
Proving Time Bounds for Randomized Distributed

Algorithms

�

(Extended Abstract)

Nancy Lynch

y

Isaac Saias

z

Roberto Segala

x

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

A method of analyzing time bounds for randomized distributed algorithms is presented,

in the context of a new and general framework for describing and reasoning about random-

ized algorithms. The method consists of proving auxiliary statements of the form U

t

�!

p

U

0

,

which means that whenever the algorithm begins in a state in set U , with probability p,

it will reach a state in set U

0

within time t. The power of the method is illustrated by its

use in proving a constant upper bound on the expected time for some process to reach its

critical region, in Lehmann and Rabin's Dining Philosophers algorithm.

Contact Author: Roberto Segala

�

Supported by NSF grant CCR-89-15206, and CCR-92-25124, by DARPA contracts N00014-89-J-1988 and

N00014-92-J-4033, and by ONR contract N00014-91-J-1046.

y

e-mail: lynch@theory.mit.edu

z

e-mail: saias@theory.lcs.mit.edu

x

e-mail: segala@theory.lcs.mit.edu

1 Introduction

Randomization has proved to be a useful tool in the design of distributed algorithms, sometimes

yielding e�cient solutions to problems that are inherently complex, or even unsolvable, in

the setting of deterministic algorithms [?,?,?,?]. But this powerful tool has a price: even

simple randomized algorithms can be extremely hard to verify and analyze. Because of this,

many randomized distributed algorithms appear in the literature with only informal proofs of

correctness, and only informal derivation of complexity bounds. In fact, it is sometimes hard

for the reader to ascertain that the proofs and complexity bounds presented are really correct.

Even where proofs are carefully and correctly done, the arguments tend to be ad hoc.

A key di�culty in reasoning about randomized algorithms is the fact that their executions

usually contain a combination of nondeterministic and probabilistic choices, with subtle in-

teractions between them. The probabilistic choices are typically only those that involve an

explicit use of randomness by the algorithm (e.g., by using a random-number generator). All

other choices (e.g., the order of process steps, the times at which requests arrive) are usually

considered to be nondeterministic. It is customary to de�ne an adversary as a way of modeling

the entity that resolves the nondeterministic choices.

1

In de�ning an adversary, one must be

especially careful to specify the knowledge of the execution that the adversary is permitted

to use in resolving nondeterministic choices. This might range from no knowledge at all, in

which case the adversary is said to be oblivious, to complete knowledge of the past execution

(including past random choices).

Even after one has de�ned the desired notion of adversary, it is still not easy to carry out

correctness proofs and complexity analyses for randomized algorithms; most existing proofs

seem rather ad hoc. It would be useful to have a collection of general proof rules and methods,

which could be established once and for all, and then applied in a reasonably systematic way to

verify and analyze numerous algorithms. Some examples of work that has already been done

on the development of such methods is [?,?,?]. The work of [?] presents a technique, based

on progress functions de�ned on states, for establishing liveness properties for randomized

algorithms; the work of [?,?] presents model checking techniques.

In this paper, we present such a new method: a way of proving upper bounds on time

for randomized algorithms. Our method consists of proving auxiliary statements of the form

U

t

�!

p

U

0

, which means that whenever the algorithm begins in a state in set U , with probability

p, it will reach a state in set U

0

within time t. Of course, this method can only be used for

randomized algorithms that include timing assumptions. A key theorem about our method is

the composability of these U

t

�!

p

U

0

arrows, as expressed by Theorem 3.4. This composability

result holds even in the case of (many classes of) non-oblivious adversaries.

We also present two complementary proof rules that help in reasoning about sets of distinct

random choices. Independence arguments about such choices are often crucial to correctness

proofs, yet there are subtle ways in which a non-oblivious adversary can introduce depen-

dencies. For example, a non-oblivious adversary has the power to use the outcome of one

random choice to decide whether to schedule another random choice. Our proof rules help to

systematize certain kinds of reasoning about independence.

1

In this paper, we ignore the possibility that the adversary itself uses randomness.

1

Our proof rules are presented in the context of a new and general formal framework [?] for

describing and reasoning about randomized algorithms. This framework integrates randomness

and nondeterminism into one model, and permits the modeling of timed as well as untimed

systems. The model of [?] is, in turn, based on existing models for untimed and timed

distributed systems [?,?], and adopts many ideas from the probabilistic models of [?,?].

In order to illustrate our method, we use it in this paper to prove an upper bound for

Lehmann and Rabin's Dining Philosophers algorithm [?], in the face of an adversary with

complete knowledge of the past. This upper bound asserts that T

13

�!

1=8

C, where T is the set

of states in which some process is in its trying region, while C is the set of states in which

some process is in its critical region. That is, whenever the algorithm is in a state in which

some process is in the trying region, with probability 1=8, within time 13, it will reach a state

in which some process is in its critical region. This bound depends on the timing assumption

that processes never wait more then time 1 between steps. A consequence of this claim is an

upper bound (of 63) on the expected time for some process to reach its critical region.

For comparison, we note that [?] contains only proof sketches of the results claimed. The

paper [?] contains a proof that Lehmann and Rabin's algorithm satis�es an eventual progress

condition, in the presence of an adversary with complete knowledge of the past; this proof is

carried out as an instance of Zuck and Pnueli's general method for proving liveness properties.

Our results about this protocol can be regarded as a re�nement of the results of Zuck and

Pnueli, in that we obtain explicit constant time bounds rather than liveness properties.

The rest of the paper is organized as follows. Section 2 presents a simpli�ed version of the

model of [?]. Section 3 presents our main proof technique based on time-bound statements.

Section 4 presents the additional proof rules for independence of distinct probabilistic choices.

Section 5 presents the Lehmann-Rabin algorithm. Section 6.2 formalizes the algorithm in

terms of the model of Section 2, and gives an overview of our time bound proof. Section 7

gives some concluding remarks. A separate appendix contains the details of the time bound

proof.

2 The Model

In this section, we present the model that is used to formulate our proof technique. It is a

simpli�ed version of the probabilistic automaton model of [?]. Here we only give the parts of

the model that we need to describe our proof method and its application to the Lehmann-Rabin

algorithm; we refer the reader to the full version of this paper and to [?] for more details.

De�nition 2.1 A probabilistic automaton

2

M consists of four components:

� a set states(M) of states.

� a nonempty set start(M) � states(M) of start states.

2

In [?] the probabilistic automata of this de�nition are called simple probabilistic automata. This is because

that paper also includes the case of randomized adversaries.

2

� an action signature sig(M) = (ext(M); int(M)) where ext(M) and int(M) are disjoint

sets of external and internal actions, respectively.

� a transition relation steps(M) � states(M)�acts(M)�Probs(states(M)), where the set

Probs(states(M)) is the set of probability spaces (
;F ; P) such that
 � states(M) and

F = 2

. The last requirement is needed for technical convenience.

A probabilistic automaton is fully probabilistic if it has a unique start state and from each

state there is at most one step enabled.

Thus, a probabilistic automaton is a state machine with a labeled transition relation such

that the state reached during a step is determined by some probability distribution. For exam-

ple, the process of
ipping a coin is represented by a step labeled with an action flip where

the next state contains the outcome of the coin
ip and is determined by a probability distribu-

tion over the two possible outcomes. A probabilistic automaton also allows nondeterministic

choices over steps. An example of nondeterminism is the choice of which process takes the

next step in a multi-process system.

An execution fragment � of a probabilistic automaton M is a (�nite or in�nite) sequence

of alternating states and actions starting with a state and, if the execution fragment is �nite,

ending in a state, � = s

0

a

1

s

1

a

2

s

2

� � �, where for each i there exists a probability space (
;F ; P)

such that (s

i

; a

i+1

; (
;F ; P)) 2 steps(M) and s

i+1

2
. Denote by fstate(�) the �rst state of

� and, if � is �nite, denote by lstate(�) the last state of �. Furthermore, denote by frag

�

(M)

and frag(M) the sets of �nite and all execution fragments of M , respectively. An execution is

an execution fragment whose �rst state is a start state. Denote by exec

�

(M) and exec(M) the

sets of �nite and all executions of M , respectively. A state s of M is reachable if there exists

a �nite execution ofM that ends in s. Denote by rstates(M) the set of reachable states ofM .

A �nite execution fragment �

1

= s

0

a

1

s

1

� � �a

n

s

n

of M and an execution fragment �

2

=

s

n

a

n+1

s

n+1

� � � of M can be concatenated . In this case the concatenation, written �

1

a�

2

, is

the execution fragment s

0

a

1

s

1

� � �a

n

s

n

a

n+1

s

n+1

� � �. An execution fragment �

1

of M is a pre�x

of an execution fragment �

2

of M , written �

1

� �

2

, if either �

1

= �

2

or �

1

is �nite and there

exists an execution fragment �

0

1

of M such that �

2

= �

1

a�

0

1

.

In order to study the probabilistic behavior of a probabilistic automaton, some mechanism

to remove nondeterminism is necessary. To give an idea of why the nondeterministic behavior

should be removed, consider a probabilistic automaton with three states s

0

; s

1

; s

2

and with two

steps enabled from its start state s

0

; the �rst step moves to state s

1

with probability 1=2 and

to s

2

with probability 1=2; the second step moves to state s

1

with probability 1=3 and to s

2

with probability 2=3. What is the probability of reaching state s

1

? The answer depends on

how the nondeterminism between the two steps is resolved. If the �rst step is chosen, then

the probability of reaching state s

1

is 1=2; if the second step is chosen, then the probability of

reaching state s

1

is 1=3. We call the mechanism that removes the nondeterminism an adversary,

because it is often viewed as trying to thwart the e�orts of a system to reach its goals. In

distributed systems the adversary is often called the scheduler , because its main job may be

to decide which process should take the next step.

3

De�nition 2.2 An adversary for a probabilistic automatonM is a function A taking a �nite

execution fragment ofM and giving back either nothing (represented as �) or one of the enabled

steps of M if there are any. Denote the set of adversaries for M by Advs

M

3

.

Once an adversary is chosen, a probabilistic automaton can run under the control of the

chosen adversary. The result of the interaction is called an execution automaton. The de�nition

of an execution automaton, given below, is rather complicated because an execution automaton

must contain all the information about the di�erent choices of the adversary, and thus the states

of an execution automaton must contain the complete history of a probabilistic automaton.

Note that there are no nondeterministic choices left in an execution automaton.

De�nition 2.3 An execution automaton H of a probabilistic automaton M is a fully proba-

bilistic automaton such that

1. states(H) � frag

�

(M).

2. for each step (�; a; (
;F ; P)) of H there is a step (lstate(�); a; (

0

;F

0

; P

0

)) of M , called

the corresponding step, such that
 = f�asjs 2

0

g and P

0

[�as] = P [s] for each s 2

0

.

3. each state of H is reachable, i.e., for each � 2 states(H) there exists an execution of H

leading to state �.

De�nition 2.4 Given a probabilistic automatonM , an adversary A 2 Advs

M

, and an execu-

tion fragment � 2 frag

�

(M), the execution H(M;A; �) of M under adversary A with starting

fragment � is the execution automaton ofM whose start state is � and such that for each step

(�

0

; a; (
;F ; P)) 2 steps(H(M;A; �)), its corresponding step is the step A(�

0

).

Given an execution automaton H , an event is expressed by means of a set of maximal

executions of H , where a maximal execution of H is either in�nite, or it is �nite and its last

state does not enable any step in H . For example, the event \eventually action a occurs" is the

set of maximal executions of H where action a does occur. A more formal de�nition follows.

The sample space

H

is the set of maximal executions of H . The �-algebra F

H

is the smallest

�-algebra that contains the set of rectangles R

�

, consisting of the executions of

H

having �

as a pre�x

4

. The probability measure P

H

is the unique extension of the probability measure

de�ned on rectangles as follows: P

H

[R

�

] is the product of the probabilities of each step of H

generating �. In [?] it is shown that there is a unique probability measure having the property

above, and thus (

H

;F

H

; P

H

) is a well de�ned probability space. For the rest of this abstract

we do not need to refer to this formal de�nition any more.

Events of F

H

are not su�cient for the analysis of a probabilistic automaton. Events are

de�ned over execution automata, but a probabilistic automaton may generate several execution

automata depending on the adversary it interacts with. Thus a more general notion of event

is needed that can deal with all execution automata. Speci�c examples are given in Section 3.

3

In [?] the adversaries of this de�nition are denoted by DAdvs

M

, where D stands for Deterministic. The

adversaries of [?] are allowed to use randomness.

4

Note that a rectangle R

�

can be used to express the fact that the �nite execution � occurs.

4

De�nition 2.5 An event schema e for a probabilistic automaton M is a function associating

an event of F

H

with each execution automaton H of M .

We now discuss brie
y a simple way to handle time within probabilistic automata. The

idea is to add a time component to the states of a probabilistic automaton, to assume that

the time at a start state is 0, to add a special non-visible action � modeling the passage of

time, and to add arbitrary time passage steps to each state. A time passage step should be

non-probabilistic and should change only the time component of a state. This construction is

called the patient construction in [?,?,?]. The reader interested in a more general extension

to timed models is referred to [?].

We close this section with one �nal de�nition. Our time bound property for the Lehmann-

Rabin algorithm states that if some process is in its trying region, then no matter how the

steps of the system are scheduled, some process enters its critical region within time t with

probability at least p. However, this claim can only be valid if each process has su�ciently

frequent chances to perform a step of its local program. Thus, we need a way to restrict the

set of adversaries for a probabilistic automaton. The following de�nition provides a general

way of doing this.

De�nition 2.6 An adversary schema for a probabilistic automaton M , denoted by Advs, is

a subset of Advs

M

.

3 The Proof Method

In this section, we introduce our key statement U

t

�!

p

Advs

U

0

and the composability theorem,

which is our main theorem about the proof method.

The meaning of the statement U

t

�!

p

Advs

U

0

is that, starting from any state of U and under

any adversary A of Advs, the probability of reaching a state of U

0

within time t is at least p.

The su�x Advs is omitted whenever we think it is clear from the context.

De�nition 3.1 Let e

U

0

;t

be the event schema that, applied to an execution automaton H ,

returns the set of maximal executions � of H where a state from U

0

is reached in some

state of � within time t. Then U

t

�!

p

Advs

U

0

i� for each s 2 U and each A 2 Advs,

P

H(M;A;s)

[e

U

0

;t

(H(M;A; s))]� p.

Proposition 3.2 Let U; U

0

; U

00

be sets of states of a probabilistic automaton M .

If U

t

�!

p

U

0

, then U [U

00

t

�!

p

U

0

[U

00

.

In order to compose time bound statements, we need a restriction for adversary schemas

stating that the power of the adversary schema is not reduced if a pre�x of the past history of

the execution is not known. Most adversary schemas that appear in the literature satisfy this

restriction.

5

De�nition 3.3 An adversary schema Advs for a probabilistic automatonM is execution closed

if, for each A 2 Advs and each �nite execution fragment � 2 frag

�

(M), there exists an

adversary A

0

2 Advs such that for each execution fragment �

0

2 frag

�

(M) with lstate(�) =

fstate(�

0

), A

0

(�

0

) = A(�a�

0

).

Theorem 3.4 Let Advs be an execution closed adversary schema for a probabilistic timed

automaton M , and let U; U

0

; U

00

be sets of states of M .

If U

t

1

�!

p

1

Advs

U

0

and U

0

t

2

�!

p

2

Advs

U

00

, then U

t

1

+t

2

�!

p

1

p

2

Advs

U

00

.

Proof sketch. Consider an adversary A 2 Advs that acts on M starting from a state s of

U . The execution automaton H(M;A; s) contains executions where a state from U

0

is reached

within time t

1

. Consider one of those executions � and consider the part H of H(M;A; s)

after the �rst occurrence of a state from U

0

in �. The key idea of the proof is to use execution

closure of Advs to show that there is an adversary that generates H , to use U

0

t

2

�!

p

2

Advs

U

00

to

show that in H a state from U

00

is reached within time t

2

with probability at least p

2

, and to

integrate this last result in the computation of the probability of reaching a state from U

00

in

H(M;A; s) within time t

1

+ t

2

.

4 Independence

Example 4.1 Consider any distributed algorithm where each process is allowed to
ip fair

coins. It is common to say \If the next coin
ip of process P yields head and the next coin

ip of process Q yields tail , then some good property � holds." Can we conclude that the

probability for � to hold is 1=4? That is, can we assume that the coin
ips of processes P and Q

are independent? The two coin
ips are indeed independent of each other, but the presence of

non-oblivious adversaries may introduce some dependence. An adversary can schedule process

P to
ip its coin and then schedule process Q only if the coin
ip of process P yielded head .

As a result, if both P and Q
ip a coin, the probability that P yields head and Q yields tail

is 1=2.

Thus, it is necessary to be extremely careful about independence assumptions. It is also

important to pay attention to potential ambiguities of informal arguments. For example, does

� hold if process P
ips a coin yielding head and process Q does not
ip any coin? Certainly

such an ambiguity can be avoided by expressing each event in a formal model.

In this section we present two event schemas that play a key role in the detailed time

bound proof for the Lehmann-Rabin algorithm (cf. appendix), and we show some partial

independence properties for them. The �rst event schema is a generalization of the informal

statement of Example 4.1, where a coin
ip is replaced by a generic action a, and where it is

assumed that an event contains all the executions where a is not scheduled; the second event

schema is used to analyze the outcome of the �rst random draw that occurs among a �xed set

of random draws. A consequence of the partial independence results that we show below is

that under any adversary the property � of Example 4.1 holds with probability at least 1=4.

6

Let (a; U) be a pair consisting of an action ofM and a set of states ofM . The event schema

first(a; U) is the function that, given an execution automaton H , returns the set of maximal

executions of H where either action a does not occur, or action a occurs and the state reached

after the �rst occurrence of a is a state of U . This event schema is used to express properties

like \the i

th

coin yields left". For example a can be flip and U can be the set of states of

M where the result of the coin
ip is left.

Let (a

1

; U

1

); : : : ; (a

n

; U

n

) be a sequence of pairs consisting of an action of M and a set

of states of M such that for each i; j, 1 � i < j � n, a

i

6= a

j

. De�ne the event schema

next((a

1

; U

1

); : : : ; (a

n

; U

n

)) to be the function that applied to an execution automaton H

gives the set of maximal executions of H where either no action from fa

1

; : : : ; a

n

g occurs, or

at least one action from fa

1

; : : : ; a

n

g occurs and, if a

i

is the �rst action that occurs, the state

reached after the �rst occurrence of a

i

is in U

i

. This kind of event schema is used to express

properties like \the �rst coin that is
ipped yields left."

Proposition 4.2 Let H be an execution automaton of a probabilistic automaton M . Further-

more, let (a

1

; U

1

); : : : ; (a

n

; U

n

) be pairs consisting of an action of M and a set of states of M

such that for each i; j, 1 � i < j � n, a

i

6= a

j

. Finally, let p

1

; : : : ; p

n

be real numbers between

0 and 1 such that for each i, 1 � i � n, and each step (s; a; (
;F ; P)) 2 steps(M) with a = a

i

,

the probability P [U

i

\
] is greater than or equal to p

i

, i.e., P [U

i

\
] � p

i

. Then

1. P

H

[(first(a

1

; U

1

) \ � � � \ first(a

n

; U

n

))(H)]� p

1

� � �p

n

,

2. P

H

[next((a

1

; U

1

); : : : ; (a

n

; U

n

))(H)]� min(p

1

; : : : ; p

n

).

5 The Lehmann-Rabin Algorithm

The Lehmann-Rabin algorithm is a randomized algorithm for the Dining Philosophers problem.

This problem involves the allocation of n resources among n competing processes arranged in a

ring. The resources are considered to be interspersed between the processes, and each process

requires both its adjacent resources in order to reach its critical section. All processes are

identical; the algorithm breaks symmetry by using randomization. The algorithm ensures the

required exclusive possession of resources, and also ensures that, with probability 1, some

process is always permitted to make progress into its critical region.

Figure 1 shows the code for a generic process i. The n resources are represented by n shared

variables Res

1

; : : : ;Res

n

, each of which can assume values in ffree; takeng. Each process i ig-

nores its own name, i, and the names, Res

i�1

and Res

i

, of its adjacent resources. However, each

process i is able to refer to its adjacent resources by relative names: Res

(i;left)

is the resource

located to the left (clockwise), and Res

(i;right)

is the resource to the right (counterclockwise)

of i. Each process has a private variable u

i

, which can assume a value in fleft; rightg, and

is used to keep track of the �rst resource to be handled. For notational convenience we de�ne

an operator opp that complements the value of its argument, i.e., opp(right) = left and

opp(left) = right.

7

Shared variables: Res

j

2 ffree; takeng; j = 1; : : : ; n, initially free.

Local variables: u

i

2 fleft; rightg; i = 1; : : : ; n

Code for process i:

0. try ** beginning of Trying Section **

1. < u

i

 random> ** choose left or right with equal probability **

2. < if Res

(i;u

i

)

= free then

Res

(i;u

i

)

:= taken ** pick up �rst resource **

else goto 2. >

3. < if Res

(i;opp(u

i

))

= free then

Res

(i;opp(u

i

))

:= taken; ** pick up second resource **

goto 5. >

4. < Res

(i;u

i

)

:= free; goto 1.> ** put down �rst resource **

5. crit ** end of Trying Section **

** Critical Section **

6. exit ** beginning of Exit Section **

7. < u

i

 left or right ** nondeterministic choice **

Res

(i;opp(u

i

))

:= free > ** put down �rst resources **

8. < Res

(i;u

i

)

:= free > ** put down second resources **

9. rem ** end of Exit Section **

** Remainder Section **

Figure 1: The Lehmann-Rabin algorithm

The atomic actions of the code are individual resource accesses, and they are represented

in the form <atomic-action> in Figure 1. We assume that at most one process has access to

the shared resource at each time.

An informal description of the procedure is \choose a side randomly in each iteration.

Wait for the resource on the chosen side, and, after getting it, just check once for the second

resource. If this check succeeds, then proceed to the critical region. Otherwise, put down the

�rst resource and try again with a new random choice."

Each process exchanges messages with an external user. In its idle state, a process is in its

remainder region R. When triggered by a try message from the user, it enters the competition

to get its resources: we say that it enters its trying region T . When the resources are obtained,

it sends a crit message informing the user of the possession of these resources: we then say

that the process is in its critical region C. When triggered by an exit message from the user,

it begins relinquishing its resources: we then say that the process is in its exit region E. When

the resources are relinquished its sends a rem message to the user and enters its remainder

region.

8

6 Overview of the Proof

In this section, we give our high-level overview of the proof. We �rst introduce some notation,

then sketch the proof strategy at a high level. Details of the proof appear in the Appendix.

6.1 Notation

In this section we de�ne a probabilistic automatonM which describes the system of Section 5.

We assume that process i + 1 is on the right of process i and that resource Res

i

is between

processes i and i + 1. We also identify labels modulo n so that, for instance, process n + 1

coincides with process 1.

A state s of M is a tuple (X

1

; : : : ; X

n

;Res

1

; : : : ;Res

n

; t) containing the local state X

i

of

each process i, the value of each resource Res

i

, and the current time t. Each local state X

i

is a pair (pc

i

; u

i

) consisting of a program counter pc

i

and the local variable u

i

. The program

counter of each process keeps track of the current instruction in the code of Figure 1. Rather

then representing the value of the program counter with a number, we use a more suggestive

notation which is explained in the table below. Also, the execution of each instruction is

represented by an action. Only actions try

i

, crit

i

, rem

i

, exit

i

below are external actions.

Number pc

i

Action name Informal meaning

0 R try

i

Reminder region

1 F flip

i

Ready to Flip

2 W wait

i

Waiting for �rst resource

3 S second

i

Checking for Second resource

4 D drop

i

Dropping �rst resource

5 P crit

i

Pre-critical region

6 C exit

i

Critical region

7 E

F

dropf

i

Exit: drop First resource

8 E

S

drops

i

Exit: drop Second resource

9 E

R

rem

i

Exit: move to Reminder region

The start state ofM assigns the value free to all the shared variables Res

i

, the value R to

each program counter pc

i

, and an arbitrary value to each variable u

i

. The transition relation

of M is derived directly from Figure 1. For example, for each state where pc

i

= F there is an

internal step flip

i

that changes pc

i

into W and assigns left to u

i

with probability 1=2 and

right to u

i

with probability 1=2; from each state where X

i

= (W; left) there is a step wait

i

that does not change the state if Res

(i;left)

= taken, and changes pc

i

into S and Res

(i;left)

into taken if Res

(i;left)

= free; for each state where pc

i

= E

F

there are two steps with action

dropf

i

: one step sets u

i

to right and makes Res

(i;left)

free, and the other step sets u

i

to left

makes Res

(i;right)

free. The two separate steps correspond to a nondeterministic choice that is

left to the adversary. For time passage steps we assume that at any point an arbitrary amount

of time can pass; thus, from each state of M and each positive � there is a time passage step

that increases the time component of � and does not a�ect the rest of the state.

9

The value of each pair X

i

can be represented concisely by the value of pc

i

and an arrow (to

the left or to the right) which describes the value of u

i

. Thus, informally, a process i is in state

S

!

or D

!

(resp. S

or D

) when i is in state S or D while holding its right (resp. left) resource;

process i is in state W

!

(resp. W

) when i is waiting for its right (resp. left) resource to become

free; process i is in state

E

S

!

(resp.

E

S

) when i is in its exit region and it is still holding its

right (resp. left) resource. Sometimes we are interested in sets of pairs; for example, whenever

pc

i

= F the value of u

i

is irrelevant. With the simple value of pc

i

we denote the set of the

two pairs f(pc

i

; left); (pc

i

; right)g. Finally, with the symbol # we denote any pair where

pc

i

2 fW;S;Dg. The arrow notation is used as before.

For each state s = (X

0

; : : : ; X

n�1

;Res

1

; : : : ;Res

n�1

; t) of M we denote by X

i

(s) the pair

X

i

and by Res

i

(s) the value of the shared variable Res

i

in state s. Also, for any set S of

states of a process i, we denote by X

i

2 S, or alternatively X

i

= S the set of states s of M

such that X

i

(s) 2 S. Sometimes we abuse notation in the sense that we write expressions like

X

i

2 fF;Dg with the meaning X

i

2 F [D. Finally, we write X

i

= E for X

i

= fE

F

; E

S

; E

R

g,

and we write X

i

= T for X

i

2 fF;W; S;D; Pg.

A �rst basic lemma states that a reachable state of M is uniquely determined by the local

states its processes and the current time. Based on this lemma, our further speci�cations of

state sets will not refer to the shared variables; however, we consider only reachable states for

the analysis. The proof of the lemma is a standard proof of invariants.

Lemma 6.1 For each reachable state s of M and each i, 1 � i � n, Res

i

= taken i� X

i

(s) 2

fS

!

; D

!

; P; C; E

F

;

E

S

!

g or X

i+1

(s) 2 fS

; D

; P; C; E

F

;

E

S

g. Moreover, for each reachable state

s of M and each i, 1 � i � n, it is not the case that X

i

(s) 2 fS

!

; D

!

; P; C; E

F

;

E

S

!

g and

X

i+1

(s) 2 fS

; D

; P; C; E

F

;

E

S

g, i.e., only one process at a time can hold one resource.

6.2 Proof Sketch

In this section we show that the RL-algorithm guarantees time bounded progress, i.e., that

from every state where some process is in its trying region, some process subsequently enters

its critical region within an expected constant time bound. We assume that each process that

is ready to perform a step does so within time 1: process i is ready to perform a step whenever

it enables an action di�erent from try

i

or exit

i

. Actions try

i

and exit

i

are supposed to be

under the control of the user, and hence, by assumption, under the control of the adversary.

Formally, consider the probabilistic timed automatonM of Section 6.1. De�ne Unit � Time

to be the set of adversaries A for M having the properties that, for every �nite execution

fragment � of M and every execution �

0

of H(M;A; �), 1) the time in �

0

is not bounded and

2) for every process i and every state of �

0

enabling an action of process i di�erent from try

i

and exit

i

, there exists a step in �

0

involving process i within time 1. Then Unit � Time is

execution-closed according to De�nition 3.3. An informal justi�cation of this fact is that the

constraint that each ready process is scheduled within time 1 knowing that �a�

0

has occurred

only reinforces the constraint that each ready process is scheduled within time 1 knowing that

�

0

has occurred. Let

T

4

= fs 2 rstates(M) j 9

i

X

i

(s) 2 fTgg

10

denote the sets of reachable states of M where some process is in its trying region, and let

C

4

= fs 2 rstates(M) j 9

i

X

i

(s) = Cg

denote the sets of reachable states of M where some process is in its critical region. We show

that

T

13

�!

1=8

Unit�Time

C;

i.e., that, starting from any reachable state where some process is in its trying region, for all

the adversaries of Unit � Time, with probability at least 1=8, some process enters its critical

region within time 13. Note that this property is trivially satis�ed if some process is initially

in its critical region.

Our proof is divided into several phases, each one concerned with the property of making

a partial time bounded progress toward a \success state", i.e., a state of C. The sets of states

associated with the di�erent phases are expressed in terms of T ;RT ;F ;G;P ; and C. Here,

RT

4

= fs 2 T j 8

i

X

i

(s) 2 fE

R

; R; Tgg

is the set of states where at least one process is in its trying region and where no process is in

its critical region or holds resources while being in its exit region.

F

4

= fs 2 RT j 9

i

X

i

(s) = Fg

is the set of states of RT where some process is ready to
ip a coin.

P

4

= fs 2 rstates(M) j 9

i

X

i

(s) = Pg

is the sets of reachable states of M where some process is in its pre-critical region. The set

G is the most important for the analysis. It parallels the set of \Good Pairs"in [?] or the set

described in Lemma 4 of [?]. To motivate the de�nition, we de�ne the following notions. We

say that a process i is committed if X

i

2 fW;Sg, and that a process i potentially controls Res

i

(resp. Res

i�1

) if X

i

2 fW

!

; S

!

; D

!

g (resp. X

i

2 fW

; S

; D

g). Informally said, a state in RT

is in G if and only if there is a committed process whose second resource is not potentially

controlled by another process. Such a process is called a good process. Formally,

G

4

= fs 2 RT j 9

i

X

i

(s) 2 fW

; S

g and X

i+1

(s) 2 fE

R

; R; F;

#

!

g; or

X

i

(s) 2 fW

!

; S

!

g and X

i�1

(s) 2 fE

R

; R; F;

#

gg

Reaching a state of G is a substantial progress toward reaching a state of C. Actually, the proof

of Proposition A.11 establishes that, if i a is good process, then, with probability 1/4, one of

the three processes i� 1; i and i+ 1 soon succeeds in getting its two resources. The hard part

is to establish that, with constant probability, within a constant time, G is reached from any

state in T . A close inspection of the proof given in [?] shows that, there, the timed version

of the techniques used is unable to deliver this result. The phases of our proof are formally

described below.

11

T

2

�! RT [C (Proposition A.3),

RT

3

�! F [G [P (Proposition A.15),

F

2

�!

1=2

G [P (Proposition A.14),

G

5

�!

1=4

P (Proposition A.11),

P

1

�! C (Proposition A.1).

The �rst statement states that, within time 2, every process in its exit region relinquishes its

resources. By combining the statements above by means of Proposition 3.2 and Theorem 3.4

we obtain

T

13

�!

1=8

C;

which is the property that was to be proven. Using the results of the proof summary above,

we can furthermore derive a constant upper bound on the expected time required to reach

a state of C when departing from a state of T . Note that, departing from a state in RT ,

with probability at least 1=8, P is reached in time (at most) 10; with probability at most 1=2,

time 5 is spent before failing to reach G [P (\failure at the third arrow"); with probability at

most 7=8, time 10 is spent before failing to reach P (\failure at the fourth arrow"). If failure

occurs, then the state is back into RT . Let V denote a random variable satisfying the following

induction

V = 1=8 � 10 + 1=2 (5+ V

1

) + 3=8 (10+ V

2

) ;

where V

1

and V

2

are random variables having the same distribution as V . The previous

discussion shows that the expected time spent from RT to P is at most E[V]. By taking

expectation in the previous equation, and using that E[V] = E[V

1

] = E[V

2

], we obtain that

E[V] = 60 is an upper bound on the expected time spent fromRT to P , and that, consequently,

the expected time for progress starting from a state of T is at most 63.

7 Concluding Remarks

This paper has presented a formal model and a formal proof technique for the estimation of

time performance of randomized algorithms that run under the control of general classes of

adversaries. The salient aspect of this technique is to prove probabilistic time bounded progress

properties and to compose them by means of a powerful composability theorem. The power

of the proof method has been illustrated by proving a constant upper bound on the expected

time for progress in the Lehmann-Rabin Dining Philosophers algorithm.

We believe that this technique is applicable towards the time analysis of many randomized

protocols. It is desirable that the general model and this technique be used for the analysis of

other algorithms, so that the power of the method can be tested and/or increased by means

of other additional tools. In particular, it is very likely that new event schemas and partial

independence results similar to those of Section 4 can be developed.

The speci�c results about the Lehmann-Rabin Dining Philosophers algorithm can be com-

plemented and extended in many ways. We cite two. First, it would be very satisfying to

12

derive a non trivial lower bound on the time for progress, which should be lower than our

upper bound since the upper bound could be easily improved by means of a �ner analysis.

Second, it would be interesting to consider topologies that are more general than rings.

13

Appendix

A The Detailed Proof

In this appendix we prove the �ve relations used in Section 6.2. However, for the sake of

clarity, we do not prove the relations in the order they were presented. Throughout the proof

we abuse notation by writing events of the kind first(flip

i

; left) meaning the event schema

first(flip

i

; fs 2 states(M) j X

i

(s) = W

g).

Proposition A.1 If some process is in P , then, within time 1, it enters C, i.e.,

P

1

�!

1

C:

Proof. This step corresponds to the action crit: within time 1, process i informs the user

that the critical region is free.

Lemma A.2 If some process is in its Exit region then, within time 3, it will enter R.

Proof. The process needs to take �rst two steps to relinquish its two resources, and then one

step to send a rem message to the user.

Proposition A.3 T

2

�!
RT [C.

Proof. From Lemma A.2 within time 2 every process that begins in E

F

or E

S

relinquishes

its resources. If no process begins in C or enters C in the meantime, then the state reached

at this point is a state of RT ; otherwise, the starting state or the state reached when the �rst

process enters C is a state of C.

We now turn to the proof of G

5

�!

1=4

P . The following lemmas form a detailed cases analysis

of the di�erent situations that can arise in states of G. Informally, each lemma shows that

some event of the form of Proposition 4.2 is a sub-event of the properties of reaching some

other state.

Lemma A.4

1. Assume that X

i�1

2 fE

R

; R; Fg and X

i

= W

. If first(flip

i�1

; left), then, within time

1, either X

i�1

= P or X

i

= S.

2. Assume that X

i�1

= D and X

i

= W

. If first(flip

i�1

; left), then, within time 2, either

X

i�1

= P or X

i

= S.

3. Assume that X

i�1

= S and X

i

= W

. If first(flip

i�1

; left), then, within time 3, either

X

i�1

= P or X

i

= S.

14

4. Assume that X

i�1

= W and X

i

= W

. If first(flip

i�1

; left), then, within time 4,

either X

i�1

= P or X

i

= S.

Proof. The four proofs start in the same way. Let s be a state of M satisfying the respective

properties of items 1 or 2 or 3 or 4 . Let f be an adversary of Unit � Time, and let � be the

execution of M that corresponds to an execution of H(M; fsg; f) where the result of the �rst

coin
ip of process i� 1 is left.

1. By hypothesis, i� 1 does not hold any resource at the beginning of � and has to obtain

Res

i�2

(its left resource) before pursuing Res

i�1

. Within time 1, i takes a step in �. If

i� 1 does not hold Res

i�1

when i takes this step, then i progresses into con�guration S.

If not, it must be the case that i � 1 succeeded in getting it in the meanwhile. But, in

this case, Res

i�1

was the second resource needed by i� 1 and i� 1 therefore entered P .

2. If X

i

= S within time 1, then we are done. Otherwise, after one unit of time, X

i

is still

equal to W

, i.e., X

i

(s

0

) = W

for all states s

0

reached in time 1. However, also process

i� 1 takes a step within time 1. Let � = �

1

a�

2

such that the last step of �

1

is the �rst

step taken by process i� 1. Then X

i�1

(fstate(�

2

)) = F and X

i

(fstate(�

2

)) = W

. Since

process i� 1 did not
ip any coin during �

1

, from the execution closure of Unit � Time

and item 1 we conclude.

3. If X

i

= S within time 1, then we are done. Otherwise, after one unit of time, X

i

is still

equal to W

, i.e., X

i

(s

0

) = W

for all states s

0

reached in time 1. However, also process

i� 1 takes a step within time 1. Let � = �

1

a�

2

such that the last step of �

1

is the �rst

step taken by process i� 1. If X

i�1

(fstate(�

2

)) = P then we are also done. Otherwise it

must be the case that X

i�1

(fstate(�

2

)) = D and X

i

(fstate(�

2

)) = W

. Since process i� 1

did not
ip any coin during �

1

, from the execution closure of Unit � Time and item 2

we conclude.

4. If X

i

= S within time 1, then we are done. Otherwise, after one unit of time, X

i

is still

equal to W

, i.e., X

i

(s

0

) = W

for all states s

0

reached in time 1. However, since within

time 1 process i checks its left resource and fails, process i � 1 gets its right resource

within time 1, and hence reaches at least state S. Let � = �

1

a�

2

where the last step

of �

1

is the �rst step of � leading process i� 1 to state S. Then X

i�1

(fstate(�

2

)) = S

and X

i

(fstate(�

2

)) = W

. Since process i � 1 did not
ip any coin during �

1

, from the

execution closure of Unit � Time and item 3 we conclude.

Lemma A.5 Assume that X

i�1

2 fE

R

; R; Tg and X

i

= W

. If first(flip

i�1

; left), then,

within time 4, either X

i�1

= P or X

i

= S.

Proof. The lemma follows immediately from Lemma A.4 after observing thatX

i�1

2 fE

R

; R; Tg

means X

i�1

2 fE

R

; R; F;W; S;D;Pg.

The next lemma is a useful tool for the proofs of Lemmas A.7, A.8, and A.9.

15

Lemma A.6 Assume that X

i

2 fW

; S

g or X

i

2 fE

R

; R; F; D

g with first(flip

i

; left), and

assume that X

i+1

2 fW

!

; S

!

g or X

i+1

2 fE

R

; R; F; D

!

g with first(flip

i+1

; right). Then the

�rst of the two processes i or i+ 1 testing its second resource enters P after having performed

this test (if this time ever comes).

Proof. By Lemma 6.1 Res

i

is free. Moreover, Res

i

is the second resource needed by both i

and i+ 1. Whichever tests for it �rst gets it and enters P .

Lemma A.7 If X

i

= S

and X

i+1

2 fW

!

; S

!

g then, within time 1, one of the two processes i

or i+ 1 enters P . The same result holds if X

i

2 fW

; S

g and X

i+1

= S

!

.

Proof. Being in state S, process i tests its second resource within time 1. An application of

Lemma A.6 �nishes the proof.

Lemma A.8 Assume that X

i

= S

and X

i+1

2 fE

R

; R; F; D

!

g. If first(flip

i+1

; right),

then, within time 1, one of the two processes i or i + 1 enters P . The same result holds if

X

i

2 fE

R

; R; F;Dg, X

i+1

= S

!

and first(flip

i

; left).

Proof. Being in state S, process i tests its second resource within time 1. An application of

Lemma A.6 �nishes the proof.

Lemma A.9 Assume that X

i�1

2 fE

R

; R; Tg, X

i

= W

, and X

i+1

2 fE

R

; R; F;W

!

; D

!

g. If

first(flip

i�1

; left) and first(flip

i+1

; right), then within time 5 one of the three processes

i� 1, i or i+ 1 enters P .

Proof. Let s be a state of M such that X

i�1

(s) 2 fE

R

; R; Tg, X

i

(s) = W

, and X

i+1

(s) 2

fE

R

; R; F;W

!

; D

!

g. Let f be an adversary of Unit � Time, and let � be the execution ofM that

corresponds to an execution of H(M; fsg; f) where the result of the �rst coin
ip of process

i�1 is left and the result of the �rst coin
ip of process i+1 is right. By Lemma A.5, within

time 4 either process i� 1 reaches con�guration P in � or process i reaches con�guration S

in �. If i� 1 reaches con�guration P , then we are done. If not, then let � = �

1

a�

2

such that

lstate(�

1

) is the �rst state s

0

of � with X

i

(s

0

) = S

. If i + 1 enters P before the end of �

1

,

then we are done. Otherwise, X

i+1

(fstate(�

2

)) is either in fW

!

; S

!

g or it is in fE

R

; R; F; D

!

g

and process i + 1 has not
ipped any coin yet in �. From execution closure of Unit � Time

we can then apply Lemma A.6: within one more time process i tests its second resource and

by Lemma A.6 process i enters P if process i + 1 did not check its second resource in the

meantime. If process i+ 1 checks its second resource before process i does the same, then by

Lemma A.6 process i + 1 enters P . Since process i checks its second resource within time 1,

process i+ 1 enters P within time 1.

Lemma A.10 Assume that X

i

2 fE

R

; R; F;W

; D

g, X

i+1

= W

!

, and X

i+2

2 fE

R

; R; Tg. If

first(flip

i

; left) and first(flip

i+2

; right), then within time 5 one of the three processes i,

i+ 1 or i+ 2, enters P .

16

Proof. The proof is analogous to the one of Lemma A.9. This lemma is essentially the

symmetric case of Lemma A.9.

Proposition A.11 Starting from a global con�guration in G, then, with probability at least

1=4 and within time at most 5, some process enters P . Equivalently:

G

5

�!

1=4

P :

Proof. Lemmas A.7 and A.8 jointly treat the case where X

i

= S

and X

i+1

2 fE

R

; R; F;

#

!

g

and the symmetric case where X

i

2 fE

R

; R; F;

#

g and X

i+1

= S

!

; Lemmas A.9 and A.10

jointly treat the case where X

i

= W

and X

i+1

2 fE

R

; R; F;W

!

; D

!

g and the symmetric case

where X

i

2 fE

R

; R; F;W

; D

g and X

i+1

= W

!

.

Speci�cally, each lemma shows that a compound event of the kind first(flip

i

; x) and

first(flip

j

; y) leads to P . Each of the basic events first(flip

i

; x) has probability 1=2.

From Proposition 4.2 each of the compound events has probability at least 1=4. Thus the

probability of reaching P within time 5 is at least 1=4.

We now turn to F

2

�!

1=2

G [P . The proof is divided in two parts and constitute the global

argument of the proof of progress.

Lemma A.12 Start with a state s of F . If there exists a process i for which X

i

(s) = F and

(X

i�1

; X

i+1

) 6= (

#

!

;

#

), then, with probability at least 1=2 a state of G [P is reached within

time 1.

Proof. If s 2 G [P , then the result is trivial. Let s be a state of F � (G [P) and let i

be such that X

i

(s) = F and (X

i�1

; X

i+1

) 6= (

#

!

;

#

). Assume without loss of generality that

X

i+1

6=

#

, i.e., X

i+1

2 fE

R

; R; F;

#

!

g. The case for X

i�1

6=

#

!

is similar. Furthermore, we can

assume that X

i+1

2 fE

R

; R; F; D

!

g since if X

i+1

2 fW

!

; S

!

g then s is already in G.

We show that the event next((flip

i

; left); (flip

i+1

; right)), which by Proposition 4.2

has probability at least 1=2, leads in time at most 1 to a state of G[P . Let f be an adversary of

Unit � Time, and let � be the execution ofM that corresponds to an execution ofH(M; fsg; f)

where if process i
ips before process i + 1 then process i
ips left, and if process i + 1
ips

before process i then process i+ 1
ips right.

Within time 1, i takes one step and reaches W . Let j 2 fi; i + 1g be the �rst of i and

i + 1 that reaches W and let s

1

be the state reached after the �rst time process j reaches

W . If some process reached P in the meantime, then we are done. Otherwise there are two

cases to consider. If j = i, then, flip

i

gives left and X

i

(s

1

) = W

whereas X

i+1

is (still) in

fE

R

; R; F; D

!

g. Therefore, s

1

2 G. If j = i + 1, then flip

i+1

gives right and X

i+1

(s

1

) = W

!

whereas X

i

(s

1

) is (still) F . Therefore, s

1

2 G.

Lemma A.13 Start with a state s of F . Assume that there exists a process i for which

X

i

(s) = F and for which (X

i�1

(s); X

i+1

(s)) = (

#

!

;

#

). Then, with probability at least 1=2,

within time 2, a state of G [P is reached.

17

Proof. The hypothesis can be summarized into the form (X

i�1

(s); X

i

(s); X

i+1

(s)) = (

#

!

; F;

#

).

Since i�1 and i+1 point in di�erent directions, by moving to the right of i+1 there is a process

k pointing to the left such that process k + 1 either points to the right or is in fE

R

; R; F; Pg,

i.e., X

k

(s) 2 fW

; S

; D

g and X

k+1

(s) 2 fE

R

; R; F;W

!

; S

!

; D

!

; Pg. If X

k

(s) 2 fW

; S

g and

X

k+1

(s) 6= P then s 2 G and we are done; if X

k+1

(s) = P then s 2 P and we are done. Thus,

we can restrict our attention to the case where X

k

(s) = D

.

We show that the event next((flip

k

; left); (flip

k+1

; right)), which by Proposition 4.2

has probability at least 1=2, leads in time at most 2 to G [P . Let f be an adversary of

Unit � Time, and let � be the execution ofM that corresponds to an execution ofH(M; fsg; f)

where if process k
ips before process k + 1 then process k
ips left, and if process k + 1
ips

before process k then process k + 1
ips right.

Within time 2, process k takes at least two steps and hence goes to con�guration W . Let

j 2 fk; k+1g be the �rst of k and k+1 that reachesW and let s

1

be the state reached after the

�rst time process j reaches W . If some process reached P in the meantime, then we are done.

Otherwise there are two cases to consider. If j = k, then, flip

k

gives left and X

k

(s

1

) = W

whereas X

k+1

is (still) in fE

R

; R; F;

#

!

g. Therefore, s

1

2 G. If j = k + 1, then flip

k+1

gives

right and X

k+1

(s

1

) = W

!

whereas X

k

(s

1

) is (still) in fD

; Fg. Therefore, s

1

2 G.

Proposition A.14 Start with a state s of F . Then, with probability at least 1=2, within time

2, a state of G [P is reached. Equivalently:

F

2

�!

1=2

G [P :

Proof. The hypothesis of Lemmas A.12 and A.13 form a partition of F .

Finally, we prove RT

3

�! F [G [P .

Proposition A.15 Starting from a state s of RT , then, within time 3, a state of F [G [P

is reached. Equivalently:

RT

3

�! F [G [P :

Proof. Let s be a state of RT . If s 2 F [G [P , then we are trivially done. Suppose that

s =2 F [G [P . Then in s each process is in fE

R

; R;W; S;Dg and there exists at least process

in fW;S;Dg. Let f be an adversary of Unit � Time, and let � be the execution of M that

corresponds to an execution of H(M; fsg; f).

We �rst argue that within time 1 some process reaches a state of fS;D; Fg in �. This

is trivially true if in state s there is some process in fS;Dg. If this is not the case, then all

processes are either in E

R

or R or W . Within time 1 some process in R or W takes a step.

If the �rst process not in E

R

taking a step started in E

R

or R, then it reaches F and we are

done; if the �rst process taking a step is in W , then it reaches S since in s no resource is held.

Once a process i is in fS;D; Fg, then within two more time units process i reaches either state

F or P , and we are done.

18

