
ar
X

iv
:1

00
3.

16
32

v1
 [

cs
.L

O
]

 8
 M

ar
 2

01
0

Unification and Matching on Compressed Terms

ADRIÀ GASCÓN and GUILLEM GODOY

Universitat Politècnica de Catalunya

and

MANFRED SCHMIDT-SCHAUSS

Inst. f. Informatik, Goethe-Universität

Term unification plays an important role in many areas of computer science, especially in those
related to logic. The universal mechanism of grammar-based compression for terms, in particular
the so-called Singleton Tree Grammars (STG), have recently drawn considerable attention. Using
STGs, terms of exponential size and height can be represented in linear space. Furthermore, the
term representation by directed acyclic graphs (dags) can be efficiently simulated. The present
paper is the result of an investigation on term unification and matching when the terms given as
input are represented using different compression mechanisms for terms such as dags and Singleton
Tree Grammars. We describe a polynomial time algorithm for context matching with dags, when
the number of different context variables is fixed for the problem. For the same problem, NP-
completeness is obtained when the terms are represented using the more general formalism of
Singleton Tree Grammars. For first-order unification and matching polynomial time algorithms
are presented, each of them improving previous results for those problems.

Categories and Subject Descriptors: F.4.1 [Theory of computation]: Mathematical Logic and
formal languages—lambda calculus and related systems; F.4.2 [Theory of computation]: Math-
ematical Logic and formal languages—Grammars and Other Rewriting Systems

General Terms: Algorithms

Additional Key Words and Phrases: Term Unification, Singleton Tree Grammars, Context Match-
ing

1. INTRODUCTION

The task of solving equations is an important component of any mathematically
founded science. In general, solving an equation s

.
= t consists of finding a substi-

tution σ for variables occurring in both expressions s and t such that σ(s) = σ(t)
holds. The range for the variables, the kind of expressions s and t, and their seman-
tics, as well as the semantics of = depend on the context. By specifying some of
these parameters we can define the well-known first-order term unification problem.
In the context of this problem the expressions s and t are terms with leaf variables
standing for terms, all function symbols are non-interpreted, and = is interpreted

Author’s addresses: LSI Department, Universitat Politècnica de Catalunya.
Jordi Girona, 1-3 08034 Barcelona, Spain.
Inst. f. Informatik, Goethe-Universität, D-60054 Frankfurt, Germany.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2010 ACM 1529-3785/10/0300-00000 $5.00

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010, Pages 0–0??.

http://arxiv.org/abs/1003.1632v1

Unification and Matching on Compressed Terms · 1

as syntactic equality.

The term matching problem is a particular case of term unification. It is charac-
terized by the condition that one of the sides of the equation s

.
= t, say t, contains

no variables. Like term unification, this is a common problem in areas like func-
tional and logic programming, automated deduction, deductive databases, artificial
intelligence, information retrieval, compiler design, type checking in programming
languages, etc.

The first-order term unification and matching problems are efficiently solvable
and there is a history of different algorithms: decidable, but exponential [Robin-
son 1965]; linear time, but using a very special term representation [Paterson and
Wegman 1978]; and an almost linear one, using a variant of term compression:
[Martelli and Montanari 1982]. The expressivity of first-order terms is often in-
sufficient to deal with some of the current challenges in the mentioned areas.
This motivates the study of some variants and generalizations of the first-order
term matching and unification problems. In this sense, incorporating more com-
plex interpretations of the function symbols and equality predicates under equa-
tional theories has been widely considered (see [Baader and Siekmann 1994; Baader
and Snyder 2001a]). Further extensions like allowing other kinds of variables re-
lated to terms have also been explored. This is the case of context variables, i.e.
variables that can be substituted by contexts, which are trees with a single hole
(syntactically, the hole is a special constant). For example, consider the term
t = f(g(a, b), g(a, h(b))). Then the match-equation F (a)

.
= t, where F is a context

variable, has the solutions F 7→ f(g([·], b), g(a, h(b))) (where [·] means the hole)
and F 7→ f(g(a, b), g([·], h(b))); the equation f(F (b), F (h(b)))

.
= t has the solu-

tion F 7→ g(a, [·]), whereas f(F (b), F (b))
.
= t has no solution. Context matching

is known to be NP-complete, but there are several subcases that can be solved
efficiently [Schmidt-Schauß and Stuber 2004].

As illustrated by the example above, the instantiation of a context variable by
a match is a context, i.e. a tree with a hole. Thus multiple occurrences of the
same context variable correspond to the question whether there are occurrences of
the same subtree, but up to one position in the subtree. This has applications in
computational linguistics [Niehren et al. 1997]. It is also easy to encode questions
that ask for subtrees that are equal up to several positions. Some applications of
context matching are in querying XML-data bases: see [Berglund et al. 2007] for
the XPATH-standard, [Schmidt-Schauß and Stuber 2004] for investigating context
matching, and [Gottlob et al. 2006] for analyzing conjunctive query mechanisms over
trees. Another interesting application of context matching is the search within tree
structures and the corresponding extraction of information. For example, the match
equation F (s) = t where t is ground and s has no occurrences of F corresponds to
the question whether there is a subtree of t that is matched by s. This can easily
be combined as conjunctive search F1(s1) = t; . . . ;Fn(sn) = t, where the Fi are
pairwise different and do not occur elsewhere. These match equations correspond
to the search question whether there are subterms ri of t that can be matched by
si for i = 1, . . . , n, where variables within si must have a common instance in t.

Besides adding expressiveness to these problems it is also necessary to take ac-
count of the feasibility of implementing the algorithms to which we refer. In that

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

2 · A. Gascón, G. Godoy and M. Schmidt-Schauß

sense, an option is to reconsider complexity issues for the original problems or its
variants by assuming that the input terms are given in some compressed represen-
tation. Many of the applications dealing with the problems we have introduced
and their variants require some kind of internal succinct representation for terms,
in order to guarantee computability in an environment with a limited amount of re-
sources. It is well-known that first-order unification may require exponential space
with a plain term representation whereas only polynomial space is required when
dags are used for representing terms. Similarly, if terms are large but have lots of
common subterms, like t1 = f(a, b), t2 = f(t1, t1), . . . , tn = f(tn−1, tn−1), then the
context matching equation F (a) = tn requires exponential space using the plain
term representation to represent tn, whereas a dag representation requires linear
space. This motivates to investigate context matching with compression techniques
like dags. Although the context matching problem is NP-complete, sometimes it
suffices to consider a small number of context variables, which can be thought of
as fixed for the problem. This kind of restriction has already been considered for
context unification restricted to two context variables [Schmidt-Schauß and Schulz
2002], and also proved useful in the context of program verification with proce-
dure calls [Gulwani and Tiwari 2007; Gascón et al. 2009], where context unification
for (monadic and multi-ary, respectively) signatures and a single context variable
allows the automatic generation of invariants.

Besides the dag representation, more general grammar-based compression mech-
anisms for terms have recently drawn considerable attention in research. In partic-
ular, a Singleton Tree Grammars (STG) can succinctly represent terms/trees which
are exponentially big in size and height. Grammar-based compression techniques
were initially applied to words [Plandowski 1994; Plandowski and Rytter 1999]
and led to important results in string processing, with applications [Hirao et al.
2000; Genest and Muscholl 2002; Lasota and Rytter 2006] in software/hardware
verification, information retrieval, and bioinformatics. Efficient algorithms have
been developed for checking whether two compressed inputs represent the same
word/term [Plandowski 1995; Lohrey 2006; Lifshits 2007], also randomized algo-
rithms for the equality test [Gasieniec et al. 1996; Berman et al. 2002; Schmidt-
Schauß and Schnitger 2009], and for finding occurrences of one of them within the
other (fully compressed pattern matching) [Karpinski et al. 1995; Karpinski et al.
1996; Miyazaki et al. 1997; Lifshits 2007]. In that sense, Straight-Line Programs
(SLP), or the equivalent formalism of Singleton Context Free Grammars (SCFG)
are now a widely accepted formalism for text compression. Essentially, an SCFG,
i.e. a context free grammar where all non-terminals generate a singleton language,
is used for representing single words. This notion was extended from words to
terms [Busatto et al. 2005; Schmidt-Schauß 2005; Comon et al. 1997] such that ev-
ery non-terminal in a Singleton Tree Grammar (STG) represents exactly one tree.
It led to applications in XML tree structure compression [Busatto et al. 2005] and
XPATH [Lohrey and Maneth 2005]. STGs have also been proved useful for com-
plexity analysis of unification algorithms in [Levy et al. 2006b; 2006a]. Recently, it
was shown that tree grammars using multi-hole-contexts are polynomially equiva-
lent to STGs [Lohrey et al. 2009]. Moreover, STG-based compressors have already
been developed [Maneth et al. 2008].

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

Unification and Matching on Compressed Terms · 3

Our focus is not on how to compress terms (which can be found e.g. in [Schmidt-
Schauß 2005; Busatto et al. 2008] and for deduction system in [Cheney 1998; Graf
1995; 1996]), but on efficient algorithms on compressed terms. This paper is an
extended and improved version of two conference papers [Gascón et al. 2009; 2008]
by the same authors. In [Gascón et al. 2008], the context matching problem for a
fixed number of context variables where the input terms are represented with dags
was proven decidable in polynomial time. In our view this result shows that com-
pression is well-behaved for context matching and should be considered. Further-
more, NP-completeness was shown for the context matching problem with terms
compressed using STGs. In the present paper we improve the description of both
algorithms with additional remarks and a more rigorous notation (by representing
dags as a particular case of STGs). This change in notation allows to be more
precise in explanations, proofs, and even in the complexity analysis. These two
results are presented in Section 3, and Section 5, respectively, where it is shown
that context matching with dags with k context variables can be solved in time
O((depth(G))k+1|G|2log(|G|)), where |G| is the size of the initial dag G (see Theo-
rem 3.19). As a complement we prove that context matching with STG-compressed
terms is NP-complete (see Theorem 5.10). Section 4 contains several technical algo-
rithms and constructions on SCFGs and STGs, which are indispensable for showing
polynomial space and/or time behavior of the matching and unification algorithms.
Also in [Gascón et al. 2008], and in [Gascón et al. 2009], there were polynomial
time algorithms presented for the first-order matching and first-order unification
problems, in both cases with terms represented with STGs. As a novel contribu-
tion we describe, in Section 6 and Section 7, faster algorithms for these two prob-
lems: The first-order unification algorithm on STG-compressed terms runs in time
O(|V |(|G|+|V |depth(G))3), where V is the set of variables, and G is the input STG
(see Theorem 6.2) and the matching algorithm in time O((|G|+|V |depth(G))3, (see
Theorem 7.3). Moreover, we believe that the presented solutions are also a gain in
simplicity which makes them easily implementable.

2. PRELIMINARIES

A signature is a set F together with a function ar : F → N. Members of F are
called function symbols, and ar(f) is called the arity of the function symbol f .
Function symbols of arity 0 are called constants. Let X be a set disjoint from F
whose elements are called variables. We assume the function ar to be also defined
for variables, i.e. ar : (F ∪ X) → N, but with ar(V) ∈ {0, 1} for variables V ∈ X .
Variables with arity 0, denoted x, y, z with possible indexes, are called first-order
variables, and variables with arity 1, denoted F with possible subscripts, are called
context variables. We use f, g, with possible indexes, for denoting an element of F ,
and α for denoting an element in F ∪ X .
The set T (F ∪ X) of terms over F and X , also denoted T (F ,X), is defined to

be the smallest set having the property that α(t1, . . . , tm) ∈ T (F ∪ X) whenever
α ∈ (F ∪X), m = ar(α) and t1, . . . , tm ∈ T (F ∪X). The set T (F) is called the set
of ground terms over F , that is, the subset of terms of T (F∪X) with no occurrences
of variables. We denote by s, t, with possible indexes, terms in T (F ∪ X).
The size |t| of a term t is the number of occurrences of variables and function

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

4 · A. Gascón, G. Godoy and M. Schmidt-Schauß

symbols in t. The height of a term t, denoted height(t), is 0 if t is a constant or a
first-order variable, and 1 + max{height(t1), . . . , height(tm)} if t = α(t1, . . . , tm).
Positions of a term t, denoted p, q with possible subindexes, are sequences of natural
numbers that are used to identify the location of subterms of t. The set Pos(t) of
positions of t is defined by Pos(t) = {λ} if t is a constant or a variable, and Pos(t) =
{λ} ∪ {1 · p | p ∈ Pos(t1)} ∪ . . . ∪ {n · p | p ∈ Pos(tm)} if t = α(t1, . . . , tm), where
λ denotes the empty sequence and p · q, or simply pq, denotes the concatenation
of p and q. If t is a term and p a position, then t|p is the subterm of t at position
p. More formally defined, t|λ = t and α(t1, . . . , tm)|i·p = ti|p. We can define a
partial order � on Pos(t) by p � q if and only if p is a prefix of q, i.e. there is a
sequence p′ such that q = p · p′. We say that positions p and q are disjoint if they
are incomparable with respect to �. We denote by pre(t) the preorder traversal
(as a word) of a term t. It is recursively defined as pre(t) = t, if t has arity 0,
and pre(t) = α · pre(t1) · . . . · pre(tm), if t = α(t1, . . . , tm). Two arbitrary different
trees may have the same preorder traversal, but when they represent terms over
a fixed signature where the arity of every function symbol is fixed, the preorder
traversal is unique for every term. Given a term t, there is a natural bijective
mapping between the indexes {1, . . . , |pre(t)|} of pre(t) and the positions Pos(t) of
t, which associates every position p ∈ Pos(t) to the index i ∈ {1, . . . , |pre(t)|} you
find at root(t|p) while traversing the tree in preorder. We can recursively define the
two mappings pIndex(t, p) → {1, . . . , |pre(t)|} and iPos(t, i) → Pos(t) as follows.
pIndex(t, λ) = 1, pIndex(α(t1, . . . , tm), i.p) = (1+ |t1|+ . . .+ |ti−1|)+pIndex(ti, p),
iPos(t, 1) = λ, and iPos(α(t1, . . . , tm), 1+ |t1|+ . . .+ |ti−1|+ k) = i.iPos(ti, k) for
1 ≤ k ≤ |ti|.

Intuitively, contexts are terms with a single occurrence of a hole [·] into which
terms (or other contexts) may be inserted. We denote contexts by upper case letters
C,D. The set of contexts over F and X is denoted by C(F ∪ X) whereas the set
of ground contexts over F is denoted C(F). We can provide a formal definition by
considering a context to be a term in an extended signature that includes an extra
constant symbol [·], and where this symbol occurs exactly once in the term. Hence,
the smallest context contains just the hole and has size 1. If C and D are contexts
and s is a term, CD and Cs represent the context and the term that are like C

except that the occurrence of [·] is replaced by D and s, respectively. If D1 = D2D3

for contexts D1, D2, D3, then D2 is called a prefix of D1, and D3 is called a suffix of
D1. The position of the hole in a context C is called hole path, and denoted hp(C),
and its length is denoted as |hp(C)|.

A substitution is a mapping X → T (F ,X) ∪ C(F ,X) relating first-order vari-
ables to terms, and context variables to contexts. Substitutions can also be ap-
plied to arbitrary terms by homomorphically extending them by σ(f(t1, . . . , tm)) =
f(σ(t1), . . . , σ(tm)) and σ(F (t)) = σ(F)σ(t).

An instance of the context unification problem is a set of equations ∆ = {s1
.
=

t1, . . . , sn
.
= tn}, where the si, ti are terms in T (F ,X). The question is to compute

a substitution σ (the solution), such that σ(si) = σ(ti) for all i. The context
matching problem is a particular case of context unification where one of the sides
of each equation in ∆ is ground.

With [i, n] we denote the set {i, i+ 1, . . . , n} ⊆ N.

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

Unification and Matching on Compressed Terms · 5

2.1 Compressed term representation

Definition 2.1. A singleton context-free grammar (SCFG) G is a 3-tuple
〈N ,Σ, R〉, where N is a set of non-terminals, Σ is a set of symbols (a signature),
and R is a set of rules of the form N → α where N ∈ N and α ∈ (N ∪ Σ)∗.
The sets N and Σ must be disjoint, each non-terminal X appears as a left-hand
side of just one rule of R, and there exists a well founded ordering >G such that
X → r1Y r2 ∈ R implies X >G Y for any X,Y ∈ N . The word generated by a
non-terminal N of G, denoted by wG,N or wN when G is clear from the context, is
the word in Σ∗ reached from N by successive applications of the rules of G.

Definition 2.2. A singleton tree grammar (STG) is a 4-tuple G =
(T N , CN ,Σ, R), where T N are tree/term non-terminals, or non-terminals of arity
0, CN are context non-terminals, or non-terminals of arity 1, and Σ is a signature
of function symbols (the terminals), such that the sets T N , CN , and Σ are pairwise
disjoint. The set of non-terminals N is defined as N = T N ∪ CN . The rules in R

may be of the form:

—A → α(A1, . . . , Am), where A,Ai ∈ T N , and α ∈ Σ is an m-ary terminal symbol.

—A → C1A2 where A,A2 ∈ T N , and C1 ∈ CN .

—C → [·] where C ∈ CN .

—C → C1C2, where C,C1, C2 ∈ CN .

—C → α(A1, . . . , Ai−1, Ci, Ai+1, . . . , Am), where A1, . . . , Ai−1, Ai+1, . . . , Am ∈
T N , C,Ci ∈ CN , and α ∈ Σ is an m-ary terminal symbol.

—A → A1, (λ-rule) where A and A1 are term non-terminals.

Let N1 >G N2 for two non-terminals N1, N2, iff (N1 → t), and N2 occurs in t. The
STG must be non-recursive, i.e. the transitive closure >+

G must be terminating.
Furthermore, for every non-terminal N of G there is exactly one rule having N as
left-hand side. Sometimes we refer to the right-hand side of this rule as the definition
of N in G. Given a term t with occurrences of non-terminals, the derivation of t by
G is an exhaustive iterated replacement of the non-terminals by the corresponding
right-hand sides. The result is denoted as wG,t. In the case of a non-terminal N
we also say that N generates wG,N . We will write wN when G is clear from the
context.

Note that we have used Σ instead of F for denoting the set of terminals of
the grammar, although it is also a signature. We explain the reasons as follows.
In this paper, STGs are used for representing terms and contexts. In particular,
a terminal A of an STG G generates a term. If Σ was F we would be able to
represent just ground terms. But we want to represent non-ground terms, i.e.
terms with occurrences of first-order and context variables. Thus, Σ must also
contain variables, of arity 0 if they are first-order variables, and of arity 1 if they
are context variables. We will represent a substitution application {V → t} by
converting the variable V from a terminal into a non-terminal of the grammar and
adding the necessary rules such that it generates t. Thus, in this setting, variables
can be represented both by terminals and non-terminals of the grammar.
Given an STG G = (T N , CN ,Σ, R) we can refer to the set T (T N ∪ CN ∪Σ) of

terms over the terminals and non-terminals of G where symbols in T N have arity 0

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

6 · A. Gascón, G. Godoy and M. Schmidt-Schauß

and symbols in CN have arity 1. Similarly, we can refer to the set C(T N ∪CN ∪Σ)
of contexts over the terminals and non-terminals of G.
With respect to the notation used in this paper, we denote indiscriminately terms

in T (T N ∪ CN ∪Σ), and T (F ,X) by s, t, u, v, with possible indexes, since at each
point of this paper it is clear from the context to which set we refer. By capital
letters A,B we refer to term non-terminals and by C,D we refer to context non-
terminals of a given STG. By N we denote a non-terminal of the grammar in
general. We denote by α the terminals of the grammar in general, by f, g the
terminals of the grammar which represent a function symbol, by F , with possible
indexes, both the terminals and non-terminals of the grammar representing context
variables, and finally, we denote by x, y, z both the terminals and non-terminals of
the grammar representing first-order variables.
Now that the set T (T N ∪ CN ∪ Σ) has been introduced, given a term t ∈

T (T N ∪ CN ∪ Σ), we can define wG,t more formally.

Definition 2.3. Let G = (T N , CN ,Σ, R) be an STG. Let t be a term in T (T N ∪
CN ∪Σ) or a context in C(T N ∪CN ∪Σ). Then, we define wt recursively as follows.

—If t = α(t1, . . . , tn) for some terminal α ∈ Σ of aritym then wt = α(wt1 , . . . , wtn).

—If t = N for some non-terminal N of G with a rule N → u ∈ R then wt = wu.

—If t = C(t1) for some context non-terminal C of G then wt = wCwt1 .

—If t = [·] then wt = [·].

Definition 2.4. Let G = (T N , CN ,Σ, R) be an STG. Let S be a set of non-
terminals of G. We define restriction(G,S) = (T N ′, CN ′,Σ, R′) as the STG
where T N ′ ⊆ T N , CN ′ ⊆ CN , and R′ ⊆ R are the smallest sets such that
G′ = restriction(G,S) satisfies wG′,N = wG,N for each non-terminal N in S.

A directed acyclic graph (dag) can be defined as a particular case of an STG (in
fact, this representation is in direct correspondence with the classic implementation
of dags using adjacency lists).

Definition 2.5. A DAG is an STG where the set of context non-terminals CN is
empty, and moreover, there are only rules of the form A → f(A1, . . . , Am).

Example 2.6. The STG {A0 → f(A1, A1), A1 → f(A2, A2), . . . , An−1 →
f(An, An) An → a} is a DAG that represents the complete binary tree of height n
over a function symbol f and a constant a. The size of this term is exponential,
whereas its height is linear.

Nevertheless, STG-represented terms may have exponential height in the size
of the grammar in contrast to dags, which only allow for a linear height in the
(notational) size of the dags.

Example 2.7. The STG {C0 → C1C1, C1 → C2C2, C2 → C3C3, . . . , Cn−1 →
CnCn, Cn → g(C), C → [·]} represents the context wC0

= g2
n

[·], whose height is
exponential. This is not a DAG.

A DAG G is called optimally compressed if equal terms are represented by the
same term non-terminal. The test whether a DAG is optimally compressed can
be performed in time O(n · logn), and a transformation into optimally compressed
form in time O(n · logn).

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

Unification and Matching on Compressed Terms · 7

Definition 2.8. The size |G| of an STGG is the sum of the sizes of its rules, where
the size of a rule N → u is 1 + |u|. The depth within G of a non-terminal N is
defined recursively as depth(N) := 1 + max{depth(N ′) | N ′ is a non-terminal in u

where N → u ∈ G} and the maximum of an empty set is assumed to be 0. The
depth of a grammar G is the maximum of the depths of all non-terminals of G, and
it is denoted as depth(G).

If the signature is fixed, then we could also use the number of rules as a complexity
measure of STGs.
Plandowski [Plandowski 1994; 1995] proved decidability in polynomial time for

the word problem for SCFGs, i.e., given an SCFG P and two non-terminals A and
B, to decide whether wA = wB. The best complexity for this problem has been
obtained recently by Lifshits [Lifshits 2007] with time O(|P |3). In [Busatto et al.
2005; Schmidt-Schauß 2005; Busatto et al. 2008] Plandowski’s result is generalized
to STGs. Since the result in [Busatto et al. 2005] is based on a linear reduction
from terms to words and a direct application of Plandowski’s result, it also holds
for the Lifshits result. Hence, we have the following.

Theorem 2.9. ([Lifshits 2007; Busatto et al. 2005; 2008]) Given an STG G,
and two tree non-terminals A,B from G, it is decidable in time O(|G|3) whether
wA = wB .

Several properties of STGs are efficiently decidable. The following lemmas will
be used all along the paper.

Lemma 2.10. Let G be an STG. The number |wN |, for every non-terminal N
of G, is computable in time O(|G|).

Proof. We give an alternative definition of |wN | recursively as follows.

—if (N → f(N1, . . . , Nm) ∈ G) then |wN | = 1 + |wN1
| + . . . + |wNm

|, where
N1, . . . , Nm are non-terminals of G and f is a function symbol with ar(f) = m.

—if N → C1N2 then |wN | = |wC1
|+ |wN2

| − 1, where C1 is a context non-terminal
and N2 is a non-terminal of G.

The correctness of the above definition can be shown by induction on the size of
wN . Moreover, since the recursive calls in the definition of |wN | will be done, at
most, over all the non-terminals of G, |wN | is computable in linear time over |G|
using a dynamic programming scheme.

Lemma 2.11. Given an STG G, a terminal α, and a non-terminal N of G, it
is decidable in time O(|G|) whether α occurs in wN .

Proof. Whether α occurs in wN can be computed efficiently again using a
dynamic programming scheme: note that α occurs in wN iff either wN → α ∈ G,
or α occurs in wN ′ for some non-terminal N ′ occurring in the right-hand side of
the rule for N .

3. A PTIME ALGORITHM FOR K-CONTEXT MATCHING WITH DAGS

The context matching problem is NP-complete [Schmidt-Schauß and Schulz 1998].
In this section we reconsider this problem by introducing the additional restriction

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

8 · A. Gascón, G. Godoy and M. Schmidt-Schauß

stating that the maximum number k of different context variables of a given instance
is fixed for the problem. We refer to this problem as k-context matching, which is
in fact a family of problems indexed by k. Our goal is to prove that a complete
representation of all solutions is computable in polynomial time when the input
terms are represented with dags. This variant is called k-context matching with
dags (k-CMD problem).
Our algorithm is presented as non-deterministic, but where the guessing can

choose only from a polynomial number of possibilities. In Subsection 3.1, we solve
the problem for the simpler case of uncompressed terms. This case is easy, but
serves for a better understanding of some ideas appearing later, and shows the use
of the non-determinism for simplifying explanations. In Subsection 3.2, we explain
a situation where the context solution for a context variable can be inferred. It
is used several times in the algorithm. In Subsection 3.3, we give the intuition
behind the algorithm in order to help understanding the technical difficulties. In
Subsection 3.4 we specify the data representation used in the algorithm, based on
STGs. We explain the advantages of using STGs for representing dags, such as
clarity, but also simplicity when analyzing complexity of the required operations
for this problem. In Subsection 3.5 we present the set of rules of the algorithm,
prove that they are sound and complete, and that they give in fact a complete
representation of all the solutions for the initial set of equations. In Subsection 3.6
we analyze complexity issues.

3.1 k-Context Matching for Uncompressed Terms

A non-deterministic polynomial time algorithm with few guessings can be easily
obtained for the k-context matching problem. Suppose we are given an instance
{s

.
= t} of the problem, where t is a ground term and s contains at most k different

context variables. Any solution of {s
.
= t} instantiates every context variable by a

context occurring in t. The number of different contexts in t is bounded by |t|2.
This is because any context occurring in t can be defined by two positions of t:
the root position and the hole position of the context. Hence, it suffices to do
at most k guessings of contexts for the context variables among |t|2 possibilities.
After applying this partial substitution, we have to check if the resulting first-
order matching problem has a solution. Since k is assumed to be fixed, the overall
execution time is polynomial.
When the input is compressed with dags, the problem becomes more difficult. In

particular, the number of different contexts of the right-hand side can be exponential
in the size of the input. For example, t1 defined by t1 = f(t2, t

′
2), t2 = f(t3, t

′
3), t

′
2 =

f(t′3, t3), . . . , tn = f(a, b), t′n = f(b, a) has 2n−1 different contexts with the argument
a, which precludes an efficient test for all contexts, e.g. in the matching problem
F (f(f(b, a), f(a, b)))

.
= t1.

3.2 Inferring the Joint Context

One of the key points for obtaining a polynomial time algorithm is the fact that
in some cases, the (joint) context solution for a context variable can be inferred.
Consider the simple case where we have two matching equations of the form F (s)

.
=

u and F (t)
.
= v, and suppose that u and v are different. Suppose also that we know

the existence of a solution σ for these equations, but the only known information

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

Unification and Matching on Compressed Terms · 9

for σ is |hp(σ(F))|, i.e. just the length of the hole position of σ(F) and nothing else.
It can be proved that this information suffices to obtain σ(F). With this aim we
define below JointCon(u, v, l) for any terms u and v, and natural number l, which
intuitively corresponds to the supposed |hp(σ(F))|.

Definition 3.1. Let u 6= v be terms, let l ∈ N. We define JointCon(u, v, 0) to be
the empty context [·]. We also define JointCon(f(u1, . . . , um), g(v1, . . . , vm), l +
1) = f(u1, . . . , ui−1, JointCon(ui, vi, l), ui+1, . . . , um) in the case where f = g

and there exists i ∈ [1,m] such that uj = vj for all j 6= i. Otherwise,
JointCon(f(u1, . . . , um), f(v1, . . . , vm), l + 1) is undefined.

Note that in the second case of the previous definition, if f = g and such an i exists,
then it is unique. This is because f(u1, . . . , um) and g(v1, . . . , vm) are different, and
hence, uj = vj for all j 6= i implies that ui 6= vi.

Example 3.2. Let u, v, w be f(a, g(h(a, a), c), b), f(a, g(h(b, b), c), b) and
g(f(a, b, c), b), respectively. Then, JointCon(u, v, 0) = JointCon(u,w, 0) = [·],
JointCon(u, v, 1) = f(a, [·], b), JointCon(u,w, 1) is undefined, JointCon(u, v, 2) =
f(a, g([·], c), b), and JointCon(u, v, 3) is undefined.

Lemma 3.3. Let s, t, u, v be terms with u 6= v. Let σ be a solution of {F (s)
.
=

u, F (t)
.
= v}. Then σ(F) = JointCon(u, v, |hp(σ(F))|).

Proof. We prove the claim by induction on |hp(σ(F))|. If |hp(σ(F))| is 0, then
σ(F) is [·], which coincides with JointCon(u, v, |hp(σ(F))|). Now, suppose that
|hp(σ(F))| is l+1 for some natural number l. This implies that σ(F) is of the form
f(w1, . . . , wi−1, C[·], wi+1, . . . , wm) for some function symbol f and some i ∈ [1,m].
Since σ is a solution of {F (s)

.
= u, F (t)

.
= v}, then u and v are of the form

f(u1, . . . , um) and f(v1, . . . , vm), respectively. For the same reason, wj = uj = vj
for all j 6= i, and moreover, σ(C[s]) = ui and σ(C[t]) = vi. Since u 6= v holds,
we also have ui 6= vi. Consider a new context variable F ′ and the extension
of σ as σ(F ′) = C[·]. Then, σ is also a solution of {F ′(s)

.
= ui, F

′(t)
.
= vi}.

Note that |hp(σ(F ′))| is l, which is smaller than |hp(σ(F))|. By induction
hypothesis, σ(F ′) = JointCon(ui, vi, |hp(σ(F ′))|). Hence, we conclude σ(F) =
f(w1, . . . , wi−1, C[·], wi+1, . . . , wm) = f(w1, . . . , wi−1, σ(F

′), wi+1, . . . , wm) =
f(w1, . . . , wi−1, JointCon(ui, vi, |hp(σ(F

′))|), wi+1, . . . , wm) =
JointCon(u, v, |hp(σ(F))|)

3.3 The Intuition Behind the Algorithm

The algorithm is presented as a set of non-deterministic rules, since this is easier to
explain. When we reason about its complexity, we argue about the determinized
version that computes all guessing possibilities.
As already mentioned, we cannot directly guess a context of the right-hand side

for every context variable, since there may be exponentially many contexts. In
spite of this fact, we show that making an adequate use of the cases where the
joint context can be inferred, the number of possibilities for each guessing can be
drastically reduced. This fact allows us to use this approach also for the case when
terms are represented with dags.
After some standard applications of simplification and first-order variable elimi-

nation, we can assume that any match-equation in the set ∆ is of the form F (s)
.
= t,

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

10 · A. Gascón, G. Godoy and M. Schmidt-Schauß

for some context variable F . Now, our goal is to remove one context variable by
performing a guess, where the overall number of possibilities remains polynomial.
Suppose first that ∆ contains two equations of the form F (s1)

.
= t1 and F (s2) =

t2 with t1 6= t2. Then we can infer the context as in the last subsection. However,
we still need the length of the hole position of σ(F), for a possible solution σ. But
this length can be guessed from [0, min(height(t1), height(t2))] which is linear in
the input size.
Another situation is when ∆ is of the form {F (s1)

.
= t, . . . , F (sn)

.
= t} ∪ ∆′

for some term t and F does not occur elsewhere. In this case, a solution σ for
∆ necessarily satisfies that σ(F) is a certain context C such that t is of the form
C[t′] for some subterm t′ of t. Although there are exponentially many ways of
choosing C, any of them can be used. Hence, we only have to look for t′, which can
be guessed among only a linear number of possibilities. Then the problem can be
reduced to {s1

.
= t′, . . . , sn

.
= t′} ∪∆′. Note that the variable F does not appear

any more.
Now, suppose that some context variable has an occurrence at some non-root

position in some term occurring in ∆. A particular case occurs when there is an
equation F (s)

.
= t in ∆ such that a subterm of s is of the form F (s′), i.e. the context

variable F appears twice, at the root, and at some other position. Any possible
solution σ satisfies that either σ(F) is the empty context [·], which can be decided
with a guessing, or else σ(F (s′)) equals a proper subterm t′ of t. In the latter case,
the pair of equations {F (s)

.
= t, F (s′)

.
= t′} with t 6= t′ allows us to proceed again

by inferring the context, as in the first case.
If none of the previous cases hold, then there exist equations F1(s1)

.
= t1, F2(s2)

.
=

t2, . . . , Fn(sn)
.
= tn in ∆, where F1 occurs in s2, F2 occurs in s3, and so on,

and Fn occurs in s1. In this sequence there is a maximal height term, say t1.
Thus, height(t1) ≥ height(t2). Note that s2 contains a subterm of the form
F1(s

′
2). Then, similarly as above, either σ(F2) = [·] or we can use the equations

F1(s1)
.
= t1, F1(s

′
2)

.
= t′2, with t′2 chosen from the proper subdags of t2, to infer

σ(F2).
With this approach each one of the k context variables is instantiated by a guess-

ing among a polynomial number of possibilities. Hence, at this point we can bring
forward that the final cost of the algorithm will be exponential in k, which is a
constant of the problem. However, we also need to choose a representation for dags
that allows to efficiently instantiate both first-order and context variables. This is
done in the next section.

3.4 Dag Representation of the k-CMD Algorithm

Before presenting our algorithm for the k-CMD problem in detail, it is necessary
to define how we represent dags and how our algorithm deals with such a represen-
tation. As stated in Definition 2.5, dags can be represented as a DAG, which is a
particular case of an STG, i.e an STG which does not have context non-terminals.
For reasons that will be made clear soon we encode dags using this representation.

Definition 3.4. An instance of the k-context-matching problem with dags is
a pair 〈∆, G〉 where the STG G is a dag and ∆ is a set of equations {As1

.
=

At1 , . . . , Asn

.
= Atn}, where each Asi and each Ati is a term non-terminal of G, and

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

Unification and Matching on Compressed Terms · 11

each wAti
is ground. The question is to compute a substitution σ (the solution) for

the variables such that σ(wAsi
) = wAti

for every equation i in ∆.

During the execution of the k-CMD algorithm, the equations are processed, and
G is transformed in order to represent the partial solution at each step. More
concretely, first-order variables are converted into term non-terminals, and context
variables are converted into context non-terminals, whose generated terms and
contexts represent substitutions of a partial solution. By variables we mean the
variables of the problem and by function symbols we mean the terminals of the
grammar which are not variables although, initially, all of them are terminals of
the grammar. The initial G has no context non-terminals, and it may incorporate
them in order to represent that the context variables have been instantiated.
Our algorithm just instantiates variables by transforming them into non-

terminals and adding rules for them, but does not change original rules. This
ensures that right-hand sides of equations always represent subterms of an orig-
inal wG,Ati

. Hence, although context variables are created during the execution,
right-hand sides are always represented by a subset of the initial G, which continues
being a dag according to Definition 2.5.
Using STGs for describing dags, instead of just talking about dags understood

as directed acyclic graphs, has several advantages. First, we do not have to think
about nodes and arrows. STGs are more syntactic and it is easier and clearer to
add or remove rules to/from an STG than to talk about redirecting arrows, new
inserted nodes, etc. Second, the formalism of STGs is an improvement in clarity
and simplicity with respect to the usual concept of solved form for representing
partial and final solutions. At the end of the execution, the obtained substitution
for a first order variable x will be wx, i.e. this variable will be a term non-terminal,
and its generated term will be the substitution computed for it. Analogously,
a context variable F will be transformed into a context non-terminal, and the
substitution computed for it will be wF . Third, analyzing the size increase of the
representation due to variable instantiation is much simpler: adding a rule F → α

for a context variable F and transforming F into a context non-terminal is easy
to analyze, whereas replacing each node in the dag labeled with F by new nodes
representing its substitution is a more complicated operation. On the other hand,
this representation has the disadvantage that the set of equations is not enough by
itself, but needs the STG. For this reason, our algorithm needs to use the rules of G
and perform some replacements of non-terminals by their corresponding definition.
There is a case where our algorithm has to guess a partial solution from an

exponential number of possibilities. This happens when we have equations F (s1)
.
=

t, . . . , F (sn)
.
= t, and the context variable F does not appear elsewhere. In this

case, the only important information to be kept is which subterm t′ of t has to be
selected in order to generate the equations s1

.
= t′, . . . , sn

.
= t′. The solution for F

might be any context C such that Ct′ = t, that is, the hole position of the solution
of F is any path from the root of t to an occurrence of t′. We do not want to guess
C from an exponential number of possibilities. Unfortunately, these exponentially
large set of contexts cannot be represented by G. For this reason, in the algorithm
we have a third component, apart from the set of equations ∆ and the STG G,
representing the possible elections for the variables F of this kind. This component

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

12 · A. Gascón, G. Godoy and M. Schmidt-Schauß

is a set of expressions of the form F ∈ Contexts(A,A′), representing that F can
be replaced by any context C such that CwA′ = wA. Hence, our algorithm deals
with triples 〈∆, G,Γ〉 where Γ is the set containing this kind of expressions.
As a last ingredient, we need to adapt the operation JointCon, presented in

Section 3.2, to our representation.

Definition 3.5. Let G be an STG and A,B be two term non-terminals of G such
that wA 6= wB and restriction(G, {A,B}) is a DAG representing ground terms.
Let l be a natural number.
Then, JointCG(G,A,B, l) is defined as an extension of G recursively as fol-

lows. JointCG(G,A,B, 0) contains G plus the rule C → [·], where C is
a new context non-terminal. For the case of JointCG(G,A,B, l + 1), if the
rules of A and B are of the form A → f(A1, . . . , Ai−1, Ai, Ai+1, . . . , An) and
B → f(A1, . . . , Ai−1, Bi, Ai+1, . . . , An), for some i satisfying wAi

6= wBi
,

then JointCG(G,A,B, l + 1) contains JointCG(G,Ai, Bi, l), which has a con-
text non-terminal C′ generating JointCon(wAi

, wBi
, l), plus the rule C →

f(A1, . . . , Ai−1, C
′, Ai+1, . . . , An), where C is a new context non-terminal. In any

other case, JointCG(G,A,B, l + 1) is undefined.

Lemma 3.6. Let G be an STG and A,B be two term non-terminals of G such
that wA 6= wB and restriction(G, {A,B}) is a DAG representing ground terms.
Let l be a natural number. Assume also that restriction(G, {A,B}) is compressed
optimally, i.e. equal terms are represented by the same term non-terminal.
Then, JointCG(G,A,B, l) adds at most depth(G) new context non-terminals

to G, and has one symbol generating JointCon(wA, wB , l). Moreover, all the
added context non-terminals C have rules which are of the form C → [·] or
C → f(A1, . . . , Ai−1, C

′, Ai+1, . . . , An), where the terminal f is necessarily a func-
tion symbol, i.e. it is not a variable. The time complexity of this construction is
O(depth(G)).

Definition 3.7. Let G be an STG and A,B be two term non-terminals of G such
that wA 6= wB and restriction(G, {A,B}) is a DAG representing ground terms..
Let F be a context variable which is a terminal of arity 1 of G. Let l be a natural
number. Assume also that restriction(G, {A,B}) is compressed optimally, i.e.
equal terms are represented by the same term non-terminal.
Then, JointCGF(G,F,A,B, l) is an STG obtained from JointCG(G,A,B, l),

which has a context non-terminal C not occurring in G and generating the context
JointCon(wA, wB , l), by transforming F into a context non-terminal, and replacing
the non-terminal C by F everywhere.

3.5 Rules of the k-CMD Algorithm

Definition 3.8. The k-CMD algorithm is presented in figures 1, 2 and 3 as a
set of transformation rules which deal with triples 〈∆, G,Γ〉, where ∆ is a set of
equations defined over an STG G, where the right hand sides of equations are non-
terminals in a DAG representing ground terms, and Γ is a set of expressions each one
representing all solutions for a context variable, as described in the previous section.
We assume that, initially, equal subterms in the right-hand sides of equations are
represented by the same term non-terminal, i.e. optimal dag compression is used.

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

Unification and Matching on Compressed Terms · 13

Unfold1:

〈

∆ ∪ {A
.
= B}, G = (T N ∪ {A,B}, CN ,Σ, R ∪ {A → u}),Γ

〉

〈∆ ∪ {u
.
= B}, G,Γ〉

Unfold2:

〈

∆ ∪ {CA
.
= B}, G = (T N ∪ {A,B}, CN ∪ {C},Σ,

R ∪ {C → f(A1, . . . , Ci, . . . , Am)}),Γ
〉

〈∆ ∪ {f(A1, . . . , CiA, . . . , Am)
.
= B}, G,Γ〉

Unfold3:

〈

∆ ∪ {CA
.
= B}, G = (T N ∪ {A,B}, CN ∪ {C},Σ, R ∪ {C → [·]}),Γ

〉

〈∆ ∪ A
.
= B}, G,Γ〉

Fig. 1. Unfold-Rules of the k-CMD Algorithm

Decompose:

〈

∆ ∪ {f(u1, . . . , um)
.
= B}, G = (T N ∪ {B1, . . . , Bm},

CN ,Σ ∪ {f}, R ∪ {B → f(B1, . . . , Bm)}),Γ
〉

〈∆ ∪ {u1
.
= B1, . . . , um

.
= Bm}, G,Γ〉

where f is a function symbol (m = arity(f))

Fail:

〈

∆ ∪ {f(u1, . . . , um)
.
= B)}, G = (T N ∪ {B1, . . . , Bm′},

CN ,Σ ∪ {f, g}, R ∪ {B → g(B1, . . . , Bm′)),Γ
〉

⊥
where f 6= g are function symbols (m = arity(f), m′ = arity(g))).

Elimx:

〈

∆ ∪ {x
.
= B}, G = (T N ∪ {B}, CN ,Σ ∪ {x}, R),Γ

〉

〈∆ ∪ {x
.
= B}, G′ = (T N ∪ {B, x}, CN ,Σ, R ∪ {x → B}),Γ〉

where x is a first-order variable and a terminal.

Fig. 2. First-Order-Rules of the k-CMD Algorithm

This will hold during the execution. Given an instance of the problem 〈{As1

.
=

At1 , . . . , Asn

.
= Atn}, G〉, the starting triple is 〈{As1

.
= At1 , . . . , Asn

.
= Atn}, G, ∅〉,

and the constant L occurring in the rules is max1≤i≤n(height(wG,Ati
)).

There are two kinds of choices the algorithm can do. On the one side there are
the “don’t care” selections, which include the strategy stating which rule is applied
and the selection of the equations involved in the rule application. On the other
side we have the guessings, which make the algorithm non-deterministic. Those
correspond to the decisions marked as “guessed” in the conditions of the rules, but
also to the selection performed when the resulting part of a rule has a disjunction.

We differentiate our set of inference rules in two disjoint subsets. We call the
first rules unfolding rules (see Fig. 1), since their purpose is to replace the non-
terminals of G occurring in the equations by their definition in G. Hence, these
rules are related to our grammar-based representation for dags. We refer to the rest
of the rules as solving rules, since they represent the actual algorithm as described
in Section 3.3; these are splitted into the first-order rules (see Fig. 2) and the
context-variable rules (see Fig. 3). The application of solving rules transforms the

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

14 · A. Gascón, G. Godoy and M. Schmidt-Schauß

ElimF1:

〈

∆ ∪ {F (A1)
.
= B1, F (A2)

.
= B2},

G = (T N ∪ {A1, A2, B1, B2}, CN ,Σ ∪ {F}, R),Γ
〉

〈∆ ∪ {F (A1)
.
= B1, F (A2)

.
= B2}, G′ = JointCGF(G,F,B1, B2, l),Γ〉

where F is a context variable and a terminal and wB1
6= wB2

. l is guessed over
[0, L] such that JointCG(G,B1, B2, l) is defined.

ElimF2:

〈

∆ ∪ {F (A1)
.
= B,F (A2)

.
= B, . . . , F (An)

.
= B},

G = (T N ∪ {A1, . . . , An, B,B′}, CN ,Σ ∪ {F}, R),Γ
〉

〈∆ ∪ {A1
.
= B′, A2

.
= B′, . . . , An

.
= B′}, G,Γ ∪ {F ∈ Contexts(B,B′)}〉

where F is a context variable and a terminal not occurring in the wAi
’s, nor

wu, for all equations u
.
= v ∈ ∆. B′ is guessed over the term non-terminals of

restriction(G, {B}).

ElimF3:

〈

∆ ∪ {F (A)
.
= B}, G = (T N ∪ {A,B,B′}, CN ,Σ ∪ {F}, R),Γ

〉

〈

∆ ∪ {F (A)
.
= B}, G = (T N ∪ {A,B,B′}, CN ∪ {F},

Σ, R ∪ {F → [·]}),Γ
〉

∣

∣ 〈∆ ∪ {F (A)
.
= B}, G′ = JointCGF(G,F,B,B′, l),Γ〉

where F is a context variable and a terminal occurring in wA. The term non-
terminal B′ is guessed over the term non-terminals of restriction(G,B) excluding
B, and l is guessed over [1, L] such that JointCG(G,B,B′, l) is defined.

ElimF4:

〈

∆ ∪ {F1(A1)
.
= B1, F2(A2)

.
= B2},

G = (T N ∪ {A1, A2, B1, B2, B
′
2}, CN ,Σ ∪ {F1, F2}, R),Γ

〉

〈

∆ ∪ {F1(A1)
.
= B1, F2(A2)

.
= B2}, G = (T N ∪ {A1, A2, B1, B2, B

′
2},

CN ∪ {F2},Σ ∪ {F1}, R ∪ {F2 → [·]}),Γ
〉

∣

∣ 〈∆ ∪ {F1(A1)
.
= B1, F2(A2)

.
= B2}, G

′ = JointCGF(G,F1, B1, B
′
2, l),Γ〉

where F1 6= F2 are context variables that are terminals, F1 occurs in wA2
,

and height(wB1
) ≥ height(wB2

). B′
2 is guessed over the term non-terminals

of restriction(G, {B2}) excluding B2, and l is guessed over [0, L] such that
JointCG(G,B1, B

′
2, l) is defined.

Fig. 3. Elim-F-Rules of the k-CMD Algorithm

set of equations into a new set. Depending on the case, more than one rule can be
applied to a given set of equations. Hence, the inference system represents, in fact,
a family of algorithms, depending on the strategy for deciding which rule to apply
and to which subset of equations. As commented before, our initial set of equations
is of the form {As1

.
= At1 , . . . , Asn

.
= Atn}. But after applying the transformation

rules, the form of these equations may change. Nevertheless, at any step of the
algorithm the current equations are simple, according to the following definition.

Definition 3.9. Let G = (T N , T C,Σ, R) be an STG, and let u
.
= v be an equa-

tion, where u, v ∈ T (T N ∪ T C ∪Σ). The equation u
.
= v is called simple over G if

it is of one of the following forms.

—A
.
= B

—CA
.
= B

—α(A1, . . . , Am)
.
= B

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

Unification and Matching on Compressed Terms · 15

—f(A1, . . . , Ai−1, CiA,Ai+1, . . . , Am)
.
= B,

where A is a term non-terminal of G, B is a term non-terminal of G representing
a ground term, C is a context non-terminal of G, and the terms α(A1, . . . , Am) and
f(A1, . . . , Ai−1, Ci, Ai+1, . . . , Am) are right-hand sides of rules of G, for a terminal
α, a terminals f , which is also function symbols, term non-terminals A1, . . . , Am,
and a context non-terminal Ci. Variables can only occur as some α.

The following lemma shows that no rule of the form C → C1C2 occurs in the
k-CMD algorithm.

Lemma 3.10. Let 〈∆, G,Γ〉 be a triple obtained by our algorithm at any point of
the execution. Then, the rules of G are of the following forms.

—A → A1

—A → α(A1, . . . , Am),

—A → CA1

—C → f(A1, . . . , Ai−1, Ci, Ai+1, . . . , Am)

—C → [·]

where A,A1, A2, . . . , Am are term non-terminals of G, C,Ci are context non-
terminals of G, α is a terminal of G, and f is a terminal of G, which is also a
function symbol.

Proof. We prove the lemma by induction on the number of applied inference
rules. For the base case, note that the lemma holds for the STG G0 given as
input since, by Definitions 2.5 and 3.4, all the rules in G0 are of the form A →
α(A1, . . . , Am) for some term non-terminals A1, . . . , Am and a terminal α of G0.
For the induction case, let 〈∆′, G′,Γ′〉 be the triple from which 〈∆, G,Γ〉 was

obtained by an inference rule application. By induction hypothesis 〈∆′, G′,Γ′〉 sat-
isfies the conditions of the lemma. We distinguish cases according to the inference
rule applied to 〈∆′, G′,Γ′〉 in order to show that the rules in G follow the conditions
of the lemma. Note that for the inference rules that do not modify the STG (un-
folding rules, Decompose, Fail, and ElimF2), this is straightforward. Otherwise,
if Elimx was the applied rule, x became a term non-terminal and a rule of the
form x → A was added to G′ for some terminal x representing a first-order variable
and term non-terminal A. Note that the added rule satisfies the conditions of the
lemma. Finally, if the applied rule was either ElimF1,ElimF3, or ElimF4 then
either G was extended by the JointCon construction or a rule F → [·] was added
to G′, for some context variable F . By Lemma 3.6, in both cases all the added
rules satisfy the condition of the lemma.

Lemma 3.11. Let 〈∆, G,Γ〉 be the triple obtained by our algorithm at a point of
the execution. Then, the set ∆ consists of simple equations over G.

Proof. Since for the triple given as input 〈∆0, G0,Γ0 = ∅〉 all the equations in
∆ are of the form As

.
= At for some term non-terminals As, At in G0, the state-

ment of the Lemma holds in this case. Hence, for proving this lemma it suffices
to check that after an inference step where 〈∆, G,Γ〉 was obtained from a triple
〈∆′, G′,Γ′〉, each new equation in ∆ is simple over G. Checking this is an easy task

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

16 · A. Gascón, G. Godoy and M. Schmidt-Schauß

for rules Fail,Elimx, ElimF1, ElimF2, ElimF3, ElimF4, Unfold2, and Un-

fold3, since the new produced equations are explicitly defined. For Decompose

the result follows by induction hypothesis. Finally, the produced equations due to
the application of Unfold1 are of the form u

.
= B, where B is a term non-terminal

and u corresponds to a right-hand side of a rule in G′ and hence, they satisfy the
condition to be simple over G due to Lemma 3.10.

Before proving soundness, completeness and termination of our inference system
we should define a notion of solution of the triples the k-CMD algorithm deals with.

Definition 3.12. A solution of 〈∆, G,Γ〉 is a substitution σ such that σ(wG,u) =
wG,v for each equation u

.
= v in ∆, σ(wG,x) = σ(x) for each first-order variable x,

and σ(wG,F) = σ(F) for each context variable F . Furthermore, for each context
variable F such that (F ∈ Contexts(A1, A2)) ∈ Γ, where A1 and A2 are term
non-terminals of G, it holds that σ(F)wG,A2

= wG,A1
.

Let 〈∆, G,Γ〉 be a triple generated by our algorithm at any point of the execution.
Note that some of the variables may have been isolated and, hence, the STG G was
extended in order to represent the corresponding instantiations. As stated in the
previous definition, a solution of 〈∆, G,Γ〉 has to be consistent with this extensions.
The following lemma, together with the definition of a solution σ of 〈∆, G,Γ〉, states
that our representation for partial solutions by extending the grammar is correct
in the sense that the same term is obtained by applying a solution to the term
generated by G before and after such an extension. It will be helpful when proving
soundness and completeness.

Lemma 3.13. Let G = (T N , CN ,Σ ∪ {V }, R) be an STG obtained at any point
of the execution of the k-CMD algorithm. Let V be a terminal of G representing
either a first-order or a context variable. Let G′ be the STG obtained from G by
converting V into a non-terminal of the grammar and adding some new rules and
non-terminals such that V generates a certain term or context wG′,V . Let σ be a
substitution such that σ(V) = σ(wG′,V). Let t be a term in T (T N ∪CN ∪Σ∪{V })
or a context in C(T N ∪ CN ∪ Σ ∪ {V }). Then, σ(wG,t) = σ(wG′,t).

Proof. The proof is an easy induction on the size of t and the number of rule
application s to derive wG,t.

Lemma 3.14. The set of rules is sound.

Proof. Let 〈∆′, G′,Γ′〉 be the triple obtained by our algorithm by applying an
inference step on 〈∆, G,Γ〉. By inspecting the rules, we can check that every solution
σ of 〈∆′, G′,Γ′〉 is also a solution of 〈∆, G,Γ〉: We distinguish cases depending on
which rule was applied for obtaining 〈∆′, G′,Γ′〉 from 〈∆, G,Γ〉.

Note that the rules Elimx, ElimF1, ElimF3 and ElimF4 instantiate either a
first-order or a context variable V . Therefore, if one of those rules was the rule
applied to 〈∆, G,Γ〉 then G′ was obtained from G by transforming V into a non-
terminal of the STG and adding some non-terminals and their corresponding rules
such that V generates wG′,V . By Definition 3.12, for being a solution of 〈∆′, G′,Γ′〉,
σ satisfies σ(V) = σ(wG′,V). Hence, G and G′ satisfy the conditions of Lemma 3.13
and we can conclude σ(wG,t) = σ(wG′,t) for every term t in T (T N ∪CN ∪Σ), where

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

Unification and Matching on Compressed Terms · 17

G = (T N , CN ,Σ, R). It follows that σ(x) = σ(wG,x) for every first-order variable
x, and σ(F) = σ(wG,F) for every context variable F . Moreover, since none of these
rules changed neither the set ∆ nor Γ, σ is also a solution for 〈∆, G,Γ〉.

Suppose the rule applied is ElimF2. In this case, G′ = G but both sets ∆ and
Γ are changed. Concretely, a set of equations of the form {F (A1)

.
= B,F (A2)

.
=

B, . . . , F (An)
.
= B} of ∆ is replaced by a set of equations of the form {A1

.
=

B′, A2
.
= B′, . . . , An

.
= B′} to obtain ∆′ and the restriction F ∈ Contexts(B,B′)

was added to Γ to obtain Γ′. By Definition 3.12, since σ is a solution of 〈∆′, G′,Γ′〉,
it holds σ(wG′,Ai

) = wG′,B′ for each i ∈ [1, n], and σ(F)wG′,B′ = wG′,B. Since G =
G′ and ∆−{F (Ai)

.
= B | i ∈ [1, n]} = ∆′−{Ai

.
= B′ | i ∈ [1, n]}, it suffices to prove

that σ(wG,F (Ai)) = wG,B for i ∈ [1, n] to show that σ is also a solution of 〈∆, G,Γ〉.
Since G = G′ and σ(wG′,Ai

) = wG′,B′ then σ(wG,Ai
) = wG,B′ holds. Furthermore,

it holds that σ(wG,F (Ai)) = σ(F (wG,Ai
)) = σ(F)σ(wG,Ai

) = σ(F)σ(wG,B′) =
σ(F)σ(wG′,B′) = wG′,B = wG,B. Hence, we proved that σ(wG,F (Ai)) = wG,B and
thus σ is also a solution of 〈∆, G,Γ〉.

For rule Fail, it is obvious that the assumption of a solution σ for the resulting
triple 〈∆′, G′,Γ′〉 cannot be satisfied.

Suppose the rule applied is Decompose. Then, G′ = G, Γ = Γ′ and an equa-
tion f(u1, . . . , um)

.
= B in ∆ where B → f(B1, . . . , Bm) is the rule in G is re-

placed by the equations u1
.
= B1, . . . , um

.
= Bm to obtain ∆′. Hence, it suffices

to prove that σ(wG,f(u1,...,um)) = wG,f(B1,...,Bm) in order to show that σ is also
a solution for 〈∆, G,Γ〉. Since σ is a solution of 〈∆′, G′,Γ′〉 it holds σ(wG′,u1

) =
wG′,B1

, . . . , σ(wG′,um
) = wG′,Bm

. Thus, σ(wG,f(u1,...,um)) = σ(wG′,f(u1,...,um)) =
f(σ(wG′,u1

), . . . , σ(wG′,um
)) = f(wG′,B1

, . . . , wG′,Bm
) = f(wG,B1

, . . . , wG,Bm
) =

wG,f(B1,...,Bm).

In the case where the rule applied is an unfolding rule, note that these rules just
replace non-terminals of G by their definition in G. Hence, since wN = wα for each
non-terminal N with a rule N → α ∈ G, every solution of 〈∆′, G′,Γ′〉 is also a
solution of 〈∆, G,Γ〉.

The following lemma is an adaptation of Lemma 3.3 to our STG-based represen-
tation for dags, which will be helpful when proving completeness.

Lemma 3.15. Let G = (T N , CN ,Σ, R) be an STG. Let u1, u2 be terms in
T (T N ∪ CN ∪ Σ). Let A1, A2, B1 and B2 be term non-terminals of G such that
wG,B1

6= wG,B2
and both wG,B1

and wG,B2
are ground. Let restriction(G,B1, B2)

be compressed optimally as a DAG. Let σ be a solution of 〈{F (u1)
.
= B1, F (u2)

.
=

B2}, G,Γ = ∅〉 where the context variable F is a terminal of G. Let G′ =
JointCGF(G,F,B1, B2, |hp(σ(F))|). Then, σ(F) = wG′,F .

Proof. This lemma directly follows from Lemma 3.3 and Definition 3.7.

Lemma 3.16. Every rule is complete. I.e. for every solution σ of 〈∆, G,Γ〉, and
for every rule application, there is a result 〈∆′, G′,Γ′〉 such that σ is also a solution
of 〈∆′, G′,Γ′〉. Moreover, any maximal sequence of rule applications computes a
representation of all solutions, by gathering all guesses and alternatives in the rules.

Proof. Let σ be a solution for some triple 〈∆, G,Γ〉 obtained by our algorithm.
It suffices to show that after applying any applicable rule to 〈∆, G,Γ〉, one of

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

18 · A. Gascón, G. Godoy and M. Schmidt-Schauß

the resulting triples 〈∆′, G′,Γ′〉 among the possible guesses also has σ as solution.
We distinguish cases depending on which inference step was applied for obtaining
〈∆′, G′,Γ′〉 from 〈∆, G,Γ〉. We state explicitly here G = (T N , CN ,Σ, R) because
it will be necessary, in some cases, to refer to the set of terms T (T N ∪ CN ∪ Σ).

Assume the applied rule is DecomposeṪhen, G′ = G, Γ = Γ′ and an equation
f(u1, . . . , um)

.
= B in ∆ with rule B → f(B1, . . . , Bm) is replaced by the equations

u1
.
= B1, . . . , um

.
= Bm to obtain ∆′, where each ui ∈ T (T N ∪ CN ∪ Σ). Hence,

it suffices to prove σ(wG′,u1
) = wG′,B1

, . . . , σ(wG′,um
) = wG′,Bm

in order to show
that σ is also a solution for 〈∆′, G′,Γ′〉. Since σ is a solution of 〈∆, G,Γ〉, it holds
that σ(wG,f(u1,...,um)) = wG,f(B1,...,Bm) which implies σ(f(wG,u1

, . . . , wG,um
)) =

f(wG,B1
, . . . , wG,Bm

), and hence σ(wG,u1
) = wG,B1

, . . . , σ(wG,um
) = wG,Bm

. Fi-
nally, since G = G′, σ is also a solution of 〈∆′, G′,Γ′〉.

Assume the applied rule is Elimx. Then Γ = Γ′ and ∆ = ∆′. For a concrete
equation x

.
= B ∈ ∆, G was extended toG′ by converting x into a term non-terminal

and adding the rule x → B. Since σ is a solution of 〈∆, G,Γ〉 and x is a terminal
of G, wG,x = x and σ(x) = wG,B holds. Furthermore, wG′,x = wG′,B = wG,B since
B is the definition of x in G′ and none of the rules of G were changed to obtain G′.
Hence, σ(x) = wG,B = wG′,B = wG′,x = σ(wG′,x), where the last equality holds
because wG′,x is ground. Thus, we can apply Lemma 3.13 and claim that, for every
term t in T (T N ∪ CN ∪ Σ), σ(wG,t) = σ(wG′,t). Hence, since Γ = Γ′ and ∆ = ∆′,
σ is also a solution for 〈∆′, G′,Γ′〉.

For the Fail rule it is clear that the assumption on the existence of a solution
cannot be satisfied.

Suppose that the applied rule is ElimF1. In this case, ∆ = ∆′, Γ = Γ′ and
G was extended to G′ by converting the terminal F , which is a context variable,
into a context non-terminal. Some rules and non-terminals were added such that
F generates a ground context wG′,F . We first show that σ(F) = σ(wG′,F) holds
for one of the possible guesses when applying this rule.

Since |hp(σ(F))| is smaller than or equal to L (|hp(σ(F))| ∈ [0, L]) we can assume
that l is guessed as |hp(σ(F))| in the rule application. Then, by the conditions for
this rule application, there are equations of the form F (A1)

.
= B1, F (A2)

.
= B2 in

∆ such that wB1
6= wB2

. Furthermore, both wB1
and wB2

are ground and G′ is
constructed as JointCGF(G,F,B1, B2, |hp(σ(F))|). Hence, by Lemma 3.15, σ(F) =
wG′,F . Moreover, we can apply Lemma 3.13 and conclude that σ(wG,t) = σ(wG′,t)
for every term t ∈ T (T N ∪ CN ∪ Σ). Thus, σ is a solution of 〈∆′, G′,Γ′〉.

Suppose now that the applied rule is ElimF2. In this case, G = G′, and
some equations of the form F (A1)

.
= B,F (A2)

.
= B, . . . , F (An)

.
= B of ∆ such

that F does not occur in wu for any other equation u
.
= v in ∆ were replaced

by the equations A1
.
= B′, . . . , An

.
= B′ to obtain ∆′. Moreover, the restric-

tion F ∈ Contexts(B, B′) was added to Γ to obtain Γ′. Since σ is a solution
of 〈∆, G,Γ〉, it is also a solution of {F (A1)

.
= B,F (A2)

.
= B, . . . , F (An)

.
=

B}. Hence, there exists some subterm wG,B′ of wG,B satisfying σ(wG,A1
) =

wG,B′ , . . . , σ(wG,An
) = wG,B′ which corresponds to wG,B|hp(σ(F)). In our rep-

resentation choosing a subterm of wG,B is equivalent to choosing one of the
term non-terminals of restriction(G, {B}). Thus, we can consider the case
where B′ is the term non-terminal guessed in the rule application. In this case

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

Unification and Matching on Compressed Terms · 19

σ(wG′,A1
) = wG′,B′ , . . . , σ(wG′,An

) = wG′,B′ holds since G = G′. Therefore, σ is
also a solution for 〈∆′, G′,Γ′〉. With respect to σ(F), it satisfies σ(F)wG,B′ = wG,B,
which is exactly the condition added to Γ by the rule application in order to keep
a representation of all possible instantiations for the context variable F .

Suppose that the applied rule is ElimF3. In this case, ∆ = ∆′, Γ = Γ′ and
G was extended to G′ by converting a terminal F representing a context variable
into a context non-terminal. Some rules and non-terminals were added such that
F generates the ground term wG′,F . We first show that σ(F) = σ(wG′,F) holds for
one of the possible guesses when applying this rule.

By the condition of this rule application, F (A)
.
= B is an equation in ∆ where

F occurs in wA. The case σ(F) = [·] is covered by the first alternative of the
rule. Now assume that σ(F) 6= [·]. Since F occurs in wG,A, there exists a proper
subterm of wG,F (A) (a subterm of wG,A) of the form F (u) for some term u ∈
T (Σ). Since σ(F (wG,A)) = wG,B holds and σ(F) 6= [·], there exists a proper
subterm wG,B′ of wG,B such that σ(F (u)) = wG,B′ and, for the same reason as
in the previous case, B′ is a term non-terminal in restriction(G, B) excluding
B. We consider the case where the term non-terminal B′ is guessed by the rule
application and l is guessed as |hp(σ(F))|. When these two guesses are done, G′

is constructed as JointCGF(G,F,B,B′, |hp(σ(F))|). Furthermore, we know that σ
satisfies σ(F (u)) = wG,B′ and σ(wG,F (A)) = wG,B. Moreover, wG,B′ and wG,B are
ground, and wB′ 6= wB, since wB′ is a proper subdag of wB . Hence, we can apply
Lemma 3.15 and conclude σ(F) = wG′,F . As before, we can apply Lemma 3.13 and
conclude that σ is a solution of 〈∆′, G′,Γ′〉.

Suppose that the applied rule is ElimF4. In this case, ∆ = ∆′, Γ = Γ′ and G

was extended to G′ by either converting a terminal F2 or a terminal F1 6= F2, each
of them representing a context variable, into a context non-terminal. Each of these
cases corresponds to one of the two alternatives of the rule. In the first case the
rule F2 → [·] was added, such that F2 generates wG′,F2

= [·], the empty context. In
the second case some rules and non-terminals were added, such that F1 generates
the ground context wG′,F1

. We first show that either σ(F2) = σ(wG′,F2
), in the

former case, or σ(F1) = σ(wG′,F1
) in the latter case.

By the condition of the application of ElimF4, there is a pair of equations in ∆
of the form F1(A1)

.
= B1 and F2(A2)

.
= B2. Furthermore, F1 occurs in wG,A2

,
and height(wG,B1

) ≥ height(wG,B2
). The case σ(F2) = [·] is covered by the first

alternative of the rule, and it is obvious that σ(F2) = σ(wG′,F2
) = [·] holds in

this case. Now assume that σ(F2) 6= [·]. Since F1 occurs in wG,A2
, there exists

a proper subterm of wG,F2(A2) (a subterm of wG,A2
) of the form F1(u), for some

u ∈ T (T N ∪CN∪Σ). Moreover, since σ(wG,F2(A2)) = wG,B2
holds, and σ(F2) 6= [·],

there exists a proper subterm wG,B′

2
of wG,B2

such that σ(F1(u)) = wG,B′

2
and, for

the same reason as in the previous case, B′
2 is represented by a term non-terminal in

restriction(G, B2) excluding B2, since the subterm is proper. We consider the case
where the term non-terminal B′

2 is guessed by the rule application and l is guessed as
|hp(σ(F1))|. Hence, G′ is constructed as JointCGF(G,F1, B1, B

′
2, |hp(σ(F1))|). We

know that σ has to satisfy σ(wF1(A1)) = wG,B1
and σ(F1(u)) = wG,B′

2
. Moreover,

wG,B1
and wG,B′

2
are ground, and wG,B1

6= wG,B′

2
holds, since height(wG,B1

) ≥
height(wG,B2

) and wG,B′

2
is a proper subterm of wG,B2

. Hence, by Lemma 3.15,

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

20 · A. Gascón, G. Godoy and M. Schmidt-Schauß

σ(F1) = wG′,F1
. As before, we can apply Lemma 3.13 and conclude that σ is a

solution of 〈∆′, G′,Γ′〉.

Finally, assume that the applied rule is an unfolding rule. Note that the applica-
tion of an unfolding rule does not modify the set of restrictions Γ nor the grammar
G. ∆′ is obtained by replacing the left-hand side of an equation u

.
= v in ∆ by a

new equation u′ .
= v. Since G = G′, it holds that wG,u = wG′,u. Moreover, since

σ is a solution of 〈∆, G,Γ〉, it satisfies σ(wG,u) = wG,v. Hence, it suffices to check
that wG,u = wG,u′ when u

.
= v is replaced by u′ .

= v by the rule application. But
this is direct from the fact that this replacements are due to a rule application of
G, and we are done.

Proposition 3.17. For every initial triple 〈∆0, G0,Γ0 = ∅〉, the
determinized algorithm will compute a complete set of solved triples
〈∆1, G1,Γ1〉, . . . , 〈∆n, Gn,Γn〉, such that σ is a solution of 〈∆0, G0,Γ0 = ∅〉
iff it is a solution of some 〈∆i, Gi,Γi〉, for i ∈ [1, n].

Proof. Termination holds, see the argumentation on the complexity in the next
section. Since we have proved soundness and completeness, it remains to show that
if some intermediate 〈∆, G,Γ〉 is not solved, then an inference rule can be applied.
The k-CMD algorithm represents instantiations of variables by transforming them
into non-terminals of the STG. Hence, the fact that a triple 〈∆, G,Γ〉 is not solved
means that there are occurrences of terminals of G representing first order variables
or context variables in ∆.
Assume that no inference rule can be applied. We will deduce the form of the
equations u

.
= B ∈ ∆ under this assumption until we reach a contradiction. Let

A,A1, . . . , Am, B,B1, . . . , Bm be term non-terminals of G, let Ci, C be context non-
terminals of G, and let f, g be terminals of G representing function symbols of arity
m and m′, respectively.

Note that u cannot be of the form f(A1, . . . , Am) nor
f(A1, . . . , Ai−1, CiA,Ai+1, . . . , Am) since, as v is a non-terminal B with rule
B → g(B1, . . . , Bm′), either Decompose (if f = g), or Fail (if f 6= g) would be
applicable. Hence, by 3.11, at this point u can be of the forms x, F (A) or CA,
where x is a terminal of the grammar representing a first-order variable and F is
a terminal of the grammar representing a context variable. This implies that, if
u = x then Elimx is applicable, and if u = CA then Unfold2 is applicable. Thus,
u can only be of the form F (A). Hence, since we argued about an arbitrarily chosen
equation u

.
= v ∈ ∆, every equation i in ∆ is of the form Fi(Ai)

.
= Bi. Moreover,

since neither ElimF1,ElimF2 nor ElimF3 can be applied, for every terminal Fi

representing a context variable occurring in ∆ there exists an equation Fj(Aj)
.
= Bj

in ∆, such that Fi is different from the terminal Fj , and Fi occurs in wAj
. Since the

set ∆ is finite, there exist equations F1(A1)
.
= B1, F2(A2)

.
= B2, . . . , Fn(An)

.
= Bn

with n ≥ 2 satisfying that F1 occurs in wA2
, F2 occurs in wA3

, . . . , Fn−1 occurs
in wAn

, and Fn occurs in wA1
, and where the Fi’s are pairwise different. Let i be

such that wBi
has maximal height among the wB1

, . . . , wBn
, say i = 1. Hence, we

may take the equation F1(A1)
.
= B1 and the equation F2(A2)

.
= B2 and apply rule

ElimF4, which is a contradiction.

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

Unification and Matching on Compressed Terms · 21

The following example shows that the Decompose rule may have an exponential
number of executions if multiple insertions of the same equation in one inference
sequence is not prohibited. Hence, our algorithm must keep track of already treated
equations in order to avoid this fact.

Example 3.18. Let G be an STG defined by the following set of rules: {B1 →
f(B2, B2), B2 → f(B3, B3), . . . , Bi → f(Bi+1Bi+1), . . . , Bn−1 → f(Bn, Bn), Bn →
a,A1 → f(A2, A

′
2), A2 → f(A3, A

′
3), . . . , Ai → f(Ai+1A

′
i+1), . . . , An−1 →

f(An, A
′
n), An → a,A′

1 → f(A2, A
′
2), A

′
2 → f(A3, A

′
3), . . . , A

′
i →

f(Ai+1A
′
i+1), . . . , A

′
n−1 → f(An, A

′
n), A

′
n → a,A → f(A1, A

′
1), B → f(B1, B1)}

We now consider a decomposition sequence for the equation A
.
= B, it decom-

poses depth-first. Note that G satisfies the assumption on an optimally compressed
representation of restriction(G, {B}).

{A
.
= B} =⇒ {f(A1, A

′
1)

.
= B}

=⇒ {A1
.
= B1, A

′
1
.
= B1}

=⇒ {f(A2, A
′
2)

.
= B1, A

′
1
.
= B1}

=⇒ {A2
.
= B2, A

′
2
.
= B2, A

′
1
.
= B1}

=⇒ {f(A3, A
′
3)

.
= B2, A

′
2
.
= B2, A

′
1
.
= B1}

=⇒ {A3
.
= B3, A

′
3
.
= B3, A

′
2
.
= B2, A

′
1
.
= B1}

...
=⇒ {Ai

.
= Bi, A

′
i

.
= Bi, A

′
i−1

.
= Bi−1, . . . , A

′
1
.
= B1}

...
=⇒ {An

.
= Bn, A

′
n

.
= Bi, A

′
n−1

.
= Bn−1, . . . , A

′
1
.
= B1}

=⇒ {a
.
= a, a

.
= a,A′

n−1
.
= Bn−1, . . . , A

′
1
.
= B1}

Hence, the depth-first strategy may lead to an exponentially long sequence of
decompositions.

3.6 Complexity of the k-CMD Algorithm

Let 〈∆ = {As1

.
= At1 , . . . , Asn

.
= Atn}, G = (T N , CN ,Σ, R),Γ = ∅〉 be the initial

configuration of the execution, and let 〈∆′, G′,Γ′〉 be the last one. Recall that
L = max1≤i≤n(height(wG,Ati

)) and k denotes the number of different context
variables in the problem. Let V denote the set of first-order variables.
Our inference rules may add new non-terminals and their corresponding rules to

the grammar. Concretely, at most |V | rules of the form x → A and at most kL rules
of the forms C → f(A1, . . . , Ai−1, Ci, Ai+1, . . . , Am) and C → [·] are added to G

during an execution. Therefore, at any point of the execution, any right-hand side
of a rule of the current STG G′′ of the form f(A1, . . . , Am) is in fact a right-hand
side of a rule of the initial G.
We count the number of different equations u

.
= v that may appear during the

execution. Our equations are simple with respect to the final G′ by Lemma 3.11.
Thus, u is either of the form A (|T N | + |V | possibilities), or f(A1, . . . , Am) (an
original right-hand side of a rule, thus |T N | possibilities), or CA (kL(|T N |+ |V |)
possibilities), or f(A1, . . . , Ai−1, CiA,Ai+1, . . . , Am) (kL(|T N |+|V |) possibilities).
On the other hand, v can only be a term non-terminal A. an original term

non-terminal, thus |T N | possibilities.

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

22 · A. Gascón, G. Godoy and M. Schmidt-Schauß

Therefore, the total number of different equations in a branch of non-deterministic
execution is O(depth(G)|G|2). Assuming we avoid repetition of equations, this will
also be the maximum number of execution steps. Each of those steps chooses an
equation and applies an inference rule to it. The corresponding operations can
be performed in logarithmic time with the adequate data structures. Thus, the
non-deterministic execution time is O(depth(G)|G|2log(|G|)).
k guessings over L possibilities are done during the execution. There-

fore, the execution time of the deterministic version of this algorithm is
O((depth(G))k+1|G|2log(|G|)).

Theorem 3.19. Computing all solutions (and hence deciding solvability) of an
instance of the k-context matching with dags problem can be done in polynomial
time. The worst case running time is O((depth(G))k+1|G|2log(|G|)), where k is
the number of context variables and |G| is the size of the input dag.

4. GRAMMAR CONSTRUCTIONS

For the description and analysis of efficient algorithms for context matching, first-
order unification and first-order matching of STG-compressed terms we need several
extension constructions of STGs. These algorithms have as suboperations finding
differences in two terms and performing instantiations of context-variables and first-
order variables. The difficulties are induced by the task of performing all the
required operations on the compressed representation of terms.
In [Busatto et al. 2005] it was shown how to succinctly represent the preorder

traversal word of a term generated by an STG using an SCFG. We reproduce this
construction in Subsection 4.1 to compute an SCFG PreG with non-terminals Ps

and Pt generating pre(s) and pre(t), respectively. We also need to compute, given
PreG, the smallest index k in which pre(s) and pre(t) differ. In Subsection 4.2
we show how to perform this task efficiently. Our approach is based on a recent
result on compressed string processing [Lifshits 2007]. As commented above, k

corresponds to a unique position p ∈ Pos(s)∩Pos(t). In Subsection 4.3, we present
the procedure, given G and k, to extend G such that a new non-terminal generates
t|p. Avoiding the explicit calculation of p refines the approach presented in previous
work in STG-compressed first-order unification [Gascón et al. 2009] in order to
obtain a faster algorithm.
We also need to apply substitutions once a variable is isolated. Performing a

replacement of a first-order variable x by a term u is easily representable with
STGs by simply transforming x into a non-terminal x of the grammar and adding
rules such that x generates u. However, since successive replacements of variables
by subterms modify the initial terms, we have to show that this does not produce an
exponential increase of the size of the grammar, since its depth may be doubled after
each of these operations. To this end, we develop a notion of restricted depth, and
show that its value is preserved during the execution, and that the size increase at
each step can be bounded by this restricted depth, which is shown in Subsection 4.4.

4.1 Computing the preorder traversal of a term.

In [Busatto et al. 2005] it is shown how to construct, from a given STG G, an SCFG
PreG representing the preorder traversals of the terms and contexts generated by

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

Unification and Matching on Compressed Terms · 23

A → f(A1, . . . , Am) ⇒ PA → fPA1
. . .PAm

A → C1A2 ⇒ PA → LC1
PA2

RC1

A → A1 ⇒ PA → PA1

C → C1C2 ⇒

{

LC → LC1
LC2

RC → RC2
RC1

C → f(A1, . . . , Ai−1, Ci, Ai+1, . . . , Am) ⇒

{

LC → fPA1
. . .PAi−1

LCi

RC → RCiPAi+1
. . .PAn

C → [·] ⇒

{

LC → λ

RC → λ

Fig. 4. Generating the Preorder Traversal

G. We reproduce that construction here, presented in Figure 4 as a set of rules
indicating, for each term non-terminal A and its rule A → α of G, which rule
PA → α′ of PreG is required in order to make a non-terminal PA of PreG satisfy
wPreG,PA

= pre(wG,A). To this end, for each context non-terminal C of G we also
need non-terminals of PreG generating the preorder traversal to the left of the hole
(LC), and the preorder traversal to the right of the hole (RC).
It is straightforward to verify by induction on the depth of G that, for every term

non-terminal A of G, the corresponding newly generated non-terminal PA of PreG
generates pre(wA).

Lemma 4.1. Let G be an STG. A SCFG PreG of size O(|G|) can be constructed
in time O(|G|) such that, for each non-terminal N of G, there exists a non-terminal
PN in PreG satisfying wPreG,PN

= pre(wG,N).

4.2 Computing the first different position of two words.

Given two non-terminals p1 and p2 of an SCFG P , we want to find the smallest
index k such that wp1

[k] and wp2
[k] are different. In order to solve this problem,

a linear search over the generated words wp1
and wp2

is not a good idea, since
their sizes may be exponentially big with respect to the size of P . Hence, one may
be tempted to apply a binary search since prefixes are efficiently computable with
SCFGs and equality is checkable in time O(|P |3), which would lead to O(|P |4)
time complexity. However, we will use more specific information from Lifshits’
work [Lifshits 2007] to obtain O(|P |3) time complexity.

Lemma 4.2. [Lifshits 2007] Let G be an SCFG. Then a data structure can be
computed in time O(|G|3) which allows to answer to the following question in time
O(|G|): given two non-terminals N1 and N2 of G and an integer value k, does wN1

occur in wN2
at position k?

Thus, assume that the pre-computation of Lemma 4.2 has been done (in time
O(|P |3)), and hence we can answer whether a given wp1

occurs in a given wp2
at a

certain position in time O(|P |).
For finding the first different position between p1 and p2, we can assume |wp1

| ≤
|wp2

| without loss of generality. Moreover, we also assume wp1
6= wp2

[1..|wp1
|], i.e

wp1
is not a prefix of wp2

. Note that this condition is necessary for the existence
of a different position between wp1

and wp2
, and that this will be the case when p1

and p2 generate the preorder traversals of different trees. Finally, we can assume

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

24 · A. Gascón, G. Godoy and M. Schmidt-Schauß

index(p1,p2,k
′,P)=























1 , if |wp1 | = 1
index(p11,p2,k

′,P) , if (p1 → p11p12) ∈ P∧
wp11 6= wp2 [(k

′ + 1) . . . (k′ + |wp11 |)]
|wp11 |+ , if (p1 → p11p12) ∈ P∧
index(p12,p2,k

′ + |wp11 |,P) wp11 = wp2 [(k
′ + 1) . . . (k′ + |wp11 |)]

Fig. 5. Algorithm for the Index of the First Difference

that P is in Chomsky Normal Form. Note that, if this was not the case, we can
force this assumption with a linear time and space transformation.
We generalize our problem to the following question: given two non-terminals p1

and p2 of P and an integer k′ satisfying k′ + |wp1
| ≤ |wp2

| and wp1
6= wp2

[(k′ +
1)..(k′ + |wp1

|)], which is the smallest k ≥ 1 such that wp1
[k] is different from

wp2
[k′ + k]? (Note that we recover the original question by fixing k′ = 0).

This generalization is solved efficiently by the recursive algorithm given in Fig-
ure 5, as can be shown inductively on the depth of p1. By Lemma 4.2, each call takes
time O(|P |), and at most depth(P) calls are executed. Thus, the most expensive
part of computing the first different position of wp1

and wp2
is the pre-computation

given by Lemma 4.2, that is, O(|P |3).

Lemma 4.3. Let P be an SCFG of size n, and let p1, p2 be non-terminals of P
such that wp1

6= wp2
. The first position k where wp1

and wp2
differ is computable

in time O(|P |3).

4.3 Isolating variables

As commented in Section 2, the index k from the previous subsection defines a
position p = iPos(t, k) of a term t generated by an STG G. We show how to
compute, in linear time, an extension of the STG G with a non-terminal generating
t|p. We use the SCFG PreG presented in Definition 4.1.

Definition 4.4. Let G be an STG. Let N be a non-terminal of G, and let k be
a natural number satisfying k ≤ |Pre(wG,N)|. We recursively define kExt(G,N, k)
as an extension of G as follows:

—If k = 1 then kExt(G,N, k) = G. In the next cases we assume k > 1.

—If (N → f(N1, . . . , Ni−1, Ni, . . . , Nm)) ∈ G and 1 + |wN1
|+ . . .+ |wNi−1

| = k′ <

k ≤ k′ + |wNi
| then kExt(G,N, k) = kExt(G,Ni, k − k′).

—If (N → C1A2) ∈ G and k ≤ |wPreG,LC1
| then kExt(G,N, k) includes

kExt(G,C1, k), which contains a non-terminal N ′ generating the subterm of
wG,C1

at position iPos(wG,C1
, k). If N ′ is a context non-terminal then

kExt(G,N, k) additionally contains the rule A → N ′A2, where A is a new term
non-terminal.

—If (N → C1C2) ∈ G and k ≤ |wPreG,LC1
| then kExt(G,N, k) includes

kExt(G,C1, k), which contains a non-terminal N ′ generating the subterm of
wG,C1

at position iPos(wG,C1
, k). If N ′ is a context non-terminal then

kExt(G,N, k) additionally contains the rule C → N ′C2, where C is a new context
non-terminal.

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

Unification and Matching on Compressed Terms · 25

—If (N → C1N2) ∈ G and k′ = |wPreG,LC1
| < k ≤ |wPreG,LC1

| + |wN2
| then

kExt(G,N, k) = kExt(G,N2, k − k′).

—If (N → C1N2) ∈ G and |wPreG,LC1
| + |wN2

| < k then kExt(G,N, k) =
kExt(G,C1, k − |wN2

|+ 1).

—If (A → A1) ∈ G then kExt(G,A, k) = kExt(G,A1, k).

—In any other case kExt(G,N, k) is undefined.

Lemma 4.5. Let G be an STG. Let N a non-terminal of G, and let k be a natural
number such that k ≤ |Pre(wG,N)|. Then G can be extended to an STG G′ in time
O(|G|) with O(depth(G)) new non-terminals such that one of them generates the
subterm of wG,N at position iPos(wG,N , k).

Proof. The fact that kExt(G,N, k) is an extension of G satisfying the state-
ments of the lemma follows by induction on depth(N), distinguishing cases accord-
ing to the definition of kExt(G,N, k), and applying the definition of iPos from
Section 2. To compute kExt(G,N, k) in linear time we first build the SCFG PreG
generating the preorder traversals of the terms generated by G and pre-compute
the size of the term/word generated by each non-terminal in G and PreG. Both
operations can be done in linear time as stated in Lemma 4.1 and Lemma 2.10.
Once this pre-computations are done, kExt(G,N, k) can be computed by a single
run over the rules of G, which leads to the desired time complexity.

4.4 Application of substitutions and a notion of restricted depth

Recall that, when working with STGs, we represent the application of a substitution
on a first-order variable x by transforming x into a term non-terminal and adding
the necessary rules such that x generates the term to which it is assigned.
When one or more substitutions of this form are applied, in general the depth

of the non-terminals of G might increase. In order to see that the size increase is
polynomially bounded after several substitution operations when unifying, we need
a new notion of depth called Vdepth, which does not increase after an application
of a substitution. It allows us to bound the final size increase of G. The notion
of Vdepth is similar to the notion of depth, but it is 0 for the non-terminals N

belonging to a special set V satisfying the following condition.

Definition 4.6. Let G = (T N , CN ,Σ, R) be an STG, and let V be a subset of
T N ∪Σ. We say that V is a λ-set for G if for each term non-terminal A in V , the
rule of G of the form A → u is a λ-rule, i.e. u is a term non-terminal.

Definition 4.7. Let G = (T N , CN ,Σ, R) be an STG and let V be a λ-set for
G. For every non-terminal N of G, the value VdepthG,V (N), denoted also as
VdepthV (N) or Vdepth(N) when G and/or V are clear from the context, is defined
as follows (recall the convention that max(∅) = 0).

Vdepth(N) := 0 for N ∈ V

Vdepth(N) := 1 + max{Vdepth(N ′) | N ′ is a non-terminal occurring in u,
where N → u ∈ G}, otherwise.

The Vdepth of G is the maximum of the Vdepth of its non-terminals.

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

26 · A. Gascón, G. Godoy and M. Schmidt-Schauß

The idea is that V contains all first-order variables, before and after converting
them into term non-terminals. The following lemma is completely straightforward
from the above definitions, and states that a substitution application does not
modify the Vdepth provided X ∈ V for the substitution X 7→ A.

Lemma 4.8. Let G, V be as in the above definition. Let X ∈ V be a terminal of
G of arity 0, and let A be a term non-terminal of G. Let G′ be the STG obtained
from G by transforming X into a term non-terminal and adding the rule (X → A).
Then, for any non-terminal N of G it holds that VdepthG′(N) = VdepthG(N).

We also need the fact that Vdepth does not increase due to the construction of
kext(G,A, k) from G. However, we first prove a more specific statement.

Lemma 4.9. Let G be an STG, let C be a context non-terminal of G, let V be a
λ-set for G, let k be a natural number such that wC |iPos(wC ,k) is a context, and let
G′ be kext(G,C, k).
Then, for every non-terminal N of G it holds that VdepthG(N) = VdepthG′(N),

and for every new non-terminal N ′ in G′ and not in G, it holds that
VdepthG′(N ′) ≤ VdepthG(C). Moreover, the number of new added non-terminals
is bounded by VdepthG(C).

Proof. The identity VdepthG(N) = VdepthG′(N) for each non-terminal N of
G is straightforward from the fact that kext(G,C, k) does not change the rules
for the non-terminals occurring in G. To prove the fact that VdepthG′(N ′) ≤
VdepthG(C) for each new non-terminal N ′ in G′ and not in G, plus the fact that
at most VdepthG(C) new non-terminals have been added, we will use induction on
VdepthG(C). The base case (VdepthG(C) = 1) trivially holds since, in this case,
the STG G is not modified (note that necessarily k = 1). For the induction step
we distinguish cases according to the definition of kExt(G,C, k):

—Assume that (C → f(A1, . . . , Ai−1, C
′, . . . , Am)) ∈ G. Note that, since

wC |iPos(wC ,k) is a context, it holds that 1 + |wA1
| + . . . + |wAi−1

| = k′ <

k ≤ k′ + |wC′ |. In this case, kext(G,C, k) = kext(G,C′, k − k′) and, since
VdepthG(C

′) < VdepthG(C), the lemma directly follows by induction hypothe-
sis.

—Assume that (C → C1C2) ∈ G and k ≤ |wPreG,LC1
|. In this case,

the construction of kext(G,C, k) is done by computing kext(G,C1, k) and
adding the rule C′ → C′

1C2, where C′
1 is the context non-terminal gen-

erating wC1
|iPos(wC1

,k) and C′ is an additional new non-terminal. Since
VdepthG(C1) < VdepthG(C), by induction hypothesis, it holds that for all the
new non-terminals N ′ in G′ = kext(G,C1, k), VdepthG′(N ′) ≤ VdepthG(C1)
and at most VdepthG(C1) new non-terminals have been added. It follows
that at most VdepthG(C) new non-terminals have been added in the con-
struction of kext(G,C, k), and VdepthG′(C′

1) ≤ VdepthG(C1). Moreover,
since VdepthG(C) = 1 + max(VdepthG(C1), VdepthG(C2)), VdepthG′(C′) =
1+max(VdepthG′(C′

1), VdepthG′(C2)) and VdepthG(C2) = VdepthG′(C2), it also
holds that VdepthG′(C′) ≤ VdepthG(C).

—Assume that (C → C1C2) ∈ G and k′ = |wPreG,LC1
| < k ≤ |wPreG,LC1

| + |wC2
|.

In this case, kext(G,C, k) = kext(G,C2, k − k′) and, since VdepthG(C2) <

VdepthG(C), the lemma directly follows by induction hypothesis.

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

Unification and Matching on Compressed Terms · 27

Finally, note that the case (C → C1C2) ∈ G and |wPreG,LC1
| + |wC2

| < k is not
possible due to the assumption that wC |iPos(wC ,k) is a context.

Lemma 4.10. Let G be an STG, let N be a non-terminal of G, let V be a λ-
set for G, let k be a natural number satisfying k ≤ |Pre(wG,N)|, and let G′ be
kext(G,N, k).
Then, for every non-terminal N ′ of G it holds that VdepthG(N

′) =
VdepthG′(N ′), and for every new non-terminal N ′′ in G′ and not in G, it holds that
VdepthG′(N ′′) ≤ Vdepth(G). Moreover, the number of new added non-terminals is
bounded by Vdepth(G).

Proof. The identity VdepthG(N
′) = VdepthG′(N ′) for each non-terminal N ′

of G is straightforward from the fact that kext(G,N, k) does not change the rules
for the non-terminals occurring in G. We will prove the fact that VdepthG′(N ′′) ≤
Vdepth(G) for each new non-terminal N ′′ in G′ and not in G, plus the fact that at
most Vdepth(G) new non-terminals have been added by induction on depthG(N).
The base case (depth(N) = 1) trivially holds since, in this case, the STG G is not
modified. For the induction step we distinguish cases according to the definition
of kExt(G,N, k). The only interesting cases are when (N → C1A2) ∈ G and
k ≤ |wPreG,LC1

|, and when (N → C1C2) ∈ G and k ≤ |wPreG,LC1
|. Note that these

are the only cases in which the grammar might be extended with new non-terminals
after the recursive call. We will solve the first one, the other is solved analogously.
Hence, assume that (N → C1A2) ∈ G and k ≤ |wPreG,LC1

|. In this
case the non-terminal N ′ in kext(G,C1, k) generating the subterm of wG,C1

at position iPos(wG,C1
, k) is a either a term non-terminal or a context non-

terminal. We will solve the two cases separately. First assume that N ′ is a
term non-terminal. In this case kext(G,N, k) is constructed as kext(G,C1, k).
Since VdepthG(C1) < VdepthG(N), the lemma holds by induction hypothe-
sis in this case. On the other hand, if N ′ is a context non-terminal, the
construction of kext(G,N, k) is done by computing kext(G,C1, k) and adding
the rule A → N ′A2, where A is an additional new term non-terminal. By
Lemma 4.9, for all the new non-terminals N ′′ in kext(G,C1, k) and not in
G, VdepthG′(N ′′) ≤ VdepthG(C1). Moreover, the number of new added non-
terminals is bounded by VdepthG(C1). Hence, VdepthG′(N ′) ≤ VdepthG(C1)
and, since VdepthG(C1) < VdepthG(N), at most VdepthG(N) ≤ Vdepth(G) new
non-terminals have been added in the construction of kext(G,N, k). Further-
more, since VdepthG(N) = 1 + max(VdepthG(C1), VdepthG(A2)), VdepthG′(A) =
1 + max(VdepthG′(N ′), VdepthG′(A2)) and VdepthG(A2) = VdepthG′(A2), it also
holds that VdepthG′(A) ≤ VdepthG(N) ≤ Vdepth(G).

5. NP-COMPLETENESS OF CONTEXT MATCHING WITH STGS

As a complement to Theorem 3.19, we are now ready to show that context matching
with STG-compressed terms is in NP-complete. NP-hardness with STGs follows
from NP-hardness of the same problem without any compression (see [Schmidt-
Schauß and Schulz 1998]). Hence, we just have to prove that this problem is in
NP. Our goal is to be able to guess a solution of polynomial size for a given input
context matching problem, and to check it efficiently. To this end, we first introduce
definitions of prefix and suffix of a context and subcontext of a term as extensions

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

28 · A. Gascón, G. Godoy and M. Schmidt-Schauß

of the original STG, and argue that the size of such extensions is polynomially
bounded by the size of the original STG. Part of the used ideas are borrowed from
[Levy et al. 2006b; 2004], but adapted to show a concrete complexity measure.

5.1 Grammar-extensions for hole path and subcontexts

Definition 5.1. Let G be an STG. We define the SCFG HG representing the
hole paths of wC for all context non-terminals C as follows. For each context non-
terminal C of G we construct a non-terminal HC of HG. For each natural number i
between 1 and the maximum arity of the signature Σ, we construct a non-terminal
Hi. For each rule with a context non-terminal C as left-hand side, we construct
one rule of HG, depending on the form of the rule of C in G, as follows.

—if (C → [·]) ∈ G, then HG contains the rule HC → λ.

—if (C → C1C2) ∈ G, then HG contains the rule HC → HC1
HC2

.

—if (C → f(A1, . . . , Ai−1, Ci, Ai+1, . . . , Am)) ∈ G, then HG contains the rules
HC → HiHCi

.

Moreover, for each Hi we construct the rule Hi → i.

Lemma 5.2. The SCFG HG can be computed for an STG G in time O(|G|).
For every context non-terminal C ∈ G, the corresponding non-terminal HC ∈ HG

generates hp(wC). Moreover, |HG| ≤ |G| +M and depth(HC) ≤ depth(C) for all
C, where M is the maximum arity of the signature.

Proof. It is easy to prove that wHC
= hp(wC) as well as depth(HC) ≤ depth(C)

using induction on depth(C). Moreover, from every rule of G we produce one rule
of HG, and for every i between 1 and M we produce one rule of HG, which leads
to a linear time algorithm with respect to |G|.

Definition 5.3. Let G be an STG describing first-order terms and contexts, let
C be a context non-terminal of G, and let l be a natural number such that l ≤
|hp(wC)|. We define the extension Pref(G,C, l) of G representing a prefix of wC

recursively as follows.

—If l = 0, then Pref(G,C, l) contains G plus the rule C′ → [·], where C′ is a new
context non-terminal. In the next cases we assume l > 0.

—If l = |hp(wC)|, then Pref(G,C, l) := G. In the next cases we assume l <

|hp(wC)|.

—If (C → C1C2) ∈ G and l ≥ |hp(wC1
)|. Then Pref(G,C, l) includes

Pref(G,C2, l− |hp(wC1
)|), which contains a non-terminal C′

2 generating the pre-
fix of wC2

with |hp(wC′

2
)| = l − |hp(wC1

)|, plus the rule C′ → C1C
′
2, where C′ is

a new context non-terminal.

—If (C → C1C2) ∈ G and l < |hp(wC1
)|, then, we define Pref(G,C, l) as

Pref(G,C1, l).

—If (C → f(A1, . . . , Ai−1, Ci, Ai+1, . . . , Am)) ∈ G, then Pref(G,C, l) includes
Pref(G,Ci, l− 1), which contains a non-terminal C′

i generating the prefix of wCi

with |hp(wC′

i
)| = l − 1, plus the rule C′ → f(A1, . . . , Ai−1, C

′
i, Ai+1, . . . , Am)) ∈

G, where C′ is a new context non-terminal.

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

Unification and Matching on Compressed Terms · 29

Lemma 5.4. Let G be an STG describing first-order terms and contexts, let C be
a context non-terminal of G, and let l be a natural number such that l ≤ |hp(wC)|.
Then, Pref(G,C, l) is an extension of G computable in time O(|G|). It adds
at most depth(C) non-terminals such that one of them, called C′, generates the
prefix of wC satisfying |hp(wC′)| = l. Moreover, depth(C′) ≤ depth(C) and
depth(Pref(G,C, l)) = depth(G).

Proof. The correctness of the definition of Pref(G,C, l), as well as depth(C′) ≤
depth(C) and depth(Pref(G,C, l)) = depth(G) can be easily shown by induc-
tion on depth(C). With respect to time complexity, we first precompute |hp(wC)|
for each context non-terminal of G, which can be done in linear time thanks to
Lemma 2.10 and Lemma 5.2. Time complexity O(|G|) follows from the fact that
the recursive definition decreases the depth of the involved non-terminal.

Definition 5.5. Let G be an STG describing first-order terms and contexts, let
C be a context non-terminal of G, and l a natural number such that l ≤ |hp(wC)|.
We define the extension Suff(G,C, l) of G representing a prefix of wC as follows:

—If l = 0, then Suff(G,C, l) := G. In the next cases we assume l > 0.

—If l = |hp(wC)| then Suff(G,C, l) contains G plus the rule C′ → [·], where C′ is
a new context non-terminal. In the next cases we assume l < |hp(wC)|.

—If (C → C1C2) ∈ G and l < |hp(wC1
)|. Then Suff(G,C, l) includes

Suff(G,C1, l), which contains a context non-terminal C′
1 generating the suffix

of wC1
with |hp(wC′

1
)| = |hp(wC1

)| − l, plus the rule C′ → C′
1C2, where C′ is a

new context non-terminal.

—If (C → C1C2) ∈ G and l ≥ |hp(wC1
)|, then, with l′ := l − |hp(wC1

)|, we define
Suff(G,C, l) as Suff(G,C2, l

′).

—If (C → f(A1, . . . , Ai−1, Ci, Ai+1, . . . , Am)) ∈ G, then we define Suff(G,C, l) as
Suff(G,Ci, l − 1).

Lemma 5.6. Let G be an STG describing first-order terms and contexts. Let C
be a context non-terminal of G, and l a natural number such that l ≤ |hp(wC)|.
Then, Suff(G,C, l) is an extension of G computable in time O(|G|). It adds at
most depth(C) non-terminals such that one of them, called C′, generates the suffix
of wC satisfying |hp(wC′)| = |hp(wC)| − l. Moreover, depth(C′) ≤ depth(C) and
depth(Pref(G,C, l)) = depth(G).

Proof. The proof is analogous to the one of Lemma 5.4.

Definition 5.7. Let G be an STG generating terms and contexts, let A be a
term non-terminal of G, and let p be a position in wA. Then, we recursively define
pCon(G,A, p) as an extension of G representing the prefix context of A with hole
path p as follows.

—if A → α(A1, . . . , Am) ∈ G and p = i · p′ then pCon(G,A, p) includes
pCon(G,Ai, p

′), which contains a non-terminal Ci generating the context pre-
fix of wAi

with hp(wCi
) = p′, plus the rule C′ → α(A1, . . . , Ci, . . . , Am), where

C′ is a new context non-terminal.

—If A → A′, then pCon(G,A, p) = pCon(G,A′, p).

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

30 · A. Gascón, G. Godoy and M. Schmidt-Schauß

—if A → C1A2 ∈ G then p = p1 · p2 where p1 is the maximal common prefix of p
and hp(C1). We distinguish three cases:

—if p1 = hp(C1) then pCon(G,A, p) includes pCon(G,A2, p2), which contains a
non-terminal C2 generating the context prefix of wA2

with hp(wC2
) = p2, plus

the rule C′ → C1C2, where C′ is a new context non-terminal.

—if p1 ≺ hp(C1) and p2 = λ then pCon(G,A, p) is defined as Pref(C1, G, |p1|).

—if p1 ≺ hp(C1) and p2 6= λ then p is of the form p1 · i · p3 and hp(C1) is of
the form p1 · k · p4, for some positions p3 and p4, and some integers i and k

satisfying i 6= k. We assume i < k, without loss of generality. Let l1 and l4 be
|p1| and |p4|, respectively.

Let G1 be Pref(G,C1, l1). The STG G1 contains a context non-terminal
C11 generating the prefix of wC1

such that |hp(C11)| = l1. Let G2 be
Suff(G1, C1, |hp(C1)| − l4). The STG G2 contains a context non-terminal C12

generating the suffix of wC1
such that |hp(C12)| = l4.

Let G′
1 be Suff(G,C1, l1). The STG G′

1 contains a context non-terminal C′
12

generating the suffix of wC1
such that |hp(C′

12)| = |hp(C1)| − l1 = l4 + 1. Let
G′

2 be Pref(G′
1, C

′
12, 1). The STG G′

2 contains a context non-terminal C′
11

generating the prefix of wC′

12
such that |hp(C′

11)| = 1.

At this point, note that wG,C1
= wG2,C11

wG′

2
,C′

11
wG2,C12

. Moreover, the rule
of C′

11 in G′
2 is of the form C′

11 → α(A′
1, . . . , A

′
k−1, C

′′
11, A

′
k+1, . . . , A

′
m), where

all the A′
i are term non-terminals of the original G, and generating the same

terms as in G. Moreover, the rule of C′′
11 in G′

2 is necessarily C′′
11 → [·].

We define pCon(G,A, p) as pCon(G2, A
′
i, p3), which contains a context non-

terminal C3 generating wA′

i
[·]p3

, plus the rules C′ → C11C4, C4 →
α(A′

1, . . . , A
′
i−1, C3, A

′
i+1, . . . , A

′
k−1, A

′
k, A

′
k+1, . . . , Am), A′

k → C12A2, where
C′, C4, A

′
k are new non-terminals.

Lemma 5.8. Let G be an STG describing terms and contexts, let A be a non-
terminal of G, and let p be a position in wA. Then, pCon(G,A, p) contains at
most depth(A) ∗ (2depth(A) + 3) new non-terminals such that one of them, called
C′, generates the context prefix of wA with hp(wC′) = p. Moreover, depth(C′) ≤
4depth(A).

Proof. The fact that pCon(G,A, p) contains a context non-terminal C′ gener-
ating the context prefix of wA with hp(wC′) = p can be verified by induction on
depth(A) and distinguishing cases according to the definition of pCon(G,A, p). As
in previous constructions, pCon(G,A, p) can be computed in a single run over the
rules of the G. To show the upper bound to the size of the computed extension, it
suffices to note that the worst case in this sense is when the rule of A is of the form
A → C1A2 and hp(C1) and p are disjoint. In such a case, we add 3 new rules plus
the new rules in Pref(G,C1, |p1|) and Suff(G,C1, |p1|+ 1), where p1 is the maxi-
mal common prefix between hp(C1) and p. The number of added non-terminals is
bounded by depth(A) for both the Pref and the Suff constructions by Lemma 5.4,
and Lemma 5.6, respectively. The fact depth(C′) ≤ 4depth(A) can be verified by
induction on depth(A) and using Lemma 5.4, and Lemma 5.6.

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

Unification and Matching on Compressed Terms · 31

5.2 NP-completeness of STG-context-matching

At this point we are ready to show that the STG-context-matching problem is in
NP. However, we will first remark on how we represent the input and the solutions
for this problem. An input consists on an STG G and two non-terminals As an At

of G. We want to decide whether there exists a substitution σ for the first-order
and context variables occurring in wAs

such that σ(wAs
) = wAt

. In the input of the
algorithm, the first order and the context variables are 0-ary and 1-ary terminals
of G, respectively. A solution σ can be represented by another STG G′, where
the first order and the context variables are term and context non-terminals of G′,
respectively. That is, σ(x) = wG′,x and σ(F) = wG′,F , for each first-order variable
x and context variable F . For proving NP inclusion, we just show that, if such σ

exists then there exists an extension G′ of G, which is polynomially bounded in the
size of G, satisfying wG′,As

= wG′,At
= wG,At

. The fact that this equality can be
checked in polynomial time follows again from Theorem 2.9.

Lemma 5.9. Let G be an STG, and let As and At be term non-terminals of G.
Let 〈As, At, G〉, be an STG-context-matching problem instance, and let σ be a sub-
stitution such that σ(wG,As

) = wG,At
(a solution). Then, there exists an extension

G′ of G such that wG′,As
= wG′,At

= wG,At
. Furthermore, |G′| is polynomially

bounded by |G|.

Proof. Let {x1, . . . , xn} and {F1, . . . , Fm} be the set of first-order variables and
context variables, respectively, occurring in wG,As

. For each first order variable xi,
σ(xi) is a subterm of wAt

at some position pi. Thus, for each first-order variable xi,
we construct the STG G′

xi
= (T N ′

xi
, CN ′

xi
,Σ′

xi
, R′

xi
) as kExt(At, G, pIndex(t, pi)),

which contains a term non-terminal Axi
generating wAxi

= σ(xi). Then we convert
xi into a non-terminal generating σ(xi) by defining Gxi

= (T N xi
, CNxi

,Σxi
, Rxi

)
from G′

xi
as Gxi

= (T N ′
xi
∪{xi}, CN

′
xi
,Σ′

xi
−{xi}, R′

xi
∪{xi → Axi

}). Similarly, for
each context variable Fj , σ(Fj) = C is a prefix context of some subterm of t = wAt

.
Therefore, there exist positions qj , q

′
j satisfying that C is the prefix context of t|qj

with the hole at position q′j . Thus, for each context variable Fj , we construct

G′
Fj

= (T N ′
Fj
, CN ′

Fj
,Σ′

Fj
, R′

Fj
) as pCon(kExt(As, G, pIndex(t, qj)), AFj

, q′j), where

kExt(As, G, pIndex(t, qj)) contains a term non-terminal AFj
generating t|qj , and

G′
Fj

contains a context non-terminal CFj
generating σ(Fj). Then we convert Fj

into a context non-terminal by defining GFj
= (T NFj

, CNFj
,ΣFj

, RFj
) from G′

Fj

as GFj
= (T N ′

Fj
, CN ′

Fj
∪ {Fj},Σ′

Fj
− {Fj}, R′

Fj
∪ {Fj → CFj

}). Note that each
extension of G that instantiates certain variable is independent from the others,
since all of them ask for subterms/subcontexts of wAt

, which is ground, and does
not change after substituting a variable. Hence, each wAxi

and each wCFj
can

be defined independently from the rest using the STG G given as input. In fact,
without loss of generality, we can assume that the new added non-terminals for
each Gxi

and each GFj
are disjoint. Thus, we construct G′ as G′ = (

⋃n

i=1 T N xi
∪

⋃m

j=1 T N Fj
,
⋃n

i=1 CN xi
∪
⋃m

j=1 CNFj
,
⋂n

i=1 Σxi
∩
⋂m

j=1 ΣFj
,
⋃n

i=1 Rxi
∪
⋃m

j=1 RFj
).

By Lemma 4.5, each kExt(As, G, pIndex(t, pi)) and each
kExt(As, G, pIndex(t, qj)) has at most depth(G) new non-terminals.
By the same Lemma, each depth(kExt(As, G, pIndex(t, pi))) and each
depth(kExt(As, G, pIndex(t, qj))) is bounded by depth(G). Thus, each Gxi

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

32 · A. Gascón, G. Godoy and M. Schmidt-Schauß

has at most depth(G) + 1 new non-terminals, each depth(Gxi
) is bounded by

depth(G) + 1. By Lemma 5.8, each pCon(kExt(As, G, pIndex(t, qj)), AFj
, q′j) has

at most depth(G) ∗ (2depth(G) + 3) new non-terminals. Thus, each GFi
has at

most depth(G) + depth(G) ∗ (2depth(G) + 3) + 1 new non-terminals, that is
2 depth(G)2 + 4 depth(G) + 1.
In order to count |G′|, by the assumption that all new added non-terminals were

disjoint for each STG, we can just take the sum of their size increases with respect
to G. Therefore, |G′| is bounded by |G| + n(depth(G) + 1) + m(2 depth(G)2 +
4 depth(G) + 1).

Theorem 5.10. Context matching with STGs is in NP and hence it is NP-
complete.

Proof. Let G be an STG, and let As and At be term non-terminals of G.
In order to verify that a given extension G′ of G represents a solution for the
match equation {As

.
= At, G} it suffices to decide whether wG′,As

= wG′,At
which

can be done in polynomial time w.r.t |G′| by Theorem 2.9. By Lemma 5.9 if
{As

.
= At, G} has a solution σ then there exists an extension of polynomial size

w.r.t |G| representing σ. Thus there is a polynomial time verifier for the STG-
context-matching problem, and hence it belongs to NP. Since context matching is
already known to be NP-hard [Schmidt-Schauß and Schulz 1998] we obtain NP-
completeness.

For the special case of matching of strings compressed with SCFGs we obtain
also NP-completeness: An instance of the matching problem for strings is a list of
equations s1

.
= t1, . . . , sn

.
= tn, where si, ti are strings, only si may contain string

variables, and a solution σ may replace string variables by strings, and must solve
all equations, i.e. σ(si) = ti for all i.

Corollary 5.11. String-matching where left and right hand sides are com-
pressed using an SCFG, is NP-complete.

Proof. It is well-known that string matching is NP-hard [Benanav et al. 1985],
and using a monadic signature, Theorem 5.10 shows the claim.

6. FIRST-ORDER UNIFICATION WITH STGS

In this section we prove that the first-order unification problem can be solved in
polynomial time even when the input is compressed using STGs. We will use the
algorithms and constructions in Section 4, where the polynomial running time of
certain constructions there is now relevant.

Definition 6.1. The first-order unification problem with STG has an STG G rep-
resenting first-order terms and contexts as input, plus two term non-terminals As

and At of G representing terms s = wG,As
and t = wG,At

. Its decisional version
asks whether s and t are unifiable. In the affirmative case, its computational version
asks for a representation of the most general unifier.

Our algorithm generates the most general unifier in polynomial time and repre-
sents it again with an STG. It will make heavy use of the grammar-constructions
in Section 4.

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

Unification and Matching on Compressed Terms · 33

Input: An STG G and term non-terminals As and At.

(we write s and t for wAs and wAt).

While s and t are different do:

Look for the first position k such that pre(s)[k] 6= pre(t)[k].
If both pre(s)[k] and pre(t)[k] are function symbols; Then

Halt stating that the initial s and t are not unifiable

// Here, either pre(s)[k] or pre(t)[k], say pre(s)[k], is a variable x.

If x occurs in t|p, where p = iPos(t, k), Then

Halt stating that the initial s and t are not unifiable

Extend G by the assignment {x 7→ t|p}
EndWhile

Halt stating that the initial s and t are unifiable

Fig. 6. Unification Algorithm of STG-Compressed Terms

6.1 Outline of the algorithm

Our unification algorithm for compressed terms in Fig. 6 is a variant of Robinson’s
algorithm [Robinson 1965]: Given an STG G as a compressed representation of two
terms s and t, we compute a smallest index k in which pre(s) and pre(t) differ.
At this point, if both pre(s)[k] and pre(t)[k] are function symbols, we terminate
stating non-unifiability. Otherwise, either pre(s) or pre(t), say pre(s), contains a
variable x at k. Note that, since the arity of the terminals in G is fixed, the index
k corresponds to a unique position p ∈ Pos(s) ∩ Pos(t), as explained in Section 2.
If x properly occurs in the subterm of t at p, then we terminate, again stating
non-unifiability. Otherwise, we replace x by the subterm of t at p everywhere,
and repeat the process until both s and t become equal, in which case we state
unifiability.

6.2 A polynomial time algorithm for first-order unification with STGs

From a high level perspective the structure of our algorithm described in Subsec-
tion 6.1 is very simple and rather standard: it is very much like the Robinson
unification algorithm [Robinson 1965]. Many algorithms for first-order unifica-
tion are variants of this scheme. They represent the terms with directed acyclic
graphs (dags), implemented somehow, in order to avoid the space explosion due
to the repeated instantiation of variables by terms. For example, the Martelli-
Montanari-algorithm represents instantiations by equations [Martelli and Monta-
nari 1982; Baader and Snyder 2001b]. In our setting, those terms are represented
by STGs. In fact, the input is an STG G, and two term non-terminals As and At

representing s and t, respectively. In previous sections we showed how to efficiently
perform all the required operations on STGs: Decide whether s and t are equal,
generate a compressed representation for pre(s) and pre(t), look for the smallest in-
dex k such that pre(s)[k] 6= pre(s)[k], construct the term t|p, where p = iPos(t, k),
and instantiate the variable x = s|p by t|p.
The algorithm runs in polynomial time due to the following observations. Let n

and m be the initial value of depth(G) and |G|, respectively. We define V to be the
set of all the first-order variables at the start of the execution (before any of them
has been converted into a non-terminal). Hence, at this point Vdepth(G) = n. The

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

34 · A. Gascón, G. Godoy and M. Schmidt-Schauß

value Vdepth(G) is preserved to be n along the execution of the algorithm thanks
to Lemmas 4.8 and 4.10. Moreover, by Lemma 4.10, at most n new non-terminals
are added at each step. Since at most |V | steps are executed, the final size of G is
bounded by m+ |V |n. Each execution step takes time at most O(|G|3). Thus we
have proved:

Theorem 6.2. First-order unification of two terms represented by an STG can
be done in polynomial time O(|V |(m + |V |n)3, where m represents the size of the
input STG, n represents the depth, and V represents the set of different first-order
variables occurring in the input terms). This holds for the decision question, as
well as for the computation of the most general unifier, whose components are
represented by the final STG.

7. FIRST-ORDER MATCHING WITH STGS

In this section we prove that the first-order matching problem can be solved in
polynomial time even when the input is compressed using STGs.

Definition 7.1. The first-order matching problem with STG has an STG G rep-
resenting first-order terms and contexts as input, plus two term non-terminals As

and At of G representing terms s = wG,As
and t = wG,At

, where t is ground. Its
decisional version asks for the existence of a substitution σ such that σ(s) = t

whereas its computational version asks for a representation of σ.

First-order matching is a particular case of first-order unification. However, tak-
ing advantage of the fact that one of the terms is ground leads to a faster algorithm
with respect to the one presented in the previous section. We also improve previous
complexity results for this problem [Gascón et al. 2008].

7.1 Outline of the algorithm

The structure of our algorithm is sketched in Figure 7. As commented above, the
input of the problem consists of an STG G as a compressed representation of two
terms s and t. As in the first-order unification case, the algorithm works with rep-
resentations of the preorder traversal words of the terms s and t to be matched.
Hence, we first compute a representation of pre(s) and pre(t). Then we find the
index k of the first occurrence of a variable x in pre(s), and, given G and k, com-
pute t′ = t|iPos(t,k). If t′ is undefined we halt giving a negative answer. Otherwise
we apply the substitution {x → t′}(s) and restart the process until all variables are
replaced. Finally, let s′ be the term obtained from s after all replacements are done.
We check whether s′ and t are syntactically equal and answer accordingly. Note
that, in contrast to unification algorithm, we look for the first occurrence of a vari-
able in pre(s) instead of looking for the first difference between pre(s) and pre(t).
This refines the approach used in the previous section for the unification general
case of first-order unification and improves time complexity results in previous work
on first-order matching with STGs [Gascón et al. 2008].
In the previous section we already showed how to compute a succinct represen-

tation of pre(s) and pre(t), to compute, given a natural number k, the subterm of
a term t at position iPos(t, k), and to apply a substitution. Hence, it only remains
to show how to compute k, the index of the first occurrence of a variable in pre(s).

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

Unification and Matching on Compressed Terms · 35

Input: An STG G and term non-terminals As and At.

(we write s and t for wAs and wAt

and X for the set of variables in s).

Repeat |X | times:

Look for the smallest index k such that pre(s)[k] = x ∈ X.

If iPos(t, k) is undefined Then Halt stating that the initial s and t match.

Extend G by the assignment {x 7→ t|p}, where p = iPos(t, k).
EndRepeat

If s = t Then Halt stating that the initial s and t match.

Else Halt stating that the initial s and t do not match.

Fig. 7. Matching Algorithm for STG-Compressed Terms

7.2 Finding the first occurrence of a variable

The task of finding the index of the first occurrence of a variable in a compressed
word can be performed efficiently as stated in the following Lemma.

Lemma 7.2. Let P be an SCFG, and let p be a non-terminal of P representing
the preorder traversal word of a first-order term. Then, the smallest index k such
that wp[k] is a terminal and a variable can be computed in time O(|P |).

Proof. Let X denote the set of first-order variables. We define k = index(p, P)
as follows:

index(p,P)=























1 , if p → α ∈ P ∧ α ∈ X
index(p1,P) , if (p → p1p2) ∈ P ∧

∃x ∈ X : x occurs in wP,p1

|wP,p1
|+ index(X2,P) , Otherwise.

Note that we assumed that P is in Chomsky Normal Form. If this was not the
case, we can force this assumption with a linear time and space transformation. The
fact that index(p, P) computes the smallest index k such that wp[k] is a variable
can be shown by induction on depth(p). With respect to the time complexity, for
each non-terminal p of an SCFG P , both the number |wp| and whether wp contains
a variable can be precomputed in linear time as stated in Lemmas 2.10 and 2.11,
respectively. When these pre-computations are done, index(p, P) can be computed
by a single run over the rules of P and hence, it runs also in linear time.

7.3 A polynomial time algorithm for first-order matching with STGs

The algorithm presented in the previous section runs in polynomial time due to
the following observations. Let n and m be the initial value of depth(G) and
|G|, respectively. We define V := X to be the set of all the first-order variables
at the start of the execution (before any of them has been converted into a non-
terminal). As in the unification case, the final size of the grammar is bounded
by m + |V |n thanks to Lemmas 4.8 and 4.10. Our algorithms iterates at most V

times. By Lemmas 4.5, and 7.2 each iteration takes linear time. Finally we check
equality of two words generated by an SCFG P , which takes time O(|P |3) thanks
to Theorem 2.9. Hence, we have the following:

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

36 · A. Gascón, G. Godoy and M. Schmidt-Schauß

Theorem 7.3. First-order matching of two terms represented by an STG can
be done in polynomial time O((m + |V |n)3), where m represents the size of the
inputted STG, n represents its depth, and V represents the set of different first-order
variables occurring in the inputted terms). This holds for the decision question, as
well as for the computation of the unifier, whose components are represented by the
final STG.

8. CONCLUSION AND FURTHER WORK

We analyzed the complexity of context matching under different representations of
terms like dags and STGs. Regarding the term compression using STGs, we showed
that the context matching problem with STGs is NP-complete. Furthermore, we
presented instantiation-based algorithms for the first-order matching problem and
the first-order unification problem, that can be immediately executed on the com-
pressed representation of large terms and run in polynomial time on the size of
the representation. It would be interesting to investigate optimizations for these
algorithms, as well as finding an improved upper bound. We also believe that it
would be natural to consider the context matching problem using an STG encoding
for terms under certain restrictions like fixing the number of context variables. In
this sense we believe that our techniques could be useful to show that the one con-
text unification problem is in NP when the input is represented by an STG. This
problem has been solved for plain terms as input in [Gascón et al. 2008].
For the dag representation we found a polynomial context matching algorithm

for the case where the number of context variables is fixed. Since the problem of
context matching is NP-complete, this result is interesting because it closely links
a complexity jump to a specific restriction on the original problem.
From a more general point of view, we believe that it would be interesting to

investigate other variations of context unification and matching problems. Modifi-
cations such as allowing several holes in a context add expressiveness to the problem
in order to encode complex questions about terms. It is also important to recon-
sider the complexity of sets of solutions for this variations when using different
representations of terms.

REFERENCES

Baader, F. and Siekmann, J. 1994. Unification theory. In Handbook of Logic in Artificial
Intelligence and Logic Programming, D. Gabbay, C. Hogger, and J. Robinson, Eds. Oxford
University Press, 41–125.

Baader, F. and Snyder, W. 2001a. Unification theory. In Handbook of Automated Reasoning,
A. Robinson and A. Voronkov, Eds. Vol. I. Elsevier Science and MIT Press, Chapter 8, 445–532.

Baader, F. and Snyder, W. 2001b. Unification theory. In Handbook of Automated Reasoning,

J. A. Robinson and A.Voronkov, Eds. Elsevier and MIT Press, 445–532.

Benanav, D., Kapur, D., and Narendran, P. 1985. Complexity of matching problems. In RTA.
LNCS, vol. 202. 417–429.

Berglund, A., Boag, S., Chamberlin, D., Fernández, M. F., Kay, M., Robie, J., and Siméon,

J., Eds. 2007. XML Path Language (XPath) Version 2.0. W3C. http://www.w3.org/TR/2007/
REC-xpath20-20070123/.

Berman, P., Karpinski, M., Larmore, L. L., Plandowski, W., and Rytter, W. 2002. On the
complexity of pattern matching for highly compressed two-dimensional texts. J. Comput. Syst.
Sci. 65, 2, 332–350.

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

Unification and Matching on Compressed Terms · 37

Busatto, G., Lohrey, M., and Maneth, S. 2005. Efficient memory representation of XML

documents. In Proc. of DBPL 2005. LNCS, vol. 3774. 199–216.

Busatto, G., Lohrey, M., and Maneth, S. 2008. Efficient memory representation of XML
document trees. Information Systems 33, 4–5, 456–474.

Cheney, J. R. 1998. First-order term compression: Techniques and applications. Ph.D. thesis.

Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., and Tom-

masi, M. 1997. Tree automata techniques and applications. Available on: http://www.grappa.
univ-lille3.fr/tata. release 1.10.2002.

Gascón, A., Godoy, G., and Schmidt-Schauß, M. 2008. Context matching for compressed
terms. In 23rd IEEE LICS. 93–102. http://www.lsi.upc.edu/~ggodoy/publications.html.

Gascón, A., Godoy, G., and Schmidt-Schauß, M. 2009. Unification with singleton tree gram-
mars. In RTA. Springer, 365–379.

Gascón, A., Godoy, G., Schmidt-Schauß, M., and Tiwari, A. 2008. Context Unification with
One Context Variable. To appear.

Gascón, A., Godoy, G., Schmidt-Schauß, M., and Tiwari, A. 2009. Context Unification with
One Context Variable. To appear.

Gasieniec, L., Karpinski, M., Plandowski, W., and Rytter, W. 1996. Randomized efficient
algorithms for compressed strings: The finger-print approach (extended abstract). In 7th CPM
96. LNCS, vol. 1075. Springer, 39–49.

Genest, B. and Muscholl, A. 2002. Pattern matching and membership for hierarchical message
sequence charts. In Proc. of LATIN 2002. Springer-Verlag, 326–340.

Gottlob, G., Koch, C., and Schulz, K. U. 2006. Conjunctive queries over trees. J. ACM 53, 2,
238–272.

Graf, P. 1995. Substitution tree indexing. In 6th RTA. LNCS, vol. 914. 117–131.

Graf, P. 1996. Term indexing. In 6th RTA. LNCS, vol. 1053. 117–131.

Gulwani, S. and Tiwari, A. 2007. Computing procedure summaries for interprocedural analysis.
In Proc. ESOP 2007. LNCS, vol. 4421. Springer, 253–267.

Hirao, M., Shinohara, A., Takeda, M., and Arikawa, S. 2000. Fully compressed pattern
matching algorithm for balanced straight-line programs. In SPIRE ’00. IEEE Computer Society,
Washington, DC, USA, 132.

Karpinski, M., Plandowski, W., and Rytter, W. 1996. Efficient algorithms for Lempel-Ziv
encoding. In In Proc. 4th Scandinavian Workshop on Algorithm Theory. SpringerVerlag, 392–
403.

Karpinski, M., Rytter, W., and Shinohara, A. 1995. Pattern-matching for strings with short
description. In CPM ’95. Springer-Verlag, 205–214.

Lasota, S. and Rytter, W. 2006. Faster algorithm for bisimulation equivalence of normed
context-free processes. In Proc. MFCS’06. LNCS, vol. 4162. Springer-Verlag, 646–657.

Levy, J., Schmidt-Schauß, M., and Villaret, M. 2004. Monadic second-order unification is
NP-complete. In Proc. 15th RTA. LNCS, vol. 3091. Springer, 55–69.

Levy, J., Schmidt-Schauß, M., and Villaret, M. 2006a. Bounded second-order unification is
NP-complete. In Proc. RTA-17. LNCS, vol. 4098. Springer, 400–414.

Levy, J., Schmidt-Schauß, M., and Villaret, M. 2006b. Stratified context unification is
NP-complete. In Proc. Third IJCAR 2006. LNCS, vol. 4130. Springer, 82–96.

Lifshits, Y. 2007. Processing compressed texts: A tractability border. In CPM 2007. 228–240.

Lohrey, M. 2006. Word problems and membership problems on compressed words. SIAM Journal
on Computing 35, 5, 1210–1240.

Lohrey, M. and Maneth, S. 2005. The complexity of tree automata and XPath on grammar-
compressed trees. In Proc. of the 10th CIAA ’05.

Lohrey, M., Maneth, S., and Schmidt-Schauß, M. 2009. Parameter reduction in grammar-
compressed trees. In 12th FoSSaCS. LNCS, vol. 5504. Springer, 212–226.

Maneth, S., Mihaylov, N., and Sakr, S. 2008. XML tree structure compression. DEXA 0,
243–247.

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

38 · A. Gascón, G. Godoy and M. Schmidt-Schauß

Martelli, A. and Montanari, U. 1982. An efficient unification algorithm. ACM Trans. on

programming languages and systems 4, 2, 258–282.

Miyazaki, M., Shinohara, A., and Takeda, M. 1997. An improved pattern matching algorithm
for strings in terms of straight-line programs. In Proc. 8th CPM. Number 1264 in LNCS.
Springer-Verlag, 1–11.

Niehren, J., Pinkal, M., and Ruhrberg, P. 1997. A uniform approach to underspecification
and parallelism. In Proc. of 35th ACL’97. Madrid, Spain, 410–417.

Paterson, M. S. and Wegman, M. N. 1978. Linear unification. J. of computer and system
sciences 16, 158–167.

Plandowski, W. 1994. Testing equivalence of morphisms in context-free languages. In Proc. 2nd
ESA’94, J. van Leeuwen, Ed. LNCS, vol. 855. 460–470.

Plandowski, W. 1995. The complexity of the morphism equivalence problem for context-free
languages. Ph.D. thesis, Department of Mathematics, Informatics and Mechanics, Warsaw
University.

Plandowski, W. and Rytter, W. 1999. Complexity of language recognition problems for com-
pressed words. In Jewels are Forever. Springer, 262–272.

Robinson, J. 1965. A machine oriented logic based on the resolution principle. J. of the
ACM 12, 1, 23–41.

Schmidt-Schauß, M. 2005. Polynomial equality testing for terms with shared substructures.
Frank report 21, Institut für Informatik. FB Informatik und Mathematik. J. W. Goethe-
Universität Frankfurt am Main. November.

Schmidt-Schauß, M. and Schnitger, G. 2009. Fast equality test for straight-line compressed
strings. submitted for publication.

Schmidt-Schauß, M. and Schulz, K. U. 1998. On the exponent of periodicity of minimal solu-
tions of context equations. In Proc. 9th Int. Conf. on Rewriting Techniques and Applications
(RTA-9). LNCS, vol. 1379. 61–75.

Schmidt-Schauß, M. and Schulz, K. U. 2002. Solvability of context equations with two context
variables is decidable. J. Symb. Comput. 33, 1, 77–122.

Schmidt-Schauß, M. and Stuber, J. 2004. On the complexity of linear and stratified context
matching problems. Theory of Computing Systems 37, 717–740.

ACM Transactions on Computational Logic, Vol. 0, No. 0, March 2010.

