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Abstract 
We describe the architecture of a hardware accelerator for 
volume rendering. The system basically consists of four 
VLSI chips and the volume memory and represents a single- 
board solution to the computational challenges of volume 
visualization. It generates arbitrary perspective projections, 
so that walk-through examinations are possible. The classi- 
fication of structures of interest is an integral part of the ren- 
dering pipeline. Image quality is enhanced by providing 
Phong shading, depth-cueing and support for translucency. 
Despite its compactness and algorithmic complexity, the 
system is able to render 2563 data sets at a sustained frame 
generation rate of about 2.5Hz. 

CR Categories and Subject Descriptors: 1.3.1 [Computer 
Graphics]: Hardware Architecture - graphics processors; 
1.3.3 [Computer Graphics]: Picture/Image Generation - 
display algorithms 

Additional Keywords and Phrases: graphics hardware, 
VLSI designs, volume rendering, ray casting 

1 Introduction 
Volume rendering, i.e. the visualization of scalar functions 
of three spatial dimensions, can be so computation intensive 
that even on supercomputers or large workstation networks 
no satisfactory rendering speed is achievable. Therefore, 
scientists have begun to develop special purpose hardware 
systems already in the early 80s [3],[4]. Recent work in this 
area is mainly directed towards maximum rendering speed 
with little or no concern of the costs. For the CUBE archi- 
tecture in its latest version [ 121, the authors claim to achieve 
a frame rate of 25Hz for 5123 data sets. However, the sys- 
tem will fill a complete rack while still requiring tomor- 
row’s technology. Currently under construction is the 
VIRIM system [2], which uses specialized hardware units 
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for rotation and a DSP farm for shading to provide a frame 
rate of IOHz for 2562x128 data sets. Although the authors 
claim to have a scalable architecture, the minimum configu- 
ration consists of 4 large boards holding a total of 64 DSPs. 
Considering the evolution of surface-oriented graphics 
hardware, it is clear to see that those approaches will not 
survive. Leaving the experimental stage, any volume ren- 
dering architecture will have to face the tough requirements 
of the market place and the “pizza-box” sized desktop work- 
station in the user’s mind. The increasing economical and 
social relevance of volume visualization (e.g., in medical 
diagnosis and non-destmctive evaluation) will open up a 
large number of applications where ultimate speed is not at 
premium, but instead the availability of a voxel graphics 
system at each user’s workplace. 
Exploiting the broad scientific success in algorithmic 
research and the advances in VLSI-technology, which 
enable us to construct large memories and fast arithmetic 
units, we therefore focus our work on the design of an inex- 
pensive, compact and powerful hardware accelerator which 
can be attached to or plugged into any standard workstation. 
In our opinion, the requirements for a voxel graphics system 
can be formulated as follows: 
cl 
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interactive to real-time rendering speed, 
low costs and small size, 
hardware support for interactive classification, 
semi-transparent display of structures of interest, 
arbitrary perspective projections allowing walk-through 
examinations, 
freely moveable light source with non-parallel light and 
meaningful images by sophisticated illumination mod- 
els, e.g., Phong shading and depth-cueing. 
the following sections we will discuss the underlying 

algorithms and show how we meet these contradictory 
requirements. Rendering speed and image quality are illus- 
trated with some examples at the end of the paper. 

2 Algorithm 
This architectural approach follows the work of Levoy [lo] 
and Drebin et al. [ 11. The algorithm proposed by Levoy per- 
forms the shading and classification operations on the 
acquired or prepared samples of the data set. For each grid 
point, the local gradient is approximated using the samples 
in the 6-neighborhood. The samples are Phong shaded using 
the gradient as surface normal. Classification assigns the 
samples a certain opacity, which is taken from an opacity 
map using the function value and the gradient magnitude as 
pointers. The results are two new data sets: one holds the 
color of the shaded samples, the other their opacity. For the 
image generation, the ray casting algorithm is performed on 
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both of the data sets. The reconstruction via tri-linear inter- 
polation at the resample locations along a ray accordingly 
operates on colors and opacities. The compositing finally 
sums up the color of all points on a ray in back-to-front 
order according to their opacity to give the pixel color. 
However, the algorithm is not well suited for interactive 
exploration. Any change in classification or shading param- 
eters requires the data set holding the color or opacity to be 
reconstructed. For the visualization, however, we have to go 
through the data set a second time. 
A direct hardware realization would show unnecessary high 
storage costs. Since in-place computation (replacing the 
operands by the results) is not possible, we would have to 
provide memory for the original sample values, their color 
and opacity. Given a data width of 16, 24 and 8 bits, respec- 
tively, the memory would have three times the size of the 
original data set. 
Thus, the algorithm is reorganized to allow an easy hard- 
ware implementation. The ray-casting algorithm is per- 
formed on the original data set. For each resample location, 
a specific set of neighboring samples is read out, from 
which the function value, the local gradient and the gradient 
magnitude are computed. Function value and gradient mag- 
nitude are then used as pointers into several look-up tables, 
which hold the classification transfer function (opacity a), 
the color assignment (RGB) and material properties ((such as 
the specular reflection coefficient k,) for shading. Phong 
shading is then applied to the resample location, and the 
intensities of all points on a ray are then composited in 
front-to-back order according to their opacity. 
Thus, the volume memory must hold only one data set. All 
processing is done on the fly by specialized VLSI units, 
which can ideally be placed into a pipeline. 
Two modes of operation, differing in the way the gradient is 
approximated, can be used: High-Speed Rendering and 
High-Quality Rendering. 

2.1 High-Speed Rendering 

In this mode, the gradient is approximated from the 8 sam- 
ples needed by the tri-linear interpolation. Figure 1 shows a 
volume element which is defined by the eight samples SO..& 
at the corners. The offset of the resample location within the 
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Figure 1: Fast Gradient Computation 
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volume element is given by /x,y,z/. The t&linear interpola- 
tion is decomposed into a sequence of linear interpolations, 

i.e., first the quantities E,..E, are linearly interpolated, from 
which the quantities Fo..F5 are again computed by linear 
interpolations. The de.sired value D and the gradient compo- 
nents G,, G, and G:! at that resample location are then 
approximated by: 
D = F4(1 -z) +F5z and (1) 

G, = F,-F,; Gy = F,-F,; GZ = Fs-F4. (2) 

The memory system (see section 3.1) facilitates the parallel 
access to the 8 corner samples (called an S-set) of any vol- 
ume element, so that all needed quantities for the processing 
of a given resample location are extracted from the data set 
in one single memory access. 

2.2 High-Quality Rendering 

For a more accurate gradient approximation, the samples in 
an extended neighborhood are taken into account. Figure 2 
shows a volume element with a collection of adjacent sam- 
ples. The computation of the function value and the gradient 
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Figure 2: Extended Neighborhood 

components now take place in four steps. First the samples 
labeled S, which bound the volume element holding the ‘res- 
ample location, are fetched from memory and passed to the 
tri-linear interpolation. It is obvious that a memory system 
capable of delivering an S-set in parallel can also provide all 
samples labeled A (an A-set) in a single access. Then, 
together with the previously fetched S-set, all data is avail- 
able to compute the x-components of the gradients at the 
original sample points, i.e.: 
G& = (S,-A&/2, . . . GJ, = (As-S& /2. (3) 

The x-components of the gradients are then @i-linearly 
interpolated at the resample location. The remaining two 
steps refer to the samples labeled B and C, and produce the 
interpolated y- and z-components of the local gradient, 
respectively. 
All together, one resample location requires 4 memory 
accesses, so that High-Quality Rendering runs at apprloxi- 
mately one fourth the speed of the High-Speed mode. 
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3 Hardware Architecture 
The system architecture is a one-to-one mapping of the 
described algorithmic steps to appropriate hardware units. 
The accelerator is organized as a pipeline, which, at peak 
performance, completes the processing of one resample 
location each clock cycle. An overview of the voxel graph- 
ics system, which grew out of our previous work in this area 
[5],[6], is given in Figure 3. 
The Address SeQuencer (ASQ), a VLSI unit, performs the 
ray-casting algorithm. After having obtained all ray parame- 
ters, it subsequently generates all points on that ray, clips 
against clip planes and volume boundaries, computes the 
associated memory addresses and schedules the different 
access types in High-Speed and High-Quality Rendering 
mode. 
The volume memory (VoluMem) is designed to deliver the 
eight samples of any set in parallel. It uses address inter- 
leaving and address pipelining and exploits the Page Mode 
of standard DRAMS to reach a sustained bandwidth of about 
750 MByte/s. 
The Reconstrnctor and Extractor (REX), a VLSI chip, per- 
forms the reconstruction of the scalar function at the resam- 
ple location via n-i-linear interpolation, the gradient 
approximation in both High-Speed and High-Quality Ren- 
dering mode and the gradient magnitude calculation. 
Function value D and gradient magnitude G are then passed 
to several look-up tables: the color (RGB) of a point on a 
ray is derived from its function value, the visibility (opacity 
R) and the appearance (specular reflection coefficient k,) of 
the surface the point lies on are taken from two-dimensional 
look-up tables addressed by D and G. Both the R- and k,- 
functions are stored at a lower resolution and are bi-linearly 
interpolated at the exact position; this allows the use of fast 
but small memory devices. 

resample location, the unrestricted Phong illumination 
model (non-parallel light, perspective projection) is solved. 
Depth-cueing is provided according to the travelling dis- 
tance of the light from the source to the eye. The key idea to 
reach the single-chip target is to transform the operands into 
the logarithm at various places in the computing pipeline, 
thus replacing divisions and multiplications by simple sub- 
tractions and additions, and to backtransform the results into 
the number domain. Provided the logarithm converters are 
compact and fast, significant gains in chip space can be 
achieved. of particular usefulness is the fact that the expo- 
nentiation of the specular term can then be done by a multi- 
plication instead of a table-look-up. The basic macrocell, a 
fast logarithm converter, has been developed and is 
described in [9]. 
The Compositing Unit finally sums up the intensity contri- 
butions of all points on a ray in front-to-back order, and 
passes the pixel color to the framebuffer. Basically this 
VLSI chip is just an arrangement of multiply-and-accumu- 
late pipelines. Additionally, the unit will support the virtual 
integration of surface-oriented objects into the volume data 
set. 
Here we will focus on the front half of the volume graphics 
system: ASQ, VoluMem and REX, which, taken together, 
already represent a very useful voxel graphics subsystem. 
The “back end” of the accelerator, the Phong Shader and the 
Compositing Unit, are still under development and will be 
described in a later document. 

3.1 VoluMem 

We start the detailed description of the hardware units with 
the volume memory, since it is the part which defines the 
performance and the costs of the entire system. 
A data set can have up to 5 123 samples. The coordinates of 
a resample location have a 9 bit integer part and an 8 bit 

The most complex VLSI unit is the Phong Shader. For each fraction: The coordinates (X, XZ) of the original samples 
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Figure 3: Architectural Overview 
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S(i) are 9 bit unsigned integers. 
We define the Reference Point for a given resample loca- 
tion ?;;R = (X,, YR, ZR) by 

s = (P> Q, RI = (I&], LYR]> LZR]) . (4) 

For performance reasons, any set of samples (S-, A-, B-, and 
C-set) relative to a given Reference Point must be obtain- 
able by a single memory access. This requires 8 indepen- 
dent memory banks and a conflict-free distribution function. 
Grouping the samples according to the least significant bits 
(X,Y,Z,) of their coordinates will avoid any access con- 
flicts. The bank number of a given sample is then given by 

P = P#*Po = ZJ*X*9 
the location of a sample within its bank is given by 

‘u = (U, v, w) = (LX/2], LY/2], LZ/2J) . 

(5) 

(6) 

For further performance increase in High-Speed Rendering 
mode, we use address pipelining and apply address inter- 
leaving to each memory bank. Any sample contributes to a 
set of 8 volume elements, what we call its catchment area. 
For the samples of a given memory bank, the catchment 
areas are all non-overlapping. Each memory bank is subdi- 
vided again into 8 memory units, so that adjacent catchment 
areas in each direction have their samples in different mem- 
ory units. In terms of address arithmetic, the samples are 
distributed according to (U, V, W,) = (X,, Y,,ZJ among the 
eight memory units. 
Although the spacing can be arbitrary per ray, we optimize 
the system for the following assumption: 
0 for any point, the next resample location falls into the 

same volume element or one of its 26-neighborh.ood. 
Then we make the following observations: 
0 Any memory unit is either accessed subsequently an 

arbitrary number of times or 
0 at least two accesses refer to other units before the next 

access to this unit can occur. 
In the latter case a memory cycle can take three clock 
cycles, i.e. 50ns at a target clock frequency of 60MHz. This 

is sufficient for the so-called Page Mode of standard 
DRAMS. 
The basic architecture of memory devices is an array of 
storage cells [13]. Any random access to a DRAM device 
takes place in two ste:ps: first, the addressed row (or page) 
must be loaded completely into an internal output register 
(row access), from where the desired data item can be 
accessed in a second step (column access). If the following 
memory cycle refers to the same row, the row access can be 
skipped since the data still exists in the output register (Page 
Mode access). The Page Mode cycle time is about 40ns. 
Thus, the task is to arrange the samples within the memory 
devices so that the Page Mode can be used the most often. 
Data sets of 5123 samples, 16 bits each, require a memory 
capacity of 256MByte. With 16MBit DRAM technology we 
need 128 devices. We use 2Mx8 (2048 rows x 1024 col- 
umns x 8 bits) organized DRAMS, so that each pair of 
devices forms one of 64 memory units. We provide each 
memory unit with address registers and control logic so that 
it can operate independently. Eight such memory units are 
integrated into one Intelligent Memory Module (IMM), of 
which again eight are needed to build the complete volume 
memory. One row across all devices has lMBit, that is 6AK 
samples. Since there are no principal ray directions, we 
place the samples of a 32x64~32 subvolume, called “P- 
block”, into one page. 
If subsequent accesses to the same memory unit occur, how- 
ever, always the same sample is addressed. Placing a fast 
register (a one entry cache) behind each unit avoids any per- 
formance penalty in this case. 
In this way one set of addresses can be issued and one S-set 
is delivered each clock cycle as long as we move around in 
one P-block. 
High-Quality Rendering also benefits from this memory 
architecture. Due to the high interleaving factor and the one- 
entry caches, all the samples of the S-, A-, B- and C-sets can 
be fetched within 4 clock cycles as long as no set is distrib- 
uted across more than one P-block. 
The block diagram of an IMM is shown in Figure 4. F&h 
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-_-------- 
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Figure 4: Intelligent Memory Module 
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clock a new command (row access, read, write, no opera- 
tion, etc.) is written into the bank command register and 
broadcast to the eight units. A Memory Unit Controller 
(MUC), if selected, executes a command immediately after 
receipt. For write cycles, the host is required to place the 
eight samples of an S-set into the bank data registers before 
one write operation can be completed. This can be done 
sequentially or all samples at a time. Assumed there is a 
large Silicon Disk holding a sequence of data sets, one S-set 
can be loaded each clock, giving a load time of about 35ms 
for a 2563 data set. In the case of a read cycle, the sample is 
clocked into the unit data register (the one-entry cache) and 
placed onto the (&i-state) bank data bus the appropriate 
number of times. Due to the strict behavior of the memory 
units, the MUCs can easily be integrated into small EPLDs 
(Erasable Programmable Logic Devices). 

3.2 Address SeQuencer (ASQ) 

A block diagram of the Address SeQuencer is shown in Fig- 
ure 5. ASQ generates the memory addresses for both read 
and write operations. For write cycles, additional synchroni- 
zation mechanisms are needed, which are not described in 
this paper. 
Here we will focus on read cycles, since they are more chal- 
lenging and more relevant for the usefulness of the machine. 
ASQ was designed as a pipelined unit, which processes a 
complete ray autonomously and issues accesses at the maxi- 
mum rate defined by the memory system. 
The host interface is a collection of registers, accepting 
0 rendering mode, clip planes and volume boundaries, set 

up once per frame or session; 

0 the starting point &, s on the ray, the vector AIR to the 
next resample location, the initial distance from the view 
point A, and its increase AA, programmed once per ray. 

CLIP PLANES, VOLUME BOUNDARIES, RAY PARAMETERS 
RENDERING MODE 

BOUNDARY & COORDINATES 

OUTPUT STAGE 
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44++44 
u 

6 ADDRESS 8 
COMMAND WORDS 

Figure 5: ASQ 

2 
XR, A 

The coordinates sequencer is just a set of adders, which can 
generate any sequence of evenly spaced points on a straight 
line. In the High-Quality Rendering mode, the coordinates 
of any resample location are issued four times and tagged as 
an S-, A-, B-, or C-type access, respectively. 
The coordinates are passed to the boundary & clip logic, 
which invalidates the location if the region of interest has 
not been reached yet or terminates the ray if it was left. In 
the latter case the processing of a new ray will be started 
automatically if its parameters are already present in the 
host interface. A FIFO assures that all parameters of a given 
resample location arrive synchronously at the inputs of 
REX. 

The access function a for an S-set defined by a Reference Point (eQ,R) returns thecoordinates of the samples in depen- 
dency of the bank number p: 

r 

CJ = LP/zJ+P, for PO = 0; u = LP/ZJ for P(J = 1 

a:L&3) = V = LQ/2J+Q, for P, = 0; V = LQ/2J for P, = 1 1. (7) 
W = LR/ZJ + R, for Pz = 0; w = Lw2J for Pz = 1 

For an A-set, replace the first line by: 

u = LP/2 J + PO for PO = 0; CJ = (-I)~~+LP/zJ for p. = 1. (8) 

For a B-set, replace the second line by: 

V = LQ/2J + & for PI = 0; V = (-I)eo+LQ/2J for p1 = I 

For a C-set, finally, replace the third line by: 

w = Lw2J+& for pz = 0; w = (-I) R” + LB/2 J for p2 = 1 . 

The address function d transforms the coordinates into 8 linear memory addresses: 

o:;(p) + N(8) = W,,,,(p) x 27+ V,.,,(p) x 2j + U,,,,(p) for Page Mode (column) accesses and 

o:C(p) + N(p) = W,.,@) x 27+ V7 .#) x 24 + U,.,(p) for page (row) accesses. 

Figure 6: Functional Description of the Output Stage 

(9) 

(10) 

(11) 

(12) 
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The scheduler issues and delays accesses according to the 
momentary state of the memory system. As explained in the 
previous section, one access can be initiated each clock as 
long as all samples of the addressed set reside in the same P- 
block, once the appropriate page is loaded. Howevar, if any 
set is spread over multiple P-blocks, a certain subset of 
memory banks is required to load a new page into thieir out- 
put registers. Then the scheduler halts the internal pipeline 
of ASQ, inserts a number of wait-states to finish any pend- 
ing memory cycle, sends a row access command to the 
memory banks in question and issues the next read com- 
mand after two additional wait-states. 
Besides that, the scheduler detects any resample location 
stepping outside the 26-environment of its predecessor. In 
this case the read operations are all random accesses. 
The scheduler also maintains synchronization between the 
different memory banks. There are neither synchronization 
elements between the memory banks nor between the mem- 
ory units; any unit completes a read or write access within a 
fixed period after receipt. 
The output stage finally transforms the coordinates of the 
Reference Point into a set of memory addresses as described 
in Figure 6, using just 6 adders/subtracters (g-bits wide) and 
eight multiplexers. 

3.3 Reconstructor and Extractor (REX) 

Although parts of this unit have already been presented 
[7],[8], we give a short description so that the reader has a 
clear understanding of how we reach the single chip target. 
REX falls into five parts: 
0 the data entry stage, which generates the quantities to be 

@i-linearly interpolated, 
D the hi-linear interpolator, which computes the function 

value D();R) and the gradient &?R), 
0 the gradient magnitude unit and 
0 two FIFO memories to maintain synchronization. 

In High-Speed Rendering mode, the chip accepts one set of 

input parameters { S,..S,, 2~) and produces one set. of out- 

put parameters {D, 2, G} each clock cycle. In High-Qual- 

ity Rendering mode, four clock cycles are needed to enter 

the input vectors {S,..S, j;R} , {A,..A7,jiR} , {B&?,~R} 

and {C,..C&} . 

A block diagram of the chip is given in Figure 7. The data 
entry stage passes the samples of an S-type access unmodi- 
fied to the t&linear interpolator, but stores them in a set of 
input registers. Together with the samples of subsequent A-, 
B- and C-type accesses (if any), it computes the x-, y- and z- 
components of the gradient at the original sample locations 
and feeds them into the t&linear interpolator. Basically, the 
data entry stage consists of a number of registers, 8 subtrac- 
tors and a set of multiplexers. 
The &linear interpolator is a three-layered, straight-for- 
ward arrangement of 15 linear interpolators (LI), which in 
the first layer compute all values on the edges (labeled E,, in 
Figure 1). These quantities are then passed to the second 
layer to produce the quantities named F,,. The third layer 
consists of one LI which computes the reconstructed func- 
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Figure 7: REX 
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tion value or gradient component at the resample location. 
Besides that, there are three subtractors to compute the gm- 
dient components in High-Speed Rendering mode. 

The gradient magnitude unit consists of three square units, a 
triple input adder and a square root unit. All units are pipe- 
lined to reach the clock frequency target. We will explain 
the square root unit in greater detail, which is shown in Fig- 
ure 8. 
The squared gradient length r arrives as a 34 bit unsigned 
number r,,r,,..r, at the inputs. For every two digits of the 
square, the integer part of the square root G = G,,G,,..G, 
has one digit. The most significant bit G16 of the root can be 
calculated from r33,,,32 independently of the other bits. 
Thus: 

Gl6 = r33Vr32' (13) 
16 

a possible remainder Rj3,,,, is given by 

R 
16 33 = l-33 A l-32 and R:; = l-33 A i=32. (14) 

The square root of the binary number r33r32r31r30 is still 

approximated by 2xG16, the remainder R&, is repre- 

sented by R$$‘,,r,,. If we add GIN, the new root is 

2 x G,6+ G,, , and therefore its square is increased by 

4xG16~G,S+G;s. 

So the following relation must be satisfied: 

43..30 -G16++& (1% 

Assuming Cl,=1 requires that 

R;3,,30 2 4 x G,, + 1 . (16) 

Thus, G,, is just the result flag of the above compare opera- 

tion. For G,, = 1 the new remainder Rli.,.30 is given by 

1.5 
R32..30 = 43..30 - ~xG,~-I, (17) 
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Figure 8: Square Root Pipeline 

for G,, = 0 the remainder is left unchanged. This operation 
is repeated for every result bit. Accordingly, the pipeline has 
16 stages. 
In this way, one square root operation is completed every 
clock. The density D and the gradient components travel 
through a FIFO memory and arrive synchronously with the 
gradient magnitude at the outputs. For further processing, 
the parameters of the resample location are then passed to 
the classification, shading and compositing units. REX has 
app. 350 I/O-pins and uses about 175.000 gates. 

4 Image Quality 
A software simulation of the algorithm was written to show 
the differences between the High-Quality (Figure 9) and the 
High-Speed Rendering mode (Figure 10) under worst-case 
conditions. A computer-generated, unfiltered data set of 
2503 samples, containing a discretized sphere of 240 units 
in diameter, was rendered. We used simple thresholding, 
and the rays were terminated after the first encounter of the 
sphere surface. The surface was illuminated using the 
Phong illumination model with 10% ambient, 30% diffuse 
and 60% specular reflected light and the specular exponent 
set to 25. 

5 Performance 
Since the required rendering time for a sequence of perspec- 
tive views is hard to predict, a simulator was written which 
performs the functions of the coordinates sequencer and the 
scheduler within ASQ. Two round-trips around a 2563 data 
set were simulated: for round-trip #l the observer was 
placed at (128, 512*cosa+128, 512*sina+128), for trip #2 
at (362*cosa+128, 362*cosa+128, 512*sina+128). A 
100x100 view plane was located 256 units apart from the 
observer and rendered at a 256= resolution using a stepsize 

Figure 9: High-Quality Rendering Figure 10: High-Speed Rendering 



of 0.95 along each ray. Each round-trip produce,d 360 
frames, and was simulated in High-Speed and High-Quality 
mode. Provided the clock frequency target of 60MHz can be 
reached, which is the upper limit given by the DRAM 
devices, we’ll obtain the following results: 

Average 
Round- Rendering Total Time 

Trip Mode Time per 
Frame 

1 HS 139.5s 0.388s 

2 HS 148.8s 0.413s 

1 HO 801.2s 1.87s 

2 HQ 847.7s 1.8s 

Thus, for example, rendering 10 frames in High-Speed 
mode to find a new viewpoint and one frame in Highi-Qual- 
ity mode afterwards will take roughly 5.75s. 

6 Conclusion and Future Work 
A voxel subsystem, formerly associated with a rack:-based 
system, has now taken shape of a PC slotboard. Adaptive 
refinement [ 1 l] or subsampling during motion can bring the 
frame generation rate for previewing purposes up into the 
real-time range, turning this small system into a very useful 
machine. 
Our short-term research activities are devoted to the design 
of the remaining circuitries, the Phong Shader and the Com- 
positing Unit. In principle, all problems have been solved, 
work must only be done to find the optimal solution and to 
define implementation details. 
The next major effort is dedicated to the definition of paral- 
lelism on system level. Significant speed-up can only be 
achieved by operating multiple units in parallel. However, 
simply duplicating the entire data set (and the memory 
costs, by the way) is definitely not acceptable. In g,eneral, 
the solution will be to distribute certain subcubes of tlhe data 
set among the different units, which process any given ray 
as long as it traverses through their own subcube. On exit, 
each unit assembles a communication packet defining the 
my properties up to this point and sends it to the unit hold- 
ing the subcube the ray is about to enter. Finding the optimal 
granularity is one problem: if the subcubes are too small, 
the communication overhead is the performance bottleneck, 
if the subcubes are too large, an uneven workload may para- 
lyze the system. However, our architecture has a ‘natural” 
granularity: the P-blocks defined by the page size of the 
DRAMS. Crossing a P-block boundary causes a certain 
overhead anyway, and there are chances that assembling a 
communication packet and scheduling a new ray will not 
increase this overhead. Then, a linear speed-up over the 
number of units is achievable. The other problem is that 
samples in the neighborhood of the “last” resample lcocation 
normally reside in other units. Thus, duplicating a certain 
number of layers of the data set might be unavoidable, what 
in turn might complicate the address arithmetic consider- 
ably. 
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