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ABSTRACT
As silicon photonics technology matures, optical devices will be
available on a scale never before seen or utilized. It is therefore imper-
ative to develop automated methods for synthesizing optical devices
for large-scale designs. We present design and synthesis method-
ologies for implementing digital logic using conventional integrated
optical components, specifically optical cross-bar routing devices
based on Mach-Zehnder Interferometry. Our design methodologies
utilize the unique advantages of these optical devices, while also
addressing the limitations of the technology. We extend these design
concepts to include technology-specific logic sharing, and provide
automated techniques for logic design implementation, evaluating the
efficacy of our techniques on a number of logic designs. Through the
convergence of communications and computing, optical devices are
utilized on scales beyond traditional optic design.

Categories: B.6.3 [Logic Design, Automatic Synthesis]
Terms: Algorithms, Design
Keywords: Optics, Logic Synthesis, XOR, Automation

1. INTRODUCTION
The semiconductor industry has long prospered through steady

advancements in static-CMOS technology, enabling higher perfor-
mance chip designs with each generation. This trend, however,
is already showing its limitations [1], and chip design is moving
towards multi-core processing, where communications are extremely
important [2]. This is leading researchers in industry and academia to
investigate complementary technologies for static-CMOS, and a great
focus of this research has been on silicon-based integrated optics –
silicon photonics – to leverage already available and mature silicon-
based infrastructure, and to overcome the traditional barriers that have
prevented silicon from being used in key integrated optic devices. A
recent surge of research has yielded a number of important recent
breakthroughs [3] [4] [5].

These developments and others are enabling optical devices to be
deployed cheaply and on a large scale, allowing far greater flexibility
in integrating such devices into systems. Wide availability of optical
devices will allow chip designs to take advantage of optics for
purposes beyond simply communications, and on a scale far beyond
the limitations imposed by the traditional high costs of integrating
optical devices. So far, the main application in mind for such devices
is for use as optical interconnects [2]; however, interest in their use
in optical computing has also been mentioned as an application [6].
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This convergence of communication and computation motivates the
need to address the integration of photonic logic design.

This paper explores the use of optical switching devices for logic
design and synthesis. A key aspect of this research is the use of
conventional routing devices, specifically optical crossbar routing
devices, as the building block for logic design. This enables us to
apply logic synthesis methodologies for large-scale integration of
optical devices, as well as optimize logic networks using common
sub-expression sharing compatible with the technology. We describe
our models, synthesis methodologies, and their applications to logic
examples in the next sections.

2. BACKGROUND AND DEVICE MODELS
One of the goals of this work is to develop synthesis techniques that

utilize conventional integrated optics devices that can be fabricated
with current technology, while also being applicable to future design
processes. We describe the basic operation of the integrated optic
devices we utilize. The constraints of the physical device model
are key to the logical constraints of our basic logic elements, and
ultimately to the logic synthesis methodology we describe.
Integrated Optic Devices: Integrated optical devices transmit and
route light using optical waveguides [7], which are created as guiding
layers on the substrate using lithographic and deposition methods.
In contemporary systems, light is coupled into the system from
the outside using a laser, and sensed, at the destination, by optical
receivers using a light-detection material such as germanium [8].

Figure 1: Operation of Mach-Zehnder Interferometer.

Our basic optical logic element is the Mach-Zehnder Interfero-
meter (MZI). The MZI is a conventional integrated optic device found
in many designs, used for modulation [3] [4], but also routing through
the use of coupling and controlled interference. Consider the MZI
depicted in Fig.1, with inputs p and q, and outputs f and g. Between
p and f and q and g are waveguides, with an index of refraction n.
Coupling occurs when two waveguides are brought within in close
proximity to each other such that the electromagnetic fields in one
waveguide extend over the other waveguide and vice versa, causing
energy to cross over between one waveguide to the other, as a function
of coupling length. The couplers in this device are 3dB couplers,
tuned to divide and/or combining the signal from both inputs equally
between the two outputs. In Fig.1, the signal at (a) passes through the
3dB coupler and is divided between the outputs (b) and (c), inducing
a π/2 phase change in (c) (note that only the phase relationships are
depicted).
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In the center region, S is an outside input used to affect the refrac-
tive index of the upper waveguide by Δn by using methods/devices
such as microheaters, carrier injection, advanced methods such as
high-speed MOS-capacitors [3], or other means. This change in
refractive index causes a path-length difference, and therefore a phase
difference, between the signals in (b) and (d). This phase difference
causes constructive or destructive interference at the second coupler
when the signals from (c) and (d) are combined. Though we have
only depicted one signal input at p, an input at q operates in the
same manner, but its output arrives at the opposing output that the
input from p does. A phase difference of 0 or π will route each
input completely to one output or the other, and the device acts as
the controlled crossbar depicted in Fig.2(a). Similarly, other MZI
designs [9] [10] also operate on the same principle.

(a) Gate (b) Bar (c) Cross (d) Splitter
Figure 2: Crossbar switch, and different routing configurations.

Our Device Model: The operation of the MZI allows us to model
it as a crossbar gate that routes light signal completely between
two paths depending on the state of S, and depict it symbolically
in Fig.2(a), with its two states Fig.2(b) and Fig.2(c) (bar and cross
respectively). The waveguides are sourced by light (logical “1”)
or darkness (“0”), and the output of a function is read using op-
tical receivers at the end. In our model, the switching input S
is an electrical signal; it is an outside signal that controls the
cross/bar configuration and cannot be switched by optical inputs.
Connections to p and q, and f and g are waveguides, and for
simplicity, light is assumed to move from the p and q side to f
and g. In our model, an optical signal cannot directly switch a
crossbar’s S input1. More formally: (S = 0)⇒ (p = f)∧ (q = g) ;
(S = 1)⇒ (q = f)∧ (p = g). These constraints affect how functions
may be composed, and imply that the inputs to a crossbar are the
primary inputs for that network. Waveguide connections between
crossbar gates are depicted symbolically as black “wires.” All designs
created using the above model can be physically realized, including
allowing waveguides to cross each other without interference.

In addition to MZIs, we also utilize optical splitters, depicted
symbolically in Fig.2(d). A splitter divides the light from one
waveguide into two output waveguides, each of which contain the
original signal, but at half the power (a 3dB loss). In our model,
splitters are the only signal degradation mechanism for a given
topology, as we assume that there are no losses due to waveguide
bends or insertion losses for MZI devices. Such losses can be factored
into heuristics once physical layout information is available; however,
this is currently beyond the scope of this work.
Previous work using MZIs: Optical logic design using crossbar
routing devices has been investigated in literature. Shamir, Caulfield,
et al. and others investigated the use of optical crossbar gates as
Fredkin gates [11] [12]. The Fredkin gate model assumes that an
optical input can also drive the switching input of a gate, allowing
the gate to be used in a reversible logic role, but precluding its
applicability to our device model. There has also been research
in non-Fredkin crossbar gates [13] [14] [15] demonstrating the
potential for implementing digital logic using MZIs; however, these
are generally confined to small demonstrative circuits that do not
scale to larger design implementations and arbitrary logic functions.
More recently, techniques such as [16] investigate the integration and
routing of optical interconnects; however, such work is for routing,
1Switching a crossbar gate with an optical signal requires an opto-electrical interface
comprising an optical receiver unit feeding switching hardware. This can be expensive
and slow, and is currently beyond the scope of the synthesis technique applied to this
device model.

not implementing logic. We therefore need a synthesis methodology
that enables the construction of arbitrary logic functions using MZI
crossbar devices, that can also scale to larger designs if necessary.
To this end, we introduce the concept of Virtual Gates, a scalable
methodology for implementing Boolean functions as a network
of nested template functions constructed from interconnected MZI
gates. We explore how these may be used directly, and how their
limitations motivates a technique for logic sharing without violating
the opto-electrical barrier.

3. LOGIC DESIGN WITH VIRTUAL GATES
A virtual gate (VG) is – functionally and conceptually – a crossbar

gate that is switched by a function, not necessarily a primary input.
The gate is “virtual” in the sense that it is a black box for a function
composed of “real” gates – those driven by primary inputs – as
well as other virtual gates. A novel form of nesting can be used
to compose VG function implementations, where Boolean operators
are implemented by replacing child gates with other gates, a real or
virtual.

A given VG implementation comprises two input waveguide ports
p and q connected by waveguides and crossbar gates to two output
ports f and g. The nesting operation comprises the Boolean operator
forms depicted in Fig.3, and is illustrated in Fig.4(a) where two
AND virtual gates are nested within an OR virtual gate, creating
the final function ab + cd. Evaluation of a VG, given a primary
input assignment, involves assigning p and q inputs logical 0 and
1 respectively, and applying cross or bar configurations to gates as
defined in Fig.2. The output of the function is detected at f, with
g = ¬f.

(a) AND(a,b) (b) AND(1,0) (c) AND(1,1)

(d) OR(a,b) (e) XOR(a,b)
Figure 3: Virtual Gate templates for Boolean operators.

Example: Consider the VG implemented in Fig.3(a) where two
inputs, a and b comprise inputs to the function f = a · b, and · is
the Boolean AND operator. If we assign a = 1,b = 0, this evaluates
f = a · b|a=1,b=0 = 0. This is depicted on an AND-VG in Fig.3(b)
where a = 1 causes the a gate to assume a cross configuration, and
b = 0 causes the b gate to assume a bar configuration. Tracing
the waveguide from the function output f to its optical inputs p or
q reveals that the f connects to p = 0, the correct evaluation for
the assignment. Likewise, if a = 1,b = 1, both gates assume a
cross configuration as depicted in Fig.3(c); tracing f to its inputs
connects it to q = 1 the correct evaluation for f = a ·b|a=1,b=1 = 1.
The correctness of other AND input-assignments, and other Boolean
operators can be verified by inspection.

All waveguide inputs in a VG are completely routed to outputs.
Therefore the output at g is always the functional negation of f, as
routing f to one input p or q will force the other input to be routed to g.
Negation of primary inputs on real gates is assumed to be performed
by the outside circuitry; however, function negation of gate outputs
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(virtual or real) can be performed by swapping the two outputs f
and g. For example, in Fig.4(a), the output of ab could be inverted
by connecting f to the line that g is connected to, and vice-versa,
resulting in ¬(ab)+ cd. Note that the g = ¬f and function negation
conditions do not hold for arbitrary connections of crossbar gates,
only those that are constructed as VGs.

(a) Virtual Gate nesting implementing f = ab+ cd.

(b) Factored-form full adder implementing
sum = a⊕b⊕Cin; Cout = ab+Cin(a⊕b).

Figure 4: Implementations using Virtual Gates.

The VG topology generally reflects how actual waveguides would
be implemented in an integrated optic substrate. Electrical con-
nections to crossbar gates (MZIs) are made from above to active
elements, and waveguide inputs/outputs are connected to the edge
of the substrate or through waveguide gratings [17]. Devices may
be oriented as needed to avoid excess waveguide congestion, such
as depicted in Fig.4(b), or to meet routing constraints. Waveguides
may also cross without interference by utilizing the same type of
waveguide couplers found in MZIs, but tuned for complete cross-
over. In addition, unused waveguide outputs – deemed “garbage
outputs” – must be properly accounted for. Garbage outputs cause
problems because the signals, and the light/energy they carry, may
interfere with the operation of the network if not properly “disposed
of” at the edge of the substrate. The additional waveguides needed
for garbage outputs can cause congestion and complicate the overall
physical routing of the network. VG networks have the advantage of
producing only a single garbage output per function if g is not used.
Salient features: 1) The nesting operation for constructing VG
networks allows Boolean functions to be implemented in any form
(SOP, factored, AND-XOR, etc.); an example of a factored-form
implementation of a full-adder is depicted in Fig.4(b), where Cout =
ab+Cin(a⊕ b). 2) The total number of real gates is the number of
literals in the expression. 3) The output g is always the functional
complement of f. 4) VGs produce at most one garbage output per
function output.
Expression Sharing with Virtual Gates: Virtual gates can im-
plement any single-output Boolean function in a factored form.
This however, has some caveats: the inability to drive gate inputs
using optical inputs implies that only splitters may be used to share

expressions. This places some severe constraints on VG expres-
sion sharing, namely that sharing is not possible using operators
connecting operands via loops (e.g. AND and OR operators).
Common sub-expressions connected via AND or OR operators must
be reimplemented (replicated) wherever they appear. Consider the
attempted expression sharing depicted in Fig.5(a), where an h gate
attempts to tap the output of the left a ·b VG as an XOR. The input to
the a · b gate output is not, however, a · b, rather it is functionally
undefined. For example, if a = b = c = d = 1 all real gates in
Fig.5(a) will be in a cross configuration, which will result in the top
waveguide, tapped by h, being isolated from any driven input. The
cause of this unknown function state is the presence of loops in the
design, which may or may not isolate parts of the network from the
signal path.

(a) Internal functions of Virtual Gates
cannot be shared.

(b) XOR expression sharing
is hierarchical.

(c) XOR decomposition structure.

Figure 5: Virtual Gate expression sharing.

Expression sharing using VGs is only possible through the use of
the XOR operator, as it does not contain loops in its construction.
This has its limitations, however: expression sharing is hierarchical.
Consider the three VGs XORed together in Fig.5(b). If we attempt
to share the output of the b VG, the output is not the function b, but
rather the function formed by b and its inputs: a⊕ b. Sharing the
function b directly would require a separate b gate driven only by 0
and 1 at its inputs. Therefore, common sub-expression extraction,
as implemented in CMOS technologies, cannot be applied to VG
networks. However, it is still possible to perform expression sharing
by means of XOR decomposition, the structure of which is depicted
in Fig.5(c).

A BDD structure [18], such as Fig.6, can facilitate expression
sharing if one considers the crossbar as a pair of multiplexors.

(a) BDD graph (b) BDD-based design

Figure 6: BDD-based Design for f1 = ab+ c, f2 = āb+ c.
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However, the structure of a BDD is such that potentially every gate in
the structure has has a garbage output. In [19], BDD-decomposition-
based synthesis methods are compared against pure and hybrid BDD-
VG networks methods, showing an extreme discrepancy in numbers
of garbage outputs when BDD-based structures are employed. It
is for this reason that we do not use a BDD-based structure for
expression sharing, and choose expression sharing methods based on
VG XOR operators.
XOR-based Expression Sharing: Our goal in expression sharing
is to reduce the overall literal count – and therefore gate count – by
sharing functionality. The network topology in Fig.5(c) depicts f0
and f1 sharing a common sub-expression P through the relationship
in Eqn.1. Ideally, this relationship will reduce the total literal cost of
the design.

f0 = P⊕Q0 f1 = P⊕Q1 (1)
f0 = (P⊕m)⊕ (Q0 ⊕m) f1 = (P⊕m)⊕ (Q1 ⊕m) (2)

Reducing literal count utilizing the XOR operator is not as straight-
forward as with AND or OR operators [20] [21], and more difficult
considering the feed-forward topology in Fig.5(c). We approach this
problem as one of adding or removing cubes from the sub-functions
P, Q0, and Q1.

Consider the case where an arbitrary term m is XORed with the
right-hand-sides of both equations of Eqn.1. In order to balance
the equations, we use the XOR identity a ⊕ a = 0, requiring that
m must be added again to each of the equations. If we group the
terms as depicted in Eqn.2, what can be taken from the result is that
simultaneously adding a term m to all three functions P, Q0 and Q1
does not change the functionality of f0 and f1. We can choose terms
such that one or more of the functions are simplified, as a means of
optimizing the overall expression-sharing VG network, as we will see
in the following example.
Motivating Example: Consider the binary-coded-decimal (BCD)
to 7-segment display in figure Fig.7(a), which converts a BCD to
a visual representation of a number by turning segments on or off
(1 or 0) depending on the value (0-9) of the BCD (x3x2x1x0). The
truth table for segments 0 and 1 (S0 and S1) is depicted on the right
side of Fig.7(a) (unlisted rows are assumed to be zero). The table is
mapped to Karnaugh maps (K-maps) depicted in Fig.7(b), allowing
us to derive the prime implicants for the functions, and the resulting
sum-of-products (SOP) equations below the K-maps. Through this
method, the total literal count for the two SOP expressions is 21
literals, requiring 21 crossbar gates if implemented as virtual gate
networks.

We now decompose S0 and S1 into functions P, Q0 and Q1 as
depicted in Fig.5(c), where S0 = P ⊕ Q0 and S1 = P ⊕ Q1, and
initially assign P := 0, Q0 := S0, and Q1 := S1. At this point,
the network is essentially the same as implementing S0 and S1
separately. Now consider the case where we XOR an expression k
with P, Q0 and Q1, where k is the intersection of minterms contained
in Q0 and Q1. This operation has the effect of cancelling those
minterms in P, Q0 and Q1 that are also contained in k, and adding
them if not. This new set of functions is actually less optimal
than the original (depicted in Fig.7(c)), because some of the larger
cubes are broken up in the XOR operation. These less-optimal
functions can, however, be improved by repeating the operation
using minterms 1 and 6, affecting all three functions P, Q0, and Q1
resulting in the K-maps and functions in Fig.7(d). The final set of
functions uses only 10 literals total – 11 gates less than implementing
the original functions separately. This example demonstrates the
potential for good common expression sharing by “adding” and
“removing” minterms from the decomposition functions. The same
operation can also be extended to cubes in general.

Note that while the decomposition is XOR-based, the sub-functions
P, Q0 and Q1 are implemented as VGs in any form – SOP, factored

(a) 7-segment display and truth table for segments 0 and 1.

(b) Karnaugh maps for S0 and S1 (unmarked grids = offset).

(c) The original P, Q0, and Q1 after XORing with k.

(d) Optimized P, Q0, and Q1.

Figure 7: BCD-to-7 Segment Display

forms, etc. We choose the most optimal form for VG implementation.
This is a novel feature of our decomposition technique as compared
to conventional XOR-based optimization methods.
Limitations of contemporary XOR-based synthesis techniques:
XOR-based optimization is well studied in literature. Techniques
such as [20] [21] are designed to minimize Exclusive-Sums-of-
Products (ESOPs) expressions with exact and fast heuristic methods.
ESOP expressions are, however, very limiting compared to VG
networks, as they comprise only AND-XOR terms. Decomposition
methods have also been explored, using graph structures and concepts
such as x-dominators [22] to find structural XOR relationships.
However, an XOR decomposition can only be extracted if found on
the graph structure; an XOR decomposition with expression sharing
always exists in our approach. [23] addresses some shortcomings
of previous decomposition methods, by finding linear relationships
between sub-functions of form f = g1h1 ⊕ g2h2, thereby reducing
the area of XOR-based logic functions. While this performs an XOR
decomposition, it does not create common sub-expression sharing
by design. The technique described in [24] applies a heuristic
method of sharing sub-functions of positive-polarity Reed-Muller
expansions for Toffoli gate synthesis. However, as with other
Toffoli synthesis methods [25], expression sharing of this type is
incompatible with our approach because expression outputs cannot
be shared across the opto-electro barrier. We therefore present a
technique for finding XOR decompositions for VG networks, while
simultaneously performing common sub-expression sharing.
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4. MULTI-OUTPUT EXPRESSION SHARING
We represent functions using ROBDDs [18]; this enables a more

compact representation of functions, while allowing efficient XOR-
based manipulations. Rather than using minterms to manipulate
functions, as in the motivating example, we use cubes derived from
the BDDs. The number of literals in the function (our metric) is
the sum of all literals from the cubes of a BDD. It should be noted
that while the literal count of the BDDs is used as a metric during
synthesis, the BDD is used soley as a function-manipulation data-
structure, not as a technology-mapping/implementation structure.

Two functions can be decomposed into a structure depicted in
Fig.5(c). This can be extended to a multi-level decomposition
by repeating the process hierarchically. The function in Algo.1
implements this procedure as a top-level function decomposition
from a multi-output design, returning a decomposition tree of sub-
functions representing the optimized design.

Algorithm 1 Function Optimization
function OPTIMIZEDESIGN(D:design)

MAPTOTREE(D → T );
F0 � FUNCTIONSFROM(D); Up � /0; � Up = Used pairs
while (F � (x ∈ F0,y ∈ F0) : x � y, (x,y) �Up)) � /0 do

( f0, f1)� BESTPAIR(F); Up �Up ∪ ( f0, f1);
if (B� XORDECOMP( f0, f1)) � FALSE then

MAPTOTREE(B[P],B[Q0],B[Q1]→ T );
REMOVE( f0, f1)FROM(F0);
F0 � F0 ∪B[P];

end if
end while
return T ;

end function

The algorithm selects most “compatible” functions f0 and f1 using
BESTPAIR(), where compatibility of functions is ranked such that
the number of shared variables is maximized, and the number of
function-exclusive variables is minimized – increasing the probability
of producing a useful decomposition. Using f0 and f1, the algorithm
attempts to find a P, Q0 and Q1 decomposition that can replace f0 and
f1 as a branch in the tree. When a decomposition improves the literal
count, the result is mapped into the decomposition tree, the stems of
the decomposition (Q0 and Q1) are removed from the function pool
(F0), and the root P is added to F0 for further decomposition. The
result of this procedure, applied to all segments of the BCD-to-7-
segment display can be seen in Fig.8. Segment outputs S0,S1,S2,S3
and S6 are able to benefit from multi-level sharing, where outputs S4
and S5 are only able to share functionality with each other and are
implemented separately.

The actual XOR decomposition is performed by Algo.2, taking
two functions f0 and f1 as inputs and producing an improved
decomposition, or FALSE if no decomposition could be found. θ ()
counts the number of literals in a given set of BDDs. Variable N0 is a
chosen maximum number of passes; we use N0 = 130.

The XOR decomposition technique works by applying cubes to the
decomposed functions such that net literal count is reduced. SEED()

Figure 8: BCD-to-7-Segment complete decomposition.

returns all cubes from {Q0,Q1,Q0 +Q1,Q0 ⊕Q1}, to provide an
initial pool of cubes to optimize with. In each iteration, a cube is
selected from C and XORed with P, Q0, and Q1 to attempt to reduce
the net literal count. Cubes from the resulting decomposition are then
added to the cube pool C, further increasing the available cubes that
can be used. These cubes are repeatedly used until no improvement
is found. The technique then tests the result against the best found
result, storing it if there is improvement. A new starting point is then
chosen to repeat the process. This continues for a chosen number of
passes N0.

An important part of our approach is the ability to hill-climb out
of local minima. This comes in two forms: the first occurs at
lines 16 and 18, and is important for allowing the decomposition to
apply cubes to the decomposition even when they cause no literal-
count improvement. To prevent deadlocks, this is allowed only for
E0 number of times (E0 = 10 in our implementation). This gives
the technique more flexibility in finding a better decomposition.
The second method allows a restart at a point based on the best
decomposition and a cube which caused the largest effect (line 22)
on the decomposition. The process then repeats and continues until
there are no more passes left.

Algorithm 2 XOR Decomposition
function XORDECOMP( f0, f1)

P� 0; Q0 � f0; Q1 � f1; L0 � θ ({P,Q0,Q1});
best � [P,Q0,Q1,L0]; � Current best results
N � N0; � N = Passes left; N0 = total passes
V [] := /0; � V [e] maps e → Seto fCubes;
Uv � /0 � Uv = used V cubes
while (N > 0) do

C� SEED({P,Q0,Q1}); � C = cubes;
Uc � /0; � Uc = used cubes
L1 � θ ({P,Q0,Q1}); � Starting # literals for pass
L� L1; E � E0;
repeat

m� REMOVECUBEFROM (C); Uc �Uc ∪m;
p� P⊕m; q0 � Q0 ⊕m; q1 � Q1 ⊕m;
v� θ ({p,q0,q1})−θ ({P,Q0,Q1});
if (v < 0) or ((v = 0) and (E > 0)) then

P� p; Q0 � q0; Q1 � q1; � Accept the change
E � if (v = 0) then E −1 else E0;
L� L+ v;

end if
C�C∪ (CUBESOF ({p,q0,q1}) \Uc);
e� |θ (p)−θ (P)|+ |θ (q0)−θ (Q0)|+ |θ (q1)−θ (Q1)|;
if m � CUBESOF (V ) then

V [e]�V [e]∪m; � Map cube’s effect e to cube
end if
if (C = /0) and (L � L1) then

C�Uc; Uc � /0; L1 � L; � Retry until no change
end if

until (C = /0);
if L1 < best[L0] then

best � [P,Q0,Q1,L0];
N � N +1; � Reward improvement with extra passes

else
N � N −1;

end if
m0 � (c ∈V [e] : largest(e),c �Uv);
P� best[P]⊕m0; Q0 � best[Q0]⊕m0; Q1 � best[Q1]⊕m0;

end while
if best[L0]< L0 then return best else return FALSE;

end function

After a complete decomposition is performed for a design, the sub-
functions of the decomposition tree are implemented as optimized
factored-forms and mapped to VGs. The final decomposed multi-
output design is implemented as a tree of XOR-decomposed func-
tions, in the same type of structure as seen in Fig.8. We evaluate this
technique’s efficacy on a number of logic designs in the next section.

5. EXPERIMENTAL RESULTS
The crossbar logic synthesis technique described in Sect.4 is

applied to a number of logic designs from the ACM/SIGDA (i.e.

17



Design In Out Lorig Ldecomp ΔL # funcs
5xp1 7 10 294 160 -134 15
alu2 10 6 25645 899 -24746 9
alu4 14 8 6227 4906 -1321 13
apex4 9 18 15967 4154 -11813 32
b1 3 4 16 9 -7 3
b12 15 9 1847 146 -1701 13
bcd7seg 4 7 132 35 -97 11
bw 5 28 955 314 -641 43
c8 28 18 200 406 +206 27
cc 21 20 147 136 -11 27
clip 9 5 888 736 -152 9
cm162a 14 5 85 125 +40 9
cm163a 16 5 43 65 +22 8
cmb 16 4 76 48 -28 4
cps 24 109 7156 5332 -1824 152
cu 14 11 91 71 -20 11
decod 5 16 80 65 -15 16
duke2 22 29 2174 2220 +46 43
ex1010 10 10 86694 5433 -81261 19
ex5p 8 63 60960 902 -60058 79
f51m 8 8 317 109 -208 11
i1 25 16 82 88 +6 17
inc 7 9 744 176 -568 14
lal 26 19 184 196 +12 25

Design In Out Lorig Ldecomp ΔL # funcs
ldd 9 19 427 141 -286 25
misex1 8 7 122 93 -29 12
misex2 25 18 188 175 -13 24
misex3 14 14 17971 13232 -4739 25
misex3c 14 14 5006 6892 +1886 27
pcle 19 9 87 131 +44 14
pcler8 27 17 199 420 +221 22
pdc 16 40 208008 41269 -166739 79
pm1 16 13 67 72 +5 16
rd53 5 3 144 74 -70 5
rd73 7 3 840 249 -591 5
rd84 8 4 3288 465 -2823 6
sao2 10 4 532 250 -282 7
sct 19 15 141 265 +124 22
spla 16 46 141815 3372 -138443 69
sqrt8 8 4 155 120 -35 6
sqrt8ml 8 4 1382 44 -1338 7
squar5 5 8 387 70 -317 11
table3 14 14 7021 4446 -2575 25
tcon 17 16 48 48 0 24
ttt2 24 21 337 544 +207 31
x2 10 7 87 132 +45 9
z4ml 7 4 62 114 +52 6

Table 1: Benchmark Results (L = # literals)

MCNC) logic synthesis benchmark suites [26]. We also include the
BCD-to-7-segment design. Two designs (cm138a and cm42a) saw no
change via our technique and are not included in the table.

The results of the technique’s application is seen in Tbl.1. The orig-
inal literal count Lorig represents the number of literals counted for
implementing all outputs separately as VGs. The decomposed literal
count Ldecomp represents the number of literals of the decomposed
network after applying our technique. Also included is the number
of sub-functions (#funcs) implemented as VGs in the decomposed
implementations.

Overall, most designs enjoy reduced literal counts when the
decomposition is applied (negative ΔL), in some cases orders of
magnitude differences. An increase or no change in literal counts for
some designs can be attributed to discrepancies between the literal
counts of the BDD-functions used in the technique’s internal metrics,
and the actual implementations of those functions as VGs.
Limitations: Our synthesis procedure does not allow for electro-
optical interfaces (receivers and transmitters) except at the start
and endpoints of the circuit. However, in larger systems, these
functional blocks comprise parts of the overall design that must be
interconnected. A more extensive synthesis procedure is needed
to partition larger circuits at electro-optical transceiver boundaries,
with individual blocks implemented via synthesis techniques such as
presented in this paper.

6. CONCLUSION AND FUTURE WORK
This paper describes design and synthesis methods for imple-

menting digital logic using integrated optical devices that function
as crossbar devices. We have shown a design methodology for
constructing arbitrary logic functions using VGs, and present an
XOR-based methodology for expression sharing for multi-output
designs. The efficacy of our synthesis techniques is shown on a
number of logic designs, often with large improvements.
Future Work: This synthesis procedure is limited to imple-
mentations that do not incorporate electro-optical transceivers. As
part of a more extensive synthesis procedure, we are exploring
partitioning techniques to enable larger designs to be implemented
as a series of interconnected sub-functions designed using techniques
such as presented in this paper. However, the physical design of the
optical network is an integral part of such partitioning. Parameters
such as signal degradation from splitters, routing congestion, and
delay balance will ultimately decide how circuits are partitioned
for separate implementation. Therefore, we are exploring ways to
integrate this technique with automated layout and routing using the
same “building block” concept used for synthesis.
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