
Ada and Hatley-Pirbhai 

Dean Roberts 
Hughes Santa Barbara Research Center 

d.roberts@ieee.org 

Rod Ontjes 
Hughes Santa Barbara Research Center 

Absfracb- This paper will introduce NASA STD 2100. a 
tailomble software documentation standard. This standard is 
tailored by altering the structure of the Software 
Documentation Set. This set is comprised of four parts: 
Management Plan; Product Specification; Assurance and 
Test Procedures; Management, Engineering, and Assurance 
Reports. There is information associated with each one of 
these sections. 

Each one of these sections consists of two parts: Basic 
Information and Data Item Description (DID) specific 
information. Basic Information is the same for all DIDs and 
consists of subjects like the Introduction, Related 
Documents, or Glossary. 

The amount of information present in the DID specific 
information portion tailors the standard for specific projects. 
Chapters in the DID specific information section can 
remain as chapters. as is the case for small projects. or they 
can be “rolled-out” into their own separate volume for larger 
projects. 

Next, the Hatley-Pirbhai method for Structured Systems 
Architecture is introduced as a technology and language 
independent method for developing software. 

Requirements analysis is performed by means of data 
flow diagrams (DFD) and a data dictionary to define the data 
flows. These DFDs can have information notes attached to 
them to facilitate understanding of the design. 

The DFDs are broken down into Process Specifications 
(PSPECs) which define the data lransformations that take 
place within the primitive processes. 

Once the requirements analysis is performed, an 
architecture model is created by allocating processes to 
architecture modules. Because these processes contain the 
requirements, traceability from requirements to design is 
maintained. 

The architecture modules are broken down into a structure 
chart. The “leaves” of the structure chart a described by a 
module specification (MSPEC). The MSPEC can be text. 
graphics. or pseudo-code. The MSPEC also forms the 
foundation for Unit Testing. 

When used with Ada, the units specified by the structure 
chart do not necessarily have a one-to-one correspondence 
with Ada packages. It is preferable to illustrate design 
highlights with the structure chart than to have an obscure 
design but with a nice mapping to Ada. 

COPYRIGHT @ 1994 BY THE AsOM~ON FOR @t4PUTlllG !fACHlNERY, INC 
Permkion to copy withwt fee all or part of this material is granted provided 
that the copies are not made or distributed for direct commercial advane% the 
ACll copyright notice and the tide of the publiion and its date appear, and 
notice is given that the copying is by permission of the Assor&ion for 
Computing f&hinety. To copy otherwise, or to republish, requires a fee 
and/or specific permission. 

0 t 994 ACM o-a979 I -6840/94iooo6 3.50 

A breakdown from context diagram to lowest DFD is 
given. 

Following the introduction of the documentation method 
and the design methodology. an example which employed 
both of these tools is given. The example given is taken 
from the Flight Software of the Tropical Rainfall 
Measuring Mission’s Visible and Infrared Scanner. 

The last item shown is how Ada is mapped onto the 
detailed design portion of the Hatley-Pirbhai structured 
systems architecture methodology. Most commonly. the 
Hatley-Pirbhai structured systems architecture methodology 
is used for the design up to the architecture level but Ada 
specific tools are used for the detailed design, 

The approach taken in this paper differed from that by 
using a strictly Hatley-Pirbhai approach. 

In summation. this paper will introduce a NASA 
software documentation standard which can be tailored to 
many differently sized projects. It will also introduce the 
Hatley-Pirbhai design methodology. This is followed by a 
real-world example of how the documentation standard and 
the design methodology are used. 

INIRODU~ON 

The HatIey-Pirbhai Structured Systems Requirements and 
Structured Systems Architecture[4] methods have found use 
within the aerospace community as a way of developing 
complex systems in a disciplined manner. Many of the 
systems designed using this methodology are software 
systems, and quite often, those software systems employ 
Ada as the language of implementation. 

Additionally. it is increasingly common to find a 
technical documentation standard specified for projects 
performed for the National Aeronautics and Space 
Administration (NASA) or the Department of Defense 
(DOD). In the case of the DOD, the well-known MIL-STD- 
2167A is commonly applied. NASA has used several types 
of standards but recently NASA-STD-2100[9] is being 
specified as the standard of choice. 

This paper is concerned with the implementation of a 
Hatley-Pirbhai based design using Ada as the language and 
NASA-STD-2100-91 as the documentation standard. The 
intent is to show an example of how the Hatley-Pirbhai 
design methodology can be used with Ada. 

The first section of the paper is concerned with 
introducing NASA-STD-2100. This standard has only had a 
formal reference document available since 1991, so it is 
quite possible that many engineers who might need to use 
it have not heard much about its details. The introduction 
will give a brief overview of its main attributes (scalability, 
application to software only. differences from MIL-STD- 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F197978.197983&domain=pdf&date_stamp=1994-07-01


2167) and how it can be used on many different types of 
software projects. 

The next section talks about the Hatley-Pirbhai method 
briefly. and mostly about implementation issues. This 
section is provided to give the reader background into the 
philosophy of implementing a structured systems 
architecture without making this paper a tutorial on the 
Hatley-Pirbhai method. This section includes a discussion 
of what constitutes a “unit”. 

An example follows the Hatley-Pirbhai discussion. This 
example is based upon the flight software written for the 
Tropical Rainfall Measuring Mission’s Visible and Infrared 
Scanner. This example goes from the initial requirements 
analysis to the module specification. It also discusses how 
the various design sections were documented under the 
NASA-2100 standard. Following this is a section that 
discusses how Ada was mapped onto the Hatley-Pirbhai 
design methodology. Mapping Ada onto Hatley-Pirbhai is 
no small task if one wants to stay within the Hatley- 
Pirbhai Structured Systems Architecture approach. The 
most common solution is to use the Structured Systems 
Architecture approach to generate the design up to the 
architecture level and then use an Ada-oriented appmCh (i.e. 
Booth diagrams) to design the structure of the code. The 
approach taken in this paper is to use the Hatley-Pirbhai 
approach for the entire design. 

The conclusion sums up the paper by stating what the 
salient features of NASA-STD-2100 are and how these 
features can be used on projects of different sizes. It also 
states some general rules that can be used when using the 
Hatley-Pirbhai design methodology and Ada. 

THE NASA 2100 SOFTWARE DOCUMI~NTATION 
STANDARD 

The NASA software documentation standard NASA-STD- 
2100-91[9]. called NASA-STD-2100 for short, can be 
applied to all NASA software. NASA-STD-2100 is only a 
documentation standard levied upon software. As such, there 
are no assumptions made as to the engineering processes, 
Indeed. there is no assumption of an engineering process 
being used at all. This differs from the DOD 2167A 
standard[5] which specifies both a development and 
documentation process. 

The major driver behind the creation of NASA-STD-2100 
is the desire to have all of the software documentation that 
is used by NASA to have the same basic framework. This 
allows NASA to easily judge the completeness and delivery 
of the documentation. 

NASA-STD-2100 has, as one of its primary attributes, 
the ability to be scaled to match the size of the project for 
which software is being developed. This can greatly reduce 
the cost of implementing a software project. The 
documentation can be scaled by changing its most basic 
unit. the Data Item Description(DID). 

The structure of a DID is shown along with a sample 
DID in Figure 1. All DIDs contain certain basic 
information which is indicated by the box pointed to by the 
arrow in Figure 1 labeled “Basic Information”. This 
information allows the user to place the DID into the 

hierarchy of the other documents. It also provides 
information to the user explaining terms used and 
assumptions made inside of the DID. Each one of the titled 
sections in the figure occupies a single chapter. The DID 
specific information varies from DID to DID. Each section 
in the DID specific section also occupies a separate chapter. 

The sample DID given in Figure 1 is the DID used for 
the Software Documentation Set. This is a top level view 
of all of the software documentation associated with a given 
NASA project. This set consists of four parts: Management 
Plan: Product Specification: Assurance and Test Procedures; 
Management. Engineering, and Assurance Reports. In order 
for the software documentation to be complete there must 
be some information associated with all of the different 
sections. 

VARIES WITH DID 

- L DID Specific Information 

Basic Information 

Figure 1. DID Structure and Sample DID. 

The information placed in these sections can be one of 
four things: N/A. TBD. the complete information. or a 
pointer to another document. If the section does not apply 
to the document, then “not applicable” (or N/A) should be 
entered under the appropriate heading along with a reason as 
to why this information is not applicable. If the section has 
not been decided, then a ‘To be Decided” (or TBD) should 
be entered under the chapter heading. If the information is 
available and is small enough to be included in this 
particular document, then the information should occupy 
the chapter. If there is too much information to be included 
in the document. then a pointer should be placed under the 
chapter heading. This pointer refers to a document that is 
not written to NASA-STD-2100 or to a chapter that has 
become a stand-alone document. 

A chapter can become a stand-alone document by 
wrapping the DID’s Basic Information around the chapter. 
This process is called rolling out a document . For 
example, Figure 2 shows the process of rolling out the 
Product Specification into another document. To do this, 
the information contained in the Product Specification 
Chapter in the original DID is taken and the Basic DID 
information is wrapped around it. The Software 
Documentation Set has a reference to this new document 
under the Product Specification chapter. 

53 



lNTRDD”CllDN lNTROD”CTlDN 
RELATED WWUENTATnN REIATED DDWkENTATON 

MANAGELENT PUN F CaNczPT 
PRODUCT SPECIFICATIDN REQUIREWENTS 
ASSURANCE *ND TEST PROCEDURES ARCMTECNRU DESIGN 
WNAGELIENT. EWSINEERING. AND DETAILED DESIGN 

ASSVRANCE REPORTS “ERSlON DESCRS’TON 
USER W WW3TA’“DN 
OPERATIONAL PROCEDURES 
MAINTENANCE 

, 
ASSREVIATLONS AND *CRONYUS ABSRE”IATI)HS AND ACRONYMS 

i%%YRY %%YRY 
APPENDICES APPENDICES 

Figure 2. Rolling out the Product Specification. 

This process could continue for any one of the DID 
specific topics in the now rolled out Product Specification 
document. For example. a separate Requirements document 
could be rolled out of the Product Specification document 
which was itself rolled out of the Software Document Set 
document. This allows NASA-STD-2100 to be tailored to 
many different sized projects by changing the number of 
documents rolled out of the original Software 
Documentation Set. The one thing that all of these 
documents have in common is the Basic Information 
Sections. 

Basic Information Sections: Introduction- The 
Introduction section of the DID identifies the document. its 
scope, objective. status. and schedule. Additionally. the 
document’s organization is also detailed. This organization, 
usually represented by a picture. denotes both what 
document you are looking at as well as how the document 
fits into the overall document hierarchy. The document 
organization for the Tropical Rainfall Measuring Mission 
Visible and Infrared Scanner’s Flight Software[7] is shown 
in Figure 3. This figure was taken from the flight 
software’s Product Specification document. 

Figure 3. TRMM VIRS Flight Software Document 
Organization. 

The top row of four figures in the upper row indicate the 
documents needed for the Flight Software’s Software 
Documentation Set. Figure 3 shows that each of the 
component documents in the Software Documentation Set 
has been rolled out into a separate document. Additionally. 
the Requirements document has been rolled out of the 

Product Specification (arrow in figure) which was itself 
rolled out of the Software Documentation Set. This figure 
succinctly places the document’s position with respect to 
the other documents in the set as well as giving the user a 
good idea of what other documents will be required to 
complete the documentation set. 

Baric Information Sections: Related Documentation- This 
section of the DID identifies the documents that are either 
referred to in the document or provide background 
information. The three types of documents listed in this 
section are: Parent Documents, Applicable Documents. and 
Information Documents. 

Parent Documents can be either the documents that the 
current document was rolled out of or they can be external 
documents (performance specifications). Using the example 
in Figure 3. the Product Specification would reference the 
Software Management Plan and the Software 
Documentation Set. These would be examples of citing 
documents that are related to the source of the Product 
Specification. In addition to this the performance 
specification and the Interface Control Document were the 
external documents cited as parent documents. 

Applicable documents are those which are referenced 
inside of the document. Examples would be military and 
commercial standards, user’s manuals. or policy statements. 
Any reference made inside the document must have a 
corresponding parent or applicable document. Typically. 
contractors are required to supply NASA with copies of any 
documents considered parent or applicable documents. The 
exceptions to this, of course. are documents which come 
from NASA. 

Information documents merely provide background 
helpful in understanding the contents of the document. 
There are no direct references made to the information 
contained within the Information documents. but it is 
assumed that the reader has knowledge of the information 
contained within those documents. 

Basic Information Sections: Abbreviations and 
Acronyms- This section contains an alphabetized list of 
definitions, acronyms, and abbreviations used in the 
document. One common approach to creating a list of 
abbreviations and acronyms is to have a list inside of the 
Software Documentation Set and then provide pointers in 
the rolled out documents to this list. 

Basic Information Sections: Glossary- This section 
contains an alphabetized list of specialized definitions and 
terms used in the document. The glossary list can also be 
treated in a manner similar to the abbreviations and 
acronyms section. 

Basic Information Sections: Notes- Any information that 
is not contractually binding but aids in understanding can be 
placed here. Examples would LX a memory map for a 
processor, or directions on how to use a crucial piece of 
equipment. 

Basic Information Sections: Appendices- Information 
that is too large, detailed, or sensitive to be placed in the 
main text should be placed here. Examples would be 
schematics. panel layouts, or algorithm proofs. These 
materials can be bound separately but they are considered a 
part of the document for configuration purposes. 

54 



DID Specific Information- The information contained in 
this section is considered the “meat” of the document. The 
information required differs markedly depending upon the 
DID and the number of documents rolled out. It is beyond 
the scope of this introduction to detail the specific 
information contained in every section. That detail can be 
found within the standard itself[9]. Information for 
beginners on tailoring the documentation standard can be 
found in [3]. Details on the construction and maintenance of 
a software management plan can be found in [6]. 

HATLEY-PIRBHAJ DBIGN ME?J’HODGLGGY 

The Hatley-Pirbhai method for Structured Systems 
Design. with commercial computer aided system/software 
engineering (CASE) tools, support the engineering process 
throughout the system and software life cycle. The method 
is a communications tool, a management tool, and when 
coupled with a disciplined engineering process, produces 
excellent design documentation. From requirements analysis 
to design. Integration and test, the method supports NASA 
and DOD standard documentation requirements and produces 
a coherent software product that addresses testability, 
requirements traceability and long term maintenance. This 
engineering process is useful for any application regardless 
of technology or language used. 

Requirements analysis utilizes data flow diagrams (DFD) 
and a data dictionary. implemented according to the Hatley- 
Pirbhai method. to build a technology independent model of 
the system or software requirements. Employing data 
hiding, coupling and cohesion, an efficient model of the 
requirements is produced. External to the Hatley-Pirbhai 
method, conventions referred to as Information Notes are 
employed which are attached to each DFD (this is a feature 
of the CASE tool). The Information Note contains 
explanatory text that helps the reader (customer reviewer. 
designer. or maintenance personnel) to understand the 
diagram. Process Specifications (PSPEC) are utilized in 
the method to define each primitive process in the DFD. 
The PSPEC defines the data transformation that occurs 
within that process. Requirements statements included with 
the PSPEC succinctly define the software requirements. 
While requirement statements are not a part of the Hatley- 
Pirbhai method, when included in the model they aid the 
generation of requirement specifications that are 
comprehensive and illustrative yet meet the documentation 
standard requirements for individually identified 
requirements. 

Each requirement statement must be a short, 
unambiguous statement that defines a requirement. The 
statement must be testable. Each statement is uniquely 
numbered for ease of identification. Within the CASE tool. 
conventions have been developed for documenting 
requirement statements and the traceability information for 
that requirement that allow automated generation of 
traceability matrices. 

This procedure for requirements analysis provides a 
disciplined environment for interface requirements 
definition, system or software requirements analysis and 
provides the capability for automated requirements 

specification generation. These specifications include the 
DFDs. with explanatory text, the requirements statements 
and the data dictionary. 

The engineering performed and the documentation 
produced provides the foundation for the acceptance test 
procedure where the requirements will be validated. The 
requirements also provide the foundation for the architecture 
design effort which is the next step in the life cycle. The 
key elements of testability and requirements traceability are 
an integral part of this initial step allowing them to be 
addressed very early in the process. 

During architecture design. the transition from a 
technology independent model to a technology dependent 
model begins. Design rules, experience and heritage 
designs guide the allocation of requirements model 
processes into architecture modules. The allocation of 
processes to architecture modules also includes the 
requirements (requirement statements) attached to the 
process. Requirement traceability is therefore maintained 
down to this level. Data flows are allocated to architecture 
data buses in the same manner. The result is a preliminary 
design consisting of architecture modules with known 
functionality, as described by the requirements statements, 
DFDs. and information notes. This preliminary design also 
defines the interfaces between modules. In addition to the 
data flowing across the interface, as defined in the 
dictionary, the media and protocol are defined in as much 
detail as possible at this time. The architecture design forms 
the basis of the top level of integration testing. Once 
again. requirements traceability and testability is actively 
addressed and maintained. 

During detailed design, the architecture modules are 
broken down into functional units. Using standard structure 
charts. the organization of the module is defined as are the 
interfaces between the units. It should be noted that even 
though Ada-specific tools are available, the organization of 
the software can still effectively be described using standard 
tools and methods. 

In the Hatley-Pirbhai method, the “leaves” of the 
structure chart are defined by Module Specifications 
(MSPEC). The contents of the MSPEC describes the 
design of the unit it represents. MSPECs should be 
approximately one page in length and may consist of text. 
graphics, or pseudo-code. The MSPEC defines and 
documents the design for implementation and subsequent 
maintenance. The structure chart, which defines the 
organization and interaction of the units of the architecture 
module, provides the foundation of the lower tier of 
integration testing. The MSPECs. which define the design 
of individual units, are the foundation of Unit Testing. 

When using Ada, there is some question as to what 
exactly constitutes a unit. There are three basic approaches 
when mapping units onto Ada: Unit = Package. Unit = 
Procedure, Unit = Package/Procedure. Depending on the 
project. a unit may also consist of multiple packages or a 
package may consist of multiple units. The different 
approaches color the entire design and testing process. 

A Unit. is defined in both the DOD and NASA arenas as 
“the smallest testable component” of software. It is 
therefore the responsibility of the software engineer to 

55 



define his units small enough so that the software is 
thoroughly tested yet large enough so that software testing 
does not become a onerous burden. Another important 
issue to consider is software reuse. The “unit” is the 
smallest testable piece software and is therefore the lowest 
level that is formally documented. This documentation 
includes functional and interface design details. as well as 
the testing of same. This can form a natural boundary for 
the lowest level of a reusable piece of software. 

Starting from the external interfaces of an embedded 
system, it would make sense to configure the software 
drivers for each interface into individual units. This makes 
them testable individually, which will speed integration and 
checkout. This modularity makes the code easily reused for 
future designs that utilize the same hardware. This 
modularity also reduces impact to the code when a hardware 
interface needs to be redesigned. 

Moving “inward” in the design, the decisions of what 
should constitute a unit become more difficult. As with all 
engineering decision making, it is a series of trade-offs. To 
properly construct a unit. the same guidelines used earlier in 
the architecture design can be used. Asking the questions 
posed by the guidelines is the checklist used to fully 
understand the problem and gather data necessary to make 
the “best” choice. 

l How closely related are these functions? 
l Do they use the same data? 
l Is this function used repeatedly by many other 

modules (units)? 
l Have interfaces and data moves minimized? 
l Is off-the-shelf or existing software available that 

performs this function? 
l How likely is this function/algorithm likely to 

change? (a good reason to isolate it!) 
l Do the development tools allow visibility into the 

interfaces for testing? 
l Can performance requirements be met by separating 

this code out? 
Properly constructing units is critical from design, test, 

schedule and budget standpoints. The design must be 
adequately specified (documented) to allow assurance that it 
is robust and maintainable. The design must be testable 
and the testing must be adequate to assure that the software 
will perform its mission. Each of these steps must add 
value to the product. Over-testing software won’t make it 
better, just more expensive. This is why the 
documentation is so important. There must be a clear path 
from requirements that state WHAT the system is going to 
do, to the design, which states HOW the system is going to 
do it. From there, the connection to the code must be clear 
so the execution of the “HOW” can be verified. 

As mentioned earlier, the detailed design consists of 
structure charts and MSPECs. It can become difficult to 
relate the structure chart directly to Ada packages and 
procedures. In fact. it can be difficult to relate the structure 
chart in the detailed design directly to the code in any 
language. For this reason. we believe that it is not 
necessary to generate a source code calling tree for the 
detailed design. The hardware analog of this idea is that 
while the schematic represents the design, the assembly 

drawing, artwork and bill of materials reflects the as-built 
configuration. Within the structure chart. some of the calls 
made in the actual source code may be single lines in the 
pseudo code of the MSPEC and not shown as invocations 
on the structure chart at all. It may also make sense to 
group procedures of this type into a common package. In 
this case. a package could consist of multiple units. 
However. some of the procedures may be so small that it 
only makes sense to test them in conjunction with the 
software that calls them. In this case. not every procedure 
in a package of multiple units is a unit. 

In other cases. multiple leaves of the structure chart may 
belong in a unit to facilitate testing, yet breaking them out 
in the detailed design document facilitates understanding. It 
may also be convenient to develop package specifications 
for each of these leaves. This would yield a unit consisting 
of multiple packages. 

To be efficient. the engineering process must provide 
this type of flexibility. One must develop conventions to 
track the allocation of design elements to code. but 
allowances for this flexibility are needed to develop value- 
added documentation that is useful at all phases of the life 
cycle. 

To illustrate the organization and conventions used for 
design. the following diagrams and text are a brief overview 
of the process and products used by our organization to 
specify and design software for NASA and DOD customers. 

Requirements analysis starts with the Context Diagram. 
An example of which is shown in Figure 4. This defines 
what is “in” the software and what is external to it. This 
first step is very important since it clearly identifies the 
scope of the work and the external interfaces. The circle in 
the center represents the software or system being designed. 
The rectangles, or terminators, represent the entities that 
interface with the software. The arrows between the 
software and terminators represent the data flowing between 
the two. 

rtgure 4. Context Diagram uerines system or Sortware 
Boundary 

The requirements model is developed in a hierarchical 
fashion. The level below the context diagram contains Data 
Flow Diagrams (DFD). Data Flow Diagram 0 is the top 

56 



most DFD for the software or system. The definition for 
each data flow is contained in the Data Dictionary. At 
subsequent levels, the requirements mode1 is developed in 
greater detail. As the model is developed, checking and 
balancing is performed to assure that the model is 
consistent. Interfaces, data flows, and processes must 
maintain consistency from the context diagram down to the 
lowest DFD. The Data Dictionary must accurately reflect 
the flows and their constituent parts as shown in the 

Figure 5. Data Flow Diagram (DFD) 0 

The circles in data flow diagrams represent processes. 
Each process transforms data inputs into data outputs. 
These processes form the basis for understanding the 
requirements being developed. 

E 4Il 
lzi!zii 

B SYSTE 

F 

-- 

E 

r%!F- 

3 

A=Al +A2 

E= us-m input 
C= response data 
D= gain setting 
E= reduoed data 
F= position feedback 
9= 
h= 
k= 
m= 
P= 

Figure 6. Requirements Model Components 

In Figure 6. an overall view of the requirements analysis 
model is shown. The context diagram is at the top of the 
hierarchy, followed by DFD 0. Each of the processes 
shown in DFD 0 is further decomposed into DFDs. These, 
in turn, may be decomposed further if necessary. The 

numbering of lower level DFDs and processes tracks their 
heritage. The Data Dictionary is the repository for data 
flow definition. When checking and balancing is 
performed. all data flow entries are reconciled up and down 
the hierarchy to ensure the model is consistent.The 
relationship of the requirements model components, the 
architecture model. and some of the CASE tool conventions 
used are illustrated in Figure 7. The figure shows the 
allocation of requirements model processes to architecture 
modules (identified as Subsystem l-3 in the diagram). The 
Architecture Flow Diagram (AFD) forms the top level of 
the design. Each of these architecture modules is 
decomposed into design modules or units, as described 
earlier. which will be described by Module Specifications. 

The figure also illustrates the use of notes in the 
requirements model. There are Information Notes, 
Requirement Notes, or Traceability Notes. Conventions 
adopted for note titles indicate the type of note. Within the 
CASE tool. its point of “attachment” indicates what item it 
belongs to. Using a combination of commercial and 
custom software. the requirements document is then 
produced directly from the model. 

DFD 0 

Archwcture Fbw Daagram 

Figure 7. Requirements Analysis and Design Overview 

Adopting the Hatley-Pirbhai method has brought 
discipline to our engineering process. Utilizing CASE 
tools has enabled the production of high-quality 
documentation. Together, these tools increase our ability 
to communicate to our customers and among ourselves by 
providing visibility into the requirements and design. The 
completeness of the design is enhanced by this visibility 
since weaknesses. omissions, and oversights are caught 
earlier. Perhaps most important, is that the impact of 
changes is more easily understood allowing a more 
thorough analysis of requirements and design changes. 

57 



APPLICATION ExAMPIJz 

The application example has been taken from the 
Tropical Rainfall Measuring Mission’s Visible and Infrared 
ScannerW] flight software. 

The Visible and Infrared Scanner (VIRS). shown in 
Figure 8. is a cross-track scanning radiometer that is one 
of 5 instruments aboard the Tropical Rainfall Measuring 
Mission (TRMM) satellite[8]. The purpose of TRMM is to 
study the heat distribution and variability of precipitation 
and latent heat release over several years. 

Figure 8. VIRS Scanner Module. 

The VIRS instrument supports the TRMM mission by 
providing data that will be used in conjunction with the 
Clouds and the Earth’s Radiant Energy System to determine 
cloud radiation. Additionally. once a precipitation system 
has been characterized using radar. microwave, and other 
sensor data it is expected that the VIRS spectral data will 
be able to be analyzed for precipitation content[2]. 

The VIRS gathers this data by measuring scene radiance 
in five spectral bands operating in the visible through the 
long wave infrared, The VIRS provides a ground resolution 
of 2.11 km at nadir and a cross-track scan of f45’. The five 
spectral bands of the VIRS and their bandwidths are 
summarized in Table 1. 

1 Band 1 Wavelength 1 Bandwidth 1 

Table 1. VIRS Spectral Bands and Bandwidth 

The VIRS instrument consists of two independent 
modules. a scanner module and an electronics module. 
These modules are interconnected by a set of shielded 
electrical cables. The electronics module contains the 
processor cards as well as the electronics needed to read the 
data from the detectors (preamplifiers. A/D circuitry). 

There are two processor cards, a primary and a backup. 
Each processor card contains identical flight software. This 

allows one version of the flight software to be used for the 
project. The flight software is required to acquire the data 
from the A/D interface. packet& the data and send it to the 
Observatory using the MIL-STD-1773 bus. The flight 
software is also responsible for executing any commands 
sent to it from the Observatory as well as the acquisition of 
telemetry and the encapsulation of this information in a 
housekeeping packet. 

Flight Software Documentation- The flight software 
design process is shown in Figure 9. The left side shows 
the flowdown of system requirements to the detailed design. 
The rightmost side shows the flow of implementation from 
implementation through system test. The two sides are 
connected through the creation of requirements-based test 
plans. In general, the left side is implemented using the 
Hatley-Pirbhai design methodology and the arrows coming 
from those left-side boxes into the middle boxes indicate 
different NASA STD 2100 DIDs. 

For example, the second row shows the flow from 
requirements analysis to acceptance test. The requirement 
analysis was done using a Hadey-Pirbhai structured systems 
architecture approach. The requirements model that was 
created formed the basis of the Software Requirements 
Specification (SRS). Although the SRS was a small 
document. the mechanics of how it was created dictated that 
it be rolled out of the Product Specification. In the Product 
Specification (NASA-DID-POOO). under chapter 4 there is a 
pointer to the rolled out requirements document (NASA- 
DID-P200). This relationship is shown graphically in 
Figure 3. 

Figure 9. The results of each design process are captured in 
a NASA 2100 document. 

This is in direct contrast to the rest of the documents 
shown on Figure 9. The system definition as applied to the 
flight software is captured in chapter 3 of the Product 
Specification. The architecture design is shown in chapter 5 
of the Product Specification. The Detailed Design is shown 
in chapter 6 of the Product Specification. Using these three 
chapters and the rolled out requirements analysis, the entire 
design is captured in one document. This document is only 
two physical volumes. appropriate for a small project like 
VIRS. 

Flight Sojiware Requirements Analysis- The flight 
software was designed using a Hatley-Pirbhai structured 
systems approach. The first step was to perform a 
requirements analysis. The requirements analysis was driven 
by several customer documents, system performance 
specification, and by numerous derived requirements. The 

58 



derived requirements resulted from the allocation of system 
functions to the flight software. As is typical with many 
projects. there were no explicit requirements made upon the 
flight software. In fact. there were no explicit requirements 
for flight software at all. 

Figure 10 shows a simplified example data flow diagram 
(DFD) taken from the requirements analysis. This example 
is a small section of the overall flight software requirements 
analysis which concentrates on the creation of science and 
housekeeping packets. These packets are sent to the 
Observatory from the VIRS and constitute the main data 
product and instrument health information. A data 
dictionary. Table 2. shows partial definitions for the data 
flows present. 

Figure 10. Requirements Analysis Partial DFD 

The CREATE HOUSEKEEPING PACKET process 
creates the Housekeeping-Packet data flow using 
housekeeping data. Housekeeping data refers to both the 
analog and digital telemetry. A subset of this telemetry 
flows from the CREATE HOUSEKEEPING PACKET 
process to the CREATE SCIENCE PACKET process by 
means of the VIRS-Header data flow. The 
Housekeeping-Packet data flows into the SEND 1773 
PACKET process. 

The CREATE SCIENCE PACKET process is 
responsible for the creation of science packets out of the 
sensor data (Sensor-Data) and the VIRS header information 
(VIRS-Header). The end product of this process is given by 
the data flow Science-Packet. This flow enters the SEND 
1773 PACKET process along with the 
Housekeeping-Packet flow. 

Data Flow Name Definition 
Housekeeping AnalE Tlm + Dig Tlm 
Housekeepinp Packet VIRS-Header + Dig Tlm 
Science Packet VIRS Header + Sensor Data 

Table 2. Some Data Dictionary entries. 
The SEND 1773 PACKET process creates a Consultative 

Committee for Space Data Systems (CCSDS) standard 
packet[l] out of either the Science-Packet data or the 
Housekeeping-Packet data. Once the CCSDS packet is 

created. it is transmitted to the Observatory using the 1773 
bus. 

The relationships between the data flows are succinctly 
captured in the data dictionary. For example. the 
VIRS-Response flow is the sum total of all of the possible 
responses of the VIRS instrument to the Observatory. 
These responses consist of either the science 
(Science-Packet) or housekeeping (Housekeeping_Packet) 
information. In turn. the science packet is defined as 
consisting of the VIRS header (VIRS-Header) and some 
sensor data (Sensor-Data). The VIRS header is shown to be 
a combination of the digital telemetry (DigTlm) and two 
analog telemetry points (BB 1. BB2). All of the data flows 
have other data flows as their parent or they originate with a 
terminator block as shown in the previous section on 
Hatley-Pirbhai . 

This information was rolled out of the Product 
Specification and called the Software Requirements 
Specification (SRS). There was a pointer to this document 
placed in chapter 4 of the Product Specification. 
Flighr Sofi‘ware Architecture- To create the flight software 
architecture. the requirements analysis data flow diagrams 
formed the basis of the architecture design. The 
requirements DFDs were reapportioned to form the basis of 
the flight software architecture. If we reexamine our 
requirements example in Figure 10 we can reapportion the 
requirements to obtain an architectural model. An example 
of one such reapportionment is shown in Figure 11. 

Figure 11. Reapportioning the Requirements DFD 

Two architecture modules have been formed from the 
three requirements analysis processes. The first module, 
called CREATE SCIENCE PACKET like the requirements 
derived process. consists of the CREATE SCIENCE 
PACKET process and a portion of the SEND 1773 
PACKET process. This is shown in Figure 11 as a dashed 
line. A similar process is used to form the other 
architectural module, CREATE HOUSEKEEPING 
PACKET. This module consists of portions of the SEND 
1773 PACKET process and all of the CREATE 
HOUSEKEEPING PACKET process. This is shown in 
Figure 11 as a solid line. Notice that both modules take a 
portion of the SEND 1773 PACKET. The resultant 
architecture modules are shown in Figure 12. 

59 



I \ 

CREATE 
C HOUSEKEEPING -napadtsl e 

PACKET 

L / 

Figure 12. Requirements Derived Architecture Modules 

The functionality contained within the SEND 1773 
PACKET process has not disappeared. it has merely been 
absorbed by the remaining modules. From an Ada 
perspective this is advantageous. The package which 
implements the mechanics of sending the 1773 packet does 
not need to know anything about the internals of the 
CREATE SCIENCE PACKET or CREATE 
HOUSEKEEPING PACKET. Both of those modules 
however must know about the SEND 1773 PACKET 
functions. This allows a non-specific package to be created 
to output packets to the 1773. 

This process is repeated for the entire requirements 
analysis. The major advantage to creating the architecture 
out of the requirements model is that you are assured that 
your architecture has captured all of the requirements. 
Traceability from architecture to requirement is a fairly 
straightforward process. The data flow definitions for the 
architecture were a refinement of the data flow definitions 
present during the requirements analysis. 

The architecture was captured in the Product 
Specification, chapter 5. 
Flight Sofrware Detailed Design- The detailed design took 
the architecture modules and broke them down into 
individual units. The relationships between the units is 
specified using a stntcture chart. The structure chart shows 
the invocation sequence of the units. If we take the 
CREATE HOUSKEEPING PACKET architecture module 
from Figure 12 and break it down into its structure chart. 
Figure 13 results. 

Figure 13. Create Housekeeping Packet Structure Charts 

This chart shows an architecture module broken down 
into four separate units. These units are created due to a 
functional and architectural grouping. The four units are: 
The DO-BIT procedum. the EVENT-LOG library procedure 
(here shown with an off-page connector. the XMIT 
procedure (shared with the CREATE SCIENCE PACKET 
architectural module). the remaining three procedures, and a 
data store. 

The DO-BIT unit is a procedure that is invoked by the 
processor before the Ada environment exists. This procedure 
is written in 1750 assembly language with the results 
stored in the 1750’s Memory Management Unit (MMU) 
until it can be retrieved by the housekeeping code written in 
Ada. This type of procedure requires two interfaces, one 
assembly and one Ada. The dual nature of this unit 
precludes it from being included into the CREATE 
HOUSEKEEPING packet structure. 

The EVENT-LOG and XMIT units are library procedures 
that function like system resources. The EVENT-LOG unit 
implements the mechanism used to transmit warning or 
error messages to the TRMM Observatory. Since this 
facility is used in every almost every architecture module it 
made sense to break it out as a separate unit. The XMIT 
procedure is used to transmit data to the TRMM 
Observatory using the 1773 bus. This procedure was broken 
out as a unit using reasoning similar to the EVENT-LOG. 
The only difference is that XMIT is shared among a small 
group of architecture modules rather than being a ubiquitous 
resource. 

All of the modules shown in Figure 13 are represented by 
MSPECs. As mentioned earlier, these MSPECs can take 
the form of text, graphics. or pseudo-code. Ada code is 
written using these MSPECs as a guideline. 

INPUT: 
Counter ACCEPT/REJECT 

OUTPUT: 
Accept-Count - # Commands Accepted 
Reject-Count - # Commands Rejected 

COUNT: 
If Counter is ACCEPT 

Accept-Count := Accept-Count + 1 
If Accept-Count 2 214 - 1 or 
Accept-Count < 0 

Accept-Count = 0 
else if Counter is REJECT 

Reject-Count := Reject-Count + 1 
If Reject-Count 2 214 - 1 or 
Reject-Count < 0 

Reject-Count = 0 

RESET: 
Accept-Count := 0 
Reject-Count := 0 

Table 3. Command Counter MSPEC. 

Table 3 shows a sample MSPEC for the command 
counters portion of the CREATE HOUSEKEEPING unit. 
The command counters count the number of commands 

60 



accepted and rejected. This data is reported in the 
housekeeping packet. This MSPEC details the interface of 
the unit and the algorithms used in the different procedures. 
Using such a complete breakdown of the individual units 
eases the coding task. 

This portion of the design process is captured in the 
Detailed Design portion of the Product Specification. The 
detailed design section can be included in the product 
specification, as was the case with the VIRS flight 
software, or it can be rolled out into a separate document 
using the techniques described in a previous section. 

The format of the detailed design section varies widely. 
One common method is to start with the top level 
description of the detailed design. This can be facilitated by 
describing the top level Major Compilation Units (MCUs). 
MCUs consists of several units grouped together, usually 
by function. The overall function of the MCU can be 
described and then a structure chart showing the relationship 
between the MCU’s constituent units is given. This 
structure chart is then broken down into individual units. 
These units are explained using a combination of 
illustrative text and the MSPEC. 
Flighr Sojware Tesr- The tests come directly from the 
design documents. as shown in Figure 9. The detailed 
design document is used to create the unit level tests. These 
tests are written using a white box approach where all 
execution paths within the unit are traversed. Once the units 
are working through their respective interfaces the units are 
integrated together. The basis for this stage of testing is the 
architecture diagram. The architecture diagram specifies how 
all of the units fit together. Finally. the entire software 
project is tested to prove that the software meets its 
requirements. Those requirements are specified in the 
Software Requirements Specification (SRS) and form the 
basis for any and all tests performed upon the software. 

Mapping Ada onto Harley-Pirbhai refers to the process of 
using Ada in the context of the Hatley-Pirbhai 
methodology. This context only applies to the detailed 
design level. all higher levels any language independent. 

The most common method of combining Ada and Hatley- 
Pirbhai is to use the Structured Systems Architecture 
approach to generate the design to the architecture level. 
From the architecture level on down. Ada specific tools and 
representations are utilized. most commonly Booth 
diagrams. 

This has the advantage of clearly representing Ada 
structures, but it removes one of the major advantages of 
using the Hatley-Pirbhai methodology. That advantage is 
that the Hatley-Pirbhai methodology introduces a common 
language for all those involved with the design. from the 
customers to the engineers. 

The approach taken in this paper was to use the Hatley- 
Pirbhai methodology for the entire detailed design. This 
makes the relationship between packages and structure 
charts more difficult to comprehend, as mentioned above, 
but it has the advantage of explaining the design in a 
language independent manner. 

CONCLUSION 

This paper has introduced NASA STD 2100. a tailorable 
software documentation standard. This standard is tailored 
by altering the structure of the Software Documentation 
Set. This set is comprised of four parts: Management Plan: 
Product Specification: Assurance and Test Procedures; 
Management, Engineering. and Assurance Reports. There is 
information associated with each one of these sections. 

Each one of these sections consists of two parts: Basic 
Information and DID specific information. Basic 
Information is the same for all DIDs and consists of 
subjects like the Introduction. Related Documents, or 
Glossary. 

The amount of information present in the DID specific 
information portion tailors the standard for specific projects. 
Chapters in the DID specific information section can 
remain as chapters. as is the case for small projects. or they 
can be “rolled-out” into a separate volume for larger 
projects. 

The Hatley-Pirbhai method for Structured Systems 
Architecture was introduced as a technology and language 
independent method for developing software. 

Requirements analysis is performed by means of data 
flow diagrams (DFD) and a data dictionary to define the data 
flows. These DFDs can have information notes attached to 
them to facilitate understanding of the design. 

The DFDs are broken down into Process Specifications 
(PSPECs) which define the data transformations that take 
place within the primitive processes. 

Once the requirements analysis is performed an 
architecture model is created by allocating processes to 
architecture modules. Because these processes contain the 
requirements. traceability from requirements to design is 
maintained. 

The architecture modules are broken down into a structure 
chart. The “leaves” of the structure chart a described by a 
module specification (MSPEC). The MSPEC can be text, 
graphics, or pseudo-code. The MSPEC also forms the 
foundation for Unit Testing. 

When used with Ada. the units specified by the structure 
chart do not necessarily have a one-to-one correspondence 
with Ada packages. It is preferable to illustrate design 
highlights with the structure chart than to have an obscure 
design but with a nice mapping on to Ada. 

A breakdown from context diagram to lowest DFD was 
given. 

Following the introduction of the documentation method 
and the design methodology. an example which employed 
both of these tools was given. The example given was 
taken from the Tropical Rainfall Measuring Mission’s 
Visible and Infrared Scanners Flight Software. 

This example showed a small sample of the design taken 
from the requirements analysis all the way to the MSPEC. 
During this time the method used to document different 
parts of the design was interleaved into the technical 
discussion. 

The last item shown was how Ada is mapped onto the 
detailed design portion of the Hatley-Pirbhai structured 

61 



systems architecture methodology. Most commonly, the 
Hatley-Pirbhai structured systems architecture methodology 
is used for the design up to the architecture level with Ada 
specific tools used for the detailed design. 

The approach taken in this paper differed from that by 
using a strictly Hatley-Pirbhai approach. 

In summation. this paper has introduced a NASA 
software documentation standard which can be tailored to 
many differently sized projects. It has also introduced the 
Hatley-Pirbhai design methodology. This was followed by a 
real-world example of how the documentation standard and 
the design methodology are used. 

The authors would like to thank Mr. Kip Kramer and 
Mr. Mark Paul at the Santa Barbara Research Center for 
encouraging the authors to publish this paper. The authors 
would also like to thank Mr. Joseph Auchter and Ms. Lyn 
Kawasaki for their comments and feedback. 

PI 

PI 

L31 

[41 

PI 

El 

[71 

PI 

L91 

REFERENCES 

Consultative Committee for Space Data Systems. 
Recommendation for Space Data System Standards - 
Packet Telemetry, CCSDS 102.0-B-2 Blue Book, 
Jan 1987. 
Goddard Space Flight Center, Tropical Rainfall 
Measuring Mission Request for Proposal. National 
Aeronautics and Space Administration. Goddard 
Space Flight Center GSFC-490-2-01, April 12. 
1991. 
Guidance On Tailoring and Using the NASA 
Software Documentation Standard (Draft). System 
Technology Institute. December 4. 1991. 
Hatley. Derek J. Pirbhai. Imtiaz A.. Strategies for 
Real-Time Systems Specification. Dorset House, 
New York. N.Y., 1987. 
Military Standard for Defense System Software 
Development, DOD-STD-2167A. Department of 
Defense. October 27. 1987. 
NASA Software Documentation Standard Software 
Management Plan Guidebook, System Technology 
Institute, November 21. 1991. 
Roberts, Dean, Peterson, Brad. Koseluk. Bob. 
“TRMM VIRS: A Design for Low-Radiation 
Environments”. 1994 IEEE Aerospace Applications 
Conference Proceedings, pp. 199-209 February 
1994. 
Simpson. Joanne. “A Proposed Tropical Rainfall 
Measuring Mission (TRMM) Satellite”, Bullefin of 
the American Meteorological Society. March 1988. 
Technical Standards Division, NASA Software 
Standard Software Engineering Program NASA- 
STD-2100-91. National Aeronautics and Space 
Administration, July 1991. 

62 


