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Abstract 

This paper proposes a method to expand volume data 
into the 3D DOG (D#wence of Gaz~~s&ns) functions 
by using the frame theory of non-orthogonal wavclcts. 
The spherically symmetric fcaturc of the 3D DOG fnnc- 
tion is suitable for the visualization methods based on 
the volume density projection. Since the DOG func- 
tion approximates a V”G (Laplacian of Gaussian) fnnc- 
tion, the rcprcscntation can bc consiclcrcd as a hierarchy 
of the 3D cclgcs on diffcrcnt scales. Thcrcforc WC can 
cnhancc the cdgc information at will by blending the 
projection images on cliffcrcnt scales. Since the wavclct 
cocfficicnts have significant value whcrc the volume dcn- 
sity changes, WC may nsc this rcprcscntation method for 
the cnhanccmcnt of the biomedical fcaturcs and also can 
WC it as a data compression method by ncglccting the 
insignificant coctficicnts. WC will apply onr rcprcscn- 
tation method to medical CT volume data and show 
the cfficicncy in &scribing the spatial structnrc of the 
volume. 

1 Introduction 

,4s the pcrformancc of computed tomography (CT) and 
magnetic rcsonancc (MR) scanners advances, volume 
data has bccomc wiclcsprcad in mcclicinc [l]. In the 
field of computer graphics, various volume visualiza- 
tion methods have been proposccl [2]. Howcvcr: most of 
them arc classified into two classes, the surface rcndcr- 
ing strategy [3] and the clcnsity projection strategy [4]. 
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In the surface rcndcring strategy: the gcomctric model 
such as the 3D contonrs of the volume arc cxtractcd 
first, and then rcndcrcd by using the conventional poly- 
gon rcndcring tcchniquc. Houwcr: this strategy rcprc- 
scnts only a portion of the volume and can not WC all 
of the information which the volume contains. In the 
dcnsitp projection strategy: all of the dcnsitics of the 
voxcls arc projcctcd onto the image plant. Howcvcr, 
the overlapping of nnmcrons voxcls makes it difficult to 
show the spatial structure of the volume. Thcrcforc WC 
need to carcfnlly acljnst the additional paramctcrs of 
each voxcl, such as the opacity or the color, to cnhancc 
the spatial structure of the volume [Z]. 

In this paper WC propose a method to expand vol- 
nmc data into the multiscalc primitives: i.e.: 3D DOG 
(D#crence of Gaussians) [G] functions. Although the 
3D DOG function is not an orthonormal function, the 
frame theory of the non-orthogonal wavclcts makes the 
expansion possible [7]. The spherically symmetric fca- 
turc of the primitives is convcnicnt for the integration 
of the volume clcnsitics along a certain lint, thcrcforc 
the density projection strategy in onr rcprcscntation is 
much casicr than in the voxcl rcprcscntation. Fnrthcr, 
the DOG function approximates a B”G (Laplacian of 
Gaussian) function [G]: which is the popular cdgc opcra- 
tor in computer vision field: then the rcprcscntation can 
bc considcrcd to bc a hierarchy of 3D cdgcs on diffcrcnt 
scales. Conscqucntly, WC can cnhancc the spatial struc- 
turc of the volume at will by blending the projection 
images on cliffcrcnt scales. Since the wavclct cocfficicnts 
have significant value whcrc the volume density changes: 
WC may WC this rcprcscntation method for the cnhancc- 
mcnt of the biomedical fcatnrcs and can also nsc it as a 
data compression method by ncglccting the insignificant 
cocfficicnts. In the following sections, WC apply onr rcp- 
rcscntation method to a medical CT volume data and 
show the cfficicncy in &scribing the spatial structure of 
the volume. 

2 Non-orthogonal Wavelet 

One-dimcnsional(lD) wavelet is a family of functions 
which is dcfincd by a single mother wavclct .+(t): the 
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dilation paramctcr u and the shift paramctcr b as 

Y&b = a-l/“J,( y,: (a: b E R): 

whcrc R dcnotcs the set of real nnmbcrs. The ncccssary 
conditions (admissibility condl:tion) for the function ,$(t) 
arc to convcrgc to zero at a long way and to have no DC 
components. With an appropriate choice of @j(t): CL and 
b: WC can make ,CJ~,~ a fi-amc [7] of L”(R): whcrc L”(R) 
dcnotcs the set of mcasurablc and sqnarc-integrable 1D 
fnnctions. The frame is a family of fnnctions for which 
thcrc exist positive constants 4 and B: such that 

whcrc the symbol (: ) cl cnotcs the inner product of two 
L”(R) functions. A frame { eO,b) brings with it a dud 
j&r&cl {‘$o,b} and any L’(R) function f(z) can bc cx- 
pan&d into ?ba9b as 

Even though the dual frame is difficult to find, if ‘4 and 
B arc close to each other, WC can closely approximate 
f(x) by using $j=,$ as 

whcrc (A + B)/2 is callccl the redvnduncy of the frame. 
If the two frame bounds arc equal, A = BT {‘&,(t,b} is 
called a tight frame. In the special cast of A = 13 = 1: 
the tight frame is an orthogonal basis. Even if .A and 
B arc not close to each other, WC can cxpancl f(s) into 
‘@=,a with an iterative technique [7] such as 

whcrc 

(4) 

3 DOG Wavelet and Blobby Ob- with an appropriate choice of a and bl WC can approxi- 

ject mate any volume data 1’ as 

The anthor previously dcscribcd a volume data by an 
orthogonal 3D wavclct, howcvcr the function shape of 
the wavclct was too complicatccl to dcvclop the cfl’icicnt 
visualization mcthocl [9]. In this paper, WC rcnonncc the 
orthogonality and WC a 3D DOG (D~flerence of Guus- 
siuns) function as a mother wavclct to simplify the visu- 
alization. Figure 1 shows an cxamplc of 1D DOG fnnc- 

(1, b 
(‘3 

and can obtain the identical rcprcscntation with the 
Blinn’s blobby object. If WC choose n = 2’ (I E 2): the 
frame corrcsponcls to a dyadic multircsolntion pyramid 
[8: 91: whcrc 2 dcnotcs the set of intcgcrs. And although 
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Fignrc 1: One dimensional DOG function. ((~1 = 
0.70: Q? = 1.12). 

tion. In the field of computer vision: the DOG fnnctilon 
is used to approximate the rcsponsc of the “rcccptivc 
ficlcl” of human visual neurons. It is also known that 
the DOG function closely approximates the B”G fnnc- 
tion. Since onr aim is to WC the DOG function as a 
primitive form of volnmc rcprcscntation, wc ncccl to cx- 
tend the 1D wavclct theory into 3D. Thcrc exist scvcral 
mcthocls to construct multiclimcnsional wavclcts: c-g.: 
by wing the tensor product of 1D wavclcts [8: 91: by ns- 
ing rotation parameters [lo] and by using a spherically 
symmetric warclct [7]. In this paper WC WC a spherically 
symmetric DOG function, 

as a mother wa\Tclct. Eqnation (5) is cquivalcnt to a 
pair of Blinn’s blobby object [ll]: which is nsccl to dc- 
sign both a smooth and complicatccl object in the field 
of computer graphics. Conscqucntly, by defining a 3D 
frame 

do,,-(2) = a-“/‘,+($): (a E R: 9: b’ E R”): 
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Figure ‘2: (a) Original CT imagc. (b) Image rccon- 
structcd after one iteration. (c) Image rcconstructcd 
after 20 iterations. 

thcrc arc many ways to locate the shift paramctcr g in 
3D space, the multircsolution lattice: 

gi,j,k,l = (2’i, 2*.j: 2’lc): (i: .j: li: 1 E Z) (7) 

will bc the most natural sclcction for cuboiclal volume 
data. Conscqucntly: wc dcfinc the primitive of each 
scale paramctcr 1 as 

and then expand the volume data 1’ into the primitives 
as 

The constant X should bc dctcrmincd from the frame 
bounds, A and B: as Equation (2). Although 
Daubctchics [7] showed the mcthocl to cstimatc the 
frame bounds of 1D wavclcts, its cxtcnsion t,o 3D is not 
easy. Thcrcforc wc will dctcrminc the value of X by a 
least square method in the next section. 

4 3D DOG Expansion of Vol- 
ume Data 

Figure 2(a) is a slice of a volume data (CThcad) of the 
Chapel Hill Volume Rcndcring Test Datasct conrtcsy of 
University of North Carolina. This volume data con- 
sists of 113 slices of 256~2% X-ray CT images. To 
cqualizc the resolution in the three directions (width, 
height and depth), WC rcduccd the size of each image 
by using Mallat’s two-climcnsional wavclct transforms 
[8] and then obtained a volume data 1’ of 128” vox- 
cls by adding 15 blank images. To expand V into the 
3D DOG functions: WC need to calculate the continuous 
inner product 

-+ 
(V ‘$2(x’ - bi,j,k,l)): (10) 

as in Equation (9). Since 1’ is discrctc volume data, 
wc substituted a discrete 3D convolution of V with a 
3D kcrncl, which is the discrctization of function $jl: for 
Equation (10). Although the 3D convolution consumes 
much time in general, the MC of a 3D DOG function for 
C!Q rccluccs this time a great &al. Namcly~ the 3D DOG 
function is dcfincd by the diffcrcncc of two 3D Gaussian 
functions as Equation (5): and each 3D Gaussian func- 
tion can bc scparatcd into the multiplication of three 
1D functions as 

e-(2q’/c7’ = C-12/02C-ySlu’e-r”la’ 
(11) 

Hcncc Equation (5) can bc substituted by six 1D con- 
volutions and the order of the calculation amount is 
reduced from 111” to GM: whcrc M &notes the cxtcnt 
of the kcrncl. For practical calculations: WC need to dc- 
tcrminc the value of cr1 and ~2 in Equation (5). Marr ct 
al. rcportcd that a DOG function closely approximates 
a V2G at the ratio of F~/UI = 1.6 [G]. Since the pnr- 
post of this paper is to clcscribc a volume data with the 
multiscalc 3D cdgc primitives: WC tacitly assume that 
aa = 1.6al in this paper. 

WC cxpandccl the volume data 1’ by using the value 
Cl = 0.7. The range of the scale paramctcr WC usccl 
was 05157 and the kcrncl cxtcnt M was 9 for I = 0 
and more for I > 0. The total number of the obtained 
non-zero cocfficicnts was 2,971,734, which was about 1.4 
times larger than the number of the voxcls of 1’. The 
calculation time for the expansion was 6 minntcs and 20 
seconds on an HP9000/735 workstation. To reconstruct 
the continuous approximation of 1’ from thcsc cocffi- 
cicnts: WC need to dctcrminc the value of X in Equation 
(9). WC then gcncratcd the discrete volume data T/d’: 
which had the same structure as 1’: from the continuous 
volume 

37 



0-4 
0.001 

l-C?-06 
0 2 4 6 8 10 12 14 16 18 20 

Number of iterations 

Figwc 3: (a) The diffcrcncc bctwccn Figure 2(b) and 
2(a). (b) The diffcrcncc bctwccn Figure 2(c) and 2(a). 

Figmc 4: The variations of the mean square errors, as 
the number of iterations incrcascs(al = 0.65: 0.70,0.75). 

and dctcrminccl that X = 0.642 by solving the least 
square method, 

Whcrc the symbol jjV((” dcnotcs the squared sum of 
all of the voxcls of 1’. Figure 2(b) is the same slice of 
ALL’ as Figure 2(a). Figure 3(a) shows the diffcrcncc 
bctwccn Figure 2(b) and 2(a). The clear distinction in- 
dicates that the approximation of Equation (9) is not 
sufIicicnt. The reason for the poor quality of the ap- 
proximation is that Equation (2) can not bc considcrcd 
valid since the frame bounds: A and B: arc not close to 
each other. Although WC need the dual frame ,for the 
complctc expansion, the clual frame is difficult to obtain. 
In that cast, WC USC the following iterative method to 
make the expansion possible by rcfcrring to Equation 
(3) and (4). 

1. Let Ci,j,k,l = 0 for cvcry i:.j: b: 1. 

2. LCt C'i,j,k,[ 
+ 

= (V: ,T&(x - bi,j,k,l)) for cvcry i:.i: li: 1. 

3. Reconstruct V’ = C:=” Ci,j,k C'i,j,k,l'~Z(~--;i,j,k,Z) 

and dctcrminc X by solving Equation (12). 

4. LCt Ci,j,k,l = Ci,j,k,l + XC'i,j,k,l for cvcry i:.i: k: 1. 

5. Rcncw V = I/- XV’ and end if (/V))” is sufficiently 
small, clsc go to 2. 

After 20 iterations, WC rcconstructcd the continuous ap- 
proximation of V from thcsc cocfficicnts as 

V(2) = 2 c Ci,j,k,Z?h(~ - &,j,k,Z)- (13) 
I=0 i,j,k 

Figure 2(c) is the same slice of the rcconstructcd volume 
as Figure 2(b). Figure 3(b) shows the diffcrcncc bctwccn 

Figure 2(c) and 2(a). N o visible diffcrcncc inclicatcs Chat 
sufficiently good expansion of V into 3D DOG functions 
was obtained. 

WC cvaluatcd the same expansions by rcspcctivcly us- 
ing ~1 = 0.65 and u1 = 0.76. Figure 4 shows the vari- 
ations of the mean square errors bctwccn 1’ and the 
rcconstructcd volumes as the nnmbcr of iterations in- 
crcascs while changing the value of ~1. Since the fastest 
convcrgcncc up to 20 iterations occurred at u1 = 0.‘70, 
hcrcaftcr WC assume that u1 = 0.70. 

5 Visualization of the DOlG 
Representation 

5.1 Reprojection of the Volume Density 

The DOG rcprcscntation can bc visualized by simply FC- 
constructing the discrctc volume data from the cquati’on 
(13) and then applying the conventional voxcl bawd 
rcnclcring tcchniquc [3: 4: 51. Figure 5 is the cxamplc 
of the volume rcnclcring [5] of the rcconstructcd voxcls. 
Howcvcr: reconstruction of the volume data is rather 
cumbcrsomc for visualizing each primitive in or&r to 
analpzc the multircsolutional strncturc of the volume. 
Since a 3D DOG function is considcrcd to bc a pair of 
Blinn’s Blobby primitives as mcntioncd in 3: cqnation 
(13) can bc visualizccl in primitive order by depicting 
the implicit surface of a certain threshold value T [12] 
as 

i 

C C ‘G,j,k,Z$‘l(S - Gi,j,k,l) = T. 
kll i,j,k 

However: this method needs trcmcndous rcndcring time 
and dots not visualize the inside structure of the object. 
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Figure G: The volume density rcprojcction method. 

Figure 5: Comparison of the volume rcndcring images 
of the rcconstructcd volume data: (a),(b) 411 2,971,734 
primitives wcrc used; (c):(d) The significant 136,346 
primitives wcrc used. 

Then WC propose the rcprojcction mcthod[l3, 141 
which viwalizcs the inside structure of our 3D DOG 
rcprcscntation without reconstructing the volnmc data. 
The rcprojcction method can bc considcrcd to bc a ray 
casting method as illustrated in Figure 6(a). The irra- 
diancc of a pixel G on the image plane, which is placed 
in front of the cyc position 6: is obtained by the intc- 
gration of the dcnsitics of volume: 

whcrc 

Since the intcgrand of Equation (16) is a spherically 
symmetric Gaussian function: which can bc scparatcd 
as Equation (ll), Equation (16) is simplified to an 1D 
integral 

along the ray: 
9 = &+o’: 

whcrc 
ii = G-6 

lp’ - 0’1 
dcnotcs the unit direction vector of the ray. From Equa- 
tion (3) and (8): Equation (14) is rcwrittcn to 

/ 

t2 
V(ji)dt 

. t1 
7 

in a primitive ccntcrcd coordinate system: x’;v’z’: as il- 
lustrated in Figure 6(b). The integral of Equation (17) 
is further simplified to 

whcrc 

e -L?“/4’0’&,/ 

{Erf(%$) - Erf(e)}: sgtl<tz 

{Erf(*) + Erf(w)}: tl<s<tZ 

{Erf($$) - Erf(g)}; tl<tz>s 

Erf(;r) = r eetzdt 
I=0 i,j,k 
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Table 1: The thrcsholcl value Tl and the number of prim- 
itives Xl for each scale 1. 

Figure 7: Comparison of the rcprojcction images. 

clcnotcs the error function, which is incluclcd in the 
mathematical library of ordinary workstations.l and s 
and T rcspcctivcly clcnotc 

By changing the cxtcnt of the integration, tl #and tz: 
WC can visualize the arbitrary portion of the ,volumc 
data. If WC obscrvc the cntirc volume data at a suffi- 
cicnt distance from the object, t1 and ts arc rcspcctivcly 
consiclcrcd to bc -cc and cc: then Equation (17) is still 
more simplified to 

Figure 7(a) is the 256x256 rcprojcction image of 
the volume data by using all of the 2,971,734 primi- 
tives. Since the number of primitives N was so large, 
about 2 hours u’crc rcquirccl to rcnclcr the image on 
an HP9000/735 workstation. Howcvcr: most of the co- 
cfficicnts in Equation (15): 2-““Ci,j,k,l: arc ncgligiblc 
since the wavclct cocfficicnts have significant values only 
whcrc the volume density changes; furthcrmorc, the hu- 
man visual system is not scnsitivc at the higher spatial 
frcqucncics. Conscqncntly: WC can rcducc the rendering 
time a great deal by using only the significant prim- 
itivcs. WC used the primitives whose cocfficicnts cx- 
cccclcd the threshold Tl: which was given to each scale, 
as 

Figure 7(b) is the rcprojcction image of the volume data 
using the significant 136:346 primitives. The rendering 
time was rcduccd to 10 minutes and 18 seconds on the 
same workstation while maintaining the quality of the 
image. Table 1 shows the values of Tl and the numbers 
of the primitives Xl for each scale 1. 

c Total [ 136,346 1 

5.2 3D Edge IProjection 

Equation (14) sums up the primitives of all Is. Since 
our DOG function closely approximates a V”G func- 
tion, the rcprojcction image for a particular 1 is almost 
cquivalcnt to the 3D cdgc projection image of the scaic. 
Figure 8 shows the 3D edge projection images on tlif- 
fcrcnt scales. 4t the scale I = 0: tint structures such as 
the cdgcs of bones or teeth arc clctcctcd. The more the 
scale paramctcr 1 incrcascs, the broader the dctcctcd 
structures arc. This shows that our DOG rcprcscnta- 
tion consists of the hierarchy of an object’s 3D cdgcs on 
cliffcrcnt scales. 

WC can obtain the cdgc enhanced images by defining 
the weight paramctcrs 

w = (~U!“:‘u!~:‘u!~:‘u!3:U!4:‘u!5:U!~:U!~): 

and blending the 3D cdgc projection images on diffcrcnt 
scales as 

Figure 9(a) is an cdgc cnhanccd image rcndcrcd ‘by 
using w = (4: 3: 2: 1: 1: 1: 1: 1). In contrast to Figure 
7(b), which corrcsponcls to w = (1: 1: 1: 1: 1: 1: 1,l): it 
is clearly shown that the 3D structures of higher frc- 
qucncics arc cnhanccd. Although the frequency domain 
volume rcndcring mcthocls [16, 171 gcncratc similar cdgc 
cnhanccd images, our method is suitable for the partial 
cnhanccmcnt of the cdgc information. Figure 9(b) is an 
cdgc enhanced image rcndcrcd by using a bounding box 
which is smaller than the size of the head. Figure 9(c) 
is the blcnclcd image of Figure 7(b) ancl 9(b). In this 
manner: WC can cnhancc the arbitrary portion of the 
volume data. 
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(g) I= 6 

6 Conclusions 

WC have proposed a volume rcprcscntation mcthocl by 
expanding volume data into 3D DOG primitives. Bc- 
cause of the fcaturc of the 3D Gaussian functions, the 
pcrspcctirc projection of our volmnc rcprcscntation was 
calcdatccl much casicr than that of the conventional 
voxcl rcprcscntation. Spccificdly, ollr method dcscribcs 
the volmnc by spherically symmetric continuous func- 
tions: so WC do not need to bc conccrnccl with cithcr the 
directions or the discontinuitics which arise from the CII- 
bit shapes of the voxcls. By ncglccting the insignificant 
cocfiicicnts: WC wcrc able to rcducc the number of prim- 
it&s a great deal without spoiling the quality of the 
rcprojcction image. 41~0, since the DOG function ap- 
proximatcs a V”G function, wc wcrc able to cnhancc 
the 3D cdgc information at will by simply adjusting the 
weight paramctcr which was given to each scale. WC 
can expect to WC this cnhanccmcnt for medical diag- 
nostics. Further, since wc wcrc able to construct the 
3D wavclcts by the pair of sphcricallp symmetric func- 
tions, wc may also cxpcct to WC this method for the 
automatic gcncration of Blinn’s blobby objects [15] and 
other blobby objects, such as mctaballs [18] and soft 
objects [19]. S incc the wavclcts have no DC compo- 
nents in general, the avcragc value of the rcconstructcd 
volume rcduccs to zero. This problem may bc avoidccl 

(11) 1 = 7 

Figure 8: The 3D cdgc projection images on different scale. 

by approximating the volume by a single function, c.g. 
Gaussian, in advance and then expanding the rest of the 
volume by the wavclcts. 

Although the DOG rcprcscntation simplified the pro- 
jection calculations of the volume dcnsitics, the rcnclcr- 
ing times wcrc still long compared with conventional 
voxcl based methods. To rcducc the rcndcring time, WC 
may WC the splatting method [20] in an orthographic 
view. In our rcprcscntation the footpad will bccomc 
circularly symmetric and invariant to the object’s ro- 
tation, thcrcforc WC only need to prcparc scvcral foot- 
prints for diffcrcnt scales in advance. Parallelism of our 
method may also bc possible. WC can apply both pix- 
clwisc and primitivcwisc parallelism. WC look forward 
to our method being comparable to the voxcl rcprcscn- 
tation in terms of rendering speed. 
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