
Characterizing the Usability of Interactive Applications
Through Query Log Analysis

Adam Fourney
afourney@cs.uwaterloo.ca

Richard Mann
mannr@uwaterloo.ca

Michael Terry
mterry@cs.uwaterloo.ca

David R. Cheriton School of Computer Science
University of Waterloo

Technical Report CS-2010-18

ABSTRACT
People routinely rely on Internet search engines to support
their use of interactive applications, making query logs a rich
source of data cataloguing the day-to-day tasks and needs of
a user base. In this paper, we introduce an automated pro-
cess for harvesting, ordering, labeling, and grouping search
queries related to any publicly available interactive system.
The end result is a data set that can complement and augment
data collected through traditional usability methods. We call
this process CUTS—characterizing usability through search.
The labeled, ordered data produced by CUTS can be assem-
bled in minutes, is timely, has a high degree of ecological
validity, and is arguably less prone to self-selection bias than
traditional usability methods. We describe this process and
demonstrate applications of its use with a handful of interac-
tive systems.

Author Keywords
Query log analysis, Usability

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: Miscellaneous

INTRODUCTION
People rely on search engines (e.g., Google1, Yahoo!2, Bing3,
etc.) to support their use of interactive systems [4, 6]. For ex-
ample, users submit search queries to locate tutorials, trou-
bleshoot problems, or learn how to use specific features of an
application. Given this behavior, search engine query logs
serve as centralized repositories cataloguing the day-to-day
needs of the user base of an interactive system.

In this paper, we argue that search engine query logs can
be filtered and transformed into forms that usefully com-
plement and augment data collected via traditional usabil-
ity methods, such as observational studies, instrumentation,
and surveys. We demonstrate this potential by introducing
an automated process for harvesting, ordering, labeling, and
grouping search queries to understand the common tasks and
needs of a user base (Figure 1). We call this process CUTS—
characterizing usability through search. Importantly, the la-
1http://www.google.com
2http://www.yahoo.com
3http://www.bing.com

Figure 1. An overview of CUTS. Steps 1-2 are easily performed with
access to raw query logs, but otherwise require approximation tech-
niques. Step 3 utilizes our query taxonomy specialized for interactive
systems.

beled, ordered data produced by CUTS can be assembled in
minutes, is timely, has a high degree of ecological validity,
and is arguably much less prone to self-selection bias than
traditional means of collecting data from users.

As an example of the utility of this approach, an approxima-
tion of this process can be illustrated using Google Suggest,
the service that provides query completion suggestions for
a given input. Given the phrase “firefox how to”, Google
Suggest produces a list of 10 query completion suggestions
(Figure 2). As we will show later, these suggestions closely
correspond to the 10 most popular queries matching that in-
put. Knowing this, by using the generic pattern “product
how to” we can quickly obtain a ranked, ordered list of some
the most common issues for any interactive system.

From the list of top 10 Firefox “how to” suggestions (Figure
2), it is immediately clear that users have a number of pri-
vacy and security concerns, as evidenced by their desire to
clear their cache, history, and cookies. However, the eighth
item (“get menu bar back”) is particularly interesting. An
inspection of the Firefox user interface (version 3.6 on Win-

1

http://www.google.com
http://www.yahoo.com
http://www.bing.com

Figure 2. The top 10 suggestions provided by Google Suggest for the
phrase “firefox how to”.

dows), reveals that the top-level menu bar is easily hidden
by deactivating the “Menu bar” item in Firefox’s “View →
Toolbars” sub-menu. However, once this action is taken, it
is not easily reversed: the top-level menuing system is now
hidden, removing the very means the user would employ
to attempt to re-instate the menu bar. What is noteworthy
about this example is that we quickly moved from data de-
rived from query logs to a testable hypothesis regarding the
usability of the software.

The contributions in this paper lie in expanding this man-
ual process to the automated one shown in Figure 1. While
seemingly straightforward, automating this process requires
overcoming a number of challenges: Raw query logs are not
made publicly available; there is a need to automatically de-
termine query intent for the purposes of labeling and filtering
queries (for example, to distinguish troubleshooting queries
from those seeking to download the application); and differ-
ently phrased queries on the same topic must be reduced to
a single query. Our specific contributions, outlined below,
address these challenges.

To address the problems of obtaining and ranking search
queries, we demonstrate how publicly available query sug-
gestion services (e.g., Google Suggest) and web-based tools
for advertisers can be employed to create reasonable approx-
imations of raw query logs. This method also includes fall-
back strategies for ordering query data when precise fre-
quency counts are not available for the queries.

We also introduce two new query classification schemes to
address the need to label queries. The first classification
scheme is a taxonomy that extends previous search query
taxonomies to include categories relevant to interactive sys-
tems. For example, this new taxonomy differentiates be-
tween queries issued to troubleshoot a problem and those
seeking a tutorial or instructions. The second classification
scheme considers how a query is phrased. We show that how
a query is phrased closely corresponds to the categories of
our specialized taxonomy. Since determining how a query
is phrased is a relatively simple task, our method exploits
the relationship between these two classification schemes to
ascribe query intent from query phrasing.

Finally, we introduce a set of heuristics that enable differ-
ently phrased queries on the same topic to be represented
by a single group. These heuristics transform a query into a
canonical form using existing methods (such as word lemma-
tization, and stop word removal). We show that the highest
ranking queries are also members of the largest query groups
(by number of alternate phrasings).

The rest of this paper is structured as follows. We first present
related work, then describe our method for harvesting and
ranking search queries using publicly available services. We
then introduce our two classification schemes and show how
they can be used to label search queries. The final step of the
process, grouping queries, is discussed and a set of strategies
are introduced to assist with this process. Next, we present
a series of examples illustrating the overall utility of this ap-
proach, followed by a discussion of the limitations of the
technique. We conclude with directions for future work.

BACKGROUND & RELATED WORK
In recent years, researchers have demonstrated the potential
for search engine query logs to model and predict real-world
phenomena and events. For example, Jeremy Ginsberg et
al. have demonstrated how query logs can be employed to
help track the spread of influenza over time [10]. In this lat-
ter research, “health-seeking behaviour” is automatically de-
tected by monitoring search terms associated with influenza
(symptoms, medications, etc.). This allows the Google Flu
Trends application4 to estimate the prevalence of influenza
infections on a week-to-week basis. The resultant models
closely agree with data released by the Center for Disease
Control (CDC), though they exhibit much less lag: Mod-
els built using query logs show a 24 hour lag in tracking flu
trends, compared to the week lag of the CDC.

More generally, Richardson [20] argues that query log analy-
sis could quickly become an indispensable tool for researchers
working in such human-centric fields as anthropology, soci-
ology, psychology, medicine, economics, and political sci-
ence. He notes that query logs function as if “a survey were
sent to millions of people, asking them to, every day, write
down what they were interested in, thinking about, plan-
ning, and doing.” Accordingly, he argues that “taken as
a whole, across millions of users, ... queries constitute a
measurement of the world and humanity through time” [20].
To demonstrate his point, Richardson describes a common
search pattern that unfolds over the course of three to six
months, starting with a user’s search for “mortgage calcu-
lators.” Within a week, these same users search for “real-
tors.” About one month later, they search for legal services
(e.g., “notary”), and three months later, their searches in-
clude those for home furnishing (e.g., “pottery barn”). As
with Google Flu Trends, this latter example shows the po-
tential for query logs to discover and model real-world phe-
nomena.

Within the realm of interactive systems, the research litera-
ture contains many accounts of search query logs being used
to improve information interfaces—interfaces in which find-
4http://www.google.org/flutrends/

2

http://www.google.org/flutrends/

ing or accessing information is a user’s primary task. For ex-
ample, Zhicheng Dou et al. demonstrate how query logs can
be used to improve personalized search [8]. It is also com-
mon for website designers to use query logs to help deter-
mine what links should be provided in their site’s top-level
navigation [19]. Our work broadens and generalizes these
previous uses of query logs, demonstrating their utility in
understanding users’ needs with any interactive system.

While prior work in interactive systems has focused on us-
ing query logs to improve information interfaces, work by
Brandt et al. have demonstrated how software developers
employ search engines when creating software [6]. Through
studies of developer practices, Brand et al. show that soft-
ware developers make extensive use of Google for a vari-
ety of programming-related tasks, such as using search to
translate knowledge from one domain to another (e.g., from
one programming language to another). In subsequent work,
Brandt et al. streamlined this common strategy by building
web search tools directly into integrated development envi-
ronments (IDEs) [5]. While this prior work validated their
initial study findings through an analysis of query logs, our
work more generally considers query logs and how they can
be employed to learn the specific deficiencies and limitations
of any interactive system.

Importantly, all of the aforementioned research has been con-
ducted by institutions or companies with direct access to
search query logs. Access to these query logs is highly guarded,
especially after the privacy problems encountered after AOL
released (what they felt was) an anonymized sample of their
query logs [24]. Lacking direct access to raw query logs,
Bar-Yossef and Gurevich have demonstrated how statistics
of these logs can be approximated using an importance sam-
pling technique [3]. This technique estimates the popularity
of certain keywords by using parameterized models (derived
from the aforementioned AOL search query logs) and by
sampling query completions provided by query completion
suggestion services. Our work is inspired by this research,
as we also use query completion suggestion services. How-
ever, in contrast to this previous work, we perform exhaus-
tive searches of the query suggestions for a specific topic
(namely, a specific interactive system), as a means of sam-
pling the raw query logs.

In summary, previous work in other domains demonstrates
the overall utility of query log analysis: It yields timely,
highly ecologically valid data that can quickly lead to sig-
nificant insights when studying a wide range of phenomena.
In the rest of this paper, we demonstrate its specific utility in
the realm of interactive systems by detailing each step of the
CUTS process.

QUERY HARVESTING
When access to raw query logs is not possible, search queries
can be harvested using publicly accessible interfaces: Mod-
ern search engines provide indirect and privacy-preserving
access to their logs through their query completion sugges-
tion services [3]. In this section, we describe a process for
systematically harvesting all the queries related to a particu-

lar interactive system using these services. We also provide
evidence that the results of this method can be considered a
representative sampling of the raw query logs.

Harvesting from auto-completion services
Query completion suggestion services operate as if backed
by a prefix tree [3]. When viewed in this way, the characters
making up a partially entered query define a path through
the tree starting at the root, passing through numerous nodes.
Each node contains a listing of popular queries whose prefix
matches the path taken thus far. Query completion services
follow the paths prescribed by partially entered queries, and
return the suggestions listed at the end of these paths.

Given the tree-like structure of these services, a standard
depth-first or breadth-first tree traversal can be performed
by expanding partial queries one character at a time, start-
ing with the name of the system under investigation (figure
3). A leaf (or external node) is reached when the completion
service returns no suggestions for the given prefix.

firefox,
firefox a, firefox aa, firefox aaa, ...
...
firefox z, firefox za, firefox zaa, ...

Figure 3. Input sequence representing a depth-first traversal of
Google’s prefix tree rooted at “firefox”.

Mining additional queries
Some search providers, such as Google, vary their query
suggestions depending on the position of the caret in the
search query input box (Figure 4). More specifically, Google
provides a list of the top 10 completions that either begin or
end with the phrases on the left or right side of the cursor.
Given this behaviour, the whole tree traversal procedure can
be repeated to uncover query suggestions that end with a
particular suffix, providing a more complete sampling of the
query logs.

Figure 4. Google’s “Suggest” auto-completion service varies its sugges-
tions based on the caret position.

By executing a systematic search of the query completion
tree, a significant number of queries can be collected for a
given topic. For example, a systematic search of query sug-
gestions incorporating the term “Firefox” uncovers 74,795
unique queries. Similar results were obtained for other sys-
tems for which we collected data (Table 1).

3

Application Description # of Query Suggestions
ubuntu A Linux distribution 122,242
photoshop An image editor 119,791
firefox A web browser 74,795
kindle An eBook reader 21,621
gimp An image editor 14,569
nook An eBook reader 8,985
audacity An audio editor 6,517
kobo An eBook reader 2,680
inkscape A vector graphics editor 2,501

Table 1. Number of unique query suggestions provided by Google for a
number of interactive systems.

Representativeness and Timeliness of Auto-Completions
In harvesting these queries, our working assumptions are
that (1) query completion services are derived from the raw
query logs, (2) a given query’s prevalence in these logs will
have some bearing on its ranking in the list of suggestions,
and (3), the suggested completions are timely. That is, we
assume that query completion services assign more weight
to queries performed within a recent window of time. In the
following subsections, we briefly provide evidence that these
assumptions are sufficiently valid for our purposes.

Representativeness of Query Completion Suggestions
In the case of Google, some information about their query
suggestion service has been published [11]. Specifically,
Google’s documentation notes that “All of the queries shown
in (Google) Suggest have been typed previously by other
Google users”. Google also states:

Our algorithms use a wide range of information to pre-
dict the queries users are most likely to want to see. For
example, Google Suggest uses data about the overall
popularity of various searches to help rank the refine-
ments it offers. [14]

Later, when discussing the use of marketing tools to rank
queries, we will provide further evidence that auto-complete
suggestions have a close correspondence to the most fre-
quently, recently performed queries.

Timeliness of Query Suggestions
To identify trends and new issues as they arise, it is desirable
that query suggestion services emphasize recent searches over
those performed in the more distant past. To study the time-
liness of Google’s query suggestion service, we monitored
the query completion suggestions for a range of products
and software applications for a period of approximately 3
months (June 2010 through August 2010, inclusive). Sug-
gestions were sampled on Monday, Wednesday and Friday
on each week during this timeframe. An analysis of the col-
lected data reveals that Google updates its auto-completion
database approximately once every 14 days. These results
indicate that Google is actively maintaining its query sug-
gestion database.

Knowing the frequency with which these services are up-
dated is advantageous, but it is not sufficient for determining
the extent to which current search trends are represented in

query suggestions. To investigate this question, we can ex-
amine when a noteworthy event begins to appear in query
suggestions. A prime candidate for exploring this question
is provided by the release of the iPhone 4 on June 24th, 2010.
Almost immediately, there were reports of significant signal
degradation when the phone was held in a certain way [9].
The first evidence of this issue was spotted in the query sug-
gestions on July 14th. On this date, the partial query “iphone
d” resulted in Google suggesting “iphone death grip”, while
“iphone a” yielded “iphone antenna”, and “iphone how to
h” yielded “iphone how to hold”. None of these queries
appear in the suggestions sampled on previous dates. This
corresponds to a lag of about 20 days, suggesting that the
query completion services place sufficient weight on recent
queries.

RANKING QUERIES
After harvesting queries, the next step is to assign an impor-
tance rank to each query. When queries are sampled from
query suggestion services, detailed ranking information is
not made available (current services do not report the fre-
quency of each query returned). We substitute this miss-
ing data in two ways. First, we complement our data set
with data from advertising and market research tools, such
as Google AdWords [12]. Second, we examine the structure
of the synthesized prefix tree to obtain a partial ordering of
the queries not covered by the market research tools. We
describe each technique in turn.

Using Marketing Tools to Assign Ranks
Google provides a set of tools that can be directly applied to
the problem of ranking queries. Specifically, Google Insight
[13], and the Google AdWords Keyword Tool [12] can both
be applied to this problem. While both tools are intended to
help marketers valuate keywords for advertising purposes,
we can instead use them to “valuate” queries related to inter-
active systems.

Of the two Google tools, Google AdWords provides the most
information, and can be configured to report the estimated
average monthly global search volume for any exact phrase
provided by a user. As such, it is possible to directly rank
many query suggestions using this tool alone. In doing so,
we again find that there is good correspondence between the
harvested queries and their estimated search volume.

While many queries can be ranked directly using the Google
AdWords tool, not all queries can be ranked in this way;
Google AdWords provides no data for queries whose monthly
search volume is below some threshold, and this threshold is
reached well before the list of query suggestions has been
exhausted. For example, on May 22nd, 2010, we harvested
2501 unique query suggestions for the Inkscape vector graph-
ics program. However, Google AdWords provides search
volume data for only 597 of those queries. In short, about
three quarters of the data cannot be ranked using this method,
so we must employ another means of ranking queries, as de-
scribed next.

4

Generating a Partial Ordering
While query suggestion services do not return the frequency
with which each suggested query is performed, we have shown
that they operate by returning the most popular queries for
a given input. We can use this behaviour to derive a partial
ordering of the query suggestions. The key insight is this:
For a given prefix, we know that the 10 query suggestions
returned for that exact prefix are deemed more relevant than
all other queries later harvested that begin with that same
prefix. An example illustrates this point.

Returning to the earlier Firefox example, the suggestion “fire-
fox menu bar missing” appears in the top 10 suggestions for
the prefix “firefox m”. Thus, we can infer that the “fire-
fox menu bar missing” query is more relevant than the 2362
other suggestions occurring in the data set that also share
the prefix of “firefox m”. We say that this query has 2362
subordinates in order to convey this relationship.

This ranking technique provides only a partial ordering be-
cause we can only perform comparisons of a node with its
ancestors and descendants in the prefix tree. We cannot di-
rectly compare suggestions occupying separate branches of
the tree.

The partial ordering can be extended to a total ordering that
approximates the true ranking of queries based on search
volume. This is done by simply sorting all remaining queries
according to their number of subordinates. When queries
are ranked using this metric, the pairwise relationships es-
tablished by the partial ordering are preserved. As an exam-
ple, if query B is the subordinate of query A, then query A’s
subordinate count will necessarily be greater than that of B
(subordinates of B are also subordinates of A). As such, B
will appears lower in the rankings.

These first two steps of harvesting and ranking queries pro-
vide us with a suitable, privacy-preserving, publicly acces-
sible replacement for raw query logs. In the remainder of
the paper, our technique assumes only that one has access
to a ranked list of search queries relating to the interactive
system of interest.

QUERY CLASSIFICATION AND QUERY TAXONOMIES
Given a ranked list of queries, the next step is to label and
classify them according to the intent of the individual sub-
mitting the query. However, we first need to understand
the various types of queries users submit to search engines
to support their use of interactive systems. While previ-
ous work has developed a number of taxonomies for gen-
eral classification of search queries (e.g., to distinguish be-
tween navigational and information-seeking queries) [7, 16,
21], we found these too broad for our purposes. Instead, a
classification scheme specialized for this domain is needed.
Additionally, we need understand what features of a query
can be used to support automatic labeling of the queries.

In this section, we address both of these needs: We intro-
duce a taxonomy of query intent specialized for interactive
systems, and a second classification scheme that describes

how a query is phrased. As we will show, query phrasing is
strongly related to query intent.

Query intent taxonomy for interactive systems searches
To develop a taxonomy of queries related to interactive sys-
tems, we performed open coding of 200 randomly sampled
queries related to the GIMP software application. From this
initial coding, we identified a set of common, higher-level
themes, which led to our taxonomy. The resultant taxonomy
includes six separate classes of interactive system queries,
synthesized from the perspective of query intent:

QUERY INTENT:
• Operation Instruction

Would the query be used to find instructions for perform-
ing a specific operation?
• Troubleshooting

Would the query be used for troubleshooting a bug or er-
ror?
• Reference

Would the query be used to find reference material? (e.g.,
a list of keyboard shortcuts)
• Download

Would the query be used acquire, download, or install
something?
• General Information

Would the query be used to find general information about
the application? (e.g., product reviews or comparisons)
• Off-topic

Is the query unrelated to the software / project?

Query phrasing classification scheme
In parallel with developing the former taxonomy, we also
developed a classification scheme that describes how indi-
vidual queries are phrased. The motivation for developing
this scheme arose during our open coding sessions: In con-
sidering the range of queries, it appeared that how a query
was phrased was very much related to the intent of the user.
As we will show, there is indeed a relationship between the
two.

Based on the open coding of the queries, the following high-
level categories of query phrasing were identified:

QUERY PHRASING:
• Noun phrase (e.g., gimp brushes)
• Imperative statement (e.g., gimp rotate text)
• Question (e.g., how to draw a line in gimp)
• Statement of fact (e.g., gimp won’t start)
• Present participle (e.g., rotating text in gimp)
• Other

In contrast to the former query intent taxonomy, the above
query phrasing classification scheme is not specific to inter-
active systems and is thus applicable to query analysis in
other domains.

5

Query Source κ intent κ phrasing
Firefox, top 50 0.74 (substantial) 0.80 (substantial)
Firefox, random 50 0.86 (near perfect) 0.80 (substantial)
GIMP, top 47 0.66 (substantial) 0.72 (substantial)
GIMP, random 48 0.66 (substantial) 0.81 (near perfect)

Table 2. Inter-rater reliability for each of the≈50 queries in each sam-
ple set.

Validating the classification schemes
To validate these two classification schemes, two researchers
applied both schemes to 195 sampled queries. For this ex-
periment, harvested queries for GIMP and Firefox were used,
with queries selected as follows: For each application, the
top 50 queries (by search volume) were selected, followed
by an additional 50 randomly selected queries. The result-
ing set of 200 samples shared 5 queries in common with the
set of queries used for the initial open coding and were thus
excluded from our validation process.

In labeling this data set, we achieved an overall inter-rater re-
liability rate of κ intent = 0.76 for query intent, and κ phrasing =
0.79 for query phrasing, using the Cohen’s kappa measure of
rater agreement. Inter-rater reliability across the 4 sources of
queries is listed in table 2. The observed agreements are con-
sidered to be substantial [17], suggesting their overall utility
as instruments for labeling search queries.

Before describing how this query phrasing classification scheme
can be used to identify query intent, we first show how queries
are distributed across these two classification schemes. These
query distributions lend additional arguments for the overall
utility of this approach.

Characterizing query data
The classification of the 195 labeled queries is listed in ta-
ble 3. The categories we find interesting for usability anal-
ysis coincide with the first two listed in the table and tax-
onomy: “Operating Instruction”, and “Troubleshooting”. In
our sample, about half of all query suggestions fall within
categories that are of interest to HCI researchers and prac-
titioners, demonstrating the overall richness of query logs
when studying interactive systems.

Relationship between query phrasing and intent
If we compare how a query is classified in each scheme,
we find that how a query is phrased strongly correlates with
query intent. These findings are summarized in table 4.

There are a few noteworthy observations to make in this ta-
ble. As can be seen, in our sample set, if a query is phrased

Rater 1 Rater 2
Query Intent Freq. % Freq. %
Op Instr. 84 43% 80 41%
Troubleshooting 15 8% 17 9%
Reference 21 11% 19 10%
Download 55 28% 62 32%
General 12 6% 12 6%
Off topic 8 4% 5 2%

Table 3. Frequencies of query intent labels as assigned by two raters.

Query Intent N
ou

n

Im
pe

ra
tiv

e

Q
ue

st
io

n

Fa
ct

P.
Pa

rt
ic

ip
le

O
th

er

Opr. Inst. 0.303 0.909 0.867 1.000
Troubleshooting 0.045 1.000
Reference 0.136 0.030 0.133
Download 0.409 0.061
General: 0.106
Off topic 1.000

Table 4. Probability of query intent given its phrasing type.

as an imperative statement, there is a 91% chance that the
query is seeking operating instructions. A similar probabil-
ity (87%) applies if the query is phrased as a question. Fi-
nally, if a query is phrased as a statement of fact, then it is
almost certainly being used for troubleshooting. These re-
lationships provide us with a set of strategies for labeling
queries, which we describe next.

Labeling heuristics
As we have shown in the previous section, queries useful to
the study of interactive systems can be selected according
to how they are phrased. Through further inspection of the
data, we have also found that certain keywords or patterns
are highly indicative of each of the different phrasing types.
For example, queries containing the phrase “how to” are la-
beled as “Questions” and thus also labeled with the “Oper-
ating Instructions” category. A full list of phrasing patterns
are listed in table 5, and serve as basic heuristics for label-
ing different types of queries. For each pattern in the table,
all queries matching that pattern are assigned the labels as
prescribed by the left column.

Many queries will not match any pattern, and will thus go
unlabled at this stage of processing. In the next section we
describe a technique for grouping related queries. When
queries are grouped, labels for the individual queries can be
extended to the group, increasing the coverage of the heuris-
tic labeling.

Labels Pattern Example Query

O
pe

ra
tin

g
In

st
ru

ct
io

ns

Q
ue

st
io

n how to in SystemName how to delete history in firefox
SystemName how to firefox how to clear cache

can SystemName can firefox block websites
does SystemName does firefox have private browsing

Im
pe

ra
tiv

e use SystemName use firefox for windows update
make SystemName make firefox default browser

SystemName set firefox set default zoom
create in SystemName create a new profile in firefox

SystemName create firefox create pdf

Tr
ou

bl
es

ho
ot

in
g

Fa
ct

firefox is / isn’t firefox is starting slow
SystemName can / can’t firefox can’t add bookmarks

SystemName will / won’t firefox won’t open pdf
SystemName does / doesn’t firefox doesn’t play sound

SystemName has / hasn’t firefox has no address bar

Table 5. Filtering templates for labeling the phrasing and likely intent
of queries.

6

“firefox lost toolbar”
lost my toolbar firefox firefox toolbars lost
lost firefox toolbar firefox lost my toolbar
lost all toolbars in firefox firefox lost all toolbars
lost toolbar in firefox firefox lost toolbar
lost my toolbar in firefox lost my firefox toolbar
firefox toolbar lost

Table 6. 11 distinct queries which share the canonical representation
“firefox lost toolbar”.

GROUPING SIMILAR QUERIES
The final step in CUTS is to reduce the variability with which
queries are expressed in the data set. In query logs, common
questions or issues are expressed using a number of different
query phrasings. As an example, GIMP users may search
“how to draw a circle in gimp”, or they may simply type
“gimp draw circle”. Given this variability, it is desirable
that similar queries be grouped, and their weights or rank-
ings combined, in order to better estimate the prevalence of
a given issue.

To group similar queries, we transform queries to a canoni-
cal form where inconsequential differences are ignored (e.g.,
See table 6). This transformation applies the following rules:

• Convert inflected word forms to common word lemmas.
(e.g., “deleting cookies” becomes “delete cookie”)

• Remove all instances of stop words.
(e.g., “and”, “the”, “to”, “but”, etc.)

• Remove words devoid of alphabetic letters.
(e.g.: “3.6.10”, and other non-english strings)

• Sort the query terms alphabetically.

Using this technique, it is possible to achieve a modest re-
duction of the data set to a smaller set of ranked queries. As
an example, the Firefox data set of 74,795 unique queries is
represented by 39,435 canonical query groups (53% of the
original size). More importantly, this procedure preferen-
tially groups popular queries, and yields a second and in-
dependent method for identifying the most common queries
in the query logs. To illustrate this point, table 7 lists the
cardinality of the canonical groups associated with the top
10 “firefox how to” queries already mentioned in the Intro-
duction. All but the last of these queries fall within the top
99.6th percentile of canonical group sizes, thus reinforcing
the popularity of these concerns.

OUTPUT OF CUTS
At this stage of the process, queries have been sampled,
ranked, labeled, and grouped by canonical form. The out-
put of the process is a categorized and ranked list of query
groups relating to the system under investigation; each query
group is labeled with the text of its highest ranking member
(i.e., the member whose search volume is greatest). A sam-
ple of this output, for the “firefox” application, is presented
in Table 8.

“Firefox how to” ... Canonical Form Cardinality of group
clear cache cache clear 110
delete cookies cookie delete 60
clear cookies clear cookie 44
enable java enable java 41
export bookmark bookmark export 40
enable cookies cookie enable 32
clear history clear history 30
block websites block website 29
get menu bar back back bar get menu 16
clear browsing history browse clear history 5

Table 7. Canonical groups associated with the top 10 “firefox how to”
queries.

Note that ranked output can still contain thousands of en-
tries. It is thus useful to employ standard text visualization
techniques to further summarize the data. As an example,
the visualization in figure 5 was constructed from the data
processed for the GIMP image manipulation software. From
this visualization it is clear that GIMP users perform many
searches relating to transparency, layers, and drawing prim-
itives (e.g., straight lines, rectangles, circles, etc.). This lat-
ter problem (how to draw geometric primitives) is notewor-
thy because GIMP provides few tools for drawing simple
shapes. We describe this latter issue in more detail in the
Applications section that follows.

Operating Instruction Troubleshooting
(Question / Imperative Stmt.) (Statement of Fact)
clear cache not responding
clear cookies can not open pdf
delete cookies slow
block websites crashing
enable cookies in safe mode
proxy not checking my spelling
delete history constantly crashing
speed up lagging
remove persona zoomed in
save bookmarks not remembering passwords
... ...

Table 8. Query groups, related to “Firefox”, output after query har-
vesting, ranking, labeling and grouping.

 gimp
 image transparent, cut, out, two, change, size

 use tool, brush, clone, path, scissor, heal
 layer open, get, select, transparent, add, multiple

 transparent background, image, layer, white, color, erase
 brush install, add, use, download, get, load

 background transparent, change, remove, white, delete, add
 change color, background, size, font, image, text

 text change, curve, edit, rotate, bend, remove
 color change, eye, replace, hair, another, splash
 draw line, rectangle, curve, circle, arrow, shape

 add brush, font, border, background, layer, watermark
 picture cut, look, out, put, background, change
 install brush, plugin, font, script, gap

 font install, add, change, download, into, put
 photo black, edit, white, use, color, collage

Figure 5. A visualization of the query suggestions related to GIMP. The
leftmost column lists, in descending order, the words that occur most
frequently in the query suggestions. Similarly, each row lists the words
that co-occur most frequently with those listed in the left column.

7

APPLICATIONS
In this section, we apply our technique to a number of dif-
ferent interactive systems. Our goal here is to demonstrate
the wide range of insights that can be gained using this ap-
proach. We structure this section by showing how issues
related to language, desired functionality, and poor affor-
dances can all be detected using this technique.

“Speak the User’s Language”
Query logs provide an excellent view of the vocabulary and
terminology with which users conceive their use of interac-
tive systems. However, this terminology does not always
match that which is used by their systems. When such dis-
crepancies arise, the associated systems can be considered
to be in violation of Jakob Nielsen’s “Speak the User’s Lan-
guage” usability heuristic [18]. We provide two examples of
this problem that we identified using our technique.

Black and White, but not Grayscale
The GNU Image Manipulation Program (GIMP) is an open
source raster graphics editor, offering similar functionality
to Adobe’s Photoshop application. On May 23rd 2010, we
harvested 14,559 queries relating to this software applica-
tion. Analysis of the GIMP data set reveals that the terms
“black” and “white” co-occur in 93 distinct queries, and in
each case, the queries inquire about converting color images
to black and white. According to the Google AdWords tool,
the query “gimp black and white” is searched an average of
590 times a month, or about once every 74 minutes.

Inspecting GIMP’s interface (version 2.6) reveals that the
commands and menus relevant to performing this operation
are labeled as “grayscale”, “desaturate” or “channel mixer”.
These technical terms may not be familiar to GIMP’s user
base, as evidenced by the vocabulary used in the harvested
queries. To provide points of comparison, the queries “gimp
grayscale” and “gimp desaturate” are performed 260 and 58
times a month respectively, each less than half the number
of “black and white” queries. Given this finding, one could
create a “black and white” command that aggregates into one
command the many methods of transforming an image into a
grayscale image, perhaps using a rich previewing technique
such as Side Views [23].

Clip, but not Crop
Inkscape is an open source vector graphics editor similar to
Adobe’s Illustrator program. On May 22nd 2010, we har-
vested 2,501 queries relating to Inkscape. Interestingly, the
8th highest volume query was “inkscape crop”, with an av-
erage of 480 searches performed each month. However, be-
ing a vector graphics application, Inkscape does not have a
“cropping” tool; cropping is specific to raster graphics. The
equivalent operation for vector graphics is to “clip”. This
very popular query suggests that new Inkscape users are re-
lying on Google to translate knowledge from one domain
(i.e., raster graphics) to another domain (i.e., vector graph-
ics). This behaviour closely resembles similar behaviour ex-
hibited by programmers’ use of Google [6]. Recognizing
this issue, Inkscape could provide a “crop” command or help
entry that assists users in setting the clip for their document.

Desired functionality
In addition to identifying potential usability issues relating to
terminology, we found query log analysis to be an excellent
source for understanding desired functionality.

Blocking unwanted calls
One popular class of queries relating to Apple’s iPhone prod-
uct inquires about the possibility of selectively blocking un-
wanted calls from specific telephone numbers. While this
feature is not currently supported by the device, users search
for information on performing this task at least 5,800 times
a month, or once every 7.5 minutes. The consensus among
the user community is that the issue can be resolved by asso-
ciating a silent audio clip as the ringtone of unwanted tele-
phone numbers. That this issue is so popular suggests users
would be well-served if provided with a sanctioned means
of achieving this same behaviour.

Changing screen savers
Another example of identifying desired functionality emerges
when analyzing the searches specific to Amazon’s Kindle
eBook reader. Specifically, query log analysis reveals 89
distinct phrasings of the query “how to change your kindle
screensaver”. It turns out that the device ships with a few
dozen stock images that are displayed by the device when
not in use. However, these images cannot be customized by
the end user. Again, the popularity of these searches suggest
that such a feature would welcomed.

Draw shapes in GIMP
Finally, an analysis of the GIMP query data set reveals many
queries relating to drawing primitive shapes: roughly 130
unique queries enquire about drawing various types of lines,
80 unique queries inquire about drawing circles, 40 queries
inquire about drawing rectangles, 20 queries inquire about
drawing squares, and 14 queries inquire about drawing el-
lipses. Moreover, the suggestions “gimp how to draw a line”,
and “gimp how to draw a circle” appear in the top 10 sugges-
tions for the prefix “gimp how to”, and the Google AdWords
tool reports that the query “gimp draw circle” is performed
an average of once an hour, each and every day. These
queries are noteworthy because GIMP provides no explicit
tools for drawing simple shapes. Dedicated tools for these
functions would likely find great use by GIMP users.

The usability cost of poor affordances
As a final example of the types of problems that can be un-
covered using query log analyses, we consider the usability
cost of poor affordances and uninformative error messages.

Ubuntu’s “authentication failure”
Ubuntu is currently one the most popular GNU/Linux distri-
butions. For reasons of security, Ubuntu disables the “root”
superuser account by default, requiring users to issue the
“sudo” command to gain superuser privileges. The root ac-
count has otherwise been present and used in UNIX and
UNIX-like systems for decades.

While Ubuntu’s policy is arguably a positive change for se-
curity, the operating system may not be adequately com-

8

municating this policy to new users: attempts to log in as
the root user (in Ubuntu version 10.04) simply result in an
“authentication failure” error message. An analysis of the
queries related to Ubuntu reveals nearly 130 distinct query
phrasings all asking about how to access the root user ac-
count. The specific query “ubuntu login as root” is per-
formed 720 times a month, or about once an hour. Similarly,
the query “ubuntu root login” is searched 880 times monthly.
This finding suggests that users would be well served by a
more helpful or detailed error message which could commu-
nicate the proper course of action when attempting to login
as the root user.

DISCUSSION
In this section, we more broadly discuss issues related to us-
ing query logs to understand the needs of users of interactive
systems. We begin with a discussion of how query log anal-
ysis can factor into existing usability practices, then describe
and address various issues that may affect the rankings pro-
duced by our method.

Integrating query log analysis in usability practices
Throughout the paper, we have been careful to note that
query logs can be used to identify potential usability prob-
lems of interactive systems. While a query may suggest that
users are experiencing difficulties with a particular aspect of
the system (e.g., “gimp how to draw a circle”), further details
and context are required before one can conclude the nature
and severity of the issue. This additional information can
be obtained using standard evaluation techniques involving
users or expert evaluators. Since many methods (e.g., cog-
nitive walkthrough) require representative tasks to be iden-
tified for evaluative purposes, query analysis can assist by
supplying a ranked list of common tasks and needs.

A ranked list of common queries can also be used to as-
sign importance to existing lists of known usability issues.
The benefit of using the results of CUTS is that this ranking
derives from the search behaviour of thousands, if not mil-
lions, of users. This ranked list may also be more exhaus-
tive than existing lists tracking usability issues. Software
producers with limited resources, including volunteer-driven
open source products, could thus benefit from this additional
means of identifying potential usability issues.

Finally, the data derived from this process can provide “hard
evidence” for motivating product engineering teams to ad-
dress issues relating to the usability of a device or software
application.

Factors that may impact or compromise query ranking
To effectively use query analysis, it is also important that one
understand and consider the various factors that can impact
the weighting and ranking that such analysis produces. In
this section, we discuss various effects that influence how
often various searches are performed.

User search behaviours and query reformulation
A growing body of research (e.g., [15, 1]) examines user
search behaviour. One of the practices observed is that peo-

ple reformulate their queries when search results do not match
their expectations or needs. As a result of this query re-
formulation strategy, it is conceivable that the analysis pro-
posed in this paper artificially inflates the importance of par-
ticular issues. However, we note that query popularity has
been observed to follow a Zipf’s law distribution [22, 3].
As a result of this exponential relationship between queries
and their frequency, it unlikely that any reformulation be-
haviours would grossly distort the query rankings. How-
ever, the effect may be more pronounced among queries with
lower search volume, suggesting a need for more work in
this space.

Products with generic names
A number of products have relatively generic names (e.g.,
Microsoft Word, Adobe Illustrator, etc.), which can cause
many irrelevant or off-topic queries to appear in query logs.
A similar problem is encountered by products whose names
are now synonymous with a class of operations or appli-
cations. For example, an altered digital image is often de-
scribed as being “Photoshopped”, regardless of which soft-
ware application was used for image manipulation.

In these problematic cases, we have found our filtering tech-
niques (e.g., “how to in photoshop”) are often enough to
filter out the less desirable, off-topic queries.

We also suspect that it is possible to differentiate between
the uses of a word by analyzing the results that search en-
gines return for those queries. Search engines are designed
to return relevant documents, and often refine their relevance
rankings by observing which pages users visit after perform-
ing searches [2]. The query-document associations recorded
by search engines provide a wealth of untapped information
that can further guide analysis of query logs. Use of these
associations constitutes a promising area of future research.

CONCLUSION
When faced with difficulties or questions relating to the use
of interactive systems, many people routinely turn to Inter-
net search engines as a first line of support. In this paper, we
have introduced the CUTS process (characterizing usability
through search). This process takes as input the name of
an interactive system and produces as output a ranked and
categorized list of potential issues that users encounter with
that system. These data are assembled by sampling from the
query logs of top-tier Internet search engines. Importantly,
the results of this process have a high degree of ecologi-
cal validity, and can directly inform more formal evaluation
methods by suggesting particular tasks or issues to test.

REFERENCES
1. A. Aula, R. M. Khan, and Z. Guan. How does search

behavior change as search becomes more difficult? In
Proc CHI ’10, pages 35–44, New York, NY, USA,
2010. ACM.

2. R. Baeza-Yates and A. Tiberi. Extracting semantic
relations from query logs. In Proc KDD ’07, pages
76–85, New York, NY, USA, 2007. ACM.

9

3. Z. Bar-Yossef and M. Gurevich. Mining search engine
query logs via suggestion sampling. Proc. VLDB
Endow., 1(1):54–65, 2008.

4. R. Barrett, E. Kandogan, P. P. Maglio, E. M. Haber,
L. A. Takayama, and M. Prabaker. Field studies of
computer system administrators: analysis of system
management tools and practices. In Proc CSCW ’04,
pages 388–395, New York, NY, USA, 2004. ACM.

5. J. Brandt, M. Dontcheva, M. Weskamp, and S. R.
Klemmer. Example-centric programming: integrating
web search into the development environment. In Proc
CHI ’10, pages 513–522, New York, NY, USA, 2010.
ACM.

6. J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and
S. R. Klemmer. Two studies of opportunistic
programming: interleaving web foraging, learning, and
writing code. In Proc CHI ’09, pages 1589–1598, New
York, NY, USA, 2009. ACM.

7. A. Broder. A taxonomy of web search. SIGIR Forum,
36(2):3–10, 2002.

8. Z. Dou, R. Song, and J.-R. Wen. A large-scale
evaluation and analysis of personalized search
strategies. In Proc WWW ’07, pages 581–590, New
York, NY, USA, 2007. ACM.

9. M. Gikas. Lab tests: Why Consumer Reports can’t
recommend the iPhone 4. Consumer Reports, July
2010.

10. J. Ginsberg, M. H. Mohebbi, R. S. Patel, L. Brammer,
M. S. Smolinski, and L. Brilliant. Detecting influenza
epidemics using search engine query data. Nature,
457:1012–1014, February 2009.

11. Google Corperation. Features: Google suggest. http:
//www.google.com/support/websearch/
bin/answer.py?hl=en\&answer=106230,
2010.

12. Google Corperation. Google AdWords keyword tool.
https://adwords.google.com/select/
KeywordToolExternal?forceLegacy=true,
2010.

13. Google Corperation. Google insight for search. http:
//www.google.com/insights/search/,
2010.

14. Google Corperation. Google suggest : Frequently asked
questions. http://labs.google.com/intl/
en/suggestfaq.html, 2010.

15. J. Huang and E. N. Efthimiadis. Analyzing and
evaluating query reformulation strategies in web search
logs. In Proc CIKM ’09, pages 77–86, New York, NY,
USA, 2009. ACM.

16. M. Kellar, C. Watters, and M. Shepherd. A field study
characterizing web-based information-seeking tasks. J.
Am. Soc. Inf. Sci. Technol., 58(7):999–1018, 2007.

17. J. R. Landis and G. G. Koch. The measurement of
observer agreement for categorical data. Biometrics,
33(1):pp. 159–174, 1977.

18. J. Nielsen and R. Molich. Heuristic evaluation of user
interfaces. In Proc CHI ’90, pages 249–256, New York,
NY, USA, 1990. ACM.

19. W. Quesenbery, C. Jarrett, I. Roddis, S. Allen, and
V. Stirling. Search Is Now Normal Behavior. What Do
We Do about That. In UPA 2008, Baltimore, Maryland,
USA, June 2008.

20. M. Richardson. Learning about the world through
long-term query logs. ACM Trans. Web, 2(4):1–27,
2008.

21. D. E. Rose and D. Levinson. Understanding user goals
in web search. In Proc WWW ’04, pages 13–19, New
York, NY, USA, 2004. ACM.

22. P. C. Saraiva, E. Silva de Moura, N. Ziviani, W. Meira,
R. Fonseca, and B. Riberio-Neto. Rank-preserving
two-level caching for scalable search engines. In Proc
SIGIR ’01, pages 51–58, New York, NY, USA, 2001.
ACM.

23. M. Terry and E. D. Mynatt. Supporting
experimentation with side-views. Commun. ACM,
45(10):106–108, 2002.

24. T. Zeller. AOL technology chief quits after data release.
The New York Times, August 2006.

10

http://www.google.com/support/websearch/bin/answer.py?hl=en\&answer=106230
http://www.google.com/support/websearch/bin/answer.py?hl=en\&answer=106230
http://www.google.com/support/websearch/bin/answer.py?hl=en\&answer=106230
https://adwords.google.com/select/KeywordToolExternal?forceLegacy=true
https://adwords.google.com/select/KeywordToolExternal?forceLegacy=true
http://www.google.com/insights/search/
http://www.google.com/insights/search/
http://labs.google.com/intl/en/suggestfaq.html
http://labs.google.com/intl/en/suggestfaq.html

	Introduction
	Background & Related Work
	Query harvesting
	Harvesting from auto-completion services
	Mining additional queries

	Representativeness and Timeliness of Auto-Completions
	Representativeness of Query Completion Suggestions
	Timeliness of Query Suggestions

	Ranking queries
	Using Marketing Tools to Assign Ranks
	Generating a Partial Ordering

	Query Classification and Query Taxonomies
	Query intent taxonomy for interactive systems searches
	Query phrasing classification scheme
	Validating the classification schemes
	Characterizing query data
	Relationship between query phrasing and intent
	Labeling heuristics

	Grouping similar queries
	Output of CUTS
	Applications
	``Speak the User's Language''
	Black and White, but not Grayscale
	Clip, but not Crop

	Desired functionality
	Blocking unwanted calls
	Changing screen savers
	Draw shapes in GIMP

	The usability cost of poor affordances
	Ubuntu's ``authentication failure''

	Discussion
	Integrating query log analysis in usability practices
	Factors that may impact or compromise query ranking
	User search behaviours and query reformulation
	Products with generic names

	Conclusion
	REFERENCES

