
A Compact Volume Rendering Accelerator
Giinter Knittel, Wolfgang Strakr

WSI I GRIS t

University of Tiibingen, Germany

Abstract
We describe the architecture of a hardware accelerator for
volume rendering. The system basically consists of four
VLSI chips and the volume memory and represents a single-
board solution to the computational challenges of volume
visualization. It generates arbitrary perspective projections,
so that walk-through examinations are possible. The classi-
fication of structures of interest is an integral part of the ren-
dering pipeline. Image quality is enhanced by providing
Phong shading, depth-cueing and support for translucency.
Despite its compactness and algorithmic complexity, the
system is able to render 2563 data sets at a sustained frame
generation rate of about 2.5Hz.

CR Categories and Subject Descriptors: 1.3.1 [Computer
Graphics]: Hardware Architecture - graphics processors;
1.3.3 [Computer Graphics]: Picture/Image Generation -
display algorithms

Additional Keywords and Phrases: graphics hardware,
VLSI designs, volume rendering, ray casting

1 Introduction
Volume rendering, i.e. the visualization of scalar functions
of three spatial dimensions, can be so computation intensive
that even on supercomputers or large workstation networks
no satisfactory rendering speed is achievable. Therefore,
scientists have begun to develop special purpose hardware
systems already in the early 80s [3],[4]. Recent work in this
area is mainly directed towards maximum rendering speed
with little or no concern of the costs. For the CUBE archi-
tecture in its latest version [121, the authors claim to achieve
a frame rate of 25Hz for 5123 data sets. However, the sys-
tem will fill a complete rack while still requiring tomor-
row’s technology. Currently under construction is the
VIRIM system [2], which uses specialized hardware units

tllniversitat Ttibingen
Wilhelm-Schickard-Institut fiir Informatik - Graph&h-Interaktive
Systeme (WSI / GFUS)
Auf der Morgenstelle 10, C9
D-72076 Tubingen, Germany
Phone: ..49 7071 29 5461
FAX: ..49 7071 29 5466
email: [knittel,strasser]@gris.informatik.uni-tuebingen.de

~1887067-365 $00 0 1995 IEEE

for rotation and a DSP farm for shading to provide a frame
rate of IOHz for 2562x128 data sets. Although the authors
claim to have a scalable architecture, the minimum configu-
ration consists of 4 large boards holding a total of 64 DSPs.
Considering the evolution of surface-oriented graphics
hardware, it is clear to see that those approaches will not
survive. Leaving the experimental stage, any volume ren-
dering architecture will have to face the tough requirements
of the market place and the “pizza-box” sized desktop work-
station in the user’s mind. The increasing economical and
social relevance of volume visualization (e.g., in medical
diagnosis and non-destmctive evaluation) will open up a
large number of applications where ultimate speed is not at
premium, but instead the availability of a voxel graphics
system at each user’s workplace.
Exploiting the broad scientific success in algorithmic
research and the advances in VLSI-technology, which
enable us to construct large memories and fast arithmetic
units, we therefore focus our work on the design of an inex-
pensive, compact and powerful hardware accelerator which
can be attached to or plugged into any standard workstation.
In our opinion, the requirements for a voxel graphics system
can be formulated as follows:
cl
13
cl
0
cl

R
cl

In

interactive to real-time rendering speed,
low costs and small size,
hardware support for interactive classification,
semi-transparent display of structures of interest,
arbitrary perspective projections allowing walk-through
examinations,
freely moveable light source with non-parallel light and
meaningful images by sophisticated illumination mod-
els, e.g., Phong shading and depth-cueing.
the following sections we will discuss the underlying

algorithms and show how we meet these contradictory
requirements. Rendering speed and image quality are illus-
trated with some examples at the end of the paper.

2 Algorithm
This architectural approach follows the work of Levoy [lo]
and Drebin et al. [11. The algorithm proposed by Levoy per-
forms the shading and classification operations on the
acquired or prepared samples of the data set. For each grid
point, the local gradient is approximated using the samples
in the 6-neighborhood. The samples are Phong shaded using
the gradient as surface normal. Classification assigns the
samples a certain opacity, which is taken from an opacity
map using the function value and the gradient magnitude as
pointers. The results are two new data sets: one holds the
color of the shaded samples, the other their opacity. For the
image generation, the ray casting algorithm is performed on

67

http://crossmark.crossref.org/dialog/?doi=10.1145%2F197938.197968&domain=pdf&date_stamp=1994-10-17

both of the data sets. The reconstruction via tri-linear inter-
polation at the resample locations along a ray accordingly
operates on colors and opacities. The compositing finally
sums up the color of all points on a ray in back-to-front
order according to their opacity to give the pixel color.
However, the algorithm is not well suited for interactive
exploration. Any change in classification or shading param-
eters requires the data set holding the color or opacity to be
reconstructed. For the visualization, however, we have to go
through the data set a second time.
A direct hardware realization would show unnecessary high
storage costs. Since in-place computation (replacing the
operands by the results) is not possible, we would have to
provide memory for the original sample values, their color
and opacity. Given a data width of 16, 24 and 8 bits, respec-
tively, the memory would have three times the size of the
original data set.
Thus, the algorithm is reorganized to allow an easy hard-
ware implementation. The ray-casting algorithm is per-
formed on the original data set. For each resample location,
a specific set of neighboring samples is read out, from
which the function value, the local gradient and the gradient
magnitude are computed. Function value and gradient mag-
nitude are then used as pointers into several look-up tables,
which hold the classification transfer function (opacity a),
the color assignment (RGB) and material properties ((such as
the specular reflection coefficient k,) for shading. Phong
shading is then applied to the resample location, and the
intensities of all points on a ray are then composited in
front-to-back order according to their opacity.
Thus, the volume memory must hold only one data set. All
processing is done on the fly by specialized VLSI units,
which can ideally be placed into a pipeline.
Two modes of operation, differing in the way the gradient is
approximated, can be used: High-Speed Rendering and
High-Quality Rendering.

2.1 High-Speed Rendering

In this mode, the gradient is approximated from the 8 sam-
ples needed by the tri-linear interpolation. Figure 1 shows a
volume element which is defined by the eight samples SO..&
at the corners. The offset of the resample location within the

-v -u

X
F)Y

l-x 4

Figure 1: Fast Gradient Computation

;r 1 -Y

volume element is given by /x,y,z/. The t&linear interpola-
tion is decomposed into a sequence of linear interpolations,

i.e., first the quantities E,..E, are linearly interpolated, from
which the quantities Fo..F5 are again computed by linear
interpolations. The de.sired value D and the gradient compo-
nents G,, G, and G:! at that resample location are then
approximated by:
D = F4(1 -z) +F5z and (1)

G, = F,-F,; Gy = F,-F,; GZ = Fs-F4. (2)

The memory system (see section 3.1) facilitates the parallel
access to the 8 corner samples (called an S-set) of any vol-
ume element, so that all needed quantities for the processing
of a given resample location are extracted from the data set
in one single memory access.

2.2 High-Quality Rendering

For a more accurate gradient approximation, the samples in
an extended neighborhood are taken into account. Figure 2
shows a volume element with a collection of adjacent sam-
ples. The computation of the function value and the gradient

I 1 1 ‘04
A7 I Sk! /I’ l-i

t

z

WX
Figure 2: Extended Neighborhood

components now take place in four steps. First the samples
labeled S, which bound the volume element holding the ‘res-
ample location, are fetched from memory and passed to the
tri-linear interpolation. It is obvious that a memory system
capable of delivering an S-set in parallel can also provide all
samples labeled A (an A-set) in a single access. Then,
together with the previously fetched S-set, all data is avail-
able to compute the x-components of the gradients at the
original sample points, i.e.:
G& = (S,-A&/2, . . . GJ, = (As-S& /2. (3)

The x-components of the gradients are then @i-linearly
interpolated at the resample location. The remaining two
steps refer to the samples labeled B and C, and produce the
interpolated y- and z-components of the local gradient,
respectively.
All together, one resample location requires 4 memory
accesses, so that High-Quality Rendering runs at apprloxi-
mately one fourth the speed of the High-Speed mode.

68

3 Hardware Architecture
The system architecture is a one-to-one mapping of the
described algorithmic steps to appropriate hardware units.
The accelerator is organized as a pipeline, which, at peak
performance, completes the processing of one resample
location each clock cycle. An overview of the voxel graph-
ics system, which grew out of our previous work in this area
[5],[6], is given in Figure 3.
The Address SeQuencer (ASQ), a VLSI unit, performs the
ray-casting algorithm. After having obtained all ray parame-
ters, it subsequently generates all points on that ray, clips
against clip planes and volume boundaries, computes the
associated memory addresses and schedules the different
access types in High-Speed and High-Quality Rendering
mode.
The volume memory (VoluMem) is designed to deliver the
eight samples of any set in parallel. It uses address inter-
leaving and address pipelining and exploits the Page Mode
of standard DRAMS to reach a sustained bandwidth of about
750 MByte/s.
The Reconstrnctor and Extractor (REX), a VLSI chip, per-
forms the reconstruction of the scalar function at the resam-
ple location via n-i-linear interpolation, the gradient
approximation in both High-Speed and High-Quality Ren-
dering mode and the gradient magnitude calculation.
Function value D and gradient magnitude G are then passed
to several look-up tables: the color (RGB) of a point on a
ray is derived from its function value, the visibility (opacity
R) and the appearance (specular reflection coefficient k,) of
the surface the point lies on are taken from two-dimensional
look-up tables addressed by D and G. Both the R- and k,-
functions are stored at a lower resolution and are bi-linearly
interpolated at the exact position; this allows the use of fast
but small memory devices.

resample location, the unrestricted Phong illumination
model (non-parallel light, perspective projection) is solved.
Depth-cueing is provided according to the travelling dis-
tance of the light from the source to the eye. The key idea to
reach the single-chip target is to transform the operands into
the logarithm at various places in the computing pipeline,
thus replacing divisions and multiplications by simple sub-
tractions and additions, and to backtransform the results into
the number domain. Provided the logarithm converters are
compact and fast, significant gains in chip space can be
achieved. of particular usefulness is the fact that the expo-
nentiation of the specular term can then be done by a multi-
plication instead of a table-look-up. The basic macrocell, a
fast logarithm converter, has been developed and is
described in [9].
The Compositing Unit finally sums up the intensity contri-
butions of all points on a ray in front-to-back order, and
passes the pixel color to the framebuffer. Basically this
VLSI chip is just an arrangement of multiply-and-accumu-
late pipelines. Additionally, the unit will support the virtual
integration of surface-oriented objects into the volume data
set.
Here we will focus on the front half of the volume graphics
system: ASQ, VoluMem and REX, which, taken together,
already represent a very useful voxel graphics subsystem.
The “back end” of the accelerator, the Phong Shader and the
Compositing Unit, are still under development and will be
described in a later document.

3.1 VoluMem

We start the detailed description of the hardware units with
the volume memory, since it is the part which defines the
performance and the costs of the entire system.
A data set can have up to 5 123 samples. The coordinates of
a resample location have a 9 bit integer part and an 8 bit

The most complex VLSI unit is the Phong Shader. For each fraction: The coordinates (X, XZ) of the original samples

RAY PARAMETERS,
CLIP PLANES,

RENDERING MODE

DATA INTERFACE

I

SCREEN PIXEL

8MEMORY 1 1 - * CAklDl ce
ADDRESSES

Figure 3: Architectural Overview

69

S(i) are 9 bit unsigned integers.
We define the Reference Point for a given resample loca-
tion ?;;R = (X,, YR, ZR) by

s = (P> Q, RI = (I&], LYR]> LZR]) . (4)

For performance reasons, any set of samples (S-, A-, B-, and
C-set) relative to a given Reference Point must be obtain-
able by a single memory access. This requires 8 indepen-
dent memory banks and a conflict-free distribution function.
Grouping the samples according to the least significant bits
(X,Y,Z,) of their coordinates will avoid any access con-
flicts. The bank number of a given sample is then given by

P = P#*Po = ZJ*X*9
the location of a sample within its bank is given by

‘u = (U, v, w) = (LX/2], LY/2], LZ/2J) .

(5)

(6)

For further performance increase in High-Speed Rendering
mode, we use address pipelining and apply address inter-
leaving to each memory bank. Any sample contributes to a
set of 8 volume elements, what we call its catchment area.
For the samples of a given memory bank, the catchment
areas are all non-overlapping. Each memory bank is subdi-
vided again into 8 memory units, so that adjacent catchment
areas in each direction have their samples in different mem-
ory units. In terms of address arithmetic, the samples are
distributed according to (U, V, W,) = (X,, Y,,ZJ among the
eight memory units.
Although the spacing can be arbitrary per ray, we optimize
the system for the following assumption:
0 for any point, the next resample location falls into the

same volume element or one of its 26-neighborh.ood.
Then we make the following observations:
0 Any memory unit is either accessed subsequently an

arbitrary number of times or
0 at least two accesses refer to other units before the next

access to this unit can occur.
In the latter case a memory cycle can take three clock
cycles, i.e. 50ns at a target clock frequency of 60MHz. This

is sufficient for the so-called Page Mode of standard
DRAMS.
The basic architecture of memory devices is an array of
storage cells [13]. Any random access to a DRAM device
takes place in two ste:ps: first, the addressed row (or page)
must be loaded completely into an internal output register
(row access), from where the desired data item can be
accessed in a second step (column access). If the following
memory cycle refers to the same row, the row access can be
skipped since the data still exists in the output register (Page
Mode access). The Page Mode cycle time is about 40ns.
Thus, the task is to arrange the samples within the memory
devices so that the Page Mode can be used the most often.
Data sets of 5123 samples, 16 bits each, require a memory
capacity of 256MByte. With 16MBit DRAM technology we
need 128 devices. We use 2Mx8 (2048 rows x 1024 col-
umns x 8 bits) organized DRAMS, so that each pair of
devices forms one of 64 memory units. We provide each
memory unit with address registers and control logic so that
it can operate independently. Eight such memory units are
integrated into one Intelligent Memory Module (IMM), of
which again eight are needed to build the complete volume
memory. One row across all devices has lMBit, that is 6AK
samples. Since there are no principal ray directions, we
place the samples of a 32x64~32 subvolume, called “P-
block”, into one page.
If subsequent accesses to the same memory unit occur, how-
ever, always the same sample is addressed. Placing a fast
register (a one entry cache) behind each unit avoids any per-
formance penalty in this case.
In this way one set of addresses can be issued and one S-set
is delivered each clock cycle as long as we move around in
one P-block.
High-Quality Rendering also benefits from this memory
architecture. Due to the high interleaving factor and the one-
entry caches, all the samples of the S-, A-, B- and C-sets can
be fetched within 4 clock cycles as long as no set is distrib-
uted across more than one P-block.
The block diagram of an IMM is shown in Figure 4. F&h

AND ADDRESS BUS (16 BIT)
-_--------

TO I FROM

BANK DATA BUS (16 BIT)

TO REX

Figure 4: Intelligent Memory Module

70

clock a new command (row access, read, write, no opera-
tion, etc.) is written into the bank command register and
broadcast to the eight units. A Memory Unit Controller
(MUC), if selected, executes a command immediately after
receipt. For write cycles, the host is required to place the
eight samples of an S-set into the bank data registers before
one write operation can be completed. This can be done
sequentially or all samples at a time. Assumed there is a
large Silicon Disk holding a sequence of data sets, one S-set
can be loaded each clock, giving a load time of about 35ms
for a 2563 data set. In the case of a read cycle, the sample is
clocked into the unit data register (the one-entry cache) and
placed onto the (&i-state) bank data bus the appropriate
number of times. Due to the strict behavior of the memory
units, the MUCs can easily be integrated into small EPLDs
(Erasable Programmable Logic Devices).

3.2 Address SeQuencer (ASQ)

A block diagram of the Address SeQuencer is shown in Fig-
ure 5. ASQ generates the memory addresses for both read
and write operations. For write cycles, additional synchroni-
zation mechanisms are needed, which are not described in
this paper.
Here we will focus on read cycles, since they are more chal-
lenging and more relevant for the usefulness of the machine.
ASQ was designed as a pipelined unit, which processes a
complete ray autonomously and issues accesses at the maxi-
mum rate defined by the memory system.
The host interface is a collection of registers, accepting
0 rendering mode, clip planes and volume boundaries, set

up once per frame or session;

0 the starting point &, s on the ray, the vector AIR to the
next resample location, the initial distance from the view
point A, and its increase AA, programmed once per ray.

CLIP PLANES, VOLUME BOUNDARIES, RAY PARAMETERS
RENDERING MODE

BOUNDARY & COORDINATES

OUTPUT STAGE
I

44++44
u

6 ADDRESS 8
COMMAND WORDS

Figure 5: ASQ

2
XR, A

The coordinates sequencer is just a set of adders, which can
generate any sequence of evenly spaced points on a straight
line. In the High-Quality Rendering mode, the coordinates
of any resample location are issued four times and tagged as
an S-, A-, B-, or C-type access, respectively.
The coordinates are passed to the boundary & clip logic,
which invalidates the location if the region of interest has
not been reached yet or terminates the ray if it was left. In
the latter case the processing of a new ray will be started
automatically if its parameters are already present in the
host interface. A FIFO assures that all parameters of a given
resample location arrive synchronously at the inputs of
REX.

The access function a for an S-set defined by a Reference Point (eQ,R) returns thecoordinates of the samples in depen-
dency of the bank number p:

r

CJ = LP/zJ+P, for PO = 0; u = LP/ZJ for P(J = 1

a:L&3) = V = LQ/2J+Q, for P, = 0; V = LQ/2J for P, = 1 1. (7)
W = LR/ZJ + R, for Pz = 0; w = Lw2J for Pz = 1

For an A-set, replace the first line by:

u = LP/2 J + PO for PO = 0; CJ = (-I)~~+LP/zJ for p. = 1. (8)

For a B-set, replace the second line by:

V = LQ/2J + & for PI = 0; V = (-I)eo+LQ/2J for p1 = I

For a C-set, finally, replace the third line by:

w = Lw2J+& for pz = 0; w = (-I) R” + LB/2 J for p2 = 1 .

The address function d transforms the coordinates into 8 linear memory addresses:

o:;(p) + N(8) = W,,,,(p) x 27+ V,.,,(p) x 2j + U,,,,(p) for Page Mode (column) accesses and

o:C(p) + N(p) = W,.,@) x 27+ V7 .#) x 24 + U,.,(p) for page (row) accesses.

Figure 6: Functional Description of the Output Stage

(9)

(10)

(11)

(12)

71

The scheduler issues and delays accesses according to the
momentary state of the memory system. As explained in the
previous section, one access can be initiated each clock as
long as all samples of the addressed set reside in the same P-
block, once the appropriate page is loaded. Howevar, if any
set is spread over multiple P-blocks, a certain subset of
memory banks is required to load a new page into thieir out-
put registers. Then the scheduler halts the internal pipeline
of ASQ, inserts a number of wait-states to finish any pend-
ing memory cycle, sends a row access command to the
memory banks in question and issues the next read com-
mand after two additional wait-states.
Besides that, the scheduler detects any resample location
stepping outside the 26-environment of its predecessor. In
this case the read operations are all random accesses.
The scheduler also maintains synchronization between the
different memory banks. There are neither synchronization
elements between the memory banks nor between the mem-
ory units; any unit completes a read or write access within a
fixed period after receipt.
The output stage finally transforms the coordinates of the
Reference Point into a set of memory addresses as described
in Figure 6, using just 6 adders/subtracters (g-bits wide) and
eight multiplexers.

3.3 Reconstructor and Extractor (REX)

Although parts of this unit have already been presented
[7],[8], we give a short description so that the reader has a
clear understanding of how we reach the single chip target.
REX falls into five parts:
0 the data entry stage, which generates the quantities to be

@i-linearly interpolated,
D the hi-linear interpolator, which computes the function

value D();R) and the gradient &?R),
0 the gradient magnitude unit and
0 two FIFO memories to maintain synchronization.

In High-Speed Rendering mode, the chip accepts one set of

input parameters { S,..S,, 2~) and produces one set. of out-

put parameters {D, 2, G} each clock cycle. In High-Qual-

ity Rendering mode, four clock cycles are needed to enter

the input vectors {S,..S, j;R} , {A,..A7,jiR} , {B&?,~R}

and {C,..C&} .

A block diagram of the chip is given in Figure 7. The data
entry stage passes the samples of an S-type access unmodi-
fied to the t&linear interpolator, but stores them in a set of
input registers. Together with the samples of subsequent A-,
B- and C-type accesses (if any), it computes the x-, y- and z-
components of the gradient at the original sample locations
and feeds them into the t&linear interpolator. Basically, the
data entry stage consists of a number of registers, 8 subtrac-
tors and a set of multiplexers.
The &linear interpolator is a three-layered, straight-for-
ward arrangement of 15 linear interpolators (LI), which in
the first layer compute all values on the edges (labeled E,, in
Figure 1). These quantities are then passed to the second
layer to produce the quantities named F,,. The third layer
consists of one LI which computes the reconstructed func-

FROM ASQ !;AMPLES FROM MEMORY BANKS

A 0 1 2 3 4 5 6 7
I

I DATA ENTRY STAGE

I TRI-LINEAR INTERPOLATOR

D Gz G, G,

Figure 7: REX

G

tion value or gradient component at the resample location.
Besides that, there are three subtractors to compute the gm-
dient components in High-Speed Rendering mode.

The gradient magnitude unit consists of three square units, a
triple input adder and a square root unit. All units are pipe-
lined to reach the clock frequency target. We will explain
the square root unit in greater detail, which is shown in Fig-
ure 8.
The squared gradient length r arrives as a 34 bit unsigned
number r,,r,,..r, at the inputs. For every two digits of the
square, the integer part of the square root G = G,,G,,..G,
has one digit. The most significant bit G16 of the root can be
calculated from r33,,,32 independently of the other bits.
Thus:

Gl6 = r33Vr32' (13)
16

a possible remainder Rj3,,,, is given by

R
16 33 = l-33 A l-32 and R:; = l-33 A i=32. (14)

The square root of the binary number r33r32r31r30 is still

approximated by 2xG16, the remainder R&, is repre-

sented by R$$‘,,r,,. If we add GIN, the new root is

2 x G,6+ G,, , and therefore its square is increased by

4xG16~G,S+G;s.

So the following relation must be satisfied:

43..30 -G16++& (1%

Assuming Cl,=1 requires that

R;3,,30 2 4 x G,, + 1 . (16)

Thus, G,, is just the result flag of the above compare opera-

tion. For G,, = 1 the new remainder Rli.,.30 is given by

1.5
R32..30 = 43..30 - ~xG,~-I, (17)

72

Figure 8: Square Root Pipeline

for G,, = 0 the remainder is left unchanged. This operation
is repeated for every result bit. Accordingly, the pipeline has
16 stages.
In this way, one square root operation is completed every
clock. The density D and the gradient components travel
through a FIFO memory and arrive synchronously with the
gradient magnitude at the outputs. For further processing,
the parameters of the resample location are then passed to
the classification, shading and compositing units. REX has
app. 350 I/O-pins and uses about 175.000 gates.

4 Image Quality
A software simulation of the algorithm was written to show
the differences between the High-Quality (Figure 9) and the
High-Speed Rendering mode (Figure 10) under worst-case
conditions. A computer-generated, unfiltered data set of
2503 samples, containing a discretized sphere of 240 units
in diameter, was rendered. We used simple thresholding,
and the rays were terminated after the first encounter of the
sphere surface. The surface was illuminated using the
Phong illumination model with 10% ambient, 30% diffuse
and 60% specular reflected light and the specular exponent
set to 25.

5 Performance
Since the required rendering time for a sequence of perspec-
tive views is hard to predict, a simulator was written which
performs the functions of the coordinates sequencer and the
scheduler within ASQ. Two round-trips around a 2563 data
set were simulated: for round-trip #l the observer was
placed at (128, 512*cosa+128, 512*sina+128), for trip #2
at (362*cosa+128, 362*cosa+128, 512*sina+128). A
100x100 view plane was located 256 units apart from the
observer and rendered at a 256= resolution using a stepsize

Figure 9: High-Quality Rendering Figure 10: High-Speed Rendering

of 0.95 along each ray. Each round-trip produce,d 360
frames, and was simulated in High-Speed and High-Quality
mode. Provided the clock frequency target of 60MHz can be
reached, which is the upper limit given by the DRAM
devices, we’ll obtain the following results:

Average
Round- Rendering Total Time

Trip Mode Time per
Frame

1 HS 139.5s 0.388s

2 HS 148.8s 0.413s

1 HO 801.2s 1.87s

2 HQ 847.7s 1.8s

Thus, for example, rendering 10 frames in High-Speed
mode to find a new viewpoint and one frame in Highi-Qual-
ity mode afterwards will take roughly 5.75s.

6 Conclusion and Future Work
A voxel subsystem, formerly associated with a rack:-based
system, has now taken shape of a PC slotboard. Adaptive
refinement [1 l] or subsampling during motion can bring the
frame generation rate for previewing purposes up into the
real-time range, turning this small system into a very useful
machine.
Our short-term research activities are devoted to the design
of the remaining circuitries, the Phong Shader and the Com-
positing Unit. In principle, all problems have been solved,
work must only be done to find the optimal solution and to
define implementation details.
The next major effort is dedicated to the definition of paral-
lelism on system level. Significant speed-up can only be
achieved by operating multiple units in parallel. However,
simply duplicating the entire data set (and the memory
costs, by the way) is definitely not acceptable. In g,eneral,
the solution will be to distribute certain subcubes of tlhe data
set among the different units, which process any given ray
as long as it traverses through their own subcube. On exit,
each unit assembles a communication packet defining the
my properties up to this point and sends it to the unit hold-
ing the subcube the ray is about to enter. Finding the optimal
granularity is one problem: if the subcubes are too small,
the communication overhead is the performance bottleneck,
if the subcubes are too large, an uneven workload may para-
lyze the system. However, our architecture has a ‘natural”
granularity: the P-blocks defined by the page size of the
DRAMS. Crossing a P-block boundary causes a certain
overhead anyway, and there are chances that assembling a
communication packet and scheduling a new ray will not
increase this overhead. Then, a linear speed-up over the
number of units is achievable. The other problem is that
samples in the neighborhood of the “last” resample lcocation
normally reside in other units. Thus, duplicating a certain
number of layers of the data set might be unavoidable, what
in turn might complicate the address arithmetic consider-
ably.

74

7 Acknowledgments
Thanks to Reinhard Klein and Andreas Schilling for their
numerous valuable suggestions.

8

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

References
R. A. Drebin, L. Carpenter, P. Hanrahan, “Volume
Rendering”, Computer Graphics, Vol. 22, No. 4, Au-
gust 1988, pages 65-74

T. Giinther, C. Poliwoda, C. Reinhart, J. Hesser, :R.
M%nner, H.-P. Meinzer, H.-J. Baur, “VIRIM: A
Massively Parallel Processor for Real-Time Volume
Visualization in Medicine”, presented at the 9. EUIO-
graphics Hardware Workshop, Oslo, September 12-
13,1994

D. Jack&l and W. Strafler, “Reconstructing Solids
from Tomographic Scans - The PARCUM II System”,
in Advances in Computer Graphics Hardware II, edit-
ed by A.A.M. Kuijk and W. StraBer, Springer-Verlag,
Berlin, 1988, pages 209-227

A. Kaufman, R. Bakalash, D. Cohen and R. Yagel,
“A Survey of Architectures for Volume Rendering”,
IEEE Engineering in Medicine and Biology, Vol. 9,
No. 4, December 1990, pages 18-23

G. Knittel and W. StraBer, “An Accelerator for Vox-
el Graphics”, Proceedings of the 2. ITG/GI Workshop
on Workstations, Hagen, May 24-27, 1993, VDE-Ver-
lag, Berlin, pages 69-78

G. Knittel, “VERVE - Voxel Engine for Real-time Vi-
sualization and Examination”, Computer Graphics
Forum, Vol. 12, No. 3, September 1993, pages 37-4.8

G. Knittel, “A VLSI-Design for fast Vector Normal-
ization”, Proceedings of the 8. Eurographics Hard-
ware Workshop, Barcelona, September 6-7, 1993,
pages 1-14

G. Knittel, “PROVEN - Prompt Vector Normalizer”,
Proceedings of the 6. IEEE International ASIC Con-
ference, Rochester, NY, September 27 - October 1,
1993, pages 112-115

G. Knittel, “A Fast Logarithm Converter”, Procetd-
ings of the 7. IEEE International ASIC Conference,
Rochester, NY, September 19-23, 1994

M. Levoy, “Display of Surfaces from Volume Data”,
IEEE Computer Graphics & Applications, Vol. 8, No.
5, May 1988, pages 29-37

M. Levoy, “Volume Rendering by Adaptive Refine-
ment”, The Visual Computer, Vol. 6, No. 1, February
1990, pages 2-7

H. Pfister and A. Kaufman, “Real-Time Architec-
ture for High-Resolution Volume Visualization”, Pro-
ceedings of the 8. Eurographics Hardware Workshop,
Barcelona, September 6-7, 1993, pages 72-80

B. Prince, “Semiconductor Memories”, Wiley &
Sons, Chichester, 1991, pages 250-255

