
Delimiting the Power of Bounded Size Synchronization

Objects
(Extended Abstract)

Yehuda Afels

Department of Computer Science

Tel-Aviv University

Israel 69978

Abstract

Theoretically, various shared synchronization objects,

such as compare&swap and arbitrary read-modify-write

registers, are universal [10, 20]. That is, any sequentially

specified task can be solved in a concurrent system that

supports these objects and a large enough number of

shared read/write registers. Are these objects indeed

almighty? Or, are there other considerations that have

to be kept in mind when analyzing their computation

power. In this paper we show that progressively larger

objects of these types are more powerful (larger in the

number of different values they can hold). This provides

a refinement of Herlihy ’s hierarchy.

We consider a shared memory system with un-

bounded read/write memory and a size k compare&swap

register. Let nk be the maximum number of processes

that can elect a leader in such a system (in a wait-free

manner). In [1] we present an election algorithm for

O(k!) processes in such a system, i.e. showing that nk

is at least O(k!). However, on the lower bound side only

nl, nz, and n3 were shown to be bounded [1, 10, 18],

while for k >3 it was not known whether such a bound

exists. ~ere we prove that for any k, nk is bounded

by O(k(k ‘3)) that is, at most 0(k(k2+3)) processes can

elect a leader in such a system 1. Hence, the more val-

ues a strong shared memory object can hold the stronger

it is!

The proof of the lower bound (lower bound on space,

which is an upper bound on number of processes) com-

1Th]s gives a lower bound on space because it implies that

O (kfk2+3J) processes or more need Q(k) size compareaswap reg-
ister to elect a leader wait-freelv.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
PODC 94- 8/94 Los Angeles CA USA
@ 1994 ACM 0-89791 -654-9/94/0008.$3.50

Gideon Stupp

Department of Computer Science

Tel-Aviv University

Israel 69978

bines several techniques that were

with novel new techniques, which

their own.

1 Introduction

recently developed

are interesting on

This paper addresses the relationship between the size of

a shared synchronization object and its ability to solve

synchronization tasks. Strong synchronization objects

(e.g. compare&swap, or load-link-store-conditional) are

in reality complex machine instructions on shared mem-

ory addresses. Some of the strong objects are classified

as being universal [10]. However, this classification as-

sumes that we have an unlimited number of such ob-

jects. The question is [1, 16]: What is the relationship

between the size of a synchronization task and the size

of the objects its solution requires. In particular, can

bounded size synchronization objects solve any task?

i.e., are bounded size strong objects universal as well?

We consider an asynchronous concurrent system that

consists of n processes that communicate via shared

memory. It is by now well known that the type of op-

erations supported on the shared memory cells greatly

effects the kind of tasks that the n processes can solve.

In [9, 10, 13, 18] it is proved that if only atomic read

or write operations are supported by the hardware then

the system cannot wait-freely reach consensus (or solve

the leader election problem), even if n = 2 (An algo-

rithm is wait-free if each process finishes the algorithm

in a finite number of steps regardless of the number of

faults and the speed of other processes.) However, if

single bit atomic test-and-set operations are supported

by the hardware (as some old IBM machines do, and

some modern machines such ae Encore’s Multimax, Se-

quent’s Symmetry, DEC’S Firefly and 6380 Corollary

support [2]) then 2 processes can elect a leader and solve

the consensus problem, but 3 processes can solve nei-

ther [10, 13, 18]. Herlihy continued this sequence and

defined a hierarchy on abstract operation types, classi-

42

http://crossmark.crossref.org/dialog/?doi=10.1145%2F197917.197947&domain=pdf&date_stamp=1994-08-14

fying them according to the number of processes among

which these operations can solve consensus (and thus

leader election) [10]. At the top level of Herlihy’shier-

archy are operation types such as compare&swap, whose

consensus number is cm. Moreover, Herlihy showed that

given these operation types any sequentially specified

problem can be solved [10] (Jayanti and Toueg have

later modified his construction to be bounded [15]).

In this paper we show that the top level of the hierar-

chy is farther refined by a space complexity parameter.

That is, the more values the register in the top level can

hold, the more powerful it is.

To demonstrate this we choose the popular

compare&swap object, which is being used in many

new multiprocessor machines. The synchronization task

we consider is the leader election problem, or in other

words, the multi-valued consensus problem. We present

a lower bound on the size of a compare&swap register

that may be used to elect a leader among n processes.

However, instead of a lower bound on space (size) we

provide an upper bound on the number of processes

that can elect a leader with a compare&swap register

that can hold at most k different values. Clearly these

lower bound and upper bound imply each other. Specif-

ically we show that at most ~ =O(kIk2+3J) processes can

elect a leader using a k size compare&swap.

In the leader election task each process proposes its

own identity for election and all processes elect one

identity as their leader. Validity requires that pro-

cesses choose an identity only if it was proposed. The

compare&swap register type is at the top level of Her-

lihy’s hierarchy, and is defined as follows: c&s(a + b)

operation on register r is:

c&s(a + b)(r): return(v)

prev := r ;

ifprev = a then r := b fi

return(prev)

Although our results are presented in terms of the

commercially available compare&swap register, we see it

as a test case and believe that the results can be gener-

alized to an arbitrary read-modify-write register type.

The lower bound proof in this paper is a non-trivial

extension of the register reduction technique that we

have introduced in [1]. In this method we reduce a

decision task that employs a bounded size strong reg-

ister to the set-consensus task in a system that sup-

ports only read/write registers (which is impossible by

the results of Borowsky, Gafni, Herlihy, Saks, Shavit,

and Zaharoglou). Clearly, the reduction process may

use an unbounded but finite number of read/write reg-

isters (just as an NP-complete reduction proof may use

any polynomial time overhead). That is, we show that

if there is a leader election algorithm A between q pro-

cesses in a system that uses a size k compare&swap regis-

ter then, there is an l-set-consensus algorithm B among

m processes, 1 < m, in a system that supports only

read/write registers.

As is the case in reduction based NP-complete proofs,

the crux of the proof is in the reduction itself, that is in

the emulation algorithm. Clearly, the less restrictive the

emulation algorithm is, the stronger the proof we get.

In [1] we present an emulation algorithm that places

severe restrictions on the leader election algorithm, such

as bounded time (that is, bounded number of accesses

to the compare&swap register), and unbounded number

of processes contending for the leadership.

In this paper we overcome the above limitations by

introducing a new emulation algorithm. The new em-

ulation algorithm is capable of emulating a run of A in

which there is a bounded number of processes, such that

the emulation produces an impossible set-consensus al-

gorithm even if there is an unbounded number of steps

in the run. This emulation is detailed in Section 3.

Related work: Since the first impossibility proof of

asynchronous agreement in a fail-stop distributed sys-

tem, by Fischer Lynch and Paterson [9] there have

been many papers extending and generalizing the proof

method [6, 7, 8, 15]. Those papers extend the method

to deal with different models of communication and dif-

ferent models of failure. Some of the recent papers

[4, 6, 11] addressed the number of failures that shared

memory objects can withstand. This issue oft-resiliency

have not been addressed in our paper. However, in [4]

Borowsky and Gafni have introduced a simulation tech-

nique (different than ours) to address the power of var-

ious shared objects (without restriction on their space

complexity). In their technique each simulating process

tries to simulate all the codes of the simulated algorithm

while in our technique we divide the codes among the

simulators, each simulating several codes.

In the past year several other papers that address

questions similar to ours have appeared. In [14, 16]

Jayanti, Kleinberg and Mullainathan consider several

models, one of which is similar to ours, and ask how

many copies of a particular type of object are necessary

to reach binary consensus among n processes. Jayanti

studies this question when different types of objects are

allowed, thus bringing up the question of the robust-

ness of Herlihy ’s hierarchy (II;). Kleinberg and Mul-

lainathan show that if n processes can elect a leader

with one copy of object O (without any other registers!)

then this object can solve binary consensus among at

most [n/2J processes. In both of these papers, when

the system was allowed to have an unbounded number

of read/write registers the authors study the effect of the

number of objects on the power of the system. Each ob-

ject they have considered cannot solve consensus for an

arbitrary number of processes (i.e., its consensus num-

ber was bounded by some k). While here we consider

43

an object (compare&swap) whose consensus number is

co, even when it can hold only three values. In another

paper, [5] Burns Cruz and Loui consider the effect of the

size of registers on their ability to solve leader election.

However, Burns et. al. make two strong assumptions,

(1) that each read-modify-write register may be written

at most once, and (2) that the system is equipped only

with read-modify-write registers (there are no read/write

registers). Thus, the proof is simpler, since the state of

the system is rendered by the state of the strong regis-

ters. Under these assumptions, Burns et. al. prove that

a k value read-modify-write register can elect a leader

among at most k – 1 processes (compared with the O(k!)

in our model) and in general if there are several such reg-

isters then the number of processes is the product of the

registers sizes (where the size of a register is the number

of values it can hold).

The paper proceeds as follows: Model and Definitions

are in Section 2, the lower bound is described in Section

3. Due to space limitations not all the proofs of the

lemmas are included.

2 Model and Definitions

Due to space limitations we omit most of the model

section. We use the same model and notation as in [10].

The Leader Election (LE) problem (or Multi valued

consensus) is a variation of the consensus problem in

which the inputs domain is the processors’ names and

the input of processor i is its own identity. A LE prot ocol

is a system of n processes where each non failed process

starts with its identity as the input value. The processes

communicate with one another by applying operations

to the shared memory registers and eventually elect (de-

cide on) a common input identity and halt. A LE proto-

col is required to be: (a) Consistent: distinct processes

never elect distinct identities, (b) Wait-free: each pro-

cess elects a leader after a finite number of steps and (c)

Valid: the common identity elected is the identity of a

process that have proposed itself for leadership.

The sequential specification of a LE object is that

all elect operations return the identity of the processor

that applied the first operation [12, 20]. A wait free

linearizable implementation of a LE object is called a

LE protocol.

The k-set consensus problem is a generalization of the

consensus problem [6]. Informally, a k-set consensus

protocol is a system of n processes where each process

starts with an input value from some domain D. The

processes communicate with one another by applying

operations to the shared memory registers and eventu-

ally each decide on a value from a set D’ c D where

ID’1 < k. A k-set consensus protocol is required to be:

(a) Consistent: Ill’ I < k, (b) Wait-free: each process

decides after a finite number of steps and (c) Valid: the

decision value of any process is the input to some pro-

cess.

A compare&swap-(k) object is a compare&swap as de-

fined in the introduction, and whose register can hold

k different values, from the set X = {1, 0,1,..., k – 2}.

A compare&swap operation is said to succeed if the op-

eration changes the register’s value.

3 The ofimpossibility y

LE among O (k(k2+3)) processes

with compare&swap-(k)

Theorem 1 There is no leader

election algorithm among q =O(ktk2+3J) processes us-

ing one compare&swap-(k) and any number of atomic

registers.

Proof outline: As we did in [I] we employ the re-

duction by emulation idea. That is, assume by way

of contradiction that there is such a LE algorithm, A.

We show how to use A to construct an l-set consensus

algorithm, B, among m > 1 processes that uses only

read/write registers. Such an algorithm is impossible

by [4, 11, 21]. In this paper we present a new emulation

for the reduction which is much more sophisticated and

involved than the one we have in [1].

Claim 1 If there is a LE algorithm A among

0(k(~2+s)) processes using one compare&swap-(k) and

any number of atomic registers, then there is a (k – l)!-

set consensus algorithm B for m = (k— l)!+ 1 processes,

that uses only atomic registers.

Proof of Claim: The rest of the paper is the proof of

this claim. W.1.o.g. we assume that all atomic registers

in A are swmr [3, 17, 19, 22]. Each of the m processes

in B is assigned q/m of the processes (front ends) of A.

Each process of B emulates each of its assigned front

ends in a particular way to be described. Henceforth,

the processes of B are called emulators and each process

of A is called virtual process (v-process). The steps of a

v-process in A are simulated only by the emulator that

owns it. During the emulation, an emulator suspends

and releases the emulation of its v-processes depending

on the run’s progress. However we assign enough v-

processes to each emulator so that it will always have

a v-process with which it may proceed in the emula-

tion. Due to space limitations only the statement of the

lemmas is given (in the appendix).

3.1 The emulation

In the emulation process, each emulator iteratively

scans the state of the emulation, chooses one of its v-

processes and emulates one step of that v-process code

44

in A. Each emulator repeats this process until one of its

v-processes reaches a decision state, at which point the

emulator adopts that decision value as its output in the

set-consensus algorithm B, and leaves the emulation.

In the body of each iteration an emulator does

some book-keeping operations and emulates either a

read/write operation, or, if the next step of all its v-

processes is a ct.zso operation, a compare&swap opera-

tion for at least one v-process. Read/write operations

of the processes in algorithm A are emulated by using

such read/write operations on registers shared among

the emulators. In emulating a ctkso operation we distin-

guish between two cases: successful c&so (that changes

the value in the compare&swap) and unsuccessful c&so.

The emulation of unsuccessful c&so operations is as

simple as the emulation of read operations, since such

operations do not effect future operations of other v-

processes. Successful c&so operations are emulated

by recording in a special data structure, built out of

read/write memory, the sequence of changes that have

taken place in the compare&swap register; This sequence

is called hwtory. In each step of the emulation each em-

ulator reads the history and assumes that the last value

in the history is the current value of the compare&swap.

At this point it may for example simulate a c&so oper-

ation that fail on such a value. However the simulation

of successful c&so operations is much more complicated

and will be described in the sequel. In any event, the his-

tory (sequence of values that the compare&swap register

takes) is the back bone of the constructed run. All the

emulated operations are carefully arranged relatively to

points in this history.

Another way to view the emulation process is that it

is an algorithm by which a set of processes (the emu-

lators) cooperatively construct a legal run of A. In the

beginning all the emulators start to build one legal run

of A, common to all their v-processes. During the con-

struction the set of m emulators may split into groups

such that each group of emulators continues with the

construction of a different run of A. The constructed

runs of different groups have the same prefix which is

their run up to the splitting point.

The construction of such a set of runs of A would

be rather simple [1] if each time emulators of the same

group emulate a different successful c&so operation

they would each continue to construct a different run

of A. Each such run assumes that the compare&swap

took a different next.value. In the current proof (as op-

pose to the one in [1]) groups of emulators split only

on the first time a value is used in the compare&swap

register. That is, a group of emulators split when some

members of the group simultaneously emulate successful

c&so operations that update the compare&swap register

with different values non of which has been assigned to

the register before. Each such sub-group assumes that a

different new.value is appended to the history. We call

the sequence of new-values observed by each emulator,

its label. Therefore there are at most (k – 1)! different

labels (all the labels start with 1), i.e. at most that

many different groups or that many constructed runs.

The labels are used to distinguish between different em-

ulated runs. Each group may in the end decide on a

different value in the set-consensus (because a different

process is elected in A in the different emulated runs).

3.1.1 Emulating successful ctb() operations:

In each iteration an emulator first computes the his-

tory and deduces from it the current value in the c&so,

a. Then, only if the next operation of all its active

v-processes is a successful c&so (i.e., c&s(a ~ .)), it

emulates a successful c&so operation. Among all of

these c&so operations it selects to emulate c&s(a ~ b)

which is the most populous operation, i.e., the one with

the largest number of v-processes that have it as their

next step. The value 6 is then added to the history and

the operation is emulated as described next.

Before emulating a successful c&s(a - b) opera-

tion, each emulator suspends the emulation of many

v-processes (~ of them) whose next operation is

c&s(a + b). Thus each v-process can be in one of two

states: active, or suspended. Once enough v-processes

are suspended on different operations we can emulate a

successful operation on the compare&swap as follows:

Assume that at least two emulators in the same group

have observed the same last value, a, in the history.

Let each try to emulate a successful ckso, one emu-

lates clm(a -+ b) and the other emulates c&s(a + c)

(assuming that the values a, b, and c have already

occurred in the history). Then, if there are other v-

processes suspended on c&s(b - a) and on C8ZS(C ~ a),

we may safely assume that both emulators succeed each

in the corresponding c&so by assuming that either of

the following history segments occurred: . . . abac (i.e.,

c&s(a -+ b), c&s(b ~ a), c&s(a -+ c)) or, . . . scab (i.e.,

c&s(a ~ c), c&s(c ~ a), cks(a -+ b)), where the re-

turn to value a in each is due to the release of a sus-

pended v-process. Thus, both operations are success-

fully emulated in the same run of A without introduc-

ing additional splitting. Note that at this point it does

not matter which of the two histories is the one em-

ulated as long as each may be provided by the sus-

pended v-processes. At this point, each emulator up-

dates the history data structure about its correspond-

ing successful c&so. Which of the above two histories

is actually emulated depends on where each of them

updated the history data structure. In any event, the

v-processes that are required to support the occurrence

of those sub-histories (one doing c&s(b ~ a) and the

other c&s(c e a)) remain suspended until a future step

as explained next.

45

Even when one of the sub-history sequences is chosen

(e.g. . . .abac) the emulators do not release (activate)

thecorresponding v-processes (those doing c&s(b+ a),

c&s(a + b), and c&s(a + c), in the example) because

several emulators might concurrently decide to release

a v-process on the account of the same transition (e.g.

b a a) in the history. We must ensure that exactly one

v-process that is suspended on c&s(b + a), is released

for this transition.

We overcome this difficulty in the following way:

an emulator releases a v-process that is suspended on

c&s(b = a) operation only when there are at least m

transitions from a to b in the history for which there

is yet no corresponding operation in the run. Where

an operation is in the run only if a v-process was sim-

ulated performing that operation. Then, even if all the

m emulators concurrently release a v-process that per-

forms c&s(a + b), there are enough transitions in the

history to match all of them. This is a peculiarity of

our scheme; the history is constructed while the con-

struction of the corresponding run (the release of the

corresponding v-processes) is lagging behind.

In the main iteration step of the emulation, each emu-

lator also has the possibility of doing the following func-

tion : for each possible transition in the compare&swap

(e.g. a --+ b) compute the difference between the number

of times that that transition occurs in the history and

the total number of v-processes that executed such an

operation in the run. If the difference is more than m,

and the emulator has one v-process suspended on that

transition, that v-process may be reactivated and moved

to take a step in the emulated run (which must be a suc-

cessful c&so). The exact matching between released

v-processes and transitions in the history is not impor-

tant. All that we prove is that there is a correct match-

ing of all the successful c&so operations (those that

have been released) with transitions in the history. By

correct mat thing we mean that each released v-process

could have been doing the corresponding clkso opera-

tion when the transition occur. Thus, in the proof we

do not show a specific run of A that was emulated, but

rather we prove that there is at least one run of A that

the emulation has emulated.

3.1.2 A more detailed explanation

The implementation of the above idea becomes com-

plicated because there may be more than two emula-

tors in one group each perceiving a different view of

the history. Each may try to emulate a different ckso

operation and our algorithm should paste all of their

actions together into one legal run. Moreover, while in

the toy example above we kept one suspended v-process

to close a two edge cycle for each c&so operation, (e.g.

c&s(b + a) closes a cycle with c&s(a + b)), in the algo-

rithm we sometimes keep several such processes that to-

gether with the emulated c&so operation close a longer

cycle. To manage these and other activities in the em-

ulation we use two major data structures, (1) the v-

processes graph, vp – graph and (2) a tree T.

1.

2.

up-graph: is a complete directed graph on k nodes,

each corresponding to one value from Z. For each

link (a + b) in the graph each emulator keeps

(in single writer multi reader memory) a list of

its v-processes that have ever been suspended on

a c&s(a + b) operation. When the emulator de-

cides to release a suspended v-process, it does not

remove it from the list, but marks it “released”. To

each v-process in the list we attach a copy of the

history as observed by its emulator at the time the

process was suspended. Thus each appearance of

a particular v-process in the list is with a different

history.

T: is a tree shared data structure in which the his-

tory of the emulation is maintained (see Figure 1).

Each node of T is a tree by itself. Each of these

trees, denoted by t,maintains the history of a group

of emulators that simulate the same run of A. Each

vertex of a tree t corresponds to a single symbol

from X in the history. Initially all the emulators

are in one group maintaining its history in a tree

t~ located at the root of T. The small trees are

shared among all the emulators such that any sub-

set of them may update the tree simultaneously.

Moreover, after any set of updates, a sequence of

symbols may be derived from the tree, such that

this sequence is the history of the intended run.

Recall that when a c&so operation updates the

compare&swap register to a value that has not yet

occurred in the emulated run, all the emulators that

agree on that operation form a group that con-

tinue to simulate a run suffix of their own. I.e.,

the emulators are split into groups according to the

new.value each has updated in the compare&swap

register. We label each tree t by the sequence of

“first-values” that have led the emulators to it, i.e.,

t~ is at the root of T, and t~”, t~l, t~z, . . . t~(~-z)

are at the second level of T from the root, etc. The

sequence of %rst.values”, which is called label, is

equivalent to the history after removing from it all

the symbols, except the first occurrence of each.

Thus, when the emulators concurrently do a suc-

cessful update of the compare&swap, with different

values that have not yet occurred in their run, they

each continue to update the history in a different

tree (t). The label of an emulator is the label of

the small tree that corresponds to the run that this

emulator is currently emulating. The depth of T is

at most k and an internal node in depth i has k — i

children (each leaf of T corresponds to a different

permutation of Z that starts with 1, i.e. there are

(k – 1)! leaves).

The history of a run whose emulators label is 1 is the

concatenation of the depth-first-search traversals of

all the trees t that are on the path from the root of

T to t~. The detailed description of the structure

of each tree t is given in the sequel.

Each emulator starts its iteration by reading all the

data structures, from which it computes the most up-

dated history and an excess-graph. The excess-graph has

the same set of nodes and edges as the vp-graph. Each

of its edges is labeled with the number of v-processes

that have ever been suspended on it minus the num-

ber of corresponding transitions in the history. That is,

the excess on edge (a + b) is the number of v-processes

suspended on operation c&s(a -+ b) and which have not

been matched (consumed) by a corresponding transition

in the history.

After reading the state and computing the excess

graph the emulator first checks to see if it has *p-

rocesses whose next step is c&s(a + b) and it has no

v-processes suspended on the corresponding edge in the

up-graph. For each such edge the emulator then SUS-

pends ~v-processes. After that the emulator is ready

to advance the emulation of one v-process by one of the

following steps: Either

1.

2.

3.

emulating a step of a v-process whose next step is

not a successful update of the compare&swap, or

choosing a v-process that may be suspended in an

exchange for a v-process that is already suspended

on the same c&so operation and may be released,

or

adding a new symbol to the history assuming a

transition to this symbol is possible by observing

the excess graph.

After performing either of the above the emulator checks

if any of its v-processes is ready to decide. If so it stops,

otherwise it starts a new iteration.

R/W registers: To facilitate operation (1), in par-

ticular the emulation of read and write operations, each

register of A is implemented in B by a long list of values.

In a write operation we append the new value to the list

of all previous values the register has seen (note regis-

ters are single writer multi reader). In addition, each

value written is tagged by the label of the emulator at

the time of the write. In an emulated read operation

from register r, the latest value in r whose label is ei-

ther a prefix or an extension of the reading emulator’s

label, is returned.

Releasing a successful c&s() operation: As for

operation (2) a suspended v-process may be released

only after verifying that the cbso operation it is exe-

cuting can be safely matched with a transition in the his-

tory (as explained in 3.1.1). The matching is computed

by listing the entire history against all the v-processes

that have ever been suspended, and carefully matching

suspended operations to the transitions.

Updating the compare&swap history: Next we de-

scribe how an emulator updates the history (operation

(3)) in case neither operation (1) nor operation (2) are

possible. But first we have to describe the structure of

the “small” trees, t’s, which are at each node of T.

The structure of tree t: The depth of each tree t~

is at most k, but the degree of each of its internal nodes

is P where P is a large constant that depends on the

time complexity of A. Essentially each node of tr corre-

sponds to one symbol in the history and they are pasted

together in a depth-first-search order. However, many

times the pasting of a symbol to its corresponding par-

ent (or child) in the tree is via a short sequence of values

(symbols). Thus, each symbol in each node has two ad-

ditional fields, ToParent and FromParent each contain-

ing a short sequence of values that the compare&swap

register had gone through when it was changed from

the node’s symbol to the parent’s value and vice versa.

Moreover, since each of the m emulators may try to

update a node in the tree concurrently, we place an m

tuple record in each node. Each part of the record is ex-

clusively written by a different emulator (single writer

multi reader). All the non-empty parts of a record are

considered siblings in the tree, and are treated as such

for any purpose. The history of a run whose emula-

tors label is 1 is the concatenation of the depth-first-

search (DFS) traversals of all the trees t that are on

the path from the root of ‘T to t~. The history ends at

the right most leaf of the last of these trees. For each

edge traversed in the DFS we put in the history the two

end nodes, and the path between them as given by the

FromParent or by the ToParent fields, depending on the

direction in which the edge is traversed. Note that in

total the value associated with each node may appear

several times in the history due to a single occurrence

in the tree

The difficulty in implementing operation (3), of

adding a new value to tree t’of a run (i.e. to its his-

tory), stems from the following scenario: Two emulators

that simulate the same run may read the history (the

trees) at different times, thus assuming different values

in the compare&swap, but both may update the history,

by updating t~,concurrently (at the same time). We

enable the concurrent updates by proving the following

key invariant of each tree tz:

47

--------Z--. 1....
..
‘.
. .. ●

‘.
‘$
‘.
‘,
‘.
‘. 1,

“, ,’ \
‘. \
y. t

\

L!!
I “, \
1, ‘. \

I \
I ‘.
[‘. I

I
‘i I
‘. I

I ‘. \
I ‘. ,

/ ‘.. ,

ik!k”:w-!ii.

A+1

-------- ..

● ● ●

● 4

A

..
‘.
‘.

c : The value in the node;

FromParent: The path from the parent

ToParent : The path back to the parent

Figure 1: The structure of the Tree T

Invariant: for each node a in the tree there is a path,

in the excess-graph, to each of its ancestors in the tree,

such that the excess on each edge on the path is large,

(at least m~+3, where j is the ancestor’s depth in t’).

Now an emulator carries out operation (3) in the fol-

lowing way: Let a be the last symbol in the history

read by the emulator. The emulator computes a value

b, such that the next c&so of the greatest number of its

active v-processes is c&s(a ~ b) (hence this emulator

must have ~v-processes currently suspended on the

(a + b) edge). Then the emulator goes over the an-

cestors of the node that corresponds to a in tt,starting

from a. It finds the first of these ancestors, ~, to which

b maybe attached as a child while maintaining the key

invariant above. It then adds b to the history by attach-

ing it as a child to node ~. The resulting history is now

as follows, from a we add the sequence that leads to ~

(by the invariant), and from ~ we add the sequence that

leads from f to b in the excess graph. In the appendix

we give the lemma that ensures us that such an ancestor

can always be found. The proof of this lemma hinges on

the following combinatorial question and its solution:

Combinatorial question: Consider the following

process in a complete directed graph on k nodes with

m agents that are initially placed in the nodes of the

graph. In the process each agent can repeatedly do one

of the following two actions:

1. Move: in such a step an agent moves from its cur-

2

rent node v to some other node u, painting the

u -i u edge.

Jump: in this step an agent relocates itself in a

new node u in the graph. This step is possible only

if since the last time the agent has visited node u

(or if the agent has never visited node u) another

agent has moved to u.

The question is then, what is, if any, the maximum num-

ber of moves the agents can do before the painted edges

contain a cycle.

Lemma 1.1 The solution to the above question is mk.

Proof: (Due to Noga Alon) Let G be the graph after

the longest possible run that does not contain a painted

cycle. Since there is no cycle in the graph we can topo-

logically sort the nodes from k – 1 to O such that painted

edges go from high numbered nodes to low numbered

nodes.

Associate a weight Wi with each agent that is located

in node i such that wi = m~. Let 48, be a potential

function, equal to the sum of the weights of all agents

at state s of the system.

At the beginning of the run, do is at most mk. It

can be easily verified that each move of an agent re-

duces the potential of the system by at least 1 even if

all other emulators jump upwards as a result of that

move. Thus the claim follows, since the minimal po-

tential that can be reached before a cycle is closed is O.

n

4 Conclusions

This paper resolves the main question that was raised

and left open in [1]. Which is, “given a system with

unbounded read/write memory and k space complexity

compare&swap register, is there a maximum number of

processes, nk, for which this system can solve multi-

valued consensus”.

In [5] Burns Cruz and Loui proved that a

compare&swap-(k) alone can elect a leader between at

most k – 1 processes. An immediate conclusion from the

results in [5] and here, is that adding read/write regis-

ters to the compare&swap register increases its power.

Here we proved that these increase is exponentially lim-

ited.

We believe that the results presented herein can be

extended to hold for arbitrary read-modify-write regis-

ters of size k, and to systems with a number of copies

of the strong object.

Although we ~anaged to prove here that nk is

bounded by O(k[k ‘3)) there is still a gap between that

and the (k – 1)! processes algorithm we have presented

in [1]. Our conjecture is that nk = @(k!)).

Acknowledgments: We thank Noga Alon for the

proof of Lemma 1.1. We also thank Yishay Mansour,

Manor Mendel, and Michael Saks for helpful discussions.

References

[1]

[2]

[3]

[4]

Y. Afek and G. Stupp. Synchronization power de-

pends on the register size. In Proc. of the 3dth

IEEE Ann. 5’ymp. on Foundation of Computer

Sczence, pages 196-205. IEEE Computer Society

Press, November 1993.

B. N. Bershad. Practical considerations for lock-

free concurrent objects. Technical Report CMU-

CS-91- 183, Carnegie Mellon University, September

1991.

B. Bloom. Constructing two-writer atomic regis-

ters. In Proc. of the 6th ACM Symp, on Principles

of Distributed Computing, pages 249–259, 1987.

E. Borowsky and E. Gafni. Generalized flp impos-

sibility result for t-resilient asynchronous compu-

tations. In PI-OC. 25th ACM Symp. on Theory of

Computing, May 1993.

49

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

J. E. Burns, R. I. Cruz, and M. C. Loui. General-

ized agreement between concurrent fail-stop pro-

cesses. In A. Schiper, editor, Proc. of the 7th

Int, Workshop on Distributed Algorithms: Lec-

ture Notes in Computer Science, 725, pages 84–98.

Springer Verlag, Berlin, September 1993.

S. Chaudhuri. Agreement is harder than consensus:

Set consensus problems in totally asynchronous

systems. In Proc. of the Ninth ACM Symp.

on Principles of Distributed Computing (P ODC),

pages 311–324, August 1990.

D. Dolev, C. Dwork, and L. Stockmeyer. On the

minimal synchronism needed for distributed con-

sensus. Journal of the ACM, 34(1) :77–97, January

1987.

C. Dwork, N. Lynch, and L. Stockmeyer. Consen-

sus in the presence of partial synchrony. Journal of

the ACM, 35:228-323, April 1988.

M. Fischer, N. Lynch, and M. Paterson. Impossibil-

ity of distributed consensus with one faulty process.

Journal of the ACM, 32:374-382, April 1985.

M. Herlihy. Wait-free synchronization. ACM

Trans. on Programming Languages and Systems,

13(1):124-149, January 1991.

M. Herlihy and N. Shavit. The asynchronous com-

putability theorem for t-resilient tasks. In Proc.

25th ACM Symp. on Theory of Computing, May

1993.

M. Herlihy and J. M. Wing. Linearizability: A

correctness condition for concurrent objects. ACM

l%ans. on Programmmg Languages and Systems,

12(3):463-492, July 1990.

M. P. Herlihy. Impossibility and universality re-

sults for wait-free synchronization. In Proc. of the

7th ACM Symp. on Principles of Distributed Com-

putzng, pages 291-302, 1988.

P. Jayanti. On the robustness of Herlihy’s hierar-

chy. In Proc. 12th ACM Symposium on Principles

of Distributed Computing, pages 145–158, August

1993.

P. Jayanti and S. Toueg. Some results on the impos-

sibility y, universality, and decidabilit y of consensus.

In Proc. of the 6th Int. Workshop on Distributed AL

gorithms: Lecture Notes in Computer Science, 64’7,

pages 69–84. Springer Verlag, November 1992.

J. M. Kleinberg and S. Mullainathan. Resource

bounds and combinations of consensus objects. In

Proc. 12th ACM Symposium on Principles of Dis-

tributed Computing, pages 133-144, August 1993.

[17]

[18]

[19]

[20]

[21]

[22]

A

L. Lamport. On interprocess communication, parts

I and II. Distributed Computing, 1 :77–101, 1986.

M. C. Loui and H. H. Abu-Amara. Memory re-

quirements for agreement among unreliable asyn-

chronous processes. Advances in Computing Re-

search, JAI Press, 4:163–183, 1987.

G. L. Peterson and J. E. Burns. Concurrent reading

while writing II : The multi-writer case. In Proc.

of the 28th IEEE Ann. Symp. on Foundation of

Computer Science, pages 383-392, October 1987.

S. A. Plotkin. Sticky bits and universality of con-

sensus. In Proc. of the 8th ACM Symp. on Princi-

ples of Distributed Computang, pages 159-175, Ed-

monton, Alberta, Canada, August 1989.

M. Saks and F. Zaharoglou. Wait-free k-set agree-

ment is impossible: The topology of public knowl-

edge. In Proc. 25th ACM Symp. on Theory of Com-

puting, May 1993.

A. K. Singh, J. H. Anderson, and M. G, Gouda.

The elusive atomic register revisited. In Proc. of

the 6th ACM Symp. on Principles of Distributed

Computing, pages 206-221, 1987.

Correctness Proof of the Em-

ulat ion

We now show that the emulation is correct, that is, that

it implements a (k – 1) !-set consensus among (k – 1)! + 1
emulators. Let Sj be a global state of the emulation sys-

tem including all emulators and shared data structures.

Let E = so7r1s1fi2s2 . . . be an execution of the emu-

lation B where each m; is either an internal operation

or an external operation of one of the emulators. Let

R = 7r1r2 . . . be the corresponding run of the execution

E. Let Rk=nl. . . ~k be a length k prefix of R. For

any operation xi in R, let 1=, be the value of the label

of the emulator executing iri (in state si– 1). The string

1=, is called maximal label if there is no ~j s.t. [n, is a

prefix of 1., in R. We denote such a label 1“.

Some of the operations in every run R are bookkeep-

ing operations of the emulation. Others, are operations

that directly correspond to operations of the front ends

of the virtual processes.

The operations of B that are operations of the front

ends of A are called virtuai operations. There are several

types of virtual operations:

1. Read operations of shared memory variable x into

some internal memory r, m = (r := read(x)) that

corresponds to a read operation in the front end of

the virtual process, r := read(z).

50

2.

3.

4.

Let

Write operations of value v to shared memory vari-

able z, n = (writec(i, v)), where / is a label, that

correspond to a write operation in the front end of

the virtual process, writez (v).

Update History operations, ~ = (Attach node a to

node b) that correspond to successful c&so opera-

tions of the front ends, c&s(a + b).

ctYso Response operations that correspond either

to successful or unsuccessful c&so operations of the

front ends.

R]l=irl T2 . . . be a subsequence of R such that every

operation ri is a virtual operation, and for each ~i, 1=,

in R is a prefix of 1. We define pRII to be a run of A

that corresponds to R~l in that every virtual operation

T of RI(is mapped to its corresponding operation(s) in

A. From the next lemma it follows that all emulators

deciding in the same emulated run, R1l., decide on the

same value. Since there are at most (k – 1)! possible

different maximal labels and since every non faulty em-

ulator decides in some p ‘II* , the emulation implements

(k - l)!-set consensus.

Definition 1 jor each state s in the execution of the

emulation B we define:

● Let s~a+~) be the number of successful ct3’s(a -+ b)

operation; that were emulated in the run up to state

s.

Let p~a+b) be the number of transzttons from a to

b that are written in the history at state s.

‘et ‘~a+b) = (p~a+b] - ‘?/4)); ‘hat “%‘he ‘n-
matched transitions m the history from a to b.

Let f;a~h) be the number of virtua! processes of

all emulators that have been suspended and not yet

released, and whose next operation is a c@s(a -+ b).

Let w~a+~ = (~+h~ - d~a+,,). That is, the
number o suspen ed vtrtual processes that are yet

not demanded by the history and thus can be used

in future transitions.

Let G’ be the vtable excess graph 2 at state s. That

is, a dzrected wezghted graph where the weight of

each edge (alb) is w~a+b) .

Let G; be a graph obtained from the excess graph

by removing all edges whose weight is smaller than

z.

Let CC be a maximal strongly connected component

in G;.

Let -yI = 0 and -yZ = ~~=z mi where m is the number

of emulators.

Definition 2 A stable component, SC, of the excess

graph G. is a Cl component of GI where, if IC’I I = j

then for all k – j + 2< i < k SC can be partitioned to

at most i — (k — j + 1) maxtmal components C7(~_,+,j .

A szngle node (j z 1) is also a stable component.

Lemma 1.2 For any run R of B and any 1*,

1.

2.

3.

The

PRI1* is a legal run of A.

The value an the ctllso afler pRll* is the last value

in h(R\l.), the history as computed by the algorithm

at the jinai state of R1l. . More ever, h(Rlr.) zs the

hst of changes to the compare& swapthat occurred

during the run.

The excess graph GC, induced by values that have

already showed up in the history h(R\l.) can be de-

scribed as a group of O or more stable set compo-

nents connected by a one way path of wetght ~k or

more.

heart of the proof to the lemma lies in the follow-

ing Iemma, which generally states that there are always

enough suspended virtual components to accommodate

any possible transitions in the history.

Definition 3 A super stable component, SSC, of the

excess graph Gc M a Cl component of GI where, tf

lCll=jthen fora//k–j+3<i<k SSC canbe

partitioned to at most i – (k – j + 2) maximal compo-

nents C7(h–J+z). A Cl component of two nodes (j = 2)

is a!ways a super stable component.

Lemma 1.3 If at state s of the emulation C is a super

stable component then m any run of the algorithm from

state s which includes only history updates of values tn

C , C stays a stable component.

The following claim describes the basic property of a

tree t.

Claim 2 An update operatton in C7= wall be mapped tn

the history before an operation tn C7=_, unless there was

another operatton in C7= after the first.

This claim hinges on the combinatorics properties of G.

as described in the combinatorics lemma.

2In Lemma 1.3 we actually consider a graph induced by a sub-
set of the nodes. This subset is, informally, the set of values in
1.

51

