
LARGE DATABASE ADA PROGRAM FOR REAL TIME LABORATORY

INSTRUMENT CONTROL AND DATA ACQUISITION

RICHARD G. SARTORE

ARMY RESEARCH LABORATORY

AMSRL-EP-IU4

FORT MONMOUTH, NJ 07703-5601

908-544-2261, FAX-908-532-0156

RSARTORE@MONMOUTH-ETDLl .ARMY.MIL

1. INTRODUCTION.

An ADA program, called

CADET (Computer Aided Diagnostic

E-Beam Testing) was developed

under Contract DAALO1-85-0440

(Ref. 1). CADET integrates the

retrieval and display of

VLSI/VHSIC design information,

controls instrumentation for

waveform measurement\acquisi-

tion, and analyzes measured and
simulated data for design verifi-
cation and failure analysis. The
device design information in-
cludes the design layout, simula-
tion output, and test pattern
files. Typically, these design
files can each be lMbyte or more.
These large data files are trans-
lated from the available CAD file
formats for organization in a
hierarchy of objects and subse-
quently for quick retrieval and
display in CADET.

After delivery to Army
Research Laboratory (ARL), the
ADA code was modified for use
with ARL instrumentations. Spe-
cifically, the instrumentation
packages for stimuli generator
was re-coded for the word genera-

tor available at ARL and a new
package was added to incorporate
motorized stage control in the

CADET program. New code develop-
ment also added a prototype
localized simulation capability
and the ability to import SPICE
simulation files. The unique
localized simulator performs
automatic model construction from
the layout data. The original and
new code was extensively tested
in the ARL laboratory environ-
ment, with many changes made to
the ADA code to address opera-
tional requirements and to fix
detected errors.

Due to the large size of
the CAD layout file, a SCAN pro-
gram was written to pre-scan the
content of layout file to extract
a range of numbers and to set a
scale for efficient transfer of
graphics information to the
CADET format. Other utilities
were written for test pattern
data and measured data files.

The CADET program has been
used in an operational system for
measurements of nodal waveforms
and evaluation of new designs at
the Army Research Laboratory
(Ref. 2-4). CADET was and still
is a research software develop-
ment in ADA that seeks to inte-

grate the many large desi,gn and

test databases and automated

measurements in a transparent

manner to the diagnostician. A
number of critical issues in the
design and test areas have been
successfully addressed and imple-
mented in ADA, by providing a

ACMO-89791-666-2 /94/0011–0406 406

http://crossmark.crossref.org/dialog/?doi=10.1145%2F197694.197741&domain=pdf&date_stamp=1994-11-11

single platform for display and
analysis of the various design,
test and measurement databases.
Further, several unique data
structures and control methodolo-
gies have been developed in ADA
during this software research
project.

Although preliminary work and
coding has been generated in the
areas of image acquisition\analy-
sis, increased automation capa-
bility, automated test program
generation, fault tracing and
measured data analysis, further
effort is still required for
integration, development and
implementation. Specifically, a
pattern recognition algorithm
needs to be developed/implemented
to provide fine positioning of
the motorized stage(Ref.5).

The ADA code modularity
and maintainability will provide
an easier migration path in the
future to improved platforms and
instrumentations. Because of the
ADA modularity, many of the ADA
packages can and have been re-
used for related applications in
our laboratory.

2. SYSTEM OVERVIEW

The CADET ADA program was
generated on DEC MicroVAX Station
II under the VMS operating sys-
tem, using the DEC certified ADA
compiler. ADA was chosen as the
language of choice to provide
portability and maintainability.
In fact, limited portability was
established by porting needed
sections of CADET code to a PC
ADA compiler (Meridianrs Open
ADA) to develop the SCAN utility
for large layout design files.
Maintenance of the code was
demonstrated by the test and
debug work performed at ARL.

The initial test and debug
of the ADA code was performed

over the NETWORK using the VMS
editor. This configuration was
workable but made editing of
large package unwieldy due to
small window size and random
slowdowns caused by network
traffic. The final solution was
to obtain a VMS Language sensi-
tive editor (LSED) and a dedicat-
ed ADA compiler for our worksta-
tion. This allowed multiple
windows for code comparison and
editing, which greatly speeded up
code maintenance and compilation.

In the interest of port-
ability and maintainability, the
graphics interface was estab-
lished through the standard GKS
(Graphics Kernel System) with an
ADA binding, under the DEC VAX
version. Since CADET is a graph-
ics intensive program, interact-
ing with the diagnostician via
menu and use of the mouse, it was
essential to provide a standard
graphical interface for portabil-
ity of the code. All graphic
related code has been localized
in the GRAPHICS package, allowing
easy access for GKS upgrades or a
convenient means to provide
access to other graphics stand-
ards, such as, PHIGS.

Communications with the
measurement instrumentation was
accotiplished through the
IEEE-STD-488 interface bus, using
the VMS IEX IEEE-488 device
driver. Since the IEEE-488 bus is
an industry standard and avail-
able for practically all comput-
ers and instrumentations, the
portability of the instrumenta-
tion control is greatly enhanced.
As in the case of the GRAPHICS
package, the IEEE-488 related
code is localized in a separate
ADA package, allowing easy main-
tenance of the CADET code for
IEEE-488 interface bus or adap-
tion to other standards, such as,
VXI . Communications with
other computers and processes is

407

through the ETHERNET using DEC-
net.

A generalized view of the
CADET hardware and software
components is shown in Figure 1.
CADET accomplishes all operations
through tasks. A task is spawned
in each package to handle trans-
actions and messages. The graphi-
cal interface with the diagnosti-
cian, circuit simulation, meas-
urements, package menus, etc. are
implemented through tasks. Commu-
nications between tasks is accom-
plished by passing messages known
as directives. Directives are ‘t
implemented as ADA variant re-
cords with discriminants”(Ref.
1) . The specific implementation
of the message record is shown
in Figure 2.

The message is passed from
main program to the instrument
controller through the use of the
VAX\VMS AST (Asynchronous System
Traps) that are handled in ADA
as “pragma AST ENTRY”. An example
of the implemefitation in CADET is
shown in Figure 3. The main CADET
program passes the Message_Record
through a communications handling
package (Com_Handling) to the
Instrument_Controller. The In-
strument_Controller handles the
Message_Record in the
Instrument=Server package, which
after routing the message to the
appropriate package for action
can also pass measured data back
through Com_Handling for display
in the main CADET program. For
communications between computers
and processes, a STATUS_SET enu-
meral of type SEMAPHORE is used
to insure that proper buffer size
is allocated for long messages,
such as, digitized images. This
SEMAPHORE construct allows sepa-
rate programs to be run on sepa-
rate computers, over the ETHER-
NET . Since the communications
between the two processes is
confined to individual ADA pack-

ages in each process, any changes
or adaptations that have to be
made for other platforms can be
easily addressed.

3. DATA STRUCTURES

All data structures in
CADET were designed from an
object oriented standpoint for
more compact and structured
design of the ADA code. Specifi-
cally, the data structures in the
CADET program were carefully
designed to organize the layout
design database file, to capture
and maintain the continuity of
conductors across modules . The
layout file is typically the
largest file received from the
CAD group. This file contains
information on spatial layout of
the various conductor layers, of
vias and contacts, of diffusions,
polysilicon, resistors, capaci-
tors, etc. This is the file that
the foundry uses for device
fabrication and is critical for
CADET , since it provides naviga-
tional aids for positioning of
the electron beam and moving the
motorized stage and providing the
ability to trace electrical
continuity for signal
tracing\back-tracing. The design
file used by CADET is in CIF
format (Caltech Intermediate
Format), which is ASCII based.
The CIF layout file provides for
definition of circuit modules,
with multiple calls for transla-
tion, rotation, etc. and place-
ment of the module on the chip
surface. Each module contains
detailed spatial information on
conductors, resistors, etc. As
received, the CIF file is flat,
that is, all information is
displayed at once. CADET takes
the CIF file and organizes the
data into various objects and
cluster objects with their appro-
priate relationships, to estab-
lish hierarchy. The relationships
can be binary for connection from

408

one conductor type to another,
such as, a via or from one port
to another, such as, across
module boundaries. The relation-
ship can be trinary to represent
transistors. Finally, generaliz-
ing, the relationships can be N-
ary to represent complex links
between the CADET abstract data

objects. The basic conceptualiza-

tion and utilizations for N-ary

relationships has been studied

and developed in graph and hyper-

graph theory.

The ADA implementation for
an CADET object is II a variant
record with discriminant, and at
least three associates
lists*l(Ref. 1). These objects are
defined in the package specifica-
tion HIERARCHY. A separate pack-
age TECHNOLOGY assigns graphical
display attributes and circuit
parameters to the abstract data
types in a user defined technolo-
gy file, to establish technology
independence. The ADA definition
of the objects and an example of
their records is shown in Figure
4. This is a basic CONDUCTOR
object TYPE with an extents list
(defines spatial details of con-
ductor), a relations list (define
relations to other conductors)
and link to a higher level CLUS-
TER object. The CLUSTER object is
linked to a higher level MODULE
object, which can enter into
relationships with other modules,
until the complete device design
is contained under the ROOT
module object. (Figure 5)

An example of the ADA
implementation for the CADET
RELATIONS object is shown in
Figure 6. This object is used to
maintain relationships among
objects, with each object on
multiple lists or N-ary relation-
ships. Modules can be assembled
into a hierarchy using the con-
tained relationship. The Place-
ment_Record contains the informa-

tion used to place the contained
module (B) inside the containing
module (A). The CONTROL relation
defines the transistor object
type, which defines the transis-
tor channel by obtaining the
union of base sets for a transis-
tor defined in the technology
file.

4. IMPORTING EXTERNAL DATABASES

The CIF layout file is
preprocessed to extract the re-
quired hierarchy and relations
information and to store this
information into a set of data
files that contain the organized
data. This facility provides
control of the layer of hierarchy
details that are displayed when
CADET loads the design data,
i.e., only information needed at
the time of diagnosis needs to be
loaded and exposed. The control
of information loaded and dis-
played provides faster data
retrieval and draws and ,as a
consequence, more productive
diagnostic sessions.

In addition, stimuli and
functional simulation results
must also be preprocessed and
saved in CADET file format. As an
extension to the original CADET
program, a facility has been
incorporated into CADET that

loads and displays the simulation

results in a SPICE file. SPICE is

a circuit simulation program

using a variety of built-in

transistor models and produces

ASCII files with detailed timing

information of waveforms at

specified circuit nodes. The

implementation developed at ARL

requires that the SPICE output

files be edited with a standard

text editor to insert one line of

information for file parser.
Example of the ADA code for

Parse_SPICE=File i.s given in

Figure 7. This procedure accepts

a file name from prompt and then

409

reads edited SPICE file, loading
node names and time-voltage data
for each signal, which in turn
are selectable in one of the
CADET windows

5. CONCLUSIONS

The software effort to

develop the ADA program called

CADET has been implemented at

ARL, with an operational software

program for diagnostics of com-

plex microelectronic devices.

CADET has over 50K SLOCS and over

40 different packages. Due to the

modularity and structured program

techniques used in its develop-

ment, the CADET software is

adaptable across platforms,
instrumentation technology and

device technology.

With the advent of ADA 9x,

i.t has been proposed that the

CADET program would be a good

testbed to establish the compati-

bility and mi.gratability of ADA83

code developed on a certified

compiler to a 9X certified com-

piler. A re-write of the CADET

objects into the 9X explicit

object facility should make CADET

code simpler and more maintain-
able/portable (Ref.6). Of immedi-
ate benefit to CADET would be the
INHERITANCE facility in 9X.

Due to the large micro-
electronic designs (VLSI and MCM)
being developed, the present
hardware configuration (1 MIP)
makes layout display very time
consuming. As a consequence, it
has been proposed that the CADET
code be ported to RISC work
stations to make use of their
graphic acceleration and in-
creased computational capability.

6. ACKNOWLEDGEMENTS

J.Luisi, in addition to

developing the original CADIET

program, has spent several sum-
mers developing the prototype
localized simulation capability
and the motorized stage package.
His efforts were critical in
developing present CADET ADA ccjde
and in-house capabilities. C.
Hogh adapted and wrote the ADA
packages for the ARL word genera-
tor. C.Marshall developed the
SPICE import facility and provid-
ed much needed expertise in ADA
code maintenance/support.

7. REFERENCES

1,. S.Hoelke and J,.Luisi, Elec-
tron-Beam Diagnostics for Micro-
electronic Design Validation, R.&D
Technical Report
SLCET-TR-85-0440-F, Jan. 1989

2. R.Sartore and M.Royals,lfUse
af Computer Aided Diagnostic E-
13eam Testing (CADET) System to
Perform Failure Diagnostics and
Design Verification on VLSI
Devices”, Test Engineering Con-
ference June 24-27, 1991, p53-7:3

3. R.Sartore and R.Buchanan,
Computer Aided E-Beam Testing of
Microelectronic Devices, Tutorial
Notes for 1991 International
Reliability Physics Symposium

4. R.Sartore, J.Erickson and
R.Heuner, “Diagnosis of Synthe-
sis/Emulation Problems on a
SINCGARS Radio ASIC Using Comput-
er Aided Diagnostic E-Beam Test
(CADET) System, GOMAC 1992, P163-
164

5. J.Michener,’’High Precision
Electron Beam Positioning Using
Computer Image Analysis for
Electron Beam Testing’t, Micro-
electronic Engineering, “7,
(1987) ,p223-229

6. J.Barnes, “Introducing ADA
9,X” , ACM ADA Letters, VO1.XI:I,
No.6, Nov\Dec93

410

CADET CONFICXJRATION

MENTOR-ETHERNET (ETDL)
APOLLO-DEC NETWORK (ROCKWELL)

A
SIMULATION ENVIRONMENT

SPICE INCA

DIAGNOSTICIAN EVENT < RISIM MOSSIM
—<— > MANAGER < — -— 1

IEEE-488 BUS

+==IONMEASUREMENT

Y
STIMULI

GENERATOR

HP818 OA
DAS 9100
IMS

CAMBRIDGE/ LINTECH VCSET

ISI/ABT IL-200 (ETDL)

LASER PROBER SYSTEM

STIMULI TO DEVICE

i

SPECIMEN
>

I

Figur 1. CADET Configuration

411

----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- -----
-- Message Object Types
----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- -----

type STATUS_SET is (GET_IMAGE, GET_SITE, GET_WAvE, -- ReWest.
GOT_IMAGE, GOT_SITE, GOT_WAVE,-- Response.
NO_IMAGE, NO_SITE, NO_WAVE, -- Abort or cancel.

SEMAPHORE, STIMULI);
type ORIGINATOR SET is (COMMUNICATOR, . . . , STIMULOR);
type STATE_SET Is (CALIBRATED, INITIALIZED, SETUP) ;

type SITE_OPTION_SET is (TO_REFERENCE_SITE,-- stage registration.
TO_NODE_SITE) ; -- For noise subtraction.

type MESSAGE_RECORD (OPTION : STATUS_SET ;
ARRAY_S I ZE : natural) is

record
TASK_I D : integer ;
ORIGINATOR: ORIGINATOR_SET ;
case OPTION is

when SEMAPHORE => STATUS : STATUS_SET ;-- Common
-- aprioi signal message.

SIZE : natural ; -- Needed for
-- dynamic record allocation.

when GET_IMAGE => CENTER_X, CENTER_Y : float ; -- Microns.

HALF_SIZE : float ; -- Microns.

SAMPLE_TIME : Bit_Index_Range ;

whenGOT_IMAGE=> IMAGE_ROW: IMAGE_ROW_TYPE ; -- senda row
at a time

when GET_SITE => SITE_OPTION : SITE_Ol?TION_SET ;
when GOT_SITE => SITE_XX, SITE_YY : float ; -- Microns.
when GET_WAVE => SITE_X, SITE_Y : float ; -- Microns.

START_TIME, STOP_TIME : Bit_Index_Range ;
TIME_RESOLUTION : TIME_TYPE ;
VOLTAGE_RES OLUTION : VOLTAGE_TYPE ;

when GOT_WAVE => WAVE : WAVE_TYPE(l. .ARRAY_SIZE) ;

---------------- additional test conditions
end case ;

end record ;

type MESSAGE_POINTER is access MESSAGE_RECORD ;

Figure 2. ADA Data”Structure Used for Message Passing

412

-- declare variables

task PROBER_Com_SERVER is
entry Send(Message : Data_Types.Message_Pointer) ;
entry RECEIVE_AST ;
pragma ast_entry(RECEIVE_AST) ;

end PROBER_Com_SERVER ;

------------ ------------ ------ ------ ------ ------ ------ -

task body Prober_Com_SERVER is

-- declare variables

begin --Prober_Com_S erver
accept Send(Message : Data_Types.Message_Pointer) do

Message_To_Be_Sent := Message;
end Send;
case Message_To_Be_Sent.Option is

when --- check for shutdown
--- otherwise proceed to following code

Arm_Prober_AST;
loop

select
accept RECEIVE_AST do

Text_IO.Put_Line (“AST triggered in PROBER AST SERVER’l-—

--- service AST

end Receive_AST;

--- get data, stcme file or put on a stack

Arm_Prober_AST;

or
accept Send(Message : Data_Types.Message_Pointer) do

Message_To_Be_Sernt := Message;
end Send;

--- send message

end select;
end 100p ;

end case;
end PROBER_Com_SERVER ;

Figure 3. Example Use of ASTd_ENTRY in COM_HANDLING

413

--Objects
type Object_Types is (Conductor, Zone, Cluster, Module,

Subnode, Node, Model) ;
type Object_Record(Object_Type : Object_Types);
type Pointer_To_Object_Record is access Object_Record;

--Relations
type Relation_Types is (Port, Contained, Connected,

Conducted, Control, Coupled, I_Coupled, Stimuli) ;
type Relation_Record(Relation_Type : Relation Types);
type Pointer_To_Relation_Record is access Rela~ion_Record;

type Object_Record(Object_Type : Object_Types) is
record

Extents : Pointer_To_Extent_Record := null;
Relations : Pointer_To_Relation_Record := null;
Link : Pointer_To_Object_Record := null;

Index : Short_Natural; -- For IO & Cross-referencing
-- to module array

Rel_Loc : File_Location_Record;--required to span

case Object_Type is
when Conductor =>

when others =>
end case;

end record;

Figure

r

MODULE

~P

< J—R
1

-- delayed loading

Conductor_Type :
Technology .Class_Member_Indices;
Details : Pointer_To_Deta ils_Record;

4. Example of CADET OBJECT

(EXTENTS)
—E—>

< — —
HULL
——_ —

L

I
(PLACEMENTS) LCLUSTER LIST *E—>

——— ___ >

-J

CLUSTER

(PORTS, COUPLINGS) <—R—O
COVER

< —— ___

I
7

L

I I
I

CONDUCTOR LIST ~~E–>

(CONTACTS)

Figure 5. Diagram Representation

===

of Module Object (Ref. 1)

414

--Relations
type Relation_Types is (Port, Contained, Connected,

Conducted, Control, Coupled, I_Coupled, Stimuli);
type Relation_Record(Relation_Type : Relation_Types);
type Pointer_To_Relation_Record is access Relatlon_Record;

type Relation_Record(Relatic>n_Type : Relation_Types) is
record

Object_A : Pointer_To_Obj ec:t_Record := null;
Next_A : Pointer_To_Relation_Record := null;
Object_B : Pointer_To_Obj ec:t_Record := null;
Next_B : Pointer_To_Relation_Record := null;

Extents : Pointer To_Extent_Record := null;
case Relation_Type–is

when contained => Placement ●.
Pointer_To_Pl acement_Record;

when connected => Contact_Type :
Technology .Class_Member_Indices;

when control => Transistor :
Pointer_To_Trans istor_Record:

when conducted => Diode_Type :

Technology .Class_Member_Indices;
when coupled => Capacitance : Real := 0.0;
when stimuli => Stimuli, ..

Data Types.Pointer_To_Stimuli_Record;
when port => Term~nal .

Pointer_To~Termina l_Record;
when I_coupled => Instance ..

Pointer_To_Coupl ing_Record;
end case;

end record;

Figure 6. Example of CADET RELATIONS OBJECT

415

Procedure PARSE_Spice_File (Name :
in dynamic_strings.dyn_string) is

------------- declare variables
begin
Open (Spice_Ascii_file,Name) ;
loop--on lines, exit if end of file

-- get data string from ascii file the next line
-- get first word from string
-- Check for beginning of signal data - #TIME
if Match(First_Word, “Sample”) then

Get_Word(Data) ;-- get second word and convert to integer
Integer_text_io .get(Data.s

(Data.wfc. .(Data. wlc)),Sample_number, Last);
elsif Match(First_word, “Time”) then

-- get next line in file
loop-- columns, total of 5, first time , the rest voltage

get_word (Data) ;--first signal names, then load record
t_Wave(Next): = new data_types.waveform_record

(Sample_Number) :
t_Wave(Next) .Class := Predicted ;
t_Wave(Next) .Name :=

Dynamic_strings.D_string (Data.S(Data.wfc. .Data.wlc));
Name_Exists := Next_Word_Exists (Data) ;
if not (name_exists) then

exit;
end if; -- no more signal names
Next := Next + 1;

end loop;
for s in 1 ..Sample Number

loop -- now get ~ime and voltage and load in record
Data: = Get_Data (Spice_ascii_file) ;--get Next line

Get_Word (data) ; -- get word pick up time
Time := Convert_to_time (data) ;
for w in l..Next

loop
Get_Word (data); -- get word pick up voltage
Voltage := Convert_to_voltage (data);
t_wave(w).Samples(s).Voltage := Voltage;
t_wave(w).Samples(s).Time := Time;

end loop;
end loop;
Unload(t_wave,Waveform_list);

end if;
end loop;

text_io.close (Spice_ascii_file);
wave_window.acceptya_wave .(waveform_list) ;
Dispose(Waveform=Llst) ;

end PARSE_Spice_flle;

Figure 7. CADET SPICE File Parser

416

