the memory access patterns of their
algorithms.

These results point towards several potential improvements. For example, one could
create a more sophisticated dependency checker that required less intercore commu-
nication, perhaps by maintaining per-core copies of the checker and only transmitting
updates between cores. This would reduce the cost of maintaining determinism, but
would not improve collisions or other memory limitations.

A far more productive approach will likely be create new directed moves that can
take advantage of spatial locality. Most previous work that used strictly partitioned
placements found some degradation in results from this approach, even after allowing

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 3, Article 22, Publication date: June 2011.



22:22 A. Ludwin and V. Betz

for occasional cross-partition optimizations. The only exception [Sun and Sechen 1997]
required that the partitions be frequently moved to allow cells sufficient mobility. As
we described in Section 2.2.2, their exact approach is not appropriate for our algo-
rithm, but we believe the general concept of creating additional spatial locality may be
adapted. By biasing different cores to work on different parts of the placement, instead
of strictly enforcing a partitioning, we expect we can greatly reduce the number of colli-
sions while still allowing optimizations that span the entire chip. This would also lead
to better cache and NUMA memory locality, and so would allow us to simultaneously
tackle all three major sources of overhead.

The precise method by which we bias the directed moves will likely depend on the
number of cores in use by the algorithm. We may therefore choose to give up serial
equivalency so as to optimize performance on any given number of cores. Alterna-
tively, we could optimize the algorithm for the specific number of cores that are most
commonly available. The trade-off between serial equivalency and performance will
likely change over time as the number of cores increases.

Better directed moves may also open new opportunities to improve other areas of
the algorithm. For example, a much simpler dependency checker might suffice to rule
out collisions between a majority of moves, reducing not only the work involved with
reprocessing moves, but the overhead associated with tracking their interactions. This
would further reduce intercore memory traffic. Many such interrelated improvements
will likely be needed to ensure that high-quality parallel placers continue to scale to
sixteen cores and beyond.
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