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ABSTRACT
Synchronous dataflow (SDF) has been successfully used in
design tools for system-level simulation of wireless communi-
cation systems. Modern wireless communication standards
involve large complexity and highly-multirate behavior, and
typically result in long simulation time. The traditional ap-
proach for simulating SDF graphs is to compute and exe-
cute static single-processor schedules. Nowadays, multi-core
processors are increasingly popular for their potential per-
formance improvements through on-chip, thread-level par-
allelism. However, without novel scheduling and simulation
techniques that explicitly explore multithreading capability,
current design tools gain only minimal performance improve-
ments. In this paper, we present a new multithreaded simu-
lation scheduler, called MSS, to provide simulation runtime
speed-up for executing SDF graphs on multi-core proces-
sors. We have implemented MSS in the Advanced Design
System (ADS) from Agilent Technologies. On an Intel dual-
core, hyper-threading (4 processing units) processor, our re-
sults from this implementation demonstrate up to 3.5 times
speed-up in simulating modern wireless communication sys-
tems (e.g., WCDMA3G, CDMA 2000, WiMax, EDGE, and
Digital TV).

Categories and Subject Descriptors: D.2.2 [Software
Engineering]: Design Tools and Techniques.

General Terms: Algorithms, Design.

Keywords: Synchronous dataflow, Multithreaded simula-
tion, Scheduling.

1. INTRODUCTION
System-level modeling and simulation using electronic de-

sign automation (EDA) and electronic system-level (ESL)
tools are key steps in the design process for communication
and signal processing systems. The synchronous dataflow
(SDF) [11] and timed synchronous dataflow (TSDF) [13]
models of computation are widely used in design tools for
these purposes, including ADS from Agilent [13], DIF from
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University of Maryland [6], and many others listed in [8].
According to [8], modern wireless communication systems

involve large complexity and highly multirate behavior, and
SDF representations of such systems typically result in large
memory requirement and long simulation time. Nowadays,
multi-core processors are prevalent for their potential speed-
up through on-chip, thread-level parallelism, e.g., dual-core
and quad-core CPUs from Intel and AMD. However, current
design tools gain only minimal performance improvements
due to the underlying sequential (single-thread) SDF execu-
tion semantics.

In this paper, we focus on multithreaded simulation of
SDF graphs, and our objective is to speed up simulation
runtime. The key problem behind multithreaded SDF sim-
ulation is scheduling SDF graphs for thread-level parallel
computation. Scheduling in our context consists of the fol-
lowing related tasks:

1. Clustering — Partitioning actors in the SDF graph into
multiple clusters such that actors in the same cluster are ex-
ecuted sequentially by a single thread.

2. Ordering — Ordering actor firings inside each cluster,
while maintaining SDF consistency.

3. Buffering — Computing buffer sizes for edges inside
and across clusters. In dataflow semantics, edges generally
represent infinite FIFO buffers, but for practical implemen-
tations, it is necessary to impose such bounds on buffer sizes.

4. Assignment — Allocating threads and assigning clus-
ters to threads for concurrent execution, under the con-
straint that each cluster can only be executed by one thread
at any given time.

5. Synchronization — Determining when a cluster is exe-
cuted by a thread, and synchronizing between multiple con-
current threads such that all data precedence and buffer
bound constraints are satisfied.

We develop the multithreaded simulation scheduler (MSS)
to systematically exploit multithreading capabilities in SDF
graphs. The compile-time scheduling in MSS strategically
integrates graph clustering, actor vectorization, intra-cluster
scheduling, and inter-cluster buffering techniques to jointly
perform static clustering, ordering, and buffering for trad-
ing off between throughput, synchronization overhead, and
buffer requirements. From this compile-time scheduling,
inter-thread communication (ITC) SDF graphs are con-
structed for multithreaded execution. The runtime schedul-
ing in MSS then applies the self-scheduled multithreaded ex-
ecution model to perform dynamic assignment and synchro-
nize multiple threads for executing ITC graphs at runtime.

The organization of this paper is as follows: We review
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dataflow background in Section 2 and related work in Sec-
tion 3. In Section 4, we present Ω-scheduling, the theoreti-
cal foundation of MSS. We then introduce our compile-time
scheduling framework in Section 5, and our runtime schedul-
ing approach in Section 6. In Section 7, we demonstrate sim-
ulation results. Due to page limitations, we refer the readers
to [5] for detailed descriptions and proofs.

2. BACKGROUND
In the dataflow modeling paradigm, the computational

behavior of a system is represented as a directed graph
G = (V, E). A vertex (actor) v ∈ V represents a compu-
tational module or a hierarchically nested subgraph. A di-
rected edge e ∈ E represents a FIFO buffer from its source
actor src(e) to its sink actor snk(e). A dataflow edge e can
have a non-negative integer delay del(e), and this delay value
specifies the number of initial data values (tokens) that are
buffered on the edge before the graph starts execution.

Dataflow graphs operate based on data-driven execution:
an actor v can execute (fire) only when it has sufficient
numbers of tokens on all of its input edges in(v). When
firing, v consumes certain numbers of tokens from its input
edges and produces certain numbers of tokens on its output
edges out(v). In SDF, the number of tokens produced onto
(consumed from) an edge e by a firing of src(e) (snk(e))
is restricted to be a constant positive integer that must be
known at compile time; this integer is referred to as the
production rate (consumption rate) of e and is denoted as
prd(e) (cns(e)). We say that an edge e is a single-rate edge
if prd(e) = cns(e); a multirate edge if prd(e) 6= cns(e).

Before execution, a schedule of a dataflow graph is com-
puted. Here, by a schedule, we mean any static or dynamic
mechanism for executing actors. An SDF graph G = (V, E)
has a valid schedule (is consistent) if it is free from dead-
lock and there is a positive integer solution to the balance
equations:

∀e ∈ E, prd(e)× x[src(e)] = cns(e)× x[snk(e)]. (1)

When it exists, the minimum positive integer solution for
the vector x is called the repetitions vector of G [11], and is
denoted by qG. For each actor v, qG[v] is referred to as the
repetition count of v. A valid minimal periodic schedule is
then a sequence of actor firings in which each actor v is fired
qG[v] times, and the firing sequence obeys the data-driven
properties imposed by the SDF graph.

SDF clustering [1] is an important operation in scheduling
SDF graphs. Given an SDF graph G = (V, E), clustering a
subset Z ⊆ V into a supernode α means transforming G into
a smaller graph G′ = (V −Z + {α}, E′) such that executing
α in G′ corresponds to executing one iteration of a minimal
periodic schedule for the subgraph associated with Z.

3. RELATED WORK
Various scheduling algorithms have been developed for

different applications of SDF graphs. For software synthe-
sis onto embedded single-processor implementations, Bhat-
tacharyya et al. [1] have developed algorithms for joint code
and memory minimization; Ko et al. [10] and Ritz et al.
[14] have developed actor vectorization (or block process-
ing) techniques to improve execution performance.

For simulation of SDF graphs in single-processor environ-
ments, the cluster-loop scheduler has been developed based
on [2] in the Ptolemy environment as a fast heuristic. This

approach recursively encapsulates adjacent groups of actors
into loops to enable possible data rate matches and then
clusters the adjacent groups. However, this approach suffers
from large runtimes and buffer requirements in heavily mul-
tirate systems [8]. Hsu et al. have developed the simulation-
oriented scheduler [8, 7], which strategically integrates sev-
eral techniques for graph decomposition and SDF scheduling
to provide effective, joint minimization of time and memory
requirements for simulating SDF graphs.

Heuristics for minimum buffer scheduling have been de-
veloped in, e.g., [1]. Various methods have been developed
to analyze throughput in SDF graphs, e.g., [16, 3], and to
explore tradeoffs between buffer sizes and throughput, e.g.,
[4, 17]. These approaches are useful for certain forms of
synthesis. However, the complexities of these approaches
are not polynomially bounded in the graph size.

Multiprocessor scheduling for dataflow graphs and related
models has been extensively studied in the literature, e.g.,
see [15, 16]. Sriram and Bhattacharyya [16] reviewed an
abundant set of scheduling and synchronization techniques
for embedded multiprocessors.

Regarding SDF scheduling specific to multithreaded sim-
ulation, the only previous work that we are aware of is the
thread cluster scheduler developed by Kin and Pino [9] in
Agilent ADS. This approach applies recursive two-way par-
titioning on single-processor schedules that are derived from
the cluster loop scheduler and then executes the recursive
two-way clusters with multiple threads in a pipelined fash-
ion. Experimental results in [9] show an average of 2 times
speedup on a four-processor machine. However, according
to our recent experiments, in which we used the same sched-
uler to simulate several wireless designs, this approach does
not scale well to simulating highly multirate SDF graphs.

4. Ω-SCHEDULING
As discussed in Section 1, the problem of scheduling SDF

graphs for multithreaded execution is highly complex. Our
first step is to develop solutions to achieve maximal through-
put assuming unbounded processing resources.

4.1 Definition and Throughput Analysis
In dataflow-related tools, actors may have internal state

that prevents executing multiple invocations of the actors
in parallel, e.g., FIR filters. Furthermore, whether or not
an actor has internal state may be a lower level detail that
is not visible to the scheduler. This is, for example, the
case in Agilent ADS. Thus, exploring data-level parallelism
by duplicating actors onto multiple processors is out of the
scope of this paper.

In pure dataflow semantics, data-driven execution assumes
that edge buffers have infinite capacity. For practical imple-
mentations, it is necessary to impose bounds on buffer sizes.
Given an SDF graph G = (V, E), we denote the number of
tokens on an edge e ∈ E at some particular instant in time
by tok(e) (where the time instant t is to be understood from
context and therefore suppressed from the notation). Let
Z+ denote the set of positive integers. We denote the buffer
size of an edge e by buf (e), and denote fB : E → Z+ as the
associated buffer size function. Also, we denote the execu-
tion time of an actor v by t(v), and denote fT : V → Z+ as
the associated actor execution time function.

In the following definition, we specify conditions that must
be met before firing an actor in the bounded-buffer context.
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Definition 1. Given an SDF graph G = (V, E) and a buffer
size function fB , an actor v ∈ V is (data-driven) bounded-
buffer fireable if 1) v is fireable — i.e., v has sufficient num-
bers of tokens on all of its input edges (data-driven prop-
erty) — ∀e ∈ in(v), tok(e) ≥ cns(e), and 2) v has sufficient
numbers of spaces on all of its output edges (bounded-buffer
property) — ∀e ∈ out(v), buf (e)− tok(e) ≥ prd(e).

Recall that the task of synchronization is to maintain data
precedence and bounded-buffer constraints. As a result, the
most intuitive scheduling strategy for maximal throughput
is to fire an actor as soon as it is bounded-buffer fireable.

Definition 2. Given a consistent SDF graph G = (V, E),
Ω-scheduling is defined as the SDF scheduling strategy that
1) statically assigns each actor v ∈ V to a separate pro-
cessing unit, 2) statically determines a buffer bound buf (e)
for each edge e ∈ E, and 3) fires an actor as soon as it is
bounded-buffer fireable.

Theorem 4.1. [5] Suppose that we are given a consistent,
acyclic SDF graph G = (V, E) and an actor execution time
function fT . Then the maximum achievable throughput in
Ω-scheduling is

1

maxv∈V (qG[v]× t(v))
. (2)

Theorem 4.2. [5] Given a consistent SDF graph
G = (V, E) and an actor execution time function fT , Equa-
tion (2) is the throughput upper bound in Ω-scheduling.

4.2 Buffering for Maximum Throughput
Many existing techniques for joint buffer and through-

put analysis rely on exact actor execution time informa-
tion. However, such information may be unavailable in prac-
tical situations. Here, we focus on minimizing buffer re-
quirements under the maximum achievable throughput in Ω-
scheduling without prior knowledge of actor execution time.

In this development, it is useful to employ the following
notions. Given a connected graph G = (V, E), a parallel edge
set [u, v] is a set of edges {e ∈ E|src(e) = u and snk(e) = v}
that connect from the same vertex u to the same vertex v.
Here, by considering each parallel edge set [u, v] as a single
edge (u, v), a biconnected component is a maximal set of
edges A such that any pair of edges in A lies in a simple
undirected cycle. A bridge is then an edge (parallel edge
set) that does not belong to any biconnected component.
Finally, a biconnected-component-free (BCF) partition is a
partition of V such that clustering the partition does not
introduce biconnected components.

In the theorem below, we present buffer analysis for acyclic
SDF graphs that contain no biconnected components.

Theorem 4.3. [5] Suppose that we are given a consistent
SDF graph G = (V, E), and suppose G does not contain any
biconnected components. Then the minimum buffer sizes to
sustain the maximum achievable throughput in Ω-scheduling
over any actor execution time function are given by setting
buffer sizes for each [u, v] ∈ E according to Equation (3):

∀ei ∈ [u, v], buf (ei)=

 (pi+ci−gi)×2+di−d∗×gi

if 0≤d∗≤(p∗+c∗−1)×2,
di, otherwise.

(3)

Here, for each [u, v] ∈ E, and for each ei ∈ [u, v], pi =prd(ei),
ci =cns(ei), di =del(ei), gi =gcd(pi, ci), p∗=pi/gi, c∗=ci/gi,
and d∗=minei∈[u,v]bdi/gic.

Ω-Acyclic-Buffering(G)
input: a consistent acyclic SDF graph G = (V, E)
1 EB = Bridges(G)
2 for each [u, v] ∈ EB apply Equation (3) end
3 {E1, E2, . . . , EN} = Biconnected-Components(G)
4 for each biconnected subgraph Gi = (Vi, Ei) from i = 1 to N

5 {V 1
i , V 2

i , . . . , V M
i } = BCF-Partition(Gi)

6 G′
i = (V ′

i , E′
i) = Cluster(Gi, {V 1

i , V 2
i , . . . , V M

i })
7 compute buffer sizes for E′

i by Theorem 4.3 on G′
i

8 for each subgraph Gj
i = (V j

i , Ej
i ) from j = 1 to M

9 Ω-Acyclic-Buffering(Gj
i )

10 end
11 end

Figure 1: Ω-Acyclic-Buffering algorithm.

In Theorem 4.3, gcd stands for greatest common divisor.
Applying Theorem 4.3 to general acyclic SDF graphs may
cause deadlock in Ω-scheduling. In order to allocate buffers
for general acyclic SDF graphs, we have developed the Ω-
Acyclic-Buffering algorithm as shown in Figure 1, and we
state the validity of the algorithm in Theorem 4.4.

Theorem 4.4. [5] Given a consistent, acyclic SDF graph
G = (V, E), the Ω-Acyclic-Buffering algorithm gives buffer
sizes that sustain the maximum achievable throughput in Ω-
scheduling over any actor execution time function.

5. COMPILE-TIME SCHEDULING
In this section, we present compile-time scheduling tech-

niques based on the concept of Ω-scheduling to construct
inter-thread communication (ITC) SDF graphs for multi-
threaded execution.

5.1 Clustering and Actor Vectorization
The simplest way to imitate Ω-scheduling in multithreaded

environments is to execute each actor by a separate thread
and block actor execution until it is bounded-buffer fire-
able. However, the available resources on current multi-core
processors is limited — usually 2 or 4 processing units are
available. As a result, threads are competing for process-
ing units for both execution and synchronization (check-
ing bounded-buffer fireability). Since the ideal situation
is to spend all processing time in actor execution, mini-
mizing synchronization overhead becomes a key factor. In
Ω-scheduling, synchronization overhead increases with the
repetitions vector of the SDF graph because bounded-buffer
fireability must be maintained for every actor firing. Here,
we use QG =

∑
v∈V qG[v] to represent the synchronization

overhead associated with a consistent SDF graph G = (V, E)
in Ω-scheduling.

Clustering combined with static intra-cluster scheduling
is one of our strategies to reduce synchronization overhead.
We formalize this scheduling strategy in Definition 3.

Definition 3. Given a consistent SDF graph G = (V, E),
Π-scheduling is defined as the SDF scheduling strategy that
1) clusters a consistent partition P = (Z1, Z2, . . . , Z|P |) of
V such that G is transformed into a smaller consistent SDF
graph GP = (VP = {v1, v2, . . . , v|P |}, EP ); 2) statically com-
putes a minimal periodic schedule Si for each subgraph
Gi = (Zi, Ei = {e ∈ E|src(e) ∈ Zi and snk(e) ∈ Zi}) such
that execution of supernode vi ∈ VP corresponds to execut-
ing one iteration of Si; and 3) applies Ω-scheduling on GP .

After clustering, the synchronization overhead is reduced
from QG to QGP =

∑
vi∈VP

qGP
[vi], and the repetition count
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of vi becomes qGP
[vi] = gcdv∈Zi

qG[v] [1]. Clustering may
increase buffer requirements because the interface produc-
tion and consumption rates of the resulting supernodes are
scaled by positive-integer factors in order to preserve multi-
rate consistency [1]. Clustering also decreases throughput in
our model because it generally reduces the amount of avail-
able parallelism. In the following theorem, we analyze the
effect of clustering on throughput under Ω-scheduling.

Theorem 5.1. [5] Suppose that we are given a consistent
SDF graph G = (V, E), a buffer size function fB, and an ac-
tor execution time function fT . Suppose also that
P = (Z1, Z2, . . . , Z|P |) is a consistent partition of G and
GP = (VP = {v1, v2, . . . , v|P |}, EP ) is the consistent SDF
graph resulting from clustering P . Then a throughput upper
bound for G in Π-scheduling, or equivalently, a throughput
upper bound for GP in Ω-scheduling is

1

maxZi∈P (
∑

v∈Zi
(qG[v]× t(v)))

. (4)

In addition, if GP is acyclic, Equation (4) gives the maxi-
mum achievable throughput.

Theorem 5.1 tells us that a metric that significantly affects
the overall throughput is the sum of the repetition count (in
terms of G) - execution time products among all actors in a
cluster. For convenience, we denote this value by SRTP
and define SRTP(vi) = SRTP(Zi) =

∑
v∈Zi

(qG[v]× t(v)).
Based on Theorem 5.1, the cluster with the largest SRTP
value dominates the overall throughput.

In single-processing-unit environments, the ideal iteration
period for executing a consistent SDF graph G = (V, E) is
SRTP(G) =

∑
v∈V (qG[v]× t(v)). Now considering an N -

processing-units processor, the ideal throughput can be ex-
pressed as N/

∑
v∈V (qG[v]× t(v)). In the clustering pro-

cess, by imposing Equation (5) as a constraint for each
cluster (partition) Zi, the ideal N times speed-up can be
achieved theoretically only when the SRTP threshold factor
M in Equation (5) is larger than or equal to N , where the
right hand side of Equation (5) is called the SRTP threshold.∑

v∈Zi

(qG[v]× t(v)) ≤
∑
v∈V

(qG[v]× t(v))/M (5)

In practice, M is usually set larger than N to tolerate es-
timation and variation in actor execution time — that is, by
having more small (in terms of estimated SRTP value) clus-
ters and using multiple threads to share processing units.
Based on our experiments, when N = 4, the best M is usu-
ally between 16 and 32, and depends on the graph size and
other instance-specific factors.

Actor vectorization (actor looping) is our second strategy
to reduce synchronization overhead. The main idea is to
vectorize an actor’s execution by a factor of the associated
repetition count.

Definition 4. Given a consistent SDF graph G = (V, E),
vectorizing (looping) an actor v ∈ V by a factor k of qG[v]
means: 1) replacing v by a vectorized actor vk such that a
firing of vk corresponds to executing v consecutively k times;
and 2) replacing each edge e ∈ in(v) by an edge e′ ∈ in(vk)
such that cns(e′) = cns(e)× k, and replacing each edge
e ∈ out(v) by an edge e′ ∈ out(vk) such that
prd(e′) = prd(e)× k. For consistency, the vectorization fac-
tor must be a factor of the repetition count of v. After
vectorization, qG[vk] = qG[v]/k.

1

Compile-Time Scheduling Framework
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Figure 2: Compile-time scheduling framework.

In practical highly multirate SDF graphs, repetitions vec-
tors usually consist of large, non-prime numbers. As a result,
actor vectorization is suitable for synchronization reduction
in this context, but at the possible expense of larger buffer
requirements due to the multiplication of production and
consumption rates.

5.2 Compile-time Scheduling Framework
Based on the above concepts, we develop a compile-time

scheduling framework, as shown in Figure 2, to transform
and schedule an input SDF graph into an inter-thread com-
munication (ITC) SDF graph Gitc. We choose the term
“ITC graph” because each node (cluster) in Gitc is executed
by a thread. In MSS, ITC graphs are carefully constructed
based on a careful assessment of trade-offs among synchro-
nization overhead, throughput, and buffer requirements.

This framework strategically integrates graph clustering
and actor vectorization algorithms in a bottom-up fashion
such that each subsequent algorithm works on the clus-
tered/vectorized version of the graph from the preceding al-
gorithm. We also incorporate the simulation-oriented sched-
uler [8, 7] into this framework to compute static intra-cluster
schedules and buffer sizes along the way in the bottom-up
process. Finally, we apply the Ω-Acyclic-Buffering technique
to compute buffer sizes for ITC graphs. All the integrated
algorithms emphasize low complexity; the associated com-
plexities are summarized in Figure 2. Note that in the in-
put graphs for the individual algorithms, the numbers of
nodes |Vi| and edges |Ei| decrease progressively through the
bottom-up clustering process. For detailed description of
the framework, we refer the reader to [5].

Given a consistent SDF graph as input, we first clus-
ter strongly connected components (SCCs) to generate an
acyclic graph. This is because existence of cycles in an ITC
graph may decrease throughput, and if the SRTP value of
each SCC satisfies Equation (5), clustering SCCs does not
cause limitations in the maximum achievable throughput.

From acyclic graphs, we apply the following set of clus-
tering techniques to jointly explore both topological prop-
erties and dataflow-oriented properties such that clustering
does not introduce cycles nor increase buffer requirements.
These techniques are effective in clustering SDF graphs be-
cause the properties that they address arise commonly in
practical communication and signal processing systems. In
addition, we impose Equation (5) in the clustering process
to ensure sufficient throughput.
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Briefly speaking, iterative source/sink clustering focuses
on subsystems that have the form of chain- or tree-structures
at the source- or sink-end of a graph, and the SDF rate be-
havior involved in such subsystems is successively divisible in
certain directions. After that, single-rate clustering explores
single-rate subsystems where for each edge, the associated
production and consumption rates are the same.

Next, parallel actor clustering explores parallel actors with
the same repetition count. Here, we say actors u and v are
parallel if there is no path from u to v nor from v to u. Then,
divisible-rate clustering iteratively searches for a candidate
pair of actors such that after clustering, the increased pro-
duction (consumption) rate of the supernode can divide the
consumption (production) rate at the other end of the edge.

After that, we apply the following set of actor vectoriza-
tion techniques to strategically trade buffer cost for syn-
chronization overhead reductions and also to explore single-
rate clustering opportunities exposed by such vectorizations.
Due to highly multirate nature of our target wireless appli-
cations, the total buffer requirement is carefully kept within
the given upper bound to prevent out-of-memory problems.

Consumption-oriented actor vectorization takes advantage
of consumption-rate-divisible edges (i.e., cns(e) is divisible
by prd(e)) such that src(e) is vectorized for cns(e)/prd(e)
times to match the rate of snk(e). Then production-oriented
actor vectorization is applied in a similar manner to take
advantage of production-rate-divisible edges.

Finally, we apply iterative actor vectorization to explore
both divisible and indivisible multirate interconnections.
Here, for adjacent actors u and v, if qG[v] > qG[u], then
qG[v]/gcd(qG[v], qG[u]) is considered as a vectorization fac-
tor for v. This technique iteratively vectorizes a properly-
chosen actor such that the reduction in synchronization over-
head can be maximized while the penalty in buffer cost is
minimal.

6. RUNTIME SCHEDULING
In this section, we develop runtime scheduling techniques

for the assignment and synchronization tasks. The simplest
way to schedule an ITC graph Gitc = (Vitc, Eitc) for multi-
threaded execution is to allocate a number of threads equal
to the number of ITC nodes |Vitc| and assigns each ITC node
v ∈ Vitc to a separate thread. Each thread executes the as-
sociated ITC node v as soon as v is bounded-buffer fireable
and blocks otherwise.

In the above approach, however, when the number of fire-
able ITC nodes is larger than the number of processing units
(which is usually very limited), multithreading APIs and op-
erating systems take additional overheads in scheduling the
usage of processing units. Motivated by this observation, we
develop the self-scheduled multithreaded execution model to
provide efficient method for executing ITC graphs in multi-
threaded environments.

Definition 5. Given a consistent ITC graph
Gitc = (Vitc, Eitc), the self-scheduled multithreaded execution
model allocates a number of threads equal to the number of
processing units. Each thread dynamically selects and exe-
cutes an ITC node v ∈ Vitc that is bounded-buffer fireable,
and blocks when none of the ITC nodes are bounded-buffer
fireable.

This execution model performs dynamic assignment be-
tween ITC nodes and threads, and it synchronizes threads

Self-Scheduled-Execution(G, L)
input: a consistent SDF graph G = (V, E) and a fireable list L
1 while simulation is not terminated
2 if L is not empty
3 pop the first actor v from L
4 n = min( mine∈in(v)btok(e)/cns(e)c,

mine∈out(v)b(buf (e)− tok(e))/prd(e)c )
5 fire v for n times
6 for e ∈ in(v) tok(e) = tok(e)− n × cns(e) end
7 for e ∈ out(v) tok(e) = tok(e) + n × prd(e) end
8 if v is bounded-buffer fireable push v in L end
9 for each node u ∈ adj (v)

10 if u is bounded-buffer fireable and u is not in L
push u in L end

11 end
12 signal state change of L
13 else
14 wait for state change of L to be signalled
15 end
16 end

Figure 3: Self-Scheduled-Execution function.

based on bounded-buffer fireability.
Figure 3 presents the Self-Scheduled-Execution function

that is executed by each thread in this model. The input
list L contains ITC nodes that are initially bounded-buffer
fireable. If L is not empty in line 2, we pop the first ITC
node v from L, and execute v for a number of times n that
is determined at runtime. If L is empty — i.e., no ITC
nodes can be executed — we force the thread to wait for
a signal indicating changes in L (line 14). Back to line 6,
after firing v, we update the number of tokens on input
and output edges of v. Because such update only affects
bounded-buffer fireability of v and its adjacent nodes adj (v),
we push them onto L if they become bounded-buffer fireable.
Finally, we signal the possible changes in L, and if there are
threads waiting for fireable ITC nodes, this will wake them
up. Signal and wait are multithreading operations that are
widely available in multithreading APIs, e.g., [12]. In our
implementation, the lock mechanism (which is not shown
in Figure 3) is applied whenever there is a change of state
related to ITC nodes, ITC edges, and the fireable list L.

7. SIMULATION RESULTS
We have implemented and integrated the multithreaded

simulation scheduler (MSS) in the Advanced Design System
(ADS) from Agilent Technologies [13]. In our implementa-
tion, we perform actor execution time profiling to estimate
actor execution times in order to compute the SRTP values
and the SRTP threshold. The profiling process repeatedly
runs an actor for a short time and takes an average.

Our experimental platform is an Intel dual-core hyper-
threading (4 processing units) 3.46 GHz processor with 1GB
memory running the Windows XP operating system. We
use the NSPR API [12] as the multithreading library. In
the experiments, we use the following three schedulers: 1)
the multithreaded simulation scheduler (MSS), 2) the thread
cluster scheduler (TCS) [9] in ADS, and 3) the simulation-
oriented scheduler (SOS) [8, 7]. We use SOS as the single-
thread benchmark scheduler for comparing TCS and MSS
to single-thread SDF execution methods.

In our experiment with MSS, the SRTP threshold factor
M (Equation (5)) is set to 32, and the buffer upper bound is
set to 4,500,000 tokens. We include 12 wireless communica-
tion designs from Agilent Technologies based on the follow-
ing standards: WCDMA3G (3GPP), CDMA 2000, WLAN
(802.11a and 802.11g), WiMax, Digital TV, and EDGE. We
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Figure 4: Speed-up (execution time and total simulation time).

collect both execution time and total simulation time re-
sults. Here, execution time refers to the time spent in ex-
ecuting the graph, and this is the component that can be
speed-up by multithreaded execution; total simulation time
refers to the time spent in overall simulation, including ac-
tor profiling, scheduling, buffer allocation, execution, and
multithreading-related operations. Figure 4 presents the ex-
ecution time and total simulation time speed-up for TCS
over SOS (SOS/TCS) and for MSS over SOS (SOS/MSS).

As shown in Figure 4, MSS outperforms TCS in all de-
signs. MSS can achieve around 3.5 times execution time
speed-up on designs 4, 5, 9, 12, and around 2 to 3 times
execution time speed-up on designs 2, 3, 6, 7, 8, 11. TCS
performs worse than SOS in designs 1, 6, 7, and 10 due to
its un-balanced partitioning, which takes numbers of firings
into account rather than SRTP values. Furthermore, TCS
encounters out-of-memory problems in design 12 due to its
heavy dependence on the cluster loop scheduler, which can-
not reliably handle highly multirate SDF graphs (see [8]).

Regarding the total simulation time, MSS spends around
2 to 10 seconds more compared to execution time. In con-
trast, SOS only requires around 1 to 3 seconds more. Based
on our experiments, scheduling time for MSS is similar or
even faster than SOS. The overheads from MSS are mostly
due to actor profiling, multithreading initialization and ter-
mination, and longer buffer allocation (because MSS trades
off buffer requirements for synchronization overhead reduc-
tion). However, the additional overhead from MSS is in-
significant compared to the large simulation times that are
observed. For long-term simulations, our results have shown
that MSS is a very effective approach to speeding up overall
simulation for SDF-based designs.

8. CONCLUSION
Motivated by the increasing popularity of multi-core pro-

cessors, we have developed the multithreaded simulation
scheduler (MSS) to achieve speed-up in simulating
synchronous dataflow (SDF) based designs. We have in-
troduced Ω-scheduling as the core theoretical foundations in
our developments. The compile-time scheduling approach in
MSS strategically integrates graph clustering, actor vector-
ization, intra-cluster scheduling, and inter-cluster buffering
techniques to construct inter-thread communication (ITC)
SDF graphs. Then the runtime scheduling approach in MSS
applies the self-scheduled multithreaded execution model for
efficient execution of ITC graphs in multithreaded environ-
ments. Finally, on a multithreaded platform equipped with
4 processing units, we have demonstrated up to 3.5 times
speed-up in simulating modern wireless communication sys-

tems with MSS in the Advanced Design System (ADS) from
Agilent Technologies.
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