
Asynchronous Secure Computations

with Optimal Resilience

(Extended Abstract)

Michael Ben-Or Boaz Kelmer Tal Rabin

Hebrew University IBM Israel Science & Technology Hebrew University “j

Abstract

We investigate the problem of multiparty computa-

tions in a fully connected, asynchronous network of n

players, in which up to t Byzantine faults may occur.

It was shown in [BCG93] that secure error-less mul-

tiparty computation is possible in this setting if and

only if t < n/4. We show that when exponentially

small probability of error is allowed, this task can be

achieved even when the number of faults is in the range

n/4 ~ t < n/3. From the lower bounds of [BCG93] for

the asynchronous fail-stop model it follows that the re-

silience, t < n/3, of our protocol is optimal.

We describe an ([~1 – I)-resilient protocol that se-

curely computes any function F. With overwhelming

probability all the non-faulty players complete the exe-

cution of the protocol. Given that all the honest players

terminate the protocol, they do so in time polynomial

in n, in the boolean complexity of 3, and in Pog -$1,

where c is the error probability.

Our protocol follows the scheme of [BGW88, RB89]

for multiparty computations in synchronous networks,

in which the intermediary results of a circuit for F are

always kept shared among the players as a verifiable

secret. As the asynchronous network makes it impos-

sible to use a regular Verifiable Secret Sharing scheme

for computations, we introduce a new secret sharing

scheme called Ultimate Secret Sharing. This scheme

guarantees that all the honest players will obtain their

share of the secret, and it enables the players to verify

that the shares are genuine.

“Supported by the Eshkol Fellowship of the Israel Ministry of

Education.

t e-mail: talr@cs.huji.ac.il

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machincmy. To copy otherwise, or to republish, requires a fee
and/or specific permission.
PODC 94- 8/94 Los Angeles CA USA
@ 1994 ACM 0-89791 -654-91W10rJ08.$3.50

1 Introduction

Secure Multiparty Computation is a versatile and very

powerful tool in the design of cryptographic protocols.

It allows any computational task, that can be com-

puted securely by the system with the help of a trusted

third party, to be securely computed within the system

itself when no such trusted third party exists.

The Problem: Consider a network of n players

(processors), where every two players are connected

via a secure and reliable communication channel. The

network is asynchronous, meaning that any message

sent on these channels can have arbitrary (finite) delay.

Each player has a private input value Zi, and the goal

is to collectively compute some function F(z1, Zn).

Players who conform with their protocols are called

honest. Some of the players may deviate from their

protocols, and even collaborate in order to disrupt the

computations. These are called faulty. There is an

upper-bound t on the number of faulty players.

The meaning of multiparty computations in this

model is delicate. We follow the definitions given by

[BCG93]. Roughly speaking, an asynchronous multi-

party computation consists of three stages. In the first

stage, each player Pi commits himself (in a sense to be

made precise later) to his input. Even if Pi is faulty, if

he completed this step, then he is committed to some

value (not necessarily Zi). Denote by z; the value com-

mitted by player Pi. For each honest player Pi, t; = zi.

Then the players agree on a subset CompSet of size at -

least n – t of committed inputs. The subset CompSet

will be the same for all honest players. In the last stage

the players will compute the value Y(yl, yn), where

~i = X; for pi ~ Compset, and IA = O otherwise.

A protocol is t-resilientif every honest player

will complete the computation and output the value

F(yl,... , Yn). Furthermore, the faulty players have no

additional information beside what they can infer from

their own inputs and the final output.

It is clear that the above definition captures the max-

imal information about the value ~(xl, z~) which

can be obtained in our setting, where as many as t of

183

http://crossmark.crossref.org/dialog/?doi=10.1145%2F197917.198088&domain=pdf&date_stamp=1994-08-14

the players may be faulty, and where messages may be

delayed for an arbitrary long time.

Related Work and Our Results: The exact con-

ditions under which secure multiparty computation is

possible for synchronous distributed systems have been

studied quite extensively. Given a synchronous dis-

tributed system of n players, where any two players are

connected via a private channel, and where at most t

of the players may become faulty, we know that: Se-

cure error-free computation is possible exactly under

the same conditions needed for the Byzantine Agree-

ment Problem, namely, t < n/3 [PSL80, BGW88]. Fur-

thermore, secure computation is possible, with an ex-

ponentially small probability of error, even for t < n/2

if we add a broadcast channel to the system [RB89].

Recently, Ben-Or, Canetti and Goldriech [BCG93]

initiated the study of secure computation for asyn-

chronous systems. Generalizing the “trusted party”

model of Micali and Rogoway [M R], they provide ex-

act definitions of secure computation for asynchronous

systems, and prove that asynchronous secure error-free

computation is possible if and only if the number of

faulty players t is less than n/4. The asynchronous

Byzantine Agreement problem can be solved by a ran-

domized error-free protocols for t < n/3 [Bra84]. Thus

the conditions needed for asynchronous error-free se-

cure multiparty computation are more stringent than

those required for the error-free asynchronous Byzan-

tine Agreement problem.

Inspecting the conditions for secure multiparty com-

putation in the synchronous case, it is natural to ask

whether by allowing an exponentially small probability

of error we can obtain asynchronous secure computa-

tion with optimal resilience. That is, when the number

of faulty players t is in the range n/4 ~ t < n/3. In this

paper we answer this question affirmatively, proving:

Theorem 1 In a completely asynchronous network of

n players, where any two players have a pm”vate comm-

unication channel, and where at most t < n/3 players

are fau[ty, secure multiparty computation with an ex-

ponentially small probability of error is possible.

Furthermore, The complexity of the protocol achiev-

ing this, given that the players complete the protocol,

is polynomial in the number of players n, the boolean

complexity of the computational task, and in ~og ~~,

where e >0 is the error probability.

Obstacles to over come: The first step in the

general direction of Theorem 1 was accomplished by

Canetti and Rabin [CR93]. They gave an asynchronous

Verifiable Secret Sharing Scheme (AVSS). Informally,

AVSS allows a dealer to share a secret that can be re-

constructed by the players at a later stage. AVSS pro-

tects the honest players from a faulty dealer, by forcing

him to commit to a specific value that is guaranteed to

be the reconstructed value. The protocol of [CR93] tol-

erates up to t < n/3 faults, and has an exponentially

small probability y of error. With this AVSS, following

the lines of Feldman and Micali [FM88] and Feldman

[Fe189], they obtained a fast t-resilient asynchronous

Byzantine Agreement protocol for t < n/3. Our se-

cure protocol builds on this AVSS protocol. However,

the AVSS of [CR93] by itself is not sufficient for imple-

menting secure multiparty computations.

The main difficulty is the following: If n = 3t + 1, the

scheme in [CR93] assures that at least n – t players will

obtain a share of the secret. Of these, only n– 2t = t+ 1

are guaranteed to be honest, and that is exactly enough

to enable the system to reconstruct the secret at a later

stage. When we try to add (or multiply) two secrets

that have been shared using this AVSS scheme, each

secret has its own set of n —t players with valid shares.

Therefore, we can only guarantee that n – 2t players

will hold a share from both secrets. Of these, t may be

faulty, leaving us with only a single honest player that

holds a correct share of both secrets.

Another difficulty is the problem of erroneous shares.

As the models of both [BGW88, BCG93] ensure the

participation of at least 3t + 1 players, they are able to

use methods of error correcting codes to correct faulty

shares. In our model, due to the asynchronict y of the

network and the number tof faulty players, we can only

count on the participation of 2t + 1 players. Thus, we

can not employ the methods of error correcting codes.

Overview: Our protocol for computing a function

T follows the general method of Ben-Or, Goldwasser

and Wigderson [BGW88]. The players simulate an

arithmetic circuit for 3, gate after gate, in such a way

that the intermediate results are always kept as verifi-

able secrets distributed among the players.

To handle secure computation for t < n/3, we must

make sure that all the honest players will eventually

obtain their share of each secret. We achieve this us-

ing a new secret sharing scheme which we call Utimate

Secret Sharing (USS). At first glance this task appears

to be impossible, since in an asynchronous environment

there is nothing to prevent the adversary from delaying

t honest players, and forcing the system to end the se-

cret sharing protocol without their participation! We

circumvent this by requiring that each share be dis-

tributed among all players. Thus, a late player can

obtain his share by asking the system to reconstruct

it. In addition, our secret sharing scheme encompasses

a built-in self correcting property. A definition and an

implementation of a USS scheme are presented in Sec-

tion 3.

Having a stronger verifiable secret sharing scheme is

not enough. In order to carry out the computation,

we must provide protocols to add and multiply such

shared secrets. Here, following the lines of Rabin and

184

Ben-Or [RB89], we introduce asynchronous protocols

for the addition and multiplication of ultimately shared

secrets 1. These protocols are presented in Section 5.

Following [BCG93], in the case of asynchronous se-

cure function evaluation, the players need to agree on

a subset of inputs on which the function will be eval-

uated. In Section 4 we provide a protocol to agree on

a common subset of at least n – t players. Our proto-

col is a simple constant expected round protocol. This

should be compared with the previous O(log n) round

protocol of [BCG93] to solve this same problem.

Finally, our protocol, as well as the verifiable secret

sharing protocol of [CR93], have the following annoy-

ing property: The exponent ially small error probabil-

ity of the protocol includes an exponentially small but

non zero probability of not terminating. This should

be contrasted with the asynchronous Byzantine Agree-

ment problem where the randomized protocol termi-

nates with probability 1. We prove that this is un-

avoidable. That is, if n < 4t then any t-resilient asyn-

chronous verifiable secret sharing protocol A must have

some probability qA > 0 of not terminating. A sketch

of the proof appears in Section 6.

2 Definitions

The Model

Our model consists of a fully connected, asynchronous

network of n players. Every two players are connected

via a secure and reliable channel of communication.

That is, each message sent on such a channel cannot

be heard by other players, and is guaranteed to arrive

at its destination. However, each message may have an

arbitrary (finite) delay.

Up tot of the players may become faulty at any time

during the run of the protocol. The faulty players may

deviate from their protocols, and collaborate in order

to reveal private data of honest players, and even to

disrupt the computation.

To model the faulty players’ behavior, we postulate a

computationally unbounded, dynamic adversary. This

adversary may choose, at any stage of the protocol,

additional players to corrupt, as long as he does not

exceed the limit of t faulty players. Once a player is

picked by the adversary, he hands over to him all his

private data, and gives the adversary the control on

his next moves. To model the network’s asynchrony,

we further assume that the adversary can schedule the

communication channels, i.e. he can determine the

1 We note that ~ simple adaptation of the error-free Protocol of

[BGW88] using our new ultimate secret sharing scheme does not

work, since the asynchronous system must be able to compute

when only n-t = 2t+l players are participating. The correctness

of the multiplication protocol of [BG W88] uses the fact that 2t + I

honest players are participating, while here we must proceed with

only t + 1 honest players.

time delays of all the messages (however, he cannot

read nor change those messages). We call such an ad-

versary a t-adversary.

We assume that a finite field E, with IEI > n, is used

by all players. With out loss of generality, the function

to be computed is an n-variable polynomial ~ over E.

An arithmetic circuit computing ~ is known to all the

players 2. The circuit consists of binary addition and

multiplication gates, and unary gates for multiplication

by non-zero constants from E.

Asynchronous Computations

Each player Pi holds a private input Zi, and the play-

ers wish to securely compute the exact value of a func-

tion 7(z1, Zn). However, since the network is asyn-

chronous, and t players may be faulty, the players can

never even wait for more than n – t of the inputs to be

entered to the comput at ion. Furthermore, the missing

inputs are not necessarily y of the faulty players.

To define secure computations in our model, we use

the notion of a trusted party. In an ideal trusted party

scenario, the players send their inputs to a trusted

party (of course the faulty players may substitute their

inputs arbitrarily). An adversary chooses a subset

CornpSet of the players of size at least n–t, and delivers

to the trusted party only the messages sent by players

in this set. Then the trusted party computes an ap-

proximation of 7, by computing 7 after substituting

all the missing inputs with O. Finally the trusted party

sends the value he computed back to the players. The

good players output this value, and the faulty players

output an arbitrary function of the information they

gathered during the execution of the protocol. We say

that an asynchronous protocol computes a function F

in our model if the output of the players is equivalent

to their output in the ideal trusted party scenario. We

refer the reader to [BCG93, Can93] for complete formal

definitions.

Tools

In our protocols we shall use some tools devised for

asynchronous networks. Following are references to the

origin of these tools, with a few words of explanation

(a full definition of each one of these tools appears in

[Rab94]).

A simulation of an asynchronous broadcast channel

(A-Cast) was devised by [Bra84]. Fast Asynchronous

Byzantine Agreement (BA) was devised by [CR93].

Asynchronous Verifiable Secret Sharing (AVSS), as well

as a weaker scheme of secret sharing (AWSS) are also

from [CR93]. Two&Sum Secret Sharing [Rab89, CR93]

is a variation on any secret sharing scheme that enables

the sharing of three secrets, in a manner that the play-

2 The players need not know this circuit, nor%, until the input

phase has ended.

185

ers are guaranteed that the sum of two of them is equal

to the third. Multiple Reconstruction of Secrets [Rab89]

makes it possible for each secret to be reconstructed

twice - once privately to some player, and then pub-

licly. A ZK technique for showing that a set of shares

define a polynomial of degree at most t was devised by

[CCD88]. A Product ZKP protocol [RB89] enables a

dealer to prove that three secrets which he has shared

satisfy that one of them is the multiplication of the

other two, without revealing any additional informa-

tion. We note that all these protocols are (~~1 – l)-

resilient, and of polynomial complexity.

3 Ultimate Secret Sharing

As stated in the introduction, the AVSS scheme of

[CR93] falls short of our needs in order to be able

to compute. We need to enhance the secret sharing

scheme so that ail the honest players will have proper

shares of each secret, and to provide an error detecting

method to sieve out faulty shares.

We make our requirements formal in the following

definition:

Definition 1 For a dealer D sharing a secret s, let

(Sh, Ret) be a pair of protocols. We say that (Sh, Ret)

is a (1 — t)-correct, t-resilient USS scheme for n players

if the following hold, for every t-adversary.

● Termination. With probability 1 – e the following

requirements hold.

1. If the dealer is honest, then each honest player

will eventually complete protocoi Sh.

2. If some honest player has completed protocol Sh,

then each honest player will eventually complete proto-
COi Sh.

3. If all the honest players have completed protocol

Sh, and invoke protocol Ret, then each honest player

will complete protocol Rec.

● Secrecy. If the dealer is honest and no honest player

has begun executing protocol Ret, then the faulty play-

ers have no information about the shared secret.

● Correctness. once an honest player has completed

protocol Sh, then there exist a unique value r, shares

i%, ...,~~, and protocols L(”) and G(”), such that with

probability 1 – e the following hold.

1. If the dealer is honest, then r = s.

2. If player P; invokes protocol L(i) then at the end

of the execution he locally outputs the value fii.

3. If G(i) # null then G(i) = L(i) = @i.

~. If all the honest players invoke protocol R.ec with

inputs G(l), G(n), then each honest player outputs
r.

This definition complies with our requirements in

the following way: The protocol L(.) ensures that each

player can access his share of the secret. The self cor-

recting property is embedded in the protocol G(.). The

output of this function may be null (for faulty players),

but if it is not null then it is guaranteed to be a proper

share.

Our implementation of USS-Share and USS-Rec is

described in Figures 1 and 2, respectively. In our

scheme, a dealer shares a secret s using a polynomial

j(~) (i.e. f(x) is a random polynomial over E except

that f(0) = s), and each player Pi will have at the

end of the sharing phase the share f(i). The idea is

that the dealer who shares the secret, doesn’t hand

each player his share, but rather shares each share us-

ing AVSS-Share. Due to the properties of AVSS-Share,

he is now committed to n values. He proceeds to prove

that these values are proper shares. He does this using

the cut and choose zero knowledge technique [CCD88]

for proving that n values define a polynomial of de-

gree ~ t. Thus he is committed to n valid shares.

Once these two steps are carried out successfully, we

are guaranteed that each player has access to his share

of the secret, by means of private AVSS-Rec (the pro-

tocol L(.)). And the shares which have been shared

using AVSS-Share are guaranteed to be proper shares

due to the zero knowledge proof which was carried out.

The players can authenticate each share by means of

public AVSS-Rec (the protocol G(.)).

Lemma 1 Let n ~ 3t + 1. Then for every e > 0,

the pair (USS-Share[e] ,USS-Rec[e]) is a (1– c)-correct,

t-resilient USS scheme for n players.

Proofi See [Rab94] •1

As our final goal is multiparty computations, we have

to formulate the notion of secrets that were not shared

by a specific dealer, but rather computed by the net-

work. Following is a definition of an ultimately shared

secret.

Definition 2 We shall say that a secret s, is (1 – c)-

ultimately shared if there exist shares ,61, /3n, and pro-

tocols L(.), G(.) and Ret, such that with probability l–e

the following hold.

● Secrecy. If no honest player has begun executing

protocol Ret, then the faulty players have no informa-

tion about the shared secret.

● Correctness.

1. If player P; invokes protocol L(i) then at the end

of the execution he locally outputs the value pi.

2. If G(i) # nu~l then G(i) = L(i) = f?~.

3. If all the honest players invoke protocol Rec with

inputs G(l), G(n), then each honest player outputs

s.

Note 1: Ifs is the value set by a USS-Share protocol,

then s is an ultimately shared secret.

186

Protocol USS - Share[c] (Sketch)

Code for the Dealer, sharing a secret s:

1. Choose a random polynomial ~(x) for s.

2. For all 1< i s n, compute ,& ~ ~(i).

3. For all 1 ~ i ~ n, share pi using AVSS-

Share[c’].

Comment: Note that ,B: should be shared

using a multi-ret protocol.

4. Prove that the values which were set by

the AVSS-Share - @l, /3~ - define a

polynomial of degree < t.

Code for player Pi:

5. Participate in the proof that ~,,% de-

fine a polynomial of degree < t.

6. If the shares define a polynomial, then A-

Cast(“Proper sharing”).

7. Upon completing t+ 1 A-Casts of the form

“Proper Sharing” terminate.

Figure 1: USS - Sharing Phase

Protocol USS - Rec[~]

Code for player Pi:

1. Execute the AVSS-Rec Protocol for all

shares.

2. Take any t+ 1 values and interpolate the

polynomial ~(x).

Output s, the constant term of $.

Figure 2: USS - Reconstruction Phase

Note 2: If a secret s is ultimately shared by the

implementation described above (i.e. s = j(o) and

pi = ~(i) for 1< i S n), we shall say that s is dti-
mately shared by a polynomial f.

4 Agreement on a Common

Subset

During the computation stage, there are times that the

players need to decide on a subset of players, of size at

least n – t ~ 2t + 1, that satisfy some property. It is

known that all the honest players will eventually satisfy

this property, but some faulty players may satisfy it as

well. For example, the property may be that a player

has properly shared his input. The problem is that all

the (honest) players need to agree on the same subset.

Suppose there is a dynamic predicate Q, that as-

signs a binary value to each player. By dynamic we

mean that not all the players need to be assigned at the

same time. When a player Pj is assigned his value, de-

noted as Q(j), it is guaranteed that all the players will

(eventually) learn to know this value. Furthermore, it

is known that all the honest players will (eventually)

be assigned the value 1. In this section we present a

protocol that enables the players to agree on a subset

of size at least n — t of players for whom the predicate

is 1.

The idea is to execute a BA protocol for each player,

to determine whether it will be in the agreed set.

That is, n BA protocols are executed simultaneously,

and each player enters his inputs to the BAs asyn-

chronously. (To save a log n factor of running the n

BAs, the techniques of [BOEY91] are employed).

Protocol Agreement [Q]

Code for player Pi:

1.

2.

3.

For each Pj for whom you know that

Q(J = 1,participatein W with input
1.

Upon completing 2t+ 1 BA protocols with

output 1, enter input O to all BA protocols

for which you haven’t entered a value yet.

Upon completing all n BA protocols, let

your SubSe~ be the set of all indices j

for which BAj had output 1. Output

SubSeti.

Figure 3: Agreement on a Common Subset

187

Lemma 2 Using the protocol Agreement (Figure 9),

the players agree on a common subset of szze at least

2t + 1 of players Pj for whom Q(i) = 1.

Proof: First we shall prove that at least 2t + 1 BAs

terminate with output 1: Suppose that some honest

player Pi has entered a O value into some BAj in Step

2. This means that at least 2t + 1 BAs terminated

with output 1, which is what we want to prove. So

assume that no honest player has entered a O value

to any BA protocol. As for each honest player Ph we

have Q(h) = 1, the inputs of all the honest players

to BAk will be 1. By the correctness property of the

BA protocol, the output of BA~ will be 1. As this is

true for every honest player, at least 2t + 1 BAs will

terminate with output 1.

Next we will show that all n BAs will terminate: As

2t + 1 BAs will terminate with output 1, all the honest

players will enter an input to the remaining BAs, and

thus they will terminate.

It is clear from the protocol that once an honest

player terminates, he has a SubSet of size at least 2t + 1,

and from the properties of the Byzantine Agreement

protocol it follows that all the honest players agree on

the same set. It remains to be shown that for each j

in SubSet, Q(j) = 1. This is true because if BAj ter-

minated with output 1, it must be that at least one

honest player entered 1 as his input to BAj. ❑

5 The Computation Protocols

Our protocol for computing a function Y(ZI, zn)

follows the general method of [BGW88]. The players

simulate an arithmetic circuit for 7, gate after gate,

in such a way that the intermediate results are always

kept as secrets distributed among the players. To over-

come the obstacles raised by the asynchronous setting,

each intermediate result will be ultimately shared.

In the input phase each player Pi USS-Shares his in-

put z~, By the definitions of USS (Section 3) it follows

that once this step is completed, each player Pi is com-

mitted to a value z;, which is ultimately shared among

the players. The players then use protocol Agreement

(Figure 3) to agree on a common subset of inputs that

were properly shared, and substitute each input not in

this set with O. They proceed to compute 3 on this

set of values, In the reconstruction phase the players

simply USS-Rec the final result.

It remains to be shown how the players can simulate

the arithmetic gates. In the course of our protocols,

there are many times where a player P will need to

prove that some secret s that he shared is equal to a

secret s’ that was previously shared among the play-

ers, with out revealing any additional information on

either one of the secrets. For clarity and simplicity’s

sake, we have omitted the intricate details of the ele-

ments needed for the Equality ZK Proofs that appear

in the computations protocols. The full details appear

in [Rab94]. The Equality ZK Protocol appears in Ap-

pendix A.

Computing any Linear Combination of Secrets

Given two secrets u and v which are ultimately shared,

and two non-zero constants c1 and C2, we would like to

compute the linear combination c1 ou + C2 . v such that

it will be ultimately shared. The protocol in Figure 4

achieves this goal.

Our protocol relies on the fact that u and v are

ultimately shared by polynomials f“ and ~, respec-

tively. This fact immediately guarantees that each hon-

est player can locally compute his share of the secret

c1 . u + C2 . v. The self correcting property is achieved

by having each player prove, using a zero knowledge

technique, that he is proceeding according to the pro-

tocol, i.e. that he in fact shared (in Step 3) the linear

combination of his shares of u and v.

Protocol Linear Combination (Sketch)

Code for player Pi:

1.

2.

3.

4.

Set ~ = L“(i) and ~ = L“(i).

Set a; = cl. @anda~=c2. ~.

Share using (generic) Two&Sum-AWSS

the values a~, a:,
A

and their sum a~ =

a:+ay.

Prove that cY~ = c1 . # and that CZ$ =

c1 - /.?#, using the Equality ZK Proof (Fig.

7).

I Figure 4: Computing Linear Combination

Lemma 3 Given that u and v are ultimately shared by

polynomials f“ and ~ respectively, and two constants

c1 and C2, the protocol Linear Combination (Figure 4)

achieves that the secret c1 . u + CP. v will be ultimately
shared.

Proof: As u and v are ultimately shared, there exist

shares ~~, . . . , ~~ and protocols L1(.) and G~(.) satisfy-

ing Definition 2 for 1 c {u, v}. As we further assume

that u and v are shared by polynomials f“ and P, we

know that ,f3/ = f~(i) (1 ~ i < n), and that ~~(0) = 1

for 1 E {u, v}.

188

We have to show that there exist shares ~1,...jl~

andprotocols L(.), G(.) and Recsatisfying Definition2

forcl. u+cz. v.

We define the following:

1./3i%l .i?; +c2. /?y.

2. L(i) istolocally computescl .LU(i)+cz. LV(i).

3. G(i) is AWSS-Rec of thevalue a~ shared in Step 3.

4. The protocol Rec is to interpolate a polynomial ~(z)

through any t + 1 shares from a 1, an which are not

null and output ~(0).

We will prove that these definitions satisfy the de-

sired properties:

Secrecy. The only steps of the protocol that in-

volve communication are those of AWSS-Share and the

Equality ZK Proof. As both these sub-protocols are

secure, no additional information about about u nor v

can leak to the faulty players.

Correctness(l). By assumption L“ (i) = ~~ and

L“ (i) = R. Hence by definition L(i) = c1 . L“ (i) +

c2. Lv(i)=cl ./3; +c2 ./3;= /3i.

Correctness(2). By definition G(i) is AWSS-Rec of

the value shared by Pi in Step 3. If the output of

this AWSS-Rec is not null, then due to the proper-

ties of Two& Sum-AWSS it must be ai = a: + cY~.

From the Equality Proof it follows that a~ = c1 . /3~

and that cry = C2 . /3~, Hence, by the definition of pi,

G(i) = a; = /3~.

Correctness(3). As ~~,..., /3~ define the polyno-

mial~and ~,..., /3~ define the polynomial ~, then

clearly by the definition of& it is true that ,&, . . .,,&

define the polynomial f i c1 . f“ + cz . ~. When

the honest players execute Rec with the outputs of

G(l), . . ., G(n), each one of them interpolates through

t+ 1 non-null ai ‘s. Since ai = pi, each player computes

~, and outputs ~(0) = c1 . u + cz . v. •1

Note: This protocol can be easily extended to com-

pute any number of linear combinations.

Computing the Multiplication of Two Secrets

Given two secrets u and v which are ultimately shared,

we would like to compute the product u . v, such that

this secret will be ultimately shared.

As in the case of Linear Combination, each player

has a share of the product secret, but this share is on

a polynomial of degree 2t, which in addition, is not a

random polynomial. As was shown in [BGW88], by

computing linear transformations on the shares of the

players, we can both randomize and reduce the degree

of the polynomial. Each player can locally compute

his share of the product u . v, but this share is not

ultimately shared, which is what we need in order to

compute the linear combinations. Thus, in the first

step each player will USS-Share his product share, and

prove that he indeed shared the proper value. Once

these operations are done, and the linear combinations

have been computed, there is a random polynomial f of

degree ~ twith constant term u. v, and all the shares of

f are ultimately shared. The Multiplication Protocol

H given in Figure 5.

Protocol Multiplication (Sketch)

Protocol for Player Pj:

1. Set R = L“(i) and ~ = L“(i).

2. Set a? = ,BY and a: = ~~.

3. Compute ai 5 a? . a;.

4. Share ai using the USS-Share Protocol

(Fig. 1). Share c# and cr~ using AVSS-

Share.

5. Prove that at . a: = ai, using Product

ZKP protocol.

6. Prove that a? = /3~ and a; = /3~, using

the Equality ZK Proof (Fig. 7).

7. Execute Protocol Agree (Fig. 3) with the

following boolean predicate: Q(j) = 1

if player Pj completed Steps 4-6 success-

fully. Set CompSeti to the output of the

protocol.

8. To perform the randomization and degree

reduction, use the Linear Combination

Protocol (Fig. 4), and compute the trans-

formations described in [BGW88], on the

set of values agreed upon in CompSeti.

Let the randomized reduced polynomial

be f(x).

Figure 5: Computing Multiplication

Lemma 4 Given that u and v are ultimately shared by

polynomials f“ and ~ respectively, the protocol Mul-

tiplication (’Figure 5) achieves that the secret u . v will

be ultimately shared.

Proofi As u and v are ultimately shared, there exist

shares ~~, . . . , ~~ and protocols L~(.) and G~(.) satisfy-

ing Definition 2 for 1 c {u, v}. As we further assume

that u and v are shared by polynomials f“ and P, we

know that ~~ = ~~(i) (1 < i < n), and that .?(0) = 1

for i 6 {u, v}.

We have to show that there exist shares B1, . . . /3~

and protocols L(.), G(.) and Rec satisfying Definition 2

for u . v.

189

We define the following:

1. /3i ~ ~(i), where ~ is the polynomial computed in

Step 8.

2. L(i) to be the private USS-Rec of the value ~(i).

3. G(i) to be the public USS-Rec of f(i).

4. The protocol Rec is to interpolate a polynomial $’(z)

through any t+ 1 shares from /?l, ..., /3~ which are not

null and output ~’(0).

We will prove that these definitions satisfy the de-
sired properties:

Secrecy. The steps of the protocol that involve com-

munication of relevant data are those of USS-Share,

AVSS-Share, the two forms of Equality Proof, and the

Linear Combination computation. As all these sub-

protocols are secure, no additional information about

u nor v can leak to the faulty players.

Correctness(1). Each cri is ultimately shared (Step

4). Hence, by lemma 3, all the linear combinations

computed at Step 8 are ultimately shared, i.e. for

1.$ i s n f(i) is ultimately shared. Thus, by the defi-

mtlon of /3i and the properties of USS-Ret, L(i) = pi.

Correctness(2). G(i) = L(i) due to the properties of

multiple reconstruction of USS-Rec.

Correctness(3). By assumption ,8: = L“ (i) and

~ = L“ (i) From the proofs of player Pi in steps 5 and

6, we are guaranteed that the value a~ that he shared in

Step 4 is the correct product share, i.e. R -~. As all

the honest players will complete this sharing, at least

2t + 1 product shares will be ultimately shared, and the

players will complete Step 7 with a common subset. As

the product shares lie on a polynomial of degree s 2t,

any subset of at least 2t + 1 shares defines this polyno-

mial, and hence will suffice for the randomization and

the degree reduction operations. From [BGW88] we

are guaranteed that the linear transformation which is

computed creates a random polynomial ~(z) of degree

~ t which satisfies that ~(0) = u . v. From our Linear

Combination protocol we are insured that each share

~(i) is ultimately shared. Thus any t+ 1 shares from

G(l),.. ., G(n) define ~, and the polynomial f’ recon-

structed by Rec equals f, so the output of Rec will be

f’(o) = f(o)= u . w. ❑

Putting it all together, we have proved Theorem 1.

6 Impossibility Result

In this section we prove that if n ~ 4i, then any t-

resilient asynchronous AVSS scheme must have some

positive probability of not terminating.

Proof (Sketch):

Let n = 4, t = 1, and let D, A, B and C be the four

players. Given an AVSS protocol the adversary can

take control of the dealer D and delay all the messages

sent to and from C’. Note that only D is faulty, and

C’s communications are simply slow.

Let &f~y be the messages exchanged between X and

Y during the execution of the protocol when D shares

the value v 6 {O, 1}. From the l-privacy condition the

messages A sees, MjD and kf~B when v = O must

be compatible also with v = 1. Therefore there are

messages M~~ that D can exchange with B that are

compatible with lvf~B. D will not send any messages

to c.

Now during the reconstruction stage the adversary

stops D and lets A, B and C exchange messages be-

tween them. From A’s and C’s point of view, the real

situation looks completely identical to the case where

B is faulty, and D is slow. A must therefore wait for

additional shares from D or C to reconstruct the secret

but these will never arrive (C will never receive mes-

sages from D, messages from A to C cannot help in

the reconstruction, and messages from B can be wrong

because B may be faulty.) Thus with exponentially

small probability, by guessing correctly the messages

exchanged between A and B, the adversary can force

the system to wait indefinitely. ❑

References

[BCG93]

[BGW88]

[BOEY91]

[Bra84]

[Can93]

[CCD88]

M. Ben-Or, R. Canetti, and O. Goldreich.

“Asynchronous Secure Computations”. In

Proceeding 2.5th Annual Symposium on the

Theory of Computing, pages 52-61. ACM,

1993.

M. Ben-Or, S. Goldwssser, and A. Wigder-

son. “Completeness Theorems for Non-

cryptographic Fault-Tolerant Distributed

Computations”. In Proceeding 20th Annual

Symposium on the Theory of Computing,

pages 1-10. ACM, 1988.

M. Ben-Or and R. E1-Yaniv. “Interactive

Consistency in Constant Time”. Submitted

for publication, 1991.

G. Bracha. “An Asynchronous [(n – l)/3J-

resilient Consensus Protocol”. In 3rd Pro-

ceeding of Distributed Computing, pages

154–162. ACM, 1984.

R. Canetti. “Asynchronous Secure Com-

putations”. Technical Report 755, Depart-

ment of Computer Science, Technion Haifa,

1993.

D. Chaum, C. Crepau, and I. Damgard.

“Multiparty Unconditionally Secure Proto-

190

[CR93]

[Fe189]

[FM88]

[MR]

[PSL80]

[Rab89]

[Rab94]

[RB89]

Cols” . In Proceeding 20th Annual Sympo-

sium on the Theory of Computing, pages

11-19. ACM, 1988.

R. Canetti and T. Rabin. “Fast Asyn-

chronous Byzantine Agreement with Opti-

mal Resilience”. In Proceeding 25th Annual

Symposium on the Theory of Computing,

pages 42-51. ACM, 1993.

P. Feldman. “Asynchronous Byzantine

Agreement in Constant Expected Time”.

Manuscript, 1989.

P. Feldman and S. Micali. “An Optimal Al-

gorithm for Synchronous Byzantine Agree-

ment”. In Proceeding 20th Annual Sympo-

sium on the Theory of Computing, pages

148-161. ACM, 1988.

S. Micali and P. Rogoway. “Secure Compu-

tations”. In preparation.

M. Pease, R. Shostak, and L. Lamport.

“Reaching Agreement in the Presence of

Faults”. Journal of the ACM, 27(2):228-

234, 1980.

T. Rabin. “Robust Sharing of Secrets When

the Dealer is Honest or Faulty”. Master’s

thesis, Hebrew University, Jerusalem, 1989.

T. Rabin. “Asynchronous Secret Sharings

and Implementations”. PhD thesis, Hebrew

University, Jerusalem, 1994.

T. Rabin and M. Ben-Or. “Verifiable Se-

cret Sharing and Multiparty Protocols with

Honest Majority”. In Proceeding 21st An-

nual Symposium on the Theory of Comput-

ing, pages 73–85. ACM, 1989.

A Proving that Two Shared Se-

crets are Equal

In the course of our protocols, there are many times

where a player P will need to prove that some secret s

that he shared is equal to a secret s’ that was previously

shared among the players. There is a confidence pa-

rameter c, and each one of the (honest) players should

be convinced that the two secrets are equal with prob-

ability at least 1 – c. In the process of the proof P does

not want to reveal any additional information, aside

from the fact that the two secrets are indeed equal.

Each one of the secrets s and s’ may be shared by any

secret sharing scheme. Furthermore, s’ may have been

shared by any player (not necessarily P), or computed

collectively by all the players.

In this section we present a protocol that solves a

slight variant of the problem, which is, given a constant

c ~ E – {O}, P can prove that the newly shared secret

s is equal to c. s’. When c = 1, this is a simple equality

test.

To achieve this goal, we assume that whenever a

secret s is shared among the players, it is accompa-

nied by a set R~ of auxiliary random secrets, shared

by the same secret sharing scheme aa s. The number

of the auxiliary secrets is polynomial in ((log:1, n).

This assumption is easily achieved if whenever a secret

is shared, the generic sharing protocol of Figure 6 is

used. For the moment disregard the input R’ (assume

R’ = ~).

Protocol Generic-Share[R’, E]

Code for the Dealer D, sharing a secret s:

1.

2.

Set K ~ poly(Pog:1, n).

Choose, with uniform distribution,

3.

rl, ..., rK ER E.

Set R.~{rl,..., rjy}.

Two&Sum-Share* s and

rl, s+rl,r~. s+rK

and rl, s + r’ for each r’ G RI.

* Using any desired sharing scheme.

Figure 6: Generic Sharing

It will also be shown later, that if s is computed

collectively by the players (from previously shared se-

crets), then the appropriate auxiliary secrets may be

computed as well.

Assume now that P wants to share a secret s, and

prove that it equals c . s’, where s’ was previously
shared. Then P executes the generic share once more,

and this time he takes as input to the protocol the set

R’ = C.R8) ~ {CT’ I r’ G R,)}. Note that ifs’ was not

shared by P, then he must initiate private reconstruc-

tion for the secrets in the set R,,. This time P creates

two sets of auxiliary secrets: one which will serve as

the auxiliary set for s, i.e. R., and the second will be

used just for the equality proof. After all this has been

accomplished, P can turn to the players to execute the

Equality ZK Proof (Figure 7). The input to the proto-

col will be the secrets s and c. RSi with its appropriate

sums, and s! and R*! with its appropriate sums.

Lemma 5 The protocol Equality ZK Proof (Figure 7)

achieves the following properties:

191

Protocol Equality ZK Proo~c, s, R, s’, R’]

Code for player Pi:

1.

2.

3.

For each j, 1 < j < K such that j s

i (mod n), randomly choose whether to

expose the pair (s+ rj, s’+ r;) or the pair

(rj, r;), and A-Cast your choice.

Reconstruct the components of all the A-

Casted pairs.

Conclude that s = c ~s’ only if in each one

of the reconstructed pairs the first com-

ponent equals c times the second compo-

nent.

Figure 7: Equality ZK Proof

1. Ifs = c . s’ then atl the honest players will be con-

vinced of this fact.

2. Ifs # c.s’, then the probability that an honest player

will falsely believe that s = c . s’ is at most ~.

3. No additional information about s leaks to any

player.

Proofi

1. This is clear, because all the equality tests will suc-

ceed.

2. Suppose that s # c , s’. Then, in order to suc-

ceed in showing that s + rj = c . (s’ + r;), itmust be

that rj # c . r;, but in order to succeed showing that

Tj = c. r;, they must be equal. Since P cannot know in

advance which pair Pi will want to expose, the proba-

bility that one test will succeed is < 1/2. Since there

are K independent tests, the claim holds.

3. Because the rj’s are uniformly distributed, so are all

the pairs (s + rj, s’ + r$). In addition, the Two&Sum

protocol reveals no information, and hence the claim

holds. ❑

B Generating a Random Secret

Polynomial

Protocol Random Polynomial

Generator (Sketch)

Protocol for player Pi:

1. Set s~ = O.

2. Share Si among the players using USS-

Share.

3. Prove that s~ = O.

4. Execute Protocol Agreement (for agree-

ing on a subset) with the boolean predi-

cate: Q(j) = 1 iff Pj haa completed the

previous two steps.

Set CompSet~ to the output of

Agreement[Q].

5. Compute the sum of the secrets of the

players in CompSek.

Figure 8: Random Polynomial Generation

C Computing Auxiliary Values

for Computed Secrets

As we have stated earlier, for the Equality Proof each

secret should be accompanied by a set of auxiliary ran-

dom secrets. This is easily achieved when the secret

is shared by a dealer, but we need these auxiliary ran-

dom secrets even if the secret has been computed by

the network.

As the secrets which have been computed by the net-

work are ultimately shared, we can over come the prob-

lem. Say that a secret s was computed by the network,

and that some player P wants to share St, and prove

that s = s’. P chooses random secrets ?’1,..., ?’K. He

shares S’, rl, s’+ rl, ..., rK, s’ + rK using the desired

sharing scheme, and he USS-Shares rl, rK. The net-

work computes s + rl, s + r~. Then P proceeds to

carry out the Equality ZK Proof protocol (Figure 7).

We will need the ability to create random secret polyno-

mials in our protocol, in order to randomize the pol y-

nomial which is the result of a multiplication. The

polynomials should have a constant term equal to zero.

The protocol in Figure 8 achieves this.

192

