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Abstract 

Seamless integration of applications in existing 
MIS environments is difficult because of specific 
differences in hardware and software characteris- 
tics. We investigate issues involved in deploying 
Ada based applications in standardized distrib- 
uted environments. We focus mainly on transpar- 
ent database access and transfer of complex 
objects between Ada programs across several 
hardware platforms utilizing multi-vendor DBMS 
products within the framework of the Open Soft- 
ware Foundation (OSF) / Distributed Computing 
Environment(DCE). 

Keywords -- Ada, MIS, OSF DCE, Remote 
Procedure Call (RPC), Complex Objects. 

1.0 Introduction 

The OSF/DCE environment is fast emerging as a 
de-facto standard for distributed applications. The 
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importance of OSF/DCE has been demonstrated 
by the use of OSF/DCE as a platform of choice 
for middleware such as Common Object Request 
Broker Architecture (CORBA) and Transarc’s 
Encina distributed transaction system while the 
OSF/DCE RPC specification is used in Windows 
NT environments. 

OSF/DCE is a set of services organized in a 
comprehensive framework and architecture that 
supports the creation, use and maintenance of 
distributed applications in a heterogenous 
computing environment. OSF/DCE commercial 
applications are now being deployed by Fortune 
100 companies, with brokerage houses and large 
banks (Charles Schwab, Merrill Lynch, Citibank) 
making massive investments and adopting 
aggressive development schedules. 

The developing of Ada applications for OSF/ 
DCE revolves around interactions between Ada 
(and its run-time) and OSF/DCE components. 

The OSF/DCE components are([DCE91], 
[DCE92]): Threads Service (standardized on 
POSIX 1003.4a, Draft 4). RPC, Naming Service 
(X.500 based), Time Service, Security Service 
(Kerberos), Distributed File Service (DFS), 
Diskless Support Service. Most OSF/DCE 
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vendors support at a minimum the threads 
service, RPC, time service, name service and the 
security service, and these components cover 
substantially all of the functionality required for 
distributed applications. Threads and RPC 
constitute the foundation services for the other 
components and are affecting the most Ada 
applications. 

An essential aspect of OSF/DCE is its explicit 
focus on the client/server model and its main 
supporting mechanism: RPC. Because of its 
layered, standardized, and comprehensive nature, 
OSF/DCE can isolate applications from specific 
or proprietary traits of operating systems and 
products, such as UNIX, OS/2, VMS, and 
databases. Database Management Systems 
operating in a client/server environment can 
utilize the services provided by OSF/DCE to 
transparently make their services available to 
processes on different machines. 

The establishment of an environment in which 
several client and server machines may operate is 
a critical step in permitting communications 
between different machines. RPCs can be used to 
help solve the problems of data transfer between 
client and servers residing on different platforms 
by providing a transparent means of 
communicating potentially complex data types. 
Additional flexibility and design independence 
can be gained by leveraging OSF/DCE name 
services. 

The OSF/DCE RPC implementation uses the 
DCE threads component which in turn overlaps in 
functionality with the Ada compiler run-time. As 
we will explain further in the paper, this will most 
likely conflict with the tasking mechanism and its 
run-time support, making the use of Ada tasking 
in DCE a thorny issue. 

The RPC service, while essential to OSF/DCE, is 
greatly enhanced and complemented by the other 
DCE services. Making judicious use of all core 
DCE services in developing Ada applications 
allows for conceptually cleaner and more robust 
distributed systems. 

In deploying our Ada prototypes over DCE we 
started with existing Sun ONC distributed 
applications developed using the methodology of 
[VAS191] and [VASI92]. This methodology fits 
the layered architecture of OSF/DCE because it 
can target in an orthogonal manner (persistent) 
resources, communication services or security 
services. In addition the methodology is 
supported by automatic code generators allowing 
for quick testing of targeted features. 

The paper first describes issues arising from the 
interaction of Ada with some core DCE 
components. Next, we give a quick overview of 
our methodology and its application to DCE 
prototypes. We continue with lessons learned 
during prototype development covering mainly 
OSF RPC (which is contrasted with Sun ONC 
RPC), security and name services. The appendix 
lists sample Ada code describing complex objects 
and their automatic translation into DCE Interface 
Description Language (IDL). 

2.0 DCE Thread&PC Interaction with 
Ada 

The development of Ada applications using OSF 
DCE RPC and Ada tasking is difficult because 
two runtimes unaware of each other are involved 
in the management of the same resources. The 
Ada runtime is required whenever tasks ate used. 
RPC requires threads services which in turn bring 
in their own runtime. Within OSF DCE the need 
to interface Ada with non-Ada libraries is perva- 
sive. This usually represents additional problems 
because some libraries (such as Motif or X 11 R5) 
are not thread-safe. 

The difficulties arise when the Ada runtime 
system captures the process and, among other 
things sets up signal (interrupt) handlers for all 
Ada important signals. The Ada runtime needs 
control over the process to manage tasking, 
exceptions, exception handling, and Ada I/O. 
However, it is not aware of signals meant for the 
threads runtime, and does not know how to 
handle these signals. The consequence is that Ada 
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programs will crash unexpectedly when these 
signals are encountered. 

On the other hand, the use of Ada libraries in a 
threaded environment is made possible by some 
compilers provided no use of the Ada runtime is 
made (no use of tasking, I/O, exceptions). As 
specified in the Ada reference manual all Ada 
subprograms are reentrant and therefore these 
subprograms can be made thread-safe by 
following a few simple guidelines (such as the 
restricted use of global objects). 

There are common techniques (such as the use of 
jacket routines) that can be used for the 
integration of non-threaded libraries from other 
languages not developed for a concurrent 
environment. These techniques are used for 
instance by DCE threads packages to provide 
thread-safe OS libraries, and were employed 
when needed by our Ada prototypes. 

The Ada tasking interaction with threads varies 
somewhat on whether it deals with user or kernel 
level threads. A user-level thread implementation 
has a runtime system that is layered over the OS 
kernel while kernel threads implement the 
required functionality in kernel space. In a 
threaded environment threads share open files, 
timers, and signals, etc. Because the thread con- 
cept is in fact very close to the tasking concept, 
integrating user-level thread runtimes and Ada 
runtimes amounts to integrating two related con- 
cepts having entirely separate and conflicting 
implementations while the environment outside 
the process supporting these implementations is 
not able to really distinguish each implementa- 
tion. In this context application developers are 
normally forced to drop the use of Ada tasking 
and the development of reliable Ada tasking/DCE 
applications is virtually impossible. 

A better chance of integrating Ada runtimes and 
thread runtimes arises if OS native threads are 
available and used by both runtime implementa- 
tions. If both the DCE and Ada compiler vendors 
choose to map their appropriate runtime specifi- 
cations onto kernel level threads they may also 
delegate to the OS much of their functionality. 

For instance the OS might be able to manage the 
signals, scheduling, and dispatching of threads on 
behalf of the two runtimes. 

In this context the use of Ada tasking with OSF 
DCE becomes at least feasible, even though one 
expects to give up some flexibility on the Ada 
side. When the management of tasks is delegated 
to OS one might expect that Ada tasking behavior 
is dictated by the OS. Ada applications might not 
have the flexibility of modifying the scheduling 
algorithms, or might not control all threads of 
execution in the process, and might be required to 
map the priority levels to those of the operating 
system. 

Newer Operating systems (Solaris 2.X, OS/2 
2.1, Windows NT) support native (kernel level) 
threads and vendors for these platforms ate now 
moving rapidly to allow for the reliable coexist- 
ence of Ada and thread runtimes. 

3.0 Prototyping Methodology 

Our prototyping methodology assumes a modular 
definition in Ada of high level data structures able 
to model complex objects. Implicit semantics are 
associated with modules of interest. The function- 
ality expressed by these semantics is made avail- 
able as subprogram specifications to client 
applications. The methodology calls for choosing 
semantics that can be supported through well- 
defined mechanical transformations. 

For instance, the appendix lists Part-C recursive 
data structure as a record type with variants. The 
complex object in this case consists of the parts- 
subparts hierarchy together with the suppliers of 
each base part. Implicit semantics for persistent 
resources are associated with Insert, Retrieve, 
Delete specifications. For communication the 
primitives might be Send/Receive. For security 
the semantics might call for setting of protection 
level attributes during communication. 

Considerable care and analysis needs to be 
invested in choosing semantics that can be 
mapped onto standardized layers of interest in a 
computationally efficient manner. For instance, in 
describing high level objects suitable for database 
manipulation, one needs to follow a tight disci- 
pline in order to avoid endless recursion in part- 
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subpart hierarchies. Or, in shipping high level 
objects over networks, the semantics should be 
chosen so that execution of deep copy of an 
object is possible. 

In general, the methodology limits the complexity 
of data structures for high level complex objects 
to a model capable of compact description of 
Directed Acyclic Graphs (DAG). This level of 
complexity (DAG-like structures) is fully ade- 
quate to support object-oriented modeling with 
minimum “impedance mismatch”. In particular, it 
is adequate for expressing objects of roughly 
equivalent complexity and efficiency with those 
of CORBA IDL [CORB91] and ODMG-93 
[ODMG93]. 

Crucial to this methodology is an environment 
where stable and standardized layers can be tar- 
geted. Standardized layers for persistent 
resources might be SQL-compliant or SAG-CL1 
compliant databases. For communication 
resources one may target Sun ONC RPC or DCE 
RPCThis methodology is designed to facilitate 
the creation of code generation toolkits that auto- 
matically bridge the gap between high level Ada- 
based objects (or other object-oriented host lan- 
guages) and the targeted layers of interest. In fact, 
we developed toolkits supporting relational data- 
bases and communication resources following the 
general approach of Figure 1 on page 4. 

The methodology is usable in a variety of con- 
texts when rapid prototyping and proof-of-con- 
cept software is needed. It can be used for 
implementations of prototype APIs. It can be 
used as well in situations where APIs are not yet 
well defined but some desired semantics are. It is 
tailored to support a coherent and disciplined 
approach to interoperability in open environments 
where new and emerging standards require “glue” 
code generation, communication support, and 
thorough compatibility testing. Because imple- 
mented semantics are encapsulated and kept inde- 
pendent of semantics targeting different API, one 
achieves a high degree of modularity. 

For instance, RPC support is not tied to DBMS 
support. One can have several application pro- 
grams running on different platforms exchanging 
directly complex objects without any database 

interaction. When dealing with complex data 
structures like an inventory parts schema, data 
can be passed across systems at different levels. 
Data may be shipped at a very high level where 
the whole data structure is passed requiring very 
few RPCs in the server interface or at a very low 
level using more RPCs for passing each sub-com- 
ponent of the data structure. In fact the order in 
which the RPC semantics or database semantics 
are applied may be determined by the application 
programmer and guided by efficiency or practical 
considerations dependent on the platform in use. 

r--r 
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Figure 1. Methodology/Prototype Approach 

An important by-product of this methodology is 
its ease of use. Application programmers need to 
concern themselves mainly with high-level types 
and object declarations, while the access to per- 
sistent or communication resources is non-proce- 
dural, automatic, and through a small number of 
semantically well-defined subprogram calls. Pro- 
totype implementations of this methodology over 
almost five years demonstrated full portability 
and high programmer productivity. 

4.0 Prototype Implementation and Lessons 
Learned 

OSF/DCE is a well balanced integrated 
environment. Its main services (RPC, name 
services, security services and thread services) 
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offer application developers unmatched flexibility 
and robustness. 

Our Ada experience using OSF DCE can be 
classified into three general categories: 

l The extent to which Ada can make full and 
unrestricted use of OSF DCE services. 

l The extent to which our prototyping meth- 
odology facilitates deployment of Ada 
applications in OSF DCE. 

. A comparison of DCE RPC and ONC RPC. 

4.1 Using OSFIDCE Services 

The name service provides a global addressing 
system for any kind of entity that permits multiple 
binding methods and profiling of servers. The 
security services provide secure RPC’s through 
the exchange of secret passwords and encryption 
of data between distributed systems. The threads 
services permit multiple clients to simultaneously 
access a server. These are some of the services 
that provide the flexibility but also introduce the 
level of complexity encountered in DCE. 

The use of these services from Ada is 
unrestricted. However, the caveat of section two 
holds: Ada tasking is not to be used. A server can 
be non-secure or be authenticated, can handle one 
or multiple calls at a time, and be stand-alone or 
replicated. A client can use automatic, explicit, or 
implicit binding, can talk to multiple servers 
simultaneously, and can rebind to a backup server 
when there is a failure. 

DCE applications use the name services to help 
locate binding information to build a binding 
handle. Client-Server binding is a two step 
process that clients perform to find on what host 
the server is running (using the Name server) and 
to find what endpoint (using the endpoint mapper) 
the server is listening to (for a good introductory 
explanation of DCE RPC see [SHIR93]). 
Automatic bindings are used when transparency 
is desired and calls are limited to a single server. 
Simple LAN applications where the identity of 

the server does not matter am good candidates for 
automatic bindings. Implicit bindings are used 
when control of binding management is desired 
yet there is no requirement for a visible binding 
handle in the RPC and calls are mainly to one 
server. Elaborate applications use explicit binding 
where the decisions to bind to multiple arbitrary 
servers is required for greater program flexibility. 
Explicit binding applications make the name 
server calls (binding management) to obtain the 
binding handle for each server and pass the 
binding handle in each RPC. 

The Name server can also provide the flexible 
lookup of object entries by using groups and 
profiles. Name server object entries can be 
grouped into container objects similar to 
directories in files systems or can be profiled to 
control the lookup of available servers to perform 
operations like load balancing. Application 
servers register themselves by exporting their 
interface into the server namespace and adding 
themselves to groups. Client applications can do 
lookups on a single container object entry to 
access the dynamically configured server binding 
information. 

This environment permits the dynamic 
configuration of available servers. Whole name 
server hierarchies can be included into profiles 
without any client configuration. Client 
applications can access a single entry that will 
prioritize and choose the appropriate service 
according to the policies implemented. 

For example, a number of print servers can be 
organized by class and be prioritized by 
proximity. When clients request to print, the 
binding returned will depend on the class of 
printer, and the availability of the closest printer. 

In the development of a DCE application the 
method of binding and the grouping/profiling of 
server entries define its behavior and flexibility. 
There are numerous options in implementing 
DCE services which dramatically change the 
behavior of applications without client 
modification or even recompilation. 
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As a rule of thumb, we were able to exercise in 
our Ada applications an almost complete range 
of options in terms of bindings, grouping/ 
profiling, security. Calls available from C were 
duplicated in Ada with little effort. Yet it became 
clear quite soon that developing DCE 
applications is akin to developing low-level X 
applications because of the large number of 
features available in the DCE services APIs. 

For instance, the authenticated RPC applications 
were developed using the DCE Security services 
based on Kerberos version 5. Integrating 
authentication into our applications required the 
development of an Ada wrapper package that 
would make the DCE calls through C. 
Authentication required little effort because it 
amounts to simple attribute setting and 
modifications. The implementation of 
authorization is a different matter. DCE 
authorization is implemented through DCE 
privilege service that provides access control lists 
(ACL). The implementation of ACL managers 
for application servers to control access to server 
objects is quite difficult and time consuming. The 
current state-of-the-art requires developers to 
develop ACL management services to conform to 
a predelined DCE RPC interface. There are no 
tools or standard approaches for developing ACL 
managers. This forces developers to conform to a 
complex predelined API and to handcraft its 
precise semantics as well. 

We avoided to a large extent the uncontrolled 
proliferation of APIs through the use of our 
methodology. In our prototypes we targeted some 
standardized use of DCE services. When 
applications are generated the type of binding, 
profiling and security developed are 
automatically integrated. 

4.2 Ada Prototypes over OSF DCE 

Our prototype work started in 1989 and originally 
supported SunOS environments and Oracle. It has 
expanded to several other platforms (OS/2, Win- 
dows NT) and databases (SQL Server, Sybase, 
Informix, object-oriented databases such as 

ObjectStore and Versant), with automatic code 
generation for relational database support and 
Sun RPC. And starting late 1992 we extended its 
reach to OSF/DCE. The prototypes benefit from 
our methodology and supporting toolkits which 
now successfully generate IDL code supporting 
DCE RPC. 

Thus we can efficiently ship complex objects 
across heterogenous platforms taking advantage 
of DCE services for a variety of bindings, server 
profiling, secure RPC, multithreaded servers. 

Our current testbed includes two DCE cells, one 
cell configured for the Sun environment running 
Transarc’s DCE product, the other cell running 
IBM’s DCE implementation on OS/2. We also 
use MS RPC, a Windows NT compatible imple- 
mentation of DCE RPC, to communicate with 
OSF/DCE servers. 

OSF DCE provides extensive APIs covering 
many services including threads, RPC, Name, 
Security services. The extent to which the API is 
used depends on the complexity of the applica- 
tion. For example, it is possible to develop an ele- 
mentary DCE application that uses the RPC 
runtime with well-known endpoints. In this case 
no use is made of the name server, security server, 
or the end-point mapper that DCE provides. 

As application complexity rises the developer is 
confronted with a multitude of calls to be mas- 
tered, making for a steep and long learning curve. 
In addition, the potential for subtle interactions 
among these calls is high, and these interactions 
easily translate into implementation pitfalls. This 
certainly calls for commercially available toolkits 
or facilities that application developers can use 
to target standardized OSF DCE components, and 
such efforts are currently under way. 

Our prototypes benefited from the mechanisms 
supported by our tools. The application developer 
is not concerned about SQL data modeling, data- 
base access, interface development, and distrib- 
uted server development. It is all available to him 
via high-level Ada-driven specifications. 

Also, because the Ada support for the security 
component is independent of any particular 
security mechanisms and independent of the 
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communication and database support 
component, we gain the flexibility of swapping 
and integrating other security mechanisms as 
well. 

Our methodology allowed us to test a variety of 
partition options in a client/server environment. 
When dealing with complex data structures like 
an inventory parts schema, data can be passed 
across systems at different levels. Data may be 
shipped at a very high level where the whole data 
structure is passed or at a very low level using 
more RPCs for passing each sub-component of 
the data structure. The type and size of data 
structures shipped across systems must be 
carefully considered in order to assess the 
overhead associated with each RPC. 

Passing data at a high level required very few 
RPCs in the server interface. Developing low 
level RPC calls partitioned the application 
differently. The server interface contained large 
numbers of calls and required the clients to make 
multiple RPC calls for the equivalent of a high- 
level RPC call. 

Passing data at a high-level proved efficient when 
deep hierarchies were involved. Passing data at a 
lower-level was acceptable when hierarchies 
were shallow and involved large elementary 
opaque objects. Of course, using high-level RPC 
provides better support when scalability and 
interoperability of the application is an issue. 
Other implementations options included packing 
and unpacking data structures for transfer through 
a DCE pipe (shipping of files of larger size -such 
as images- are well suited to the pipe 
mechanism.) 

The prototype brings together many technologies 
and languages into a single environment. It 
addressed successfully many pragmatic issues 
like linkage (shared vs. static), libraries with 
thread support, non-thread safe libraries, and 
integration with DBMS server libraries. 

A key element in developing distributed 
applications is the existence of adequate 

compilers and debugging tools. For example, the 
compiler we used did not handle shared libraries 
well, nor was it threads aware. An additional 
difficulty in debugging distributed applications is 
the handling of communication time-outs. Due to 
the present compiler and tool limitations, the 
development of Ada distributed applications can 
be difficult. 

4.3 Comparison Between OSF/DCE RPC 
and Sun ONC RPC 

While adding OSF/DCE services to our prototype 
a number of differences between OSF/DCE and 
Sun ONC distributed services were exposed. One 
of the prototype activities is to automatically 
generate a server interface file from the Ada 
source code (user schema and application tiles). 
This generation step, originally targeted to ONC 
RPC, was modified to accommodate DCE RPC. 
ONC and DCE have different approaches with 
respect to user defined types, parameter passing, 
RPC server registration, support for pointers, and 
DCE has additional enhancements like string or 
pipe types. 

When developing client-server applications the 
most widespread communication facility is the 
Sun ONC RPC. The communication facility pro- 
vided by SUN ONC has a solid market penetra- 
tion due to its low cost and availability on many 
platforms. We feel however that OSF DCE has 
some outstanding technical features that make it a 
better distributed framework. Here are some dif- 
ferences between ONC RPC and DCE RPC. 

1. When using ONC RPC one needs to specify 
the server name when making a call. In contrast, 
DCE allows for simple and transparent 
implementation of server location independence. 
Clients use a standard name server to locate 
servers in DCE, and then get the required 
binding. 

2. One needs to specify the XDR filter for 
function parameters when making client calls in a 
Sun ONC environment. Also ONC client calls are 
much more complicated. This means when 
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developing servers whose data format changes, 
major code changes occur in all clients. In 
contrast, DCE function calls look just like local 
calls, and little client modification is required 
when data format changes. 

3. ONC RPC is more restricted about the size of 
data being transmitted, and requires low-level 
calls for managing larger size data. When 
shipping large amounts of data, the programmer 
must manage the connection between client and 
server to guarantee data delivery. In DCE RPC 
large user defined data structures are 
transparently supported. In addition, DCE 
provides support for a pipe type at the interface 
compiler level. 

4. Sun ONC servers cannot easily be made multi- 
threaded. In contrast, automatic support of 
multi-client servers is provided by DCE. 

5. When using Sun ONC one needs to register 
every server call on the server side. When using 
OSF DCE, the server development is simplified 
by registering the service just once, with no per 
call requirement. 

6. ONC clients must pass single pointers to all 
objects instead of the actual objects. DCE has no 
restrictions as to what data and how many param- 
eters are passed. The data to be transferred and 
the direction is specified at the protocol level in 
DCE. 

7. ONC has no support in the protocol compiler 
for callback. DCE provides the support for 
callbacks thus allowing the development of 
asynchronous RPC. This allows background 
execution of long task. 

8. When using DCE the selection of transport 
protocol is dynamic and can be made transparent 
to the application. Thus DCE provides the 
framework to access other network types without 
major changes to source code. 

5.0 Conclusions 

Ada can be used right now to develop applica- 
tions for OSF DCE. If the tasking feature of Ada 

is avoided, applications can take full advantage of 
the superior technical features and the powerful 
framework of OSF DCE. 

The use of Ada tasking with DCE in a portable 
way might be achieved if a Posix./Ada standard is 
adopted and supported by compiler vendors. In 
the meantime, the use of Ada tasking is possible 
in a proprietary manner to the extent that com- 
piler vendors integrate Ada and DCE threads 
runtimes. 

There is a fairly steep learning curve associated 
with OSF DCE due to the extensive functionality 
of each DCE component and the complexity of 
their APIs. The application development is fairly 
tedious and there is a need for production strength 
middleware supporting tools. 

While we could make qualitative assessments on 
OSF DCE (in particular by contrasting Sun ONC 
RPC and DCE RPC), more experiments are 
needed for careful quantitative analyses of OSF 
DCE performance in large distributed systems. 

Our prototypes avoided to a large extent the 
tediousness associated with DCE development 
because we applied our methodology and associ- 
ated tools to automatically support target DCE 
components. We successfully generated support 
code for complex objects and independently for 
SQL-based database servers and security ser- 
vices. This capability is unique in both Ada and 
non-Ada environments. 

These prototypes demonstrate now interoperabil- 
ity at complex objects level in a heterogenous 
DCE cell (OS/Z PCs and Sun workstations) with 
different persistent resource managers (relational 
and object-oriented databases). This is seen as a 
prerequisite for high-level support of distributed 
transaction processing on OSF DCE, which is the 
focus of our future efforts. 
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7.0 Appendix 
************************************* 

Sample schema file sch-partsa 
************************************* 

-- Complex object data structures 

-- Implicit semantics: 

-- Insert, Retrieve, Delete, Send, Receive 

-- Set, Get authentication attributes 

with Parts-Types; use Parts-Types; 

package Parts-Schema is 

use Parts~Types.Ada~Sql; 

type Made-From-C; 

type Access-Made-From-C is access 
Made-From-C; 

type Suppliers-C; 

type Access-Suppliers-C is access Suppliers-C; 

--Part-C is your only root 

type Part-C (Part-Kind : Part-Class :=Base-Part) 
is 

record 

No-Ref : No-Type; 

Name : Part-Name-Type( 1.. 10); 

--Next-Part-C : Access-Par-C; 

case Part-Kind is 

when Base-Part => 

cost : Cost-Type; 

Mass : Mass-Type; 

Supplied-By : Access-Suppliers-C; 

when Composite-Part => 

Assembly-Cost: Cost-Type; 

Mass-Increment: Mass-Type; 

Made-From : Access-Made-From-C; 

end case; 

end record; 

type Access-Part-C is access Part-C; 

type Made-From-C is 

record 

How-Many : How-Many-Type; 

Component : Access-Par-C; 

Next-Made-From-C : Access-Made-From-C; 

end record; 

type Suppliers-C is 

record 

Name-Ref : Supplier-Name-Type( 1.. 10); 

Next-Supplier-C : Access-Suppliers-C; 

end record; 

end Parts-Schema; 

************************************* 

Sample Application file par&a 
*********t*************************** 

procedure Parts is 

use Parts-Types.Ada-Sql; 

The-Result-List : Access-Part-C-Join; 

The-Part : Part-C; 

The-Part2 : Part-C(Composite-Part); 
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begin 

Parts-Utilities.Construct-Bike; 

Open-Database(“Johns”,“Bass”,dion); 

Put-Line(“Insert the bike”); 

Insert(Parts-Utilities.PC3,dion); 

Put-Line(“Insert the wheel”); 

Insert(Parts_Utilities.Pc 1 ,dion); 

Put-line(“Ret.rieve(The-Part, 

R-A-1 (The-Part.Name = Bike)); (Bike)“); 

The-Result-List := Retrieve(The-Part, 
R-A-1 (The-PartName = “bike “),dion); 

--Check what we get back 

while The-Result-List /= null 

loop 

Parts-Utilities.Display(The-Result-List.Part-C 
-Elem); 

The-Result-List := 
The-Result-List-Part-C-Join; 

end loop; 

Put-Line(“Delete the bike”); 

Delete(The-Par&R-A-l (The-Part.Name = 
“bike “),dion); 

Put-Line(“Delete The Bike”); 

Delete(The-Part,R-A-1 (The-Part-Name = 
“bike “),dion); 

The-Result-List := Retrieve(The-Part, 
R-A-1 (The-Part-Name = “bike “),dion); 

-- Check what we get back 

while The-Result-List /= null 

loop 

Parts~Utilities.Display(The~ResuIt~List.Part~C 
-Elem); 

The-Result-List := 
The-Result-List.Part-C-Join; 

end loop; 

Put-Line(“Retrieve(The-Part, 
R-A-2(The-Part.No-Ref = 33333)); 
(WHEEL)‘*); 

The-Result-List := Retrieve(The-Part, 
R-A-2(The-Part.No-Ref = 33333),dion); 

-- Check what we get back 

while The-Result-List /= null 

loop 

Parts-Utilities.Display(The-Result-List-Part-C 
-Elem); 

The-Result-List := 
The-Result-L&Part-C-Join; 

end loop; 

Put-Line(“Insert The Bike”); 

Insert(Parts-UtilitiesK3,dion); 

Put-Line(“Retrieve(The-Part, 
R-A-3(The-Part.No-Ref = USER-VAL)); 
(SPOKE)“); 

The-Result-List := 
Retrieve(The-Part,R-A-3(The-Part.No-Ref = 
USER-VALUE),dion); 

-- Check what we get back 

while The-Result-List /= null 

loop 

Parts~Utilities.Display(The~Result~List.Part~C 
-Elem); 

The-Result-List := 
The-Result-List-Part-C-Join; 

end loop; 

Put-Line(“Retrieve(The-Part, 
R-A-4(The-Part.Mass = 2”); 

Put-Line(“OR The-Pa.rQ.Mass-Increment = 
25”); 

Put-Line(“OR The-Part-No-Ref = 55591 OR 
The-PtiName = bike);“); 

The-Result-List := Retrieve(The-Part, 
R-A-4(The-Part-Mass = 2 OR 
The-Part2.Mass-Increment = 25 OR 
The-Part.No-Ref = 5559 1 OR The-Part.Name 
= “b&e “),dion); 

-- Check what we get back 

while The-Result-List /= null 

loop 
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- 

Parts~Utilities.Display(The~Result~List.Part~C 
-Elem); 

The-Result-List := 
The-Result-List-Part-C-Join; 

end loop; 

Put-Line(“Retrieve(The-Part, 
R-A-5(The-PartName /= tire AND”); 

Put-Line(“(The-Part-Mass = 5 OR The-Part-Cost 
= 1)“); 

The-Result-List := Retrieveme-Part,R-A-5 
(The-PartName /= “tire “ AND 
(The-PartCost = 1 OR The-Part-Mass 
=5)),dion); 

-- Check what we get back 

while The-Result-List /= null 

loop 

Parts~Utilities.Display(The~Result~List.Part~C 
-Elem); 

The-Result-List := 

The-Result-List-Part-C-Join; 

end loop; 

Put-Line(“Retrieve(The-Part); get all parts”); 

The-Result-List := Retrieve(The-Part,dion); 

- Check what we get back 

while The-Result-List /= null 

loop 

Parts-Utilities.Display(The-Result-ListPart-C 
-Elem); 

The-Result-List := 
The-Result-ListPart-C-Join; 

end loop; 

Put-Line(“Delete(The-Part); delete all parts”); 

Delete(The-Part,dion); 

Exit-Database(dion); -- generated automatically 

end Parts; 

************************************* 

Sample id1 file ap.idl 
************************************* 

1 
uuid(OO972d5e-7 1 b3- ld90-98fc-84e45e38aa77), 

version( 1.0). 

pointer-default(ptr) 

I 
interface Parts 

t 
typedef struct made-from-c 

*access-made-from-c; 

typedef struct suppliers-c 
*access-suppliers-c; 

typedef enum { 

BASE-PART-PART-CLASS, 

COMPOSITE-PART-PART-CLASS, 

END-PART-CLASS } part-class; 

typedef struct base-part-part-c { 

long no-ref; 

char namer 121; 

long cost; 

long mass; 

access-suppliers-c supplied-by; 

I b=-part_pamz 
typedef struct composite-part-part-c ( 

long no-ref; 

char namer 121; 

long assembly-cost; 

long mass-increment; 

access-made-from-c made-from; 

} composite~part~part~c; 

typedef union part-c switch 

(part-class part-class) { 

case BASE-PART-PART-CLASS: 

struct base-part-part-c base-part; 

case COMPOSITE-PART-PART-CLASS: 
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struct composite~part~part~c composite-part; 

default: ; 

1 pakc; 
typedef union part-c *access-part-c; 

typedef struct made-from-c{ 

long how-many; 

access-part-c component; 

access-made-from-c next-made-from-c; 

} made-from-c; 

typedef struct suppliers-c { 

char name_refll2]; 

access-suppliers-c next-supplier-c; 

} suppliers-c; 

typedef struct part-c-join *access-part-cjoin; 

typedef struct part-c-join{ 

part-c part-c-elem; 

access-par-cjoin part-cjoin; 

} part-c-join; 

typedef union part_c_variantjoin 
*access-part-c-variantjoin; 

typedef s true t base-part-part-c-varian tjoin ( 

access-part-c-variant-join part-c-join; 

part-c part-c-base-part-elem; 

} base~part~part~c~variant~oin; 

typedef strut t 
composite~part~part~c_variantjoin{ 

access-part-c-variantjoin part-cjoin; 

part-c part~c~composite~part~elem; 

] composite~part~part~crt_c_variantjoin; 

typedef union part-c-variantjoin switch 

(part-class part&iss) ( 

case BASE-PART-PART-CLASS: 

struct base~part~part~c~varia.ntJoin base-part; 

case COMPOSITE-PART-PART-CLASS: 

struct composite~part~part~crt_c_variantjoin 
composite-part; 

default: ; 

typedef struct params~l 

{ [string] char *p-l ; 

[string] char *p-2; 

1 p=-Kl; 
void OPEN-DATABASEX-I-l([in] params-1* 
Ph 
void INSERTX-l-l([in] part-c* p); 

access~part~c~variantjoin 

RETRIEVEX-l-l(void); 

void DELETEX-l-1 (void); 

access-par~c~variantjoin 
RETRIEVEX-2- 1 (void); 

access-part~c~variantjoin 
RETRIEVEX-3- 1 (void); 

access-part-c-variantjoin 
RETRIEVEXQ- 1 (void); 

access~part~c~variantjoin 
RETRIEVEX-5-l (void); 

access~part~c~variantjoin 
RETRIEVEX-6-l (void); 

void DELETEX-2-l(void); 

void EXIT-DATABASEX-1-l (void); 

1 

) part-c-variantjoin; 
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