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This paper proposcs a mecthod to cxpand volume data
into the 3D DOG (Difference of Gaussians) functions
by using the frame theory of non-orthogonal wavclets.
The spherically symmetric feature of the 3D DOG func-
tion is suitable for the visualization mcthods bascd on
the volume density projection. Since the DOG func-
tion approximates a V2G (Laplacian of Gaussian) func-
tion, the representation can be considered as a hicrarchy
of the 3D cdges on different scales. Therefore we can
cnhance the edge information at will by blending the
projection images on different scales. Since the wavelet
cocflicicnts have significant valuc where the volume den-
sity changes, we may usc this representation method for
the enhancement of the biomedical features and also can
usc it as a data compression method by neglecting the
insignificant cocflicients. We will apply our represen-
tation mcthod to medical CT volume data and show
the cfficicncy in describing the spatial structure of the
volume.

1 Introduction

As the performance of computed tomography (CT) and
magnctic resonance (MR) scanners advances, volume
data has become widespread in medicine [1]. In the
ficld of computer graphics, various volume visunaliza-
tion methods have been proposed {2]. However, most of
them arc classified into two classes, the surface render-
ing strategy [3] and the density projection strategy [4].
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In the surface rendering strategy, the gcometric model
such as thc 3D contours of the volume arc cxtracted
first, and then rendered by using the conventional poly-
gon rendering technique. However, this strategy repre-
sents only a portion of the volume and can not usc all
of the information which the volume contains. In the
density projection strategy, all of the demsitics of the
voxcls are projected onto the image planc. However,
the overlapping of numerous voxels makes it difficult to
show the spatial structurc of the volume. Thercfore we
need to carcfully adjust the additional paramecters of
cach voxcl, such as the opacity or the color, to enhance
the spatial structure of the volume [3].

In this paper we proposc a mcthod to cxpand vol-
umec data into the multiscale primitives, i.c., 3D DOG
(Difference of Gaussians) [6] functions. Although the
3D DOG function is not an orthonormal function, the
frame theory of the non-orthogonal wavclets makes the
cxpansion possible [7]. The spherically symmectric fea-
turc of the primitives is convenient for the integration
of the volume densitics along a certain line, thercfore
the density projection strategy in our represcentation is
much casier than in the voxcl representation. Further,
the DOG function approximates a VG (Laplacian of
Gaussian) function [6), which is the popular cdge opera-
tor in computer vision ficld, then the representation can
be considered to be a hicrarchy of 3D cdges on different
scales. Conscquently, we can cnhance the spatial struc-
turc of the volume at will by blending the projection
images on different scales. Since the wavelet cocefficients
have significant valuc where the volume density changes,
we may usc this representation method for the enhance-
ment of the biomedical fecatures and can also usc it as a
data compression method by neglecting the insignificant
cocfficients. In the following scctions, we apply our rep-
rescntation method to a medical CT volume data and
show the cfficicncy in describing the spatial structure of
the volume.

2 Nomn-orthogonal Wavelet

Onc-dimensional(1D) wavelet is a family of functions
which is defined by a single mother wavelet ¥(t), the
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dilation paramcter ¢ and the shift parameter b as

".‘;)a,b =a

Wu(f{L—) (a.b € R),

where R denotes the set of real numbers. The necessary

conditions { admissibility condition) for the function mff\
CONQILIONS { Z4MISSWINLY congriaon) 10T TRC IUNCULh Y{T)

arc to convcrgc to zcro at a long way and to have no DC
componcnts. With an appropriate choice of #(t), a and
b, we can make ¥4 3 a frame [7] of L*(R), where L*(R)
dcnotes the sct of measurable and squarc-integrable 1D
functions. The frame is a family of functions for which
there exist positive constants A and B, such that

ANAPSD T vap)*<BIE) (1)

s
a,b

where the symbol {,) denotes the inner product of two
L%(R) functions. A framc {#,;} brings with it a dual
frame {¥a3} and any L?(R) function f(x) can be cx-
panded into ¥4 3 as

f= Z(fz Vap)Vap-
a,b
Even though the dual frame is difficult to find, if A and
B arc closc to cach other, we can closcly approximate
f(x) by using ¥4 as

2 , :
v DI AL ?)
ab

where (4 4 B)/2 is called the redundancy of the frame.
If the two framc bounds arc cqual, A = B, {43} is
called a tight frame. In the special casc of A= B =1,
the tight frame is an orthogonal basis. Even if A and
B arc not closc to cach other, we can cxpand f(z) into
¥a,p With an iterative technique [7] such as

f= lim fx. (3)
N—oo
where

2
fa=fvat g ;.[(I, Va,5) = (FN -1 a,p)Dap-
(4)

3 DOG Wavelet and Blobby Ob-
ject

The author previously described a volume data by an
orthogonal 3D wavclet, however the function shape of
the wavelet was too complicated to develop the cfiicient
visnalization mecthod [9]. In this paper, we renounce the
orthogonality and usc a 3D DOG (Difference of Gaus-
stans) function as a mother wavclet to simplify the visu-
alization. Figurc 1 shows an cxample of 1D DOG func-
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Figure 1: Onc dimensional DOG function. (o7 =
0.70,09 = 1.12).

tion. In the ficld of computer vision, the DOG function
is used to approximate the responsc of the “receptive
ficld” of human visual ncurons. It is also known that
the DOG function closcly approximates the V2@ func-
tion. Since our aim is to use the DOG function as a
primitive form of volume representation, we need to ox-
tend the 1D wavelet theory into 3D. There exist scveral
mcthods to construct multidimensional wavelets: c.g.,
by using the tensor product of 1D wavclets [8, 9], by us-
ing rotation paramcters [10] and by using a spherically
symmetric wavelet [7]. In this paper we usc a spherically
symmetric DOG function,

IR/t _ (21"

_|xl1 /"z 5
% ®)

B(%) =

as a mother wavelet. Equation (3) is cquivalent to a
pair of Blinn’s blobby object [11], which is used to de-
sign both a smooth and complicated object in the ficld
of computer graphics. Conscquently, by defining a 3D
frame

b @ = a25(E=2), er,

. %,b € R%),

a, a

with an appropriate choice of ¢ and b, we can approxi-
matc any volume data V as

mAY (V. 5,5 (6)
5

and can obtain the identical representation with the
Blinn’s blobby objcct. If we choose a = 2! (I € Z), the
framc corresponds to a dyadic multiresolution pyramid
[8, 9]. where Z denotes the sct of integers. And although



(b) Image recon-

{a) Original CT image.

( c) Image reconstructed

Figure 2:
structed after onc iteration.
after 20 iterations.

there are many ways to locate the shift paramcter b in
3D spacc, the multiresolution lattice,

bijee = (24,25, 2'%). (.ik1€2Z) (7)
will be the most natural sclection for cuboidal volume
data. Conscquently, we define the primitive of cach
scale paramcter ! as

a(%) = 273 (27'), (8)
and then expand the volume data V' into the primitives
as

A Y {Vown(® = bijen)én(® = bijna)- (9)

4.kl

V(X) =

The constant A should be determined from the frame
bounds, A and B, as Equation (2).  Although
Daubetchics [7] showed the mcthod to cstimate the
frame bounds of 1D wavclets, its cxtension to 3D is not
casy. Thercfore we will determine the value of A by a
least squarc mcthod in the next scction.
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4 3D DOG Expansion of Vol-
ume Data

Figurc 2(a) is a slicc of a volume data (CThcad) of the
Chapecl Hill Volume Rendering Test Datasct courtesy of
University of North Carolina. This volume data con-
sists of 113 slices of 256x236 X-ray CT images. To
cqualize the resolution in the three directions (width,
hcm‘hf and dr\nf'h\ we reduced the size of cach imase

ht and depth reduced the size of cach image
by using Mallat’s two dimensional wavclet transforms
[8] and then obtained a volume data V of 128% vox-
cls by adding 15 blank images. To cxpand V into the
3D DOG functions, we need to calculate the continuous
inner product

(V. (% — bi jx,0))-
as in Equation (9). Since V is discrete volume data,
we substituted a discrete 3D convolution of V with a
3D kernel, which is the discretization of function 4, for
Equation (10). Although the 3D convolution consumes
much time in general, the usc of a 3D DOG function for
7 reducces this time a great deal. Namely, the 3D DOG
function is defined by the difference of two 3D Gaussian
functions as Equation (3), and cach 3D Gaussian func-
tion can bec scparated into the multiplication of three
1D functions as

(10)

.

_I¢)2 12 2 2 _ 2 2 L2y ,Y
R/ o ot fo? =i o =t e

(11)
Hence Equation (3) can be substituted by six 1D con-
volutions and thc order of the calculation amount is
reduced from AM?® to 6M . where M denotes the extent
of the kernel. For practical calculations, we nced to de-
termine the valuc of oy and oy in Equatlon (3). Marr ct
al. reported that a DOG function closcly approximates
a V2G at the ratio of o2/01 = 1.6 [6]. Since the pur-
posc of this paper is to describe a volume data with the
multiscale 3D cdge primitives, we tacitly assume that
o, = 1.607 in this paper.

We cxpanded the volume data V' by using the valuc
o1 = 0.7. The range of the scale paramecter we used
was 0<I<7 and the kernel extent M was 9 for F = 0
and more for I > 0. The total number of the obtained
non-zero cocfficients was 2,971,734, which was about 1.4
times larger than the number of the voxcls of V. The
calculation time for the cxpansion was 6 minutes and 20
scconds on an HP9000/733 workstation. To reconstruct
the continuous approximation of V from these coctfi-
cients, we need to determine the value of A in Equation
(9). We then gencrated the discrete volume data Vy',
which had the same structurc as V', from the continuous
volume

V(X B jk):

ZZWwi

=014k

b Jkl))Ul(



(b)

Figurc 3: (a) The difference between Figure 2(b) and
2(a). (b) The difference between Figure 2(c) and 2(a).

and dctermined that A = 0.642 by solving the lcast
squarc mcthod,

v = AV

= = 0. (12)

Where the symbol ||V]]® denotes the squared sum of
all of the voxels of V. Figurc 2(b) is the same slice of
AVy as Figurc 2(a). Figurc 3(a) shows the difference
between Figure 2(b) and 2(a). The clear distinction in-
dicates that the approximation of Equation (9) is not
sufficicnt. The rcason for the poor quality of the ap-
proximation is that Equation (2) can not be considered
valid since the frame bounds, A and B, arc not close to
cach other. Although we nced the dual frame for the
complcte expansion, the dual frame is difficult to obtain.
In that casc, we usc the following itcrative mecthod to
make the cxpansion possible by referring to Equation
(3) and (4).

1. Let ¢; j 8, = 0 for every 2,5, k. L.
2. Let ¢/; j g1 = (V.tn(x — by j 1)) for every i, j, k. 1.

3. Reconstruct V' = Eszu Zi,j,k c’,:lj‘k,w'q(ic‘—l-;,-'j,k'l)
and determine A by solving Equation (12).

4. Letc; ;01 =¢i i1+ Acs ;51 for every 2,7, k. L.
VI LN IV I

5. Renew V = V — AV’ and end if ||V])? is sufficiently
small, clsc go to 2.

After 20 itcrations, we reconstructed the continuous ap-
proximation of V from thesc coctlicients as

7
V&) =D cijratn(B—bijea)  (13)

1=0 4,5,k

Figure 2(c) is the same slice of the reconstructed volume
as Figurc 2(b). Figurc 3(b) shows the diffcrence between
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Figurc 4: The variations of the mcan square crrors as
the number of iterations increases(o; = 0.63,0.70,0.73).

Figurc 2(c) and 2(a). No visible diffcrence indicates that
sufficiently good cxpansion of V into 3D DOG functions
was obtained.

We cvaluated the same cxpansions by respectively us-
ing o1 = 0.65 and o7 = 0.75. Figurc 4 shows thc vari-
ations of the mcan squarc crrors between V' oand the
reconstructed volumes as the number of iterations in-
creascs while changing the valuce of 0. Since the fastest
convergence up to 20 iterations occurred at op = 0.70,
hereafter we assume that o7 = 0.70.

5 Visualization of the DOG

Representation

5.1 Reprojection of the Volume Density

The DOG represcentation can be visnalized by simply re-
constructing the discrete volume data from the cquation
(13) and then applying the conventional voxel based
rendering technique [3, 4, 3]. Figure 3 is the cxample
of the volume rendering (3] of the reconstructed voxels.
Howcver, reconstruction of the volume data is rather
cumbersome for visualizing cach primitive in order to
analyze the multiresolutional structurc of the volume.
Since a 3D DOG function is considered to be a pair of
Blinn’s Blobby primitives as mentioned in 3, cquation
(13) can be visualized in primitive order by depicting
the implicit surface of a certain threshold valuc T [12]
as

i

E v E Ci k1 01(X —

1=0 i,k

Bl’,j,k,l) = T.

However, this method needs tremendous rendering time
and docs not visualize the inside structure of the object.



Figure 3: Comparison of the volume rendering images
of the reconstructed volume data: (a).(b) All 2,971,734
primitives were used: (c¢),(d) The significant 136.346
primitives were used.

Then we proposc the reprojection method[13, 14]
which visualizes the inside structurce of our 3D DOG
representation without reconstructing the volume data.
The reprojection method can be considered to be a ray
casting method as illustrated in Figure 6{(a). The irra-
diancc of a pixel P on the image planc, which is placed
in front of the cyc position &, is obtained by the inte-
gration of the densitics of volume,

/ V(®)dt = ZZC,,, kl/ Wy(X—b; jk0)dt. (14)

Jt

I=0 i,j,k
along the ray, .
X = dt+ 6,
where ..
= -0
d= %'—_.'
B - 5|

denotes the unit direction vector of the ray. From Equa-
tion (3) and (8), Equation (14) is rewritten to

/ " V)it

Jty

7
E Z 2_%1(7,"]',&1{1(5(‘, Si,j,k,l: l, 0.70)

1=0 1,j,k
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Bounding Box

Figurc 6: The volume density reprojection method.

13 - <
- (1-6) I(x,b,-,j,kvl.,l.,l.12)}, (10)

where

t2 o , ;
I(i bi',j:k,lt L, 0) = / C—lx~bi'j'b”'2/4laldt' (16)

Jt

Since the integrand of Equation (16) is a spherically
symmetric Gaussian function, which can be separated
as Equation (11), Equation (16) is simplificd to an 1D
integral

= P ; ty—s
IR, By j el o) =e /4 /

Sty —3

e g (17)

in a primitive ceatered coordinate system, z'y’z’, as il-
lustrated in Figurce 6(b). The integral of Equation (17)
is further simplified to

_p'? 1.2
,~= /4te dz’

iy —8
/ e
Sty —~8

{Brf(42) ~ Exf(42)). s<ti<t
= 2o { {Erf(SR)+Ef(42)), ti<s<t,
(Eri(55) - Erf(55)}, ti<ty<s

where

x "
Erf(;v):/ e tdt
Jo



(a) N = 2971734 (b) N = 136346

Figure 7: Comparison of the reprojection images.

denotes the error function, which is included in the
mathcmatical library of ordinary workstations, and s
and r respectively denote

S =

(b; j0 — 8) - d,

. - e - 2
,’.Z 'Sd — (bi,j,k,l - O)I .

By changing the cxtent of the integration, ¢ and £y,
we can visualize the arbitrary portion of the volumec
data. If we obscrve the entire volume data at a suffi-
cicnt distance from the object, £, and ¢, arc respectively
considered to be —oc and oc, then Equation (17) is still
morc simplificd to

I(x, Bi,j,k,l,l, o) = 210\/7_1-'@""2/4'02_

Figurc 7(a) is the 236x236 rcprojection image of
the volumce data by using all of the 2,971,734 primi-
tives. Since the number of primitives N was so large,
about 2 hours were required to render the image on
an HP9000/735 workstation. However, most of the co-
ctficicnts in Equation (13), 273/%¢; ;1,. arc ncgligible
since the wavelet cocfficients have significant valucs only
where the volume density changes; furthermore. the hu-
man visual system is not scnsitive at the higher spatial
frequencics. Conscquently, we can reduce the rendering
time a grcat dcal by using only the significant prim-
itives. We used the primitives whose cocflicients cx-
ceeded the threshold 731, which was given to cach scale,
as

2_31/26,"]',le > 1.

Figurc 7(b) is the reprojection image of the volume data
using the significant 136,346 primitives. The rendering
time was reduced to 10 minutes and 18 scconds on the
samce workstation while maintaining the quality of the
image. Table 1 shows the valucs of 7; and the numbers
of the primitives V) for cach scale [.
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Table 1: The threshold value 7; and the number of prim-
itives V) for cach scale [.

10T 71 A7 |

It 1 L7 A |
0 | 400 | 109,737
1 | 300 19,086
2 [ 200 6,119
31 200 1,123
4 | 200 188
3 | 100 63
6] 30 24
741 23 4

[ Total [ 136,346 |

5.2 3D Edge Projection

Equation (14) sums up the primitives of all Is. Since
our DOG function closcly approximates a V2G func-
tion, the reprojection image for a particular ! is almost
cquivalent to the 3D cdge projection image of the scale.
Figurc 8 shows the 3D cdge projection images on dif-
ferent scales. At the scale I = 0, fince structures such as
the cdges of bones or teeth arc detected. The more the
scalec paramcter ! increascs, the broader the detected
structures arc. This shows that our DOG representa-
tion consists of the hicrarchy of an object’s 3D cdges on
different scales.

Woe can obtain the cdge enhanced images by defining
the weight parameters

W= ('U."[), Wy, Wy, Wy, Wy, Ws, We, 'll:“;'),

and blending the 3D cdge projection images on different
scalcs as

7

ty
t1

> .H’zCi,j,k,l/ V(X — by jk)dt.

=045k

Figurc 9(a) is an cdge cnhanced image rendered by
using w = (4,3,2,1,1,1,1,1). In contrast to Figurc
7(b), which corresponds to w = (1,1,1,1,1,1,1.1), it
is clearly shown that thc 3D structurcs of higher fre-
quencics arc cnhanced. Although the frequency domain
volume rendcering methods [16, 17] gencrate similar edge
cnhanced images, our mcthod is suitable for the partial
cnhancement of the cdge information. Figurc 9(b) is an
cdge ecnhanced image rendered by using a bounding box
which is smaller than the size of the head. Figure 9(c)
is the blended image of Figure 7(b) and 9(b). In this
manncr, we can cnhance the arbitrary portion of the
volume data.
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Figurc 8: The 3D cdge projection images on different scale.

6 Conclusions

We have proposed a volume representation method by
cxpanding volume data into 3D DOG primitives. Be-
causc of the featurc of the 3D Gaussian functions, the
perspective projection of our volume representation was
calculated much casicr than that of the conventional
voxel representation. Specifically, our method describes
the volume by spherically symmetric continnous func-
tions, so we do not nced to be concerned with cither the
dircctions or the discontinuitics which arisc from the cu-
bic shapes of the voxels. By neglecting the insignificant
coctlicicnts, we were able to reduce the number of prim-
itives a great dcal without spoiling the quality of the
reprojection image. Also, since the DOG function ap-
proximates a V2G function, we were able to enhance
the 3D cdge information at will by simply adjusting the
weight paramcter which was given to cach scale. We
can cxpect to usc this enhancement for medical diag-
nostics. Further, since we were able to construct the
3D wavclets by the pair of spherically symmetric func-
tions, we may also cxpect to usc this method for the
automatic gencration of Blinn’s blobby objects [13] and
other blobby objccts, such as mctaballs [18] and soft
objects [19]. Since the wavelets have no DC compo-
nents in general, the average value of the reconstructed
volume reduccs to zcro. This problem may be avoided

by approximating the volume by a single function, c.g.
Gaussian, in advancc and then cxpanding the rest of the
volume by the wavclets.

Although the DOG representation simplified the pro-
jection calculations of the volume densitics, the render-
ing times were still long compared with conventional
voxcl based methods. To reduce the rendering time, we
may usc the splatting method [20] in an orthographic
view. In our rcpresentation the footprint will become
circularly symmetric and invariant to thc object’s ro-
tation, thercforc we only nced to preparc scveral foot-
prints for different scales in advance. Parallelism of our
mcthod may also be possible. We can apply both pix-
clwisc and primitivewisc parallclism. We look forward
to our mcthod being comparable to the voxel represen-
tation in terms of rendering speed.
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