skip to main content
10.1145/1978942.1979306acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Enhancing physicality in touch interaction with programmable friction

Published:07 May 2011Publication History

ABSTRACT

Touch interactions have refreshed some of the 'glowing enthusiasm' of thirty years ago for direct manipulation interfaces. However, today's touch technologies, whose interactions are supported by graphics, sounds or crude clicks, have a tactile sameness and gaps in usability. We use a Large Area Tactile Pattern Display (LATPaD) to examine design possibilities and outcomes when touch interactions are enhanced with variable surface friction. In a series of four studies, we first confirm that variable friction gives significant performance advantages in low-level targeting activities. We then explore the design space of variable friction interface controls and assess user reactions. Most importantly, we demonstrate that variable friction can have a positive impact on the enjoyment, engagement and sense of realism experienced by users of touch interfaces.

Skip Supplemental Material Section

Supplemental Material

paper882.mp4

mp4

4.8 MB

1979306.mp4

mp4

112.3 MB

References

  1. Akamatsu, M. and MacKenzie, I.S. Movement characteristics using mouse with tactile and force feedback. Int. J. of Human-Computer Studies 45, 4 (1996), 483--494. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Balakrishnan, R. "Beating" Fitts' law: virtual enhancements for pointing facilitation. Int. J. of Human-Computer Studies 61, 6 (2004). 857--874. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bau, O., Poupyrev, I., Israr, A., and Harrison, C. TeslaTouch Electrovibration for Touch Surfaces. In Proc. UIST 2010, ACM (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Benko, H., Wilson, A.D., and Balakrishnan, R. Sphere: Multi-Touch Interactions on a Spherical Display. In Proc. UIST 2008, ACM (2008). 77--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Buxton, W., Hill, R., and Rowley, P. Issues and techniques in touch-sensitive tablet input. In Proc. SIGGRAPH 1985, ACM (1985). 215--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cockburn, A. and Brewster, S. Multimodal feedback for the acquisition of small targets. Ergonomics 48, 9 (2005), 1129--1150.Google ScholarGoogle ScholarCross RefCross Ref
  7. Dennerlein, J.T., Martin, D.B., and Hasser, C. Force-feedback improved performance for steering and combined steering-targeting tasks. In Proc. CHI 2000, ACM (2000), 423--429. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. DiFranco, D.E., Beauregard, G.L., and Srinivasan, M. The effect of auditory cues on the haptic perception of stiffness in virtual environments. In Proc. Haptics Symposium 1997, ASME (1997), 17--22.Google ScholarGoogle ScholarCross RefCross Ref
  9. Fitts, P.M. The information capacity of the human motor system in controlling the amplitude of movement. J. of Experimental Psychology 47. 6 (1954), 381--391.Google ScholarGoogle Scholar
  10. Forlines, C. and Balakrishnan, R. Evaluating tactile feedback and direct vs. indirect stylus input in pointing and crossing selection tasks. In Proc. CHI 2008, ACM (2008), 1563--1572. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Greenberg, S. and Buxton, B. Usability evaluation considered harmful (some of the time). In Proc. CHI 2008, ACM (2008), 111--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hancock, M., Carpendale, S., and Cockburn, A. Shallow-depth 3 interaction: design and evaluation of one-, two- and three-touch techniques. In Proc. CHI 2007, ACM (2007), 1147--1156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hoggan, E., Kaaresoja, T., Laitinen, P., and Brewster, S. Crossmodal congruence: the look, feel and sound of touchscreen widgets. In Proc. IMCI 2008, ACM (2008), 157--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Keyson, D.V. Dynamic cursor gain and tactual feedback in the capture of cursor movements. Ergonomics 40, 12 (1997), 1287--1298.Google ScholarGoogle ScholarCross RefCross Ref
  15. Li, K.A., Baudisch, P., Griswold, W.G., and Hollan, J.D. Tapping and rubbing: exploring new dimensions of tactile feedback with voice coil motors. In Proc. UIST 2008, ACM (2008), 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. MacLean, K.E. Foundations of Transparency in Tactile Information Design. IEEE Transactions on Haptics 1, 2 (2008), 84--95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Marchuk, N.D., Colgate, J.E., and Peshkin, M.A. Friction measurements on a Large Area TPaD. In Proc. Haptics Symposium 2010, IEEE (2010). 317--320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Moscovich, T. Contact area interaction with sliding widgets. In Proc. UIST 2009, ACM (2009), 13--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Norman, D. Emotional Design: Why We Love (or Hate) Everyday Things. Basic Books, NY, NY, USA, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Oakley, I., Brewster, S., and Gray, P. Solving multi-target haptic problems in menu interaction. In Proc. CHI 2001, ACM (2001), 357--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. O'Brien, H.L. and Toms, E.G. The development and evaluation of survey to measure user engagement. Journal of the American Society for Information Science and Technology 61, 1 (2009), 50--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Potter, R.L., Weldon, L.J., and Shneiderman, B. Improving the accuracy of touch screens: an experimental evaluation of three strategies. In Proc. CHI 1988, ACM (1988), 27--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Poupyrev, I. and Maruyama, S. Tactile interfaces for small touch screens. In Proc. UIST 2003, ACM (2003), 217--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Poupyrev, I., Okabe, M., and Maruyama, S. Haptic feedback for pen computing: directions and strategies. In Proc. CHI 2004, ACM (2004), 1309--1312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ramos, G. and Balakrishnan, R. Fluid interaction techniques for the control and annotation of digital video. In Proc. UIST 2003, ACM (2003), 105--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Rekimoto, J. Organic interaction technologies. Communications of the ACM 51, 6 (2008), 38--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Roudaut, A., Huot, S., and Lecolinet, E. TapTap and MagStick improving one-handed target acquisition on small touch-screens. In Proc. AVI 2008, ACM (2008), 146--153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Schiphorst, T., Motamedi, N., and Jaffe, N. Applying an Aesthetic Framework of Touch for Table-Top Interactions. In Proc. TABLETOP 2007. IEEE (2007), 71--74.Google ScholarGoogle ScholarCross RefCross Ref
  29. Shneiderman, B. Direct Manipulation: A Step Beyond Programming Languages. Computer 16, 8 (1983), 57--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Smyth, T.N. and Kirkpatrick, A.E. A new approach to haptic augmentation of the GUI. In Proc. ICMI 2006, ACM (2006), 372--379. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Swindells, C., MacLean, K.E., Booth, K.S., and Meitner, M.J. Exploring affective design for physical controls. In Proc. CHI 2007, ACM (2007), 933--942. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Winfield, L., Glassmire, J., Colgate, J.E., and Peshkin, M. T-PaD Tactile Pattern Display through Variable Friction Reduction. In Proc. World Haptics 2007, IEEE (2007), 421--426. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Enhancing physicality in touch interaction with programmable friction
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader