
WE-13 (Panel): Formal Methods: Fact vs Fiction

~hah’

C. Michael Holloway

NASA Lunglg Rewmch Center

Panelists

Ben Di Vito, ViGYAN, kc.
David Guaspari, Odyssejj ResearchAssociaks

Michael Smith, Computational Lq”c

255

http://crossmark.crossref.org/dialog/?doi=10.1145%2F197694.197727&domain=pdf&date_stamp=1994-11-11


Panel: Formal Methods Fact vs. Fiction

Panel Chair:
Michael Holloway, NASA Langley Research Center

Panelists:

Ben Di Vito, ViGY~, Inc.

David Guaspari, Odyssey Research Associates

Michael Smith, Computational Logic, Inc.

Summary

Few people seem to be ambivalent about formal meth-

ods. Proponents are ardent in their support; opponents are

equally ardent in their disdain. Over-zealous supporters

make unsupportable claims about the potential of formal

methods, while over-zealous detractors make unsupportable

claims about its shortcomings. A primary cause of this

polarization is that it is often difficult to separate fact from

fiction in formal metlods. This panel plans to make that

separation.

In particular, the panel will address each of the follow-

ing fictitious statements about formal methods

1. Formal methods requires lots of education and training

2. Formal methods is equivalent to theorem proving

3. Formal methods is too expensive to use in practice

4. FormaI methods does not scale to real problems

5. Formal methods guarantees perfection

6. Formal methods is a straight jacket

7. FormaI methods is an all-or-nothing approach

8. Formal methods is simply code-level proofs

9. Ada is too complex and ambiguous semantically to be

compatible with formal methods.

Each panelist will make a 15-minute opening presentation

in which he will address several of the above statements.

The remainder of the session will be used for interaction

between the audience and the panelists.

The Panelists

Ben Di Vito is a Senior Research Scientist for

ViGYAN, Inc. He currently conducts research at NASA

Langley Research Center on applications of formal methods

to fault-tolerant computing and flight control system reli-

ability. He is also contributing to the analysis and design of
Langley’s Reliable Computing Platform (RCP), and is par-

ticipating in a pilot project to evaluate formal methods for

NASA space applications as part of a multi-center effort

involving Langley Research Center, Johnson Space Center,

and the Jet Propulsion Lab. Prior to joining ViGYAN, he
worked for TRW Inc., in a variety of roles involving com-

puter security and formal methods technologies, including a

key role in the Army Secure Operating System (ASOS), an

Ada-based operating system designed to meet Al security

criteria. He has a Ph.D. in Computer Science from the Uni-

versity of Texas at Austin, and M.S.E. and B.S.E. degrees in

Computer Engineering from the University of Michigan.

Mr. Di Vito maybe contacted through electronic mail at the

following address: b.1.divito@larc,nasa.gov.

David Guaspari is employed by Odyssey Research

Associates (ORA) in Ithaca, New York. His areas of exper-

tise include: mathematical logic, formal specification and

verification of software, and Ada. He has been involved in

the design and implementation of the Penelope program-

ming environment for specification and formal verification

of Ada programs and of the Larch/Ada specification lan-

guage, and he was the original leader of the Ada 9X Lan-

guage Precision Project (sponsored by the Ada 9X Project

Office), providing advice to the Mapping/Revision Team

based on mathematical analysis of proposed language

changes. He has a Ph.D. in Mathematics from the Univer-

sity of Cambridge, and a B.S. in Mathematics from Rensse-

laer Polytechnic Institute. Mr. Guaspari’s electronic mail

address is davidg@oracorp. corn.

Michael Smith is the Executive Vice-President of

Computational Logic, Inc. in Austin, Texas, He was one of

the five founders of CLI. He directed CLI’S efforts as part

of the Ada 9X Language Precision Team (ORA was prime),

which analyzed selected Ada 9X mapping proposals and

attempted to provide a basis for future mathematical work

on the semantics of Ada. He is currently engaged in an

effort to prove properties of Ada programs by direct appli-

cation of an operational semantic definition of a subset

called AVA (A Verifiable Ada) that has been specified in the

ACL2 Logic. The result of this work should be a library of

theorems and an assortment of tools to assist in the proof

process. He holds a Ph.D. in Computer Science from the

University of Texas at Austin, and a B.S.E. in Electrical

Engineering from Princeton University. Mr. Smith’s elec-

tronic mail address is mksmith(g?cli.com.

The Chairman

Michael Holloway is a research engineer at the NASA

Langley Research Center. He is a member of the formal

methods team, a participant in the design and analysis of the

RCP, and the designer and maintainer of Langley’s World

Wide Web homepage for formal methods (URL: http://

shemesh.larc.nasa. gov/fm-top.html). His electronic mail

address is c.m.holloway@larc. nasa.gov.

256



Panel: Formal :Methods Fact vs. Fiction

Position Statements

Ben Di Vito, VIGYAN, Inc.

In my presentation, I will address directly the following

three myths about formal methods:

1.

2.

3.

ods

Formal methods requires lots of education and training.

(myth 1 in the panel summary list)

Formal methods is too expensive to use. (3)

Formal methods does not scale to real problems. (4)

Although many researchers in the field of formal meth-

have extensive backgrounds in logic and mathematics,

the expertise needed to practice formal methods is considera-

bly more modest. The core concepts of elementary logic

and discrete mathematics needed by practitioners, along

with an introduction to a formal specification language tmd

its use, have been taught routinely in one-week trainiig

courses. Broader exposure can be obtained through one-

semester college courses or their equivalents. Repeated

industry experience has shown that people with conven-

tional software backgrounds and skills can be taught basic

formal methods quite readily. What has been lacking is

enough corporate commitment to allow these people to

apply their newly acquired skills.

The attitude that formal methods is too expensive to use

stems from the narrow interpretation of formal methods as a

complete application of code-level verification. When

viewed as a more flexible analysis technique, usable at diff-

erent points in the life cycle and with varying degrees of

coverage, the cost issue ceases to be forebidding. Experi-

ence with trusted system development efforts yielded costs

in the range of 10-20% for “Al” systems. The NIST survey

of applications by Craigen, Gerhart, and Ralston Iikew ise

indicates a range of positive findings. While everyone

would like to have better cost data, the evidence we have so

far does not support the feared unaffordability of formal

methods. Moreover, as progress is made and we develop a

sizable body of reusable “deductive assets,” costs will drop

considerably.

The attitude that formal methods does not scale also

stems from the interpretation of formal methods as merely

code-level verification. The types of real systems to which

formal methods have been applied, in one form or another,

include: operating systems, networks and their supporting

software, real-time embedded controllers, microprocesscws
and other hardwme subsystems, and special-purpose secu-

rity devices. Many of these applications are chronicled in

the NIST survey. Pilot projects for aerospace applications

now underway include requirements analysis for the Space

Shuttle and other space programs as well as critical sub-

systems for commercial aviation. What is clear from these

enterprises is that by taking an open-minded and adaptable

approach to formal methods, many real problems can bene-

fit from the increased modeling and analysis capabilities.

In addition to addressing these two false impressions of

formal methods, I would also like to address one or more of

the following issues:

● The airborne software guideline DO-178B includes a

provision for the use of formal methods in systems

requiring FAA certification.

● The Ada 9X Safety and Security Annex may be the

crossroads where the Ada, formal methods, and appli-

cation communities (such as DO- 178B) have their

“harmonic convergence.”

. The best opportunity for synergy is the problem of soft-

ware reuse. Formal methods can enhance the value of

reusable software, and reuse technology can be used by

formal methods people in their own work.

David Guaspari, Odyssey Research Associates

In my presentation, I will mainly address the following

three misunderstandings:

1. Formal methods is equivalent to theorem proving. (2)

2. Formal methods is an all-or-nothing approach. (7)

3. Ada is too complex and ambiguous semantically to be

compatible with formal methods. (9)

“Using formal methods” is not equivalent to theorem

proving. “Using formal methods” means no more or less

than thinking about a problem in a mathematical way (that’s

the “formal” part) and expressing the results in a way that’s

readily communicable to and usable by other people (that’s

the “methods” part). Shift-reduce parsing, rate-monotonic

scheduling, etc., are formal methods, but aren’t called that

because the “formal methods” label is usually removed

from the mathematics once it is put into common use.

Formal methods is not an all-or-nothing matter, Formal

techniques can be used for stating requirements, analyzing

requirements, specifying code, analyzing the conformance

of source code to specs, analyzing translation of source to
object, analyzing the hardware on which the object code

runs, etc. Any of these can be worthwhile even in the

absence of the others. Our own experience is that writing

formal specifications is an effective way of finding immedi-

ate problems and forestalling long-term problems with

257



maintenance, etc. We believe that we are more successful at

finding coding errors by walking through implementations

with the formal specifications in hand.

Finally, a large and useful subset of Ada can be speci-

fied and reasoned about formally. The most complex parts

of Ada are static semantics, tasking, and optimization (sec-

tion 11.6). We can claim to have proved that the canonical

dynamic semantics (i.e., no 11.6) of sequential Ada is clean

- namely, by producing a sophisticated, but relatively short,

semantic definition that can actually be used to reason about

programs. Furthermore, such complexities as are intro-

duced by 11.6 are not intrinsic to Ada -- they’re present, and

swept under the rug, in all its obvious competitors.

Michael Smith, Computational Logic, Inc.

In my presentation, I will address directly the following

three myths about formal methods:

1. Formal methods guarantees perfection. (5)

2. Formal methods is a straight jacket. (6)

3. Formal methods is simply code-level proofs. (8)

The assertion that formal methods claims to guarantee

perfection has been used repeatedly in an attempt to dis-

credit formal methods. See in particular James Fetzer’s arti-

cle “Program Verification the Very Idea:’ (Conznzwzications
of the ACM, September 1988, pp. 1048-1063) and the

responses to it. The problem with this assertion is that it is

clearly false and has been loudly asserted to be false by the

community developing formal techniques. Consider a state-

ment that I consider completely synonymous to the above

Mathematical modeling guarantees perfection.

As engineers we use mathematical techniques to provide

increased assurance, not absolute assurance. Logic is just

another branch of mathematics that can be applied in a vari-

ety of ways to the development of both software and hard-

ware systems. It enhances our ability to predict the

behavior of systems before they are fielded. But uMrnately

these systems have to face the real world for which our

mathematics is only an approximation.

The claims that formal methods is a straight jacket and

that formal methods is simply code-level proofs are related,
Formal methods provides a smorgasbord of techniques

applicable in various ways to the entire software life-cycle,

Formal methods can be used for stating requirements, ana-

lyzing requirements, specifying code, checking that code

specs conform to requirements, analyzing the conformance

of source code to specs, analyzing translation of source to

object, analyzing the compiled object code, analyzing the

hardware on which the object code runs, and more. This

broad array of possibilities is just the opposite of a straight

jacket,

Mathematical logics necessarily constrain descri-

ptions. If what you need to assert is very difficult to express

in a particular logic then you need to consider the possibility

that (a) you should shop around for a formalism more
appropriate to your task or (b) the mathematical underpin-

nings for your application are not well enough developed

for logical reasoning to be applicable.

E formal methods meant only code-level proofs then its

adoption might be considered a straight jacket. Because of

the informal mathematical reasoning and testing that good

programmers apply to code development, they produce cor-

rect software modules on a regular basis. The additional

overhead of code proofs could add substantial cost to such

modules (using current technology). It might also be very

difficult, for example in the case of a program that used

floating point. The justification for code proofs on small

modules is identical to the justification for any technique

does the assurance required for this application justify the

cost of the analysis?

258


