
Time-Constrained Buffer Specifications
in CSP+T and Timed CSP

JOHN J. ZIC

University of New South Wales

A finite buffer with time constraints on the rate of accepting inputs, producing outputs, and

message latency is specified using both Timed CSP and a new real-time specification language,
CSP + T, which adds expressive power to some of the sequential aspects of CSP and allows the

description of complex event timings from within a single sequential process, (h the other hand,

Timed CSP encourages event-timing descriptions to be built up in a constraint-oriented manner

with the parallel composition of several processes. Although these represent two complementary

specification styles, both provide valuable insights into the specific at] on of complex event

timings.

Categories and Subject Descriptors: B.4.4 [Input/ Output and Data Communications]:

Performance Analysis and Design Aids-format models; D.2.1 [Software Engineering]: Re-

quirements/Speci fication—languages

General Terms: Design, Languages, Performance

Additional Key Words and Phrases: Real-time algebraic languages

1. INTRODUCTION

There has been considerable effort recently in extending Hoare’s [1985] CSF’

and Milner’s [1980; 1989] CCS to allow formal reasoning about real-time

systems. Examples of such systems are commonly found in communication

protocols where the response to a message is required before the message

becomes obsolete, or where message outputs need to be spaced so as to avoid

overflow conditions at the receiving end.

We propose some informal time (and probability) extensions to CSP in Zic

[1986] where a special DELAY process allowed temporal separation between

any two successive events. At approximately the same time, Reed and Roscoe

[1986] introduced a similar special process WMZ’ into CSP and provided a

complete semantics based on timed failures for their Timed CSP language.

Gerber et al. [1988] introduced a timed-action operatio~ (effectively, a time

was associated with each prefix operation) to separate adjacent events tempo-

rally into their extended CSP. They also provided a Timed-Acceptance seman-

tics for the language. Quemada and Fernandez [1987] proposed an extension

Author’s address: School of Computer Science and Engineering, University of New South Wales,

NSW 2052, Australia; email: john@cs.unsw.oz. au.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computmg Machinery. To copy otherwme, or to republish, requires a fee and/or

specific permission.

C) 1994 ACM 0164.0925/94/1100-1661 $03.50

ACM Transactlon~ on Programmmg Languages and Systems, V.] 16, No 6, November 1994. Pagc!s 1661-1674

http://crossmark.crossref.org/dialog/?doi=10.1145%2F197320.197322&domain=pdf&date_stamp=1994-11-01


1662 . John J. ZIC

to the LOTOS specification language [Brinksma 1987] by associating an

enabling interval with each event. This time interval represents the time over

which a process may engage the event.

There are difficulties in describing and specifying complex system timings

using this type of construction, where an event timing is defined solely by its

immediate predecessor. Complex timings and the ability to define the future

behavior of a system will inevitably rely on a set with more than one element

of preceding events in the process’ execution. Furthermore, these events may

have occurred a long time in the past execution of the process. To address

these problems, ~ic [ 1991] proposed an extended CSP called CSP + T that

associated an enabling interval with each event and allowed this interval to

be expressed as a function of one or more marker events.
It will be seen that the CSP + T approach differs fundamentally from the

Timed CSP solutions. Timed CSP captures timing constraints by the parallel

composition of a set of processes, each of which describes a specific timing

constraint. These timing constraints are viewed as representing timed refine-

ments of the system and facilitate the specification and proof of system

timings. However, the algebraic manipulation of complex timing require-

ments from a parallel composed system into, essentially, a simpler sequential

system may, in some cases, be impossible without extending Timed CSP to

allow a way of recording and using the time at which specific events occurred

in the system’s execution.

On the other hand, CSP + T describes timing constraints of sequential

processes in sequential terms as much as possible, reducing the need for

adding any parallel processes to express timing constraints. Furthermore, the

additional expressive power of the language now allows some complex paral-

lel systems to be rendered as sequential processes, something that could not

be done with only interevent timing constructs such as DELAY.

This article is organized as follows. First, we present the problem, which is

the modeling of a store-and-forward communication system with a specific

quality of service requirements. This is done by representing the system as a

finite-length buffer with appropriate input, transit, and output timing re-

quirements. Second, we present the CSP extensions for CSP + T. Third, we

develop a solution in terms of existing Timed CSP algebra. Finally, we

present an alternative solution using the CSP + T notation.

2. THE PROBLEM

A store-and-forward commumcatlon network may be abstractly represented

by a finite-length message buffer. Messages injected into the network at a

particular node appear some time later at another node in the same order as

they were sent.

Besides this most abstract functionality of order preservation, a communi-

cation system may also need to provide end users with some real-time

performance. For example, maximum and average message delays, through-

put, reliability, probability of loss of a message, and other client requirements

may be important [WG6 1986; Ferrari 1990]. This article attempts to describe

ACM TransactIons on Programming Languages and Systems, Vol 16, No 6, November 1994



Time-Constrained Buffer Speciflcatlons . 1663

a communication system with the following characteristics given by a (some-

what) naive client:

(1) Up to 128 messages in transit at any time;

(2) message latency in the range of 2 to 5 time units;

(3) message input rate set to 1 message per time unit; and

(4) message output rate of 1 message per two time units.

As these timing constraints stand, there will be problems with any imple-

mentation. First, the fact that the output message rate is half that of the

message input rate means that the any finite-sized buffer will eventually

either overflow or not meet the message transit delay requirements. Second,

the output must simultaneously satisfy both the transit delay requirements

and the output timing requirement for a given (fixed) input timing. Eventu-

ally, all of these conditions cannot be simultaneously satisfied, and the

system in some way fails.

3. A BRIEF DESCRIPTION OF THE EXTENSIONS

The CSP + T syntax is a superset of the basic untimed deterministic CSP

syntax presented by Hoare [1985]. The fundamental changes to the untimed

algebra are the following:

(1) A new event, *, is introduced to denote process instantiation into both
the algebra and traces model.

(2) A new event operator G4 is introduced, which is used in conjunction with
a variable to record the time at which an event occurs. These times are

taken from the set of positive Real numbers, with successive event times

forming a monotonic nondecreasing sequence. We allow any number of

successive events in a single process trace to have the same time. It is the

designer’s responsibility to mention explicitly any limitations on the

number of computations done over any particular time period, including

zero.

(3) Each event now has a time interval associated with it. This time interval
represents a choice at which times the event must occur. These intervals

are continuous and are usually expressed relative to a set of events.

(4) Only deterministic timed processes can be described in the algebra to
date. A semantics for processes making an internal or nondeterministic

choice is currently being formulated.

The major change to the traces model is that events are now pairs, t.e,

where t is the global absolute time at which event e is observed. This is the

same as Timed CSP traces model with the addition of the new instantiation

event. We consider each of the above items in turn.

3.1 The Process Instantiation Event

Each system of process definitions requires that it is instantiated before it

can execute. As such, a special process instantiation event denoted * (star) is

ACM Transactions on Programmmg Languages and Systems, Vol. 16, No, 6, November 1994,



1664 . John J. ~Ic

introduced into the algebra and the corresponding traces model. This event is

unique in that it must be associated with a unique, global time. It represents

the global time at which the system of processes may start.

Consider a process that engages in a single event a, then breaks. This

process may be defined in untimed CSP by P = a + Stop. The traces set of

this process is

{(),(a)}.

In CSP + T, we prefix this process with the instantiation event in order to

allow it to execute. If the timed version of P, called P‘, is instantiated at time

1, then we have

P’ = I.* +a +Stop,

and the timed traces set of P‘ is

{(), (1.*), (1.*, s.a)},

where s = [1, x). Notice that event a occurs only once in the interval [1, X) for

any particular process execution. Also, the times in traces descriptions are

absolute, where the time intervals in the process description are relatil)e.

3.2 The Time Capture Operator

A new event operator H is introduced so that writing et] ~ u means that the

time at which the event ec) is observed in a process execution is recorded in

the variable u. So, for example, if we have a process instantiated at time 1,

which behaves as 1.* - a M u + Stop, then the variable v holds the global

time at which event a occurs. In this case, the time at which event a occurs,

and hence, the time recorded in the variable u, is going to be greater than or

equal to the process instantiation time of 1.

Variables associated with the time capture operator, or marker wriables,

have their scope limited to a strictly sequential process. They cannot be

referenced or accessed in any other way across parallel processes. Further

limitations occur in the use of the variable if the event (associated with a

marker variable) is the subject of a restriction operation.

Finally, marker variables may be initialized by using the time capture

operator on any event that has a well-defined, global time associated with it.

Typically, this is the process instantiation event. For example,

l.*~{u, u,x, y}+a Mu+ Stop

initializes variables u, u, x, and y to the process instantiation time of 1. The

variable u is then used to reference the time at which event a occurs. The

references to the instantiation event as it is initialized is replaced by the

reference to the time at which event a is observed.

3.3 Event-Enabling Interval

Each event in CSP + T is associated with a time interval, whether or not it is

explicitly used. This represents the time over which the current event is

regarded as being available to the process and its environment, relative to

ACM TransactIons on Programmmg Languages and Systems, Vol 16 No 6, November 1994



Time-Constrained Buffer Specifications . 1665

some preceding event from its current execution. In effect, the event-enabling

interval may be regarded as equivalent to a deterministic choice construction,

with event labels drawn from the dense (Real number) interval defining the

times at which the event may occur. Furthermore, if the event has not

occurred by the end of its enabling interval, the process withdraws effectively

its offer to engage in that event. The process behaves as Stop if it cannot

engage in an alternative event, after the “expiration” of the current event.

For example, an event a that has an enabling time interval of [0, 1] is

written as [0, 1]. a and must occur only once in the specified time interval,

between O and 1 time units after a’s preceding event. Another event [1, 1].6

must occur precisely at one time unit immediately after its preceding event.

An example process that uses event-enabling intervals is O.* + [1, 2].a +

Stop. This is a process that will engage in a single a event only between 1

and 2 time units since it was instantiated (at time O), and then broken.

If a time interval is not explicitly mentioned with an event, the least

defined interval [0, K) is assumed. That is, the event associated with this

interval is allowed to occur at any time after the immediately preceding

event.

These intervals are defined in terms of functions over a set, including the

empty set, of marker variables. When there are no marker variables refer-

enced, then the enabling interval is defined for the immediately preceding

event, as above. More typically, however, the expression is given in terms of

one or more marker variables. For example, a clock is instantiated at time O,

then ticking once every time unit after that, may be defined by

RealClk ~ O.* M u + TimedClk

TimedClk = pX9E.tick H v + X

where E = {s Is = ret( 1, u)}, and the rel function is defined as follows. If the

preceding either event, reference or marker, occurs at time t~,then rel( x, u )

denotes x + u – to.This convention allows us to combine conditions ex-

pressed relative to several different marker eve~ts in the definition of a

single enabling interval.

The use of these enabling intervals presents two major sets of questions

regarding parallel and sequential composition. For example, how can pro-

cesses that use these enabling intervals be composed with each other in

parallel? Related to this, what other influences may determine when an event

occurs within its enabling interval? We consider each of these points in the
following discussion.

3.3.1 Process Synchronization. Consider the two simple processes P =
El. a + P and Q = E2 .a + Q, with identical untimed alphabets, NOW, SUp-

pose we compose these two in parallel as O.* ~ P IIQ. The semantics of this

composition are dependent on whether the values taken by El and E2 are

identical, partially overlapping, or disjoint. If two intervals are identical, the

composite process engages in a single synchronized event a within the

interval. There are two possible behaviors for the parallel composition when

the intervals become partially overlapping. We may choose to have the

ACM Transactmns on Programmmg Languages and Systems, Vol 16, No. 6, November 1994



1666 . John J. Zic

processes engage independently on events outside the intersection of inter-

vals El and Ej and synchronized within the intersection. Alternatively, we

could completely disallow any events to be engaged that lie outside the

intersection of the two enabling intervals. This latter case was selected in the

original language design because it offers a simpler semantics. In summary:

(1) If El = E2, the processes synchronize on the a event once during this
interval.

(2) If E1 + Ez ~ El n Ez + {}, then the processes only synchronize during

the interval El n Ej. The system withdraws offers of engaging in events

outside this time.

(3) If El n E2 = {}, then there are no times at which the processes may

synchronize, and the composition behaves as Stop.

Additionally, we observe the following about synchronization between pro-

cesses:

(1) If the process’ untimed alphabets are disjoint, the event-enabling inter-

vals play no direct role except to note that the resulting interleavings

must be ordered so that the sequence of times in any timed trace are

monotonic and nondecreasing. For convenience, we call this property

mndt.

(2) If the untimed alphabets are partially disjoint, synchronization depends
both on the set of events in the intersection of the untimed alphabets and

consideration of the event-enabling intervals. Events outside the intersec-

tion set of the untimed alphabet lead to interleavings possessing the

mndt property.

(3) Explicit communication between processes via a channel may occur only

if the sender and receiver processes have enabling intervals that inter-

sect. For example,

(E1.c!u +P)II(E2.c?x + Q(x))

will lead to a communication event c. u in the interval defined by -?31f’ E2.

If El and Ez are disjoint, with no other events offered, then the commu-

nication fails, and the system stops. By setting the enabling interval on

reception to [0, ~) and the sending process to E, the system’s timing

behavior is set by the sending process, and the communication occurs

during E.

3.3.2 Sequential Concerns

3.3.2.1 Prefix. Consider the process

P=a Hv+b+E.c+ Stop,

where E = {tlrel(3, u) s t s rel(5, u)}. Because the c event must occur at any

time from 3 time units to 5 time units after the occurrence of the a event, the

time at which event b occurs must also be less than or equal to the maximum

of c’s enabling interval. If this is not the case, the process breaks immediately

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 6, November 1994



Time-Constrained Buffer Specifications . 1667

after engaging the b because there is no way that c could be engaged by the

process. Hence, this process has two separate behaviors dependent on the

time at which event b occurs relative to the event c’s enabling interval. Let

[11 represent the upper bound on an
rewritten as:

P=a Duu+[o, [E

❑

interval I; then process P may be

].b - E.c - Stop

([ El, ~).b -+ Stop

Although it is possible to transform the generalizations of this case, such

constructions should be avoided. As a general design principle, the timing

intervals of a purely sequential process, consisting of prefix and choice

operations, should be such that the entire expression does not abort due to

enabling intervals alone. Any deliberate expression abortion will be due to

other causes, such as parallel composed processes or explicitly designed

timing exceptions.

3.3.2.2 Choice. The prefix operation is regarded as a base case of the more

general deterministic, or menu, choice operations. Choice in the CSP + T

algebra selects from a finite subset of events from the untimed alphabet.

However, as each event is associated with an enabling interval, this choice is

between a possibly infinite set of timed events.

Choice between a set of events with disjoint enabling intervals is made

according to the natural time order. That is, a given choice set at one point in

time reduces to a smaller subset as time progresses. Events “expire” and are

removed from the choice set. For example, assume that the original choice set

at time O is {[1, 1]. a, [2, 3). b, [4, 5].c}. If the process does not engage in event a

at time 1, then the choice set is reduced to {[2, 3). b, [4, 5].c}. Then, if the

process does not engage in event b, the choice set is reduced to {[4, 5].c}. If

time progresses, with the process failing to engage in event c during the

specified time interval, then no further choices may be made, and the process

behaves as Stop from that point on. This should be regarded as a mistaken

construction. Deterministic timed choice requires that at least one of the

choices is taken during any process execution. Furthermore, each of the

choices should be distinct, paralleling the untimed CSP model. Distinct timed

events have either disjoint enabling intervals or disjoint untimed events, or

both.

3.4 Deterministic Process Descriptions

At present, CSP + T can only describe deterministic processes, and describing

nondeterministic process behaviors is part of ongoing work. The lack of
nondeterminism means that the current language is limited as a specifics-

tion technique, but not as an implementation technique. It is well known that

nondeterministic process descriptions may be viewed as a way of underspeci-

ACM Transactions on Programmmg Languages and Systems, Vol 16, No. 6, November 1994



1668 $ John J. ZIC

fying process behaviors, (whether timed or untimed). On the other hand,

implementations are seldom nondeterministic:

of course, n is not intended as a useful operator for unplementmg a process. .
The main advantage of nondeterminism is in specif-ving a process [Hoare 1985,
p, 102]

4. DESCRIBING THE SYSTEM USING TIMED CSF’

Consider a simple one-place buffer, with input channel in and output channel

out, that has no timing constraints. The simplest implementation possible is

given by

pX_in?x + out!x + X (1)

where an input is immediately output before allowing a further input.

If we introduce time into the above process, then it is possible to interpret

the lack of any explicit temporal separation in Eq. (1) between two successive

events, such as in-then-out communications, in at least two ways.

In the first view, the lack of explicit timing may be interpreted as allowing

successive events to occur at the same time while maintaining any sequenc-

ing order. For example, a sequence such as a + b + “.” is differentiated

from the sequence b + a + . . . . despite both events being observed at the

same global time, say, according to the observer’s watch. If both a and b are

observed at time 1, the former ( a ~ b ~ )hasatr ace(l. a,l.b,... ),while

the latter has a trace (lb, la,... ).

In the second view, the lack of explicit timing is interpreted as allowing

events to occur at any time, again provided that any sequencing is preserved.

A sequence such as a ~ b + . . . where event a occurs at time O, for

example, would allow event b to follow at any time taken from the half-open

interval [O, K) after the a, such as (1. a, lb), (1. a,25. b), or even (1. a,(~ X

1012g). b).

The proposed extended CSP (CSP + T) as well as Reed and Roscoe’s [1986]

Timed CSP use this latter view. Other algebras adopt the former view and

use a temporal operation or process to provide the required interevent delay.

We start, then, with the Timed CSP model first proposed by Reed and Roscoe,

which has been subsequently modified to eliminate the system delay constant

[Davies and Schneider 1992] so that any event timing must be explicitly

described using a WAIT process.

Producing a buffer that delays each message by the required delay is
straightforward in the following model:

SPB = pX-in?x + WAIT I ; out!x + X (2)

with the interval 1 = [2, 5]. This buffer accepts an input, then delays by an

amount taken from the interval 1, and then outputs the message. Notice that

there is an asymmetry in this process. Despite ensuring that the input to

output timing is correctly defined, the spacing between an output and a

following input is defied to occur at any time in the interval [0, K). Timings

ACM Transactions on Programming Languages and Sy~tems, Vol 16, No 6 November 1994



Time-Constrained Buffer Specifications . 1669

among input to input, output to output, and input to output are dependent on

each other.

The timings between inputs may be defined by constraining the above

process by composing SPB in parallel with

IN = pX~in?x + WAIT 1 ;IN (3)

and similarly, the output may be constrained by the parallel composition of

SPB with

OUT = ~XOout!x + WAIT 2 ; OUT. (4)

Note that each of the buffers expressed in Eqs. (2), (3), and (4) implement

only a single part of the required behavior. Furthermore there is no message

storage; only one single message is ever “in transit.” Achieving the three

goals simultaneously—specific message transit delay, differing input, and

output rates—cannot be done with a single process based on (1). Instead, we

use a finite-size buffer as a starting point. The buffer presented, BufjjO, is

based on the infinite buffer of example X9 in EIoare [1985, p. 138]:1

BuffO ~ W<>

where

W( \ =m?x + W.,
W~ = If #S <128

then (in?x + Ws ~,, ❑ Out!so + w~t)
else out!SO + Ws
fi

This buffer, like any other implementation, must resolve which actions to

take under “error” conditions such as buffer filling or messages arriving at an

incorrect rate. The original naive specification did not point out which buffer

behavior and event timings are acceptable when the buffer encounters these

(5)

error conditions. Any correct implementation would resolve

the specification stage.

In view of this discussion, let us modify the behavior of Eq.

it fills, it engages in a Fzlll event, presumably signalled

environment, and then breaks:

Buffl ~ X{>

where

X,, = in?x + X(z)

Xs = if #S <128
then (zn?x + Xs (Y, H out!SO + Xs)

else Full + Stop
fi

these issues at

(5) so that once
to the buffer’s

(6)

1This article adopts the conventional notation If b then P else Q fi for the CSP conditional

P ~ b ~ Q where h is a boolean value, and P and Q are processes.

ACM TransactIons on Programmmg Languages and Systemb, Vol 16, No. 6, November 1994



1670 . John J ZIC

The input and output timing requirements for this buffer using Timed CSP

are captured by using the parallel composition of processes defined in Eqs. (3)

and (4). The transit delay constraint may be met by introducing another

process into the parallel composition with the BzLffl process. This spaces

inputs to outputs using the parallel composition

TD = in?x + (WMT[2,5] ; ozzt!x + StOp)lll TD (7)

with the parallel composition done using an interleaving to prevent the

system from deadlocking at the very first recursive call. Therefore, the

system of processes

BufflllmllOUTllTD

gives the required timing characteristics for the buffer provided that the

buffer is not fldl.

4.1 Discussion

This specification style is commonly referred to as being colzstrain t oriented,

and it is used extensively in both timed and untimed Formal Description

Methods. Each constraint may be regarded as representing a refinement step

moving from an untimed model to a timed model. Although this method is

attractive in simple timing descriptions, it is our experience that the use of

the WAIT construct may lead to awkward and unnatural formulations of

complex timing relationships. Furthermore, the analysis of parallel composed

systems, both timed and untimed, may require them to be reduced to

equivalent sequential systems. However, processes such as

(a+p)ll(WAIT ~z; b+Q) (8)

cannot be reduced to a unique sequential process from within a model that

defines timing properties solely using a WAIT-like operation. Rewriting Eq.

(8) to a sequential form requires the specification of the future behavior of a

process determined by the times at which preceding events occurred. In Eq.

(8), the process behavior is determined by the time at which the first event

occurs, and so recording this time in some manner is important for the
“serialization” of the system. This is identified both by Schneider [ 1992] and

Fidge [ 1993]. Schneider proposed a new operator to do this, and created a

prenormal form for a Timed CSP language. Fidge defined a way of labeling

events such that causal relationships may be expressed as directed graphs.

This leads to a true concurrency semantics for a real-timed process calculus

based on CCS.
The approach taken in CSP + T differs from these. Rather than attempting

to reduce a set of concurrent processes to some simpler sequential forms, the

proposed extensions provide more expressive power to the sequential aspect

of CSP. This reduces the need for introducing additional parallel constraining

ACM TransactIons on Programming Languages and Systems, Vol 16, No 6, November 1994



Time-Constrained Buffer Specifications . 1671

processes that may be difficult to analyze and allows some algebraic manipu-

lation of processes. Thus, Eq. (8) may be rewritten as:

a, M u + (Pll(E1(U). b - Q))

❑

b M u + (( Ez(u).a +P)II Q).

Note that the enabling intervals El and Ez have not been specified in this

example, since we mean to illustrate that the future behavior of the system

depends on specific events in the system’s execution. Of course, this is only

one of many interpretations that may be expressed by this notation. The

enabling intervals may also be defined solely in terms of a single marker

variable. Or, alternatively, they may both be functions of both marker

variables. We now move back to the description of the store-and-forward

communication system.

5. DESCRIBING THE SYSTEM USING CSP+T

Recall that we are trying to describe a finite buffer with specific input,

output, and transit delay requirements. Because we do require that the buffer

hold more than one item, we start again by using the buffer given by Eq. (5)

and consider the specification of the input and output timings. The buffer

engages in only two events. Either it inputs a value and places it at the end of

the queue, or it outputs the head of the queue. Therefore, we associate a

marker variable with the input and output in order to capture their respec-

tive event-enabling intervals. The enabling interval function for input is

solely a function of the input marker variable. Similarly, the enabling inter-

val for output is expressed in terms of the output marker variable. Let us

assume again that the buffer engages in a final Full action before stopping

when full.

Let El represent the input enabling interval, and let E. represent the

output enabling interval. Then, we set

Et == {s1s = rel(l, vi)]

EO = {tit = rel(2, uO)}.

The buffer stores input events as a queue of timestamped events of the form

(t,. x), where t,represents the time at which a message contained in x was

received. Let euentof be a function that strips out the time component of any

such message.

A buffer that implies the appropriate inputs and output timings is

Buff2 ~ Y{), (9)

where

Y,b = E,. m?x M u, + Y,, l,
Ys = if #S <128

then E,. in?x M v, + YT ,,, .,
❑

E,). out!eventoj <SOI ~ u,, + Ys
else Full + Stop
fi.

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 6, November 1994



1672 . John J. ZIC

The transit delay constraint means all of the messages held in the buffer

differ between two and five time units since the time that they were input to

the time they are outputted, relative to the current time. We now add this

constraint to Buff2. We define age to be a function that returns the age of

the message at the head of the queue, by comparing the message time with

the current time:

Buff3 ~ Z,,,

where

Z = E1.in?x M 1, + Z [,1
Z\ = If #S <128

then If age(S) <2

then E1. m?x M v, + Zs L, ~)
else If 2 S age(S) < 5

then EL. Ln?X M L, + Zs ,,, .,

❑

Er,. out!eventof(SO) M v“ + Z,q

else if age(S) = 5
then [0, O].out!euentof(SO) w VO + Zs

else Stop

fl
fl

fl
else Full + Stop

fi.

Notice that this description is more prescriptive and

than is the previously given Timed CSP specification.

sequential in nature

Timed CSP specifica-

tions tend to be presented as parallel compositions of component processes

with each component representing a separate timing constraint. The above

CSP + T specification is more concrete (or less abstract) than the Timed CSP

specification given earlier, since it gives the buffer’s behavior under overflow

conditions and messages being held in the buffer for too long.

An alternative, more descriptive, or abstract, specification in CSP + T could

have used the transit delay constraint given in Eq. (7) in parallel with the

B.uff2 process of Eq. (9):

Buff4 = Buff2 II TD.

In this system, we use the marker events and enabling intervals to specify

the input and output timing, and the transit delay requirement is specified as

a constraining process on the Buff2 process.

6. CONCLUSIONS

Timed CSP and similarly related specification techniques define system

timing within a sequential process by using a specific interevent delay. More

complex timing relationships can be described with processes that use delays.

By composing them in parallel with each other, we produce a set of indepen-

dent timing constraints. However, there are some systems that cannot be

described in this way because the timing relationships are not independent of

ACM Tran~act]ons on Programming Languages and Systems, Vol 16. No 6, November 1994



Time-Constrained Buffer Speclflcations . 1673

either one another or preceding events. Such systems of processes cannot be

converted into equivalent sequential forms, as in Eq. (8). To deal with such

systems, we need to increase the expressiveness of the specification language.

This article introduced a new real-time description language, CSP + T,

which addresses these problems. CSP + T extends the untimed CSP language

in two ways. First, all events have an enabling time interval, over which the

event is expected to be observed only once during any particular execution.

The second extension is that these time intervals may be expressed in terms

of a set of arbitrary marker events within a process’ execution.

In order to focus the discussion, we specified a naively defined time-con-

strained buffer, first in Timed CSP, then in CSP + T. As was observed in this

example, the two specification styles differ. Timed CSP encourages the use of

constraining processes composed in parallel to define event-timing relation-

ships, whereas CSP + T encourages the use of a single, sequential process to

define event timing.

We feel that although these styles are complementary, careful use of both

approaches will prove beneficial in specifying complex system timings.

ACKNOWLEDGMENTS

I wish to thank Colin Fidge, Steve Schneider, Asis Goswami, Jacek 01-

szewski, and the anonymous referees for providing useful comments and

insights on earlier drafts of this article.

REFERENCES

13RINKSMA, E. 1987. An introduction to LOTOS. In Protocol Speczficatzon, Testzng, and Vertfi -

catton, H. Rudm and C. West, Eds. Vol. 7. Elsevler Science Publishers B. V., Amsterdam.

DAVIES, J. AND SCHNEIDER, S. 1992. A brief history of Timed CSP. Tech. Rep., Programming

Research Group, Oxford Univ., Oxford, U.K.

FERRARI, D. 1990. Client requirements for real-time commumcatlon serwces. Internet RFC

1193. Network Working Group, Univ. of California at Berkeley. Available via

ftp@archie.au:\ rfc.rfc1193.txt. gz.

FIDGE, C. 1993. A constraint-oriented real-time process calculus. In Formal DescrLptLo/t Tech-

niques, M. Diaz and R. Groz, Eds. Vol. 5. North-Holland, New York, 363–378,

GERBER, R., LEE, L., AND ZWARICO, A. 1988. A complete axiomatization of real-time processes

Tech. Rep. MS-CIS-88-88 (Nov.), Dept. of Computer and Information Science, School of

Engineering and Applied Sciences, Univ. of Pennsylvania, University Park, Pa.

HOARE, C. 1985. Commurucatmg Sequential Processes. International Series m Computer Sci-

ence. Prentice-Hall International Ltd., Hertfordshire, U.K.

MILNE& R. 1980. A Calculus of Communicating Systems. Lecture Notes in Computer Science,

vol. 92. Sprmger-Verlag, New York.

MILNER, R. 1989. Commzmzcatzon and Concurrency. International Series in Computer Science.

Prentice-Hall International Ltd., Hertfordshire, U.K.

QUEMADA, J. AND FERNANDEZ, A. 1987. Introduction of quantitative relatlve time mto LOTOS,

In Protocol Spec@catzon, Testing, and VerLfzcatzon, H. Rudin and C. West, Eds., Vol. 7.

Elsevier Science Publishers B.V., Amsterdam, 105-121.

REED, G. AND Rosco~, A. 1986. A timed model for communicating sequential processes. In

Automata, Languages, aad Programming, 13th International Colloql urn Proceedings. Lecture

Notes m Computer Science, vol. 226. Springer-Verlag, New York.

SCHNEIDER, S. 1992. Unbounded nondeterminism for real-time processes. Tech. Rep. TR- 12

(July), Programming Research Group, Oxford Univ., Oxford, U.K

ACM Transactions on Programming Languages and Systems, Vol 16, No 6, November 1994



1674 - John J. Zic

WG6, 1986. Information processing systems—Open Systems InterconnectIon—transport ser

vice definition-Connectlonless mode transmission Standard 1S0-8072- 1986-Addendum 1

1S0, New York

ZIC, J. 1986. A new cornmumcation protocol specification and analysls techmque Tech Rep

TR287 (July), Basser Dept. of Computer Science, Umv. of Sydney, Sydney. Aus

ZIC, J J. 1991. CSP + T: A formallsm for descrlhing real-time systems Ph D. Thesm, Basser

Dept of Computer Science, Univ. of Sydney, Sydney, Aus

Received March 1993; revised Aprd 1994: accepted June 1994

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 6, No\ ember 1994


