
Developing Ada Applications in a
Distributed Computing Environment

Eugen N. Vasilescu
Sabah Salih

Reinaldo Perez

Northrop Grumman Data Systems
2411 Dulles Comer Park

Herndon, VA 22071

Abstract

Seamless integration of applications in existing
MIS environments is difficult because of specific
differences in hardware and software characteris-
tics. We investigate issues involved in deploying
Ada based applications in standardized distrib-
uted environments. We focus mainly on transpar-
ent database access and transfer of complex
objects between Ada programs across several
hardware platforms utilizing multi-vendor DBMS
products within the framework of the Open Soft-
ware Foundation (OSF) / Distributed Computing
Environment(DCE).

Keywords -- Ada, MIS, OSF DCE, Remote
Procedure Call (RPC), Complex Objects.

1.0 Introduction

The OSF/DCE environment is fast emerging as a
de-facto standard for distributed applications. The

COPYRIGHT 0 1994 BI THE Assoa~~10n FOR ~~~PUIING HMHINERY. INC
Permission to copy without fee all or part of this material is granted prwided
that the copies are not made or distributed for direct commerciaJ advantage, the
ACH copytight notice and the title of the pubiiion and its date appear. and
notice is given tttat the copying is by permission of the Association fur
Computing flachmery. To copy otherwise, 01 to republish, requires a fee
and/or specific permission.

importance of OSF/DCE has been demonstrated
by the use of OSF/DCE as a platform of choice
for middleware such as Common Object Request
Broker Architecture (CORBA) and Transarc’s
Encina distributed transaction system while the
OSF/DCE RPC specification is used in Windows
NT environments.

OSF/DCE is a set of services organized in a
comprehensive framework and architecture that
supports the creation, use and maintenance of
distributed applications in a heterogenous
computing environment. OSF/DCE commercial
applications are now being deployed by Fortune
100 companies, with brokerage houses and large
banks (Charles Schwab, Merrill Lynch, Citibank)
making massive investments and adopting
aggressive development schedules.

The developing of Ada applications for OSF/
DCE revolves around interactions between Ada
(and its run-time) and OSF/DCE components.

The OSF/DCE components are([DCE91],
[DCE92]): Threads Service (standardized on
POSIX 1003.4a, Draft 4). RPC, Naming Service
(X.500 based), Time Service, Security Service
(Kerberos), Distributed File Service (DFS),
Diskless Support Service. Most OSF/DCE

0 I994 ACM O-8979 I -684-O/94/0006 3.50

74

http://crossmark.crossref.org/dialog/?doi=10.1145%2F197978.197985&domain=pdf&date_stamp=1994-07-01

vendors support at a minimum the threads
service, RPC, time service, name service and the
security service, and these components cover
substantially all of the functionality required for
distributed applications. Threads and RPC
constitute the foundation services for the other
components and are affecting the most Ada
applications.

An essential aspect of OSF/DCE is its explicit
focus on the client/server model and its main
supporting mechanism: RPC. Because of its
layered, standardized, and comprehensive nature,
OSF/DCE can isolate applications from specific
or proprietary traits of operating systems and
products, such as UNIX, OS/2, VMS, and
databases. Database Management Systems
operating in a client/server environment can
utilize the services provided by OSF/DCE to
transparently make their services available to
processes on different machines.

The establishment of an environment in which
several client and server machines may operate is
a critical step in permitting communications
between different machines. RPCs can be used to
help solve the problems of data transfer between
client and servers residing on different platforms
by providing a transparent means of
communicating potentially complex data types.
Additional flexibility and design independence
can be gained by leveraging OSF/DCE name
services.

The OSF/DCE RPC implementation uses the
DCE threads component which in turn overlaps in
functionality with the Ada compiler run-time. As
we will explain further in the paper, this will most
likely conflict with the tasking mechanism and its
run-time support, making the use of Ada tasking
in DCE a thorny issue.

The RPC service, while essential to OSF/DCE, is
greatly enhanced and complemented by the other
DCE services. Making judicious use of all core
DCE services in developing Ada applications
allows for conceptually cleaner and more robust
distributed systems.

In deploying our Ada prototypes over DCE we
started with existing Sun ONC distributed
applications developed using the methodology of
[VAS191] and [VASI92]. This methodology fits
the layered architecture of OSF/DCE because it
can target in an orthogonal manner (persistent)
resources, communication services or security
services. In addition the methodology is
supported by automatic code generators allowing
for quick testing of targeted features.

The paper first describes issues arising from the
interaction of Ada with some core DCE
components. Next, we give a quick overview of
our methodology and its application to DCE
prototypes. We continue with lessons learned
during prototype development covering mainly
OSF RPC (which is contrasted with Sun ONC
RPC), security and name services. The appendix
lists sample Ada code describing complex objects
and their automatic translation into DCE Interface
Description Language (IDL).

2.0 DCE Thread&PC Interaction with
Ada

The development of Ada applications using OSF
DCE RPC and Ada tasking is difficult because
two runtimes unaware of each other are involved
in the management of the same resources. The
Ada runtime is required whenever tasks ate used.
RPC requires threads services which in turn bring
in their own runtime. Within OSF DCE the need
to interface Ada with non-Ada libraries is perva-
sive. This usually represents additional problems
because some libraries (such as Motif or X 11 R5)
are not thread-safe.

The difficulties arise when the Ada runtime
system captures the process and, among other
things sets up signal (interrupt) handlers for all
Ada important signals. The Ada runtime needs
control over the process to manage tasking,
exceptions, exception handling, and Ada I/O.
However, it is not aware of signals meant for the
threads runtime, and does not know how to
handle these signals. The consequence is that Ada

75

programs will crash unexpectedly when these
signals are encountered.

On the other hand, the use of Ada libraries in a
threaded environment is made possible by some
compilers provided no use of the Ada runtime is
made (no use of tasking, I/O, exceptions). As
specified in the Ada reference manual all Ada
subprograms are reentrant and therefore these
subprograms can be made thread-safe by
following a few simple guidelines (such as the
restricted use of global objects).

There are common techniques (such as the use of
jacket routines) that can be used for the
integration of non-threaded libraries from other
languages not developed for a concurrent
environment. These techniques are used for
instance by DCE threads packages to provide
thread-safe OS libraries, and were employed
when needed by our Ada prototypes.

The Ada tasking interaction with threads varies
somewhat on whether it deals with user or kernel
level threads. A user-level thread implementation
has a runtime system that is layered over the OS
kernel while kernel threads implement the
required functionality in kernel space. In a
threaded environment threads share open files,
timers, and signals, etc. Because the thread con-
cept is in fact very close to the tasking concept,
integrating user-level thread runtimes and Ada
runtimes amounts to integrating two related con-
cepts having entirely separate and conflicting
implementations while the environment outside
the process supporting these implementations is
not able to really distinguish each implementa-
tion. In this context application developers are
normally forced to drop the use of Ada tasking
and the development of reliable Ada tasking/DCE
applications is virtually impossible.

A better chance of integrating Ada runtimes and
thread runtimes arises if OS native threads are
available and used by both runtime implementa-
tions. If both the DCE and Ada compiler vendors
choose to map their appropriate runtime specifi-
cations onto kernel level threads they may also
delegate to the OS much of their functionality.

For instance the OS might be able to manage the
signals, scheduling, and dispatching of threads on
behalf of the two runtimes.

In this context the use of Ada tasking with OSF
DCE becomes at least feasible, even though one
expects to give up some flexibility on the Ada
side. When the management of tasks is delegated
to OS one might expect that Ada tasking behavior
is dictated by the OS. Ada applications might not
have the flexibility of modifying the scheduling
algorithms, or might not control all threads of
execution in the process, and might be required to
map the priority levels to those of the operating
system.

Newer Operating systems (Solaris 2.X, OS/2
2.1, Windows NT) support native (kernel level)
threads and vendors for these platforms ate now
moving rapidly to allow for the reliable coexist-
ence of Ada and thread runtimes.

3.0 Prototyping Methodology

Our prototyping methodology assumes a modular
definition in Ada of high level data structures able
to model complex objects. Implicit semantics are
associated with modules of interest. The function-
ality expressed by these semantics is made avail-
able as subprogram specifications to client
applications. The methodology calls for choosing
semantics that can be supported through well-
defined mechanical transformations.

For instance, the appendix lists Part-C recursive
data structure as a record type with variants. The
complex object in this case consists of the parts-
subparts hierarchy together with the suppliers of
each base part. Implicit semantics for persistent
resources are associated with Insert, Retrieve,
Delete specifications. For communication the
primitives might be Send/Receive. For security
the semantics might call for setting of protection
level attributes during communication.

Considerable care and analysis needs to be
invested in choosing semantics that can be
mapped onto standardized layers of interest in a
computationally efficient manner. For instance, in
describing high level objects suitable for database
manipulation, one needs to follow a tight disci-
pline in order to avoid endless recursion in part-

76

subpart hierarchies. Or, in shipping high level
objects over networks, the semantics should be
chosen so that execution of deep copy of an
object is possible.

In general, the methodology limits the complexity
of data structures for high level complex objects
to a model capable of compact description of
Directed Acyclic Graphs (DAG). This level of
complexity (DAG-like structures) is fully ade-
quate to support object-oriented modeling with
minimum “impedance mismatch”. In particular, it
is adequate for expressing objects of roughly
equivalent complexity and efficiency with those
of CORBA IDL [CORB91] and ODMG-93
[ODMG93].

Crucial to this methodology is an environment
where stable and standardized layers can be tar-
geted. Standardized layers for persistent
resources might be SQL-compliant or SAG-CL1
compliant databases. For communication
resources one may target Sun ONC RPC or DCE
RPCThis methodology is designed to facilitate
the creation of code generation toolkits that auto-
matically bridge the gap between high level Ada-
based objects (or other object-oriented host lan-
guages) and the targeted layers of interest. In fact,
we developed toolkits supporting relational data-
bases and communication resources following the
general approach of Figure 1 on page 4.

The methodology is usable in a variety of con-
texts when rapid prototyping and proof-of-con-
cept software is needed. It can be used for
implementations of prototype APIs. It can be
used as well in situations where APIs are not yet
well defined but some desired semantics are. It is
tailored to support a coherent and disciplined
approach to interoperability in open environments
where new and emerging standards require “glue”
code generation, communication support, and
thorough compatibility testing. Because imple-
mented semantics are encapsulated and kept inde-
pendent of semantics targeting different API, one
achieves a high degree of modularity.

For instance, RPC support is not tied to DBMS
support. One can have several application pro-
grams running on different platforms exchanging
directly complex objects without any database

interaction. When dealing with complex data
structures like an inventory parts schema, data
can be passed across systems at different levels.
Data may be shipped at a very high level where
the whole data structure is passed requiring very
few RPCs in the server interface or at a very low
level using more RPCs for passing each sub-com-
ponent of the data structure. In fact the order in
which the RPC semantics or database semantics
are applied may be determined by the application
programmer and guided by efficiency or practical
considerations dependent on the platform in use.

r--r

Semantic
Priytives

Methodol%s fl

0
M4

Figure 1. Methodology/Prototype Approach

An important by-product of this methodology is
its ease of use. Application programmers need to
concern themselves mainly with high-level types
and object declarations, while the access to per-
sistent or communication resources is non-proce-
dural, automatic, and through a small number of
semantically well-defined subprogram calls. Pro-
totype implementations of this methodology over
almost five years demonstrated full portability
and high programmer productivity.

4.0 Prototype Implementation and Lessons
Learned

OSF/DCE is a well balanced integrated
environment. Its main services (RPC, name
services, security services and thread services)

77

offer application developers unmatched flexibility
and robustness.

Our Ada experience using OSF DCE can be
classified into three general categories:

l The extent to which Ada can make full and
unrestricted use of OSF DCE services.

l The extent to which our prototyping meth-
odology facilitates deployment of Ada
applications in OSF DCE.

. A comparison of DCE RPC and ONC RPC.

4.1 Using OSFIDCE Services

The name service provides a global addressing
system for any kind of entity that permits multiple
binding methods and profiling of servers. The
security services provide secure RPC’s through
the exchange of secret passwords and encryption
of data between distributed systems. The threads
services permit multiple clients to simultaneously
access a server. These are some of the services
that provide the flexibility but also introduce the
level of complexity encountered in DCE.

The use of these services from Ada is
unrestricted. However, the caveat of section two
holds: Ada tasking is not to be used. A server can
be non-secure or be authenticated, can handle one
or multiple calls at a time, and be stand-alone or
replicated. A client can use automatic, explicit, or
implicit binding, can talk to multiple servers
simultaneously, and can rebind to a backup server
when there is a failure.

DCE applications use the name services to help
locate binding information to build a binding
handle. Client-Server binding is a two step
process that clients perform to find on what host
the server is running (using the Name server) and
to find what endpoint (using the endpoint mapper)
the server is listening to (for a good introductory
explanation of DCE RPC see [SHIR93]).
Automatic bindings are used when transparency
is desired and calls are limited to a single server.
Simple LAN applications where the identity of

the server does not matter am good candidates for
automatic bindings. Implicit bindings are used
when control of binding management is desired
yet there is no requirement for a visible binding
handle in the RPC and calls are mainly to one
server. Elaborate applications use explicit binding
where the decisions to bind to multiple arbitrary
servers is required for greater program flexibility.
Explicit binding applications make the name
server calls (binding management) to obtain the
binding handle for each server and pass the
binding handle in each RPC.

The Name server can also provide the flexible
lookup of object entries by using groups and
profiles. Name server object entries can be
grouped into container objects similar to
directories in files systems or can be profiled to
control the lookup of available servers to perform
operations like load balancing. Application
servers register themselves by exporting their
interface into the server namespace and adding
themselves to groups. Client applications can do
lookups on a single container object entry to
access the dynamically configured server binding
information.

This environment permits the dynamic
configuration of available servers. Whole name
server hierarchies can be included into profiles
without any client configuration. Client
applications can access a single entry that will
prioritize and choose the appropriate service
according to the policies implemented.

For example, a number of print servers can be
organized by class and be prioritized by
proximity. When clients request to print, the
binding returned will depend on the class of
printer, and the availability of the closest printer.

In the development of a DCE application the
method of binding and the grouping/profiling of
server entries define its behavior and flexibility.
There are numerous options in implementing
DCE services which dramatically change the
behavior of applications without client
modification or even recompilation.

78

As a rule of thumb, we were able to exercise in
our Ada applications an almost complete range
of options in terms of bindings, grouping/
profiling, security. Calls available from C were
duplicated in Ada with little effort. Yet it became
clear quite soon that developing DCE
applications is akin to developing low-level X
applications because of the large number of
features available in the DCE services APIs.

For instance, the authenticated RPC applications
were developed using the DCE Security services
based on Kerberos version 5. Integrating
authentication into our applications required the
development of an Ada wrapper package that
would make the DCE calls through C.
Authentication required little effort because it
amounts to simple attribute setting and
modifications. The implementation of
authorization is a different matter. DCE
authorization is implemented through DCE
privilege service that provides access control lists
(ACL). The implementation of ACL managers
for application servers to control access to server
objects is quite difficult and time consuming. The
current state-of-the-art requires developers to
develop ACL management services to conform to
a predelined DCE RPC interface. There are no
tools or standard approaches for developing ACL
managers. This forces developers to conform to a
complex predelined API and to handcraft its
precise semantics as well.

We avoided to a large extent the uncontrolled
proliferation of APIs through the use of our
methodology. In our prototypes we targeted some
standardized use of DCE services. When
applications are generated the type of binding,
profiling and security developed are
automatically integrated.

4.2 Ada Prototypes over OSF DCE

Our prototype work started in 1989 and originally
supported SunOS environments and Oracle. It has
expanded to several other platforms (OS/2, Win-
dows NT) and databases (SQL Server, Sybase,
Informix, object-oriented databases such as

ObjectStore and Versant), with automatic code
generation for relational database support and
Sun RPC. And starting late 1992 we extended its
reach to OSF/DCE. The prototypes benefit from
our methodology and supporting toolkits which
now successfully generate IDL code supporting
DCE RPC.

Thus we can efficiently ship complex objects
across heterogenous platforms taking advantage
of DCE services for a variety of bindings, server
profiling, secure RPC, multithreaded servers.

Our current testbed includes two DCE cells, one
cell configured for the Sun environment running
Transarc’s DCE product, the other cell running
IBM’s DCE implementation on OS/2. We also
use MS RPC, a Windows NT compatible imple-
mentation of DCE RPC, to communicate with
OSF/DCE servers.

OSF DCE provides extensive APIs covering
many services including threads, RPC, Name,
Security services. The extent to which the API is
used depends on the complexity of the applica-
tion. For example, it is possible to develop an ele-
mentary DCE application that uses the RPC
runtime with well-known endpoints. In this case
no use is made of the name server, security server,
or the end-point mapper that DCE provides.

As application complexity rises the developer is
confronted with a multitude of calls to be mas-
tered, making for a steep and long learning curve.
In addition, the potential for subtle interactions
among these calls is high, and these interactions
easily translate into implementation pitfalls. This
certainly calls for commercially available toolkits
or facilities that application developers can use
to target standardized OSF DCE components, and
such efforts are currently under way.

Our prototypes benefited from the mechanisms
supported by our tools. The application developer
is not concerned about SQL data modeling, data-
base access, interface development, and distrib-
uted server development. It is all available to him
via high-level Ada-driven specifications.

Also, because the Ada support for the security
component is independent of any particular
security mechanisms and independent of the

79

communication and database support
component, we gain the flexibility of swapping
and integrating other security mechanisms as
well.

Our methodology allowed us to test a variety of
partition options in a client/server environment.
When dealing with complex data structures like
an inventory parts schema, data can be passed
across systems at different levels. Data may be
shipped at a very high level where the whole data
structure is passed or at a very low level using
more RPCs for passing each sub-component of
the data structure. The type and size of data
structures shipped across systems must be
carefully considered in order to assess the
overhead associated with each RPC.

Passing data at a high level required very few
RPCs in the server interface. Developing low
level RPC calls partitioned the application
differently. The server interface contained large
numbers of calls and required the clients to make
multiple RPC calls for the equivalent of a high-
level RPC call.

Passing data at a high-level proved efficient when
deep hierarchies were involved. Passing data at a
lower-level was acceptable when hierarchies
were shallow and involved large elementary
opaque objects. Of course, using high-level RPC
provides better support when scalability and
interoperability of the application is an issue.
Other implementations options included packing
and unpacking data structures for transfer through
a DCE pipe (shipping of files of larger size -such
as images- are well suited to the pipe
mechanism.)

The prototype brings together many technologies
and languages into a single environment. It
addressed successfully many pragmatic issues
like linkage (shared vs. static), libraries with
thread support, non-thread safe libraries, and
integration with DBMS server libraries.

A key element in developing distributed
applications is the existence of adequate

compilers and debugging tools. For example, the
compiler we used did not handle shared libraries
well, nor was it threads aware. An additional
difficulty in debugging distributed applications is
the handling of communication time-outs. Due to
the present compiler and tool limitations, the
development of Ada distributed applications can
be difficult.

4.3 Comparison Between OSF/DCE RPC
and Sun ONC RPC

While adding OSF/DCE services to our prototype
a number of differences between OSF/DCE and
Sun ONC distributed services were exposed. One
of the prototype activities is to automatically
generate a server interface file from the Ada
source code (user schema and application tiles).
This generation step, originally targeted to ONC
RPC, was modified to accommodate DCE RPC.
ONC and DCE have different approaches with
respect to user defined types, parameter passing,
RPC server registration, support for pointers, and
DCE has additional enhancements like string or
pipe types.

When developing client-server applications the
most widespread communication facility is the
Sun ONC RPC. The communication facility pro-
vided by SUN ONC has a solid market penetra-
tion due to its low cost and availability on many
platforms. We feel however that OSF DCE has
some outstanding technical features that make it a
better distributed framework. Here are some dif-
ferences between ONC RPC and DCE RPC.

1. When using ONC RPC one needs to specify
the server name when making a call. In contrast,
DCE allows for simple and transparent
implementation of server location independence.
Clients use a standard name server to locate
servers in DCE, and then get the required
binding.

2. One needs to specify the XDR filter for
function parameters when making client calls in a
Sun ONC environment. Also ONC client calls are
much more complicated. This means when

80

developing servers whose data format changes,
major code changes occur in all clients. In
contrast, DCE function calls look just like local
calls, and little client modification is required
when data format changes.

3. ONC RPC is more restricted about the size of
data being transmitted, and requires low-level
calls for managing larger size data. When
shipping large amounts of data, the programmer
must manage the connection between client and
server to guarantee data delivery. In DCE RPC
large user defined data structures are
transparently supported. In addition, DCE
provides support for a pipe type at the interface
compiler level.

4. Sun ONC servers cannot easily be made multi-
threaded. In contrast, automatic support of
multi-client servers is provided by DCE.

5. When using Sun ONC one needs to register
every server call on the server side. When using
OSF DCE, the server development is simplified
by registering the service just once, with no per
call requirement.

6. ONC clients must pass single pointers to all
objects instead of the actual objects. DCE has no
restrictions as to what data and how many param-
eters are passed. The data to be transferred and
the direction is specified at the protocol level in
DCE.

7. ONC has no support in the protocol compiler
for callback. DCE provides the support for
callbacks thus allowing the development of
asynchronous RPC. This allows background
execution of long task.

8. When using DCE the selection of transport
protocol is dynamic and can be made transparent
to the application. Thus DCE provides the
framework to access other network types without
major changes to source code.

5.0 Conclusions

Ada can be used right now to develop applica-
tions for OSF DCE. If the tasking feature of Ada

is avoided, applications can take full advantage of
the superior technical features and the powerful
framework of OSF DCE.

The use of Ada tasking with DCE in a portable
way might be achieved if a Posix./Ada standard is
adopted and supported by compiler vendors. In
the meantime, the use of Ada tasking is possible
in a proprietary manner to the extent that com-
piler vendors integrate Ada and DCE threads
runtimes.

There is a fairly steep learning curve associated
with OSF DCE due to the extensive functionality
of each DCE component and the complexity of
their APIs. The application development is fairly
tedious and there is a need for production strength
middleware supporting tools.

While we could make qualitative assessments on
OSF DCE (in particular by contrasting Sun ONC
RPC and DCE RPC), more experiments are
needed for careful quantitative analyses of OSF
DCE performance in large distributed systems.

Our prototypes avoided to a large extent the
tediousness associated with DCE development
because we applied our methodology and associ-
ated tools to automatically support target DCE
components. We successfully generated support
code for complex objects and independently for
SQL-based database servers and security ser-
vices. This capability is unique in both Ada and
non-Ada environments.

These prototypes demonstrate now interoperabil-
ity at complex objects level in a heterogenous
DCE cell (OS/Z PCs and Sun workstations) with
different persistent resource managers (relational
and object-oriented databases). This is seen as a
prerequisite for high-level support of distributed
transaction processing on OSF DCE, which is the
focus of our future efforts.

6.0 Bibliography

[VASI91] Vasilescu, E., “Using Ada for Rapid
Prototyping of Database Applications”,
Proceedings of the Eighth Washington Ada
Symposium, 1991.

81

[VASI92] Vasilescu, E., Salih, S., Skinner, J.,
“Maintaining Transparency of Database Objects
over networks in Ada Applications”, 10th Annual
National Conference on ADA Technology, 1992.

[DCE91] Open Software Foundation,
“Distributed Computing Environment: An
Overview”, OSF White Paper, April 1991,
Cambridge, Mass.

[SHIR93] Shirley, J., “Guide to Writing DCE
Applications”, O’ReiIly & Associates, In.,1993.

[DCE92] Open Software Foundation,
“Application Development Guide”, OSF DCE
1.0.1. , 1992, Cambridge, mass.

[CORB91] Object Management Group , “OMG
CORBA” - OMG Document Number 91.12.1
Revision 1.1

[ODMG93] “The Object Database Standard:
ODMG-93”, Morgan Kaufmann Publishers, San
Mateo, Ca.

7.0 Appendix

Sample schema file sch-partsa

-- Complex object data structures

-- Implicit semantics:

-- Insert, Retrieve, Delete, Send, Receive

-- Set, Get authentication attributes

with Parts-Types; use Parts-Types;

package Parts-Schema is

use Parts~Types.Ada~Sql;

type Made-From-C;

type Access-Made-From-C is access
Made-From-C;

type Suppliers-C;

type Access-Suppliers-C is access Suppliers-C;

--Part-C is your only root

type Part-C (Part-Kind : Part-Class :=Base-Part)
is

record

No-Ref : No-Type;

Name : Part-Name-Type(1.. 10);

--Next-Part-C : Access-Par-C;

case Part-Kind is

when Base-Part =>

cost : Cost-Type;

Mass : Mass-Type;

Supplied-By : Access-Suppliers-C;

when Composite-Part =>

Assembly-Cost: Cost-Type;

Mass-Increment: Mass-Type;

Made-From : Access-Made-From-C;

end case;

end record;

type Access-Part-C is access Part-C;

type Made-From-C is

record

How-Many : How-Many-Type;

Component : Access-Par-C;

Next-Made-From-C : Access-Made-From-C;

end record;

type Suppliers-C is

record

Name-Ref : Supplier-Name-Type(1.. 10);

Next-Supplier-C : Access-Suppliers-C;

end record;

end Parts-Schema;

Sample Application file par&a
*********t***************************

procedure Parts is

use Parts-Types.Ada-Sql;

The-Result-List : Access-Part-C-Join;

The-Part : Part-C;

The-Part2 : Part-C(Composite-Part);

82

begin

Parts-Utilities.Construct-Bike;

Open-Database(“Johns”,“Bass”,dion);

Put-Line(“Insert the bike”);

Insert(Parts-Utilities.PC3,dion);

Put-Line(“Insert the wheel”);

Insert(Parts_Utilities.Pc 1 ,dion);

Put-line(“Ret.rieve(The-Part,

R-A-1 (The-Part.Name = Bike)); (Bike)“);

The-Result-List := Retrieve(The-Part,
R-A-1 (The-PartName = “bike “),dion);

--Check what we get back

while The-Result-List /= null

loop

Parts-Utilities.Display(The-Result-List.Part-C
-Elem);

The-Result-List :=
The-Result-List-Part-C-Join;

end loop;

Put-Line(“Delete the bike”);

Delete(The-Par&R-A-l (The-Part.Name =
“bike “),dion);

Put-Line(“Delete The Bike”);

Delete(The-Part,R-A-1 (The-Part-Name =
“bike “),dion);

The-Result-List := Retrieve(The-Part,
R-A-1 (The-Part-Name = “bike “),dion);

-- Check what we get back

while The-Result-List /= null

loop

Parts~Utilities.Display(The~ResuIt~List.Part~C
-Elem);

The-Result-List :=
The-Result-List.Part-C-Join;

end loop;

Put-Line(“Retrieve(The-Part,
R-A-2(The-Part.No-Ref = 33333));
(WHEEL)‘*);

The-Result-List := Retrieve(The-Part,
R-A-2(The-Part.No-Ref = 33333),dion);

-- Check what we get back

while The-Result-List /= null

loop

Parts-Utilities.Display(The-Result-List-Part-C
-Elem);

The-Result-List :=
The-Result-L&Part-C-Join;

end loop;

Put-Line(“Insert The Bike”);

Insert(Parts-UtilitiesK3,dion);

Put-Line(“Retrieve(The-Part,
R-A-3(The-Part.No-Ref = USER-VAL));
(SPOKE)“);

The-Result-List :=
Retrieve(The-Part,R-A-3(The-Part.No-Ref =
USER-VALUE),dion);

-- Check what we get back

while The-Result-List /= null

loop

Parts~Utilities.Display(The~Result~List.Part~C
-Elem);

The-Result-List :=
The-Result-List-Part-C-Join;

end loop;

Put-Line(“Retrieve(The-Part,
R-A-4(The-Part.Mass = 2”);

Put-Line(“OR The-Pa.rQ.Mass-Increment =
25”);

Put-Line(“OR The-Part-No-Ref = 55591 OR
The-PtiName = bike);“);

The-Result-List := Retrieve(The-Part,
R-A-4(The-Part-Mass = 2 OR
The-Part2.Mass-Increment = 25 OR
The-Part.No-Ref = 5559 1 OR The-Part.Name
= “b&e “),dion);

-- Check what we get back

while The-Result-List /= null

loop

83

-

Parts~Utilities.Display(The~Result~List.Part~C
-Elem);

The-Result-List :=
The-Result-List-Part-C-Join;

end loop;

Put-Line(“Retrieve(The-Part,
R-A-5(The-PartName /= tire AND”);

Put-Line(“(The-Part-Mass = 5 OR The-Part-Cost
= 1)“);

The-Result-List := Retrieveme-Part,R-A-5
(The-PartName /= “tire “ AND
(The-PartCost = 1 OR The-Part-Mass
=5)),dion);

-- Check what we get back

while The-Result-List /= null

loop

Parts~Utilities.Display(The~Result~List.Part~C
-Elem);

The-Result-List :=

The-Result-List-Part-C-Join;

end loop;

Put-Line(“Retrieve(The-Part); get all parts”);

The-Result-List := Retrieve(The-Part,dion);

- Check what we get back

while The-Result-List /= null

loop

Parts-Utilities.Display(The-Result-ListPart-C
-Elem);

The-Result-List :=
The-Result-ListPart-C-Join;

end loop;

Put-Line(“Delete(The-Part); delete all parts”);

Delete(The-Part,dion);

Exit-Database(dion); -- generated automatically

end Parts;

Sample id1 file ap.idl

1
uuid(OO972d5e-7 1 b3- ld90-98fc-84e45e38aa77),

version(1.0).

pointer-default(ptr)

I
interface Parts

t
typedef struct made-from-c

*access-made-from-c;

typedef struct suppliers-c
*access-suppliers-c;

typedef enum {

BASE-PART-PART-CLASS,

COMPOSITE-PART-PART-CLASS,

END-PART-CLASS } part-class;

typedef struct base-part-part-c {

long no-ref;

char namer 121;

long cost;

long mass;

access-suppliers-c supplied-by;

I b=-part_pamz
typedef struct composite-part-part-c (

long no-ref;

char namer 121;

long assembly-cost;

long mass-increment;

access-made-from-c made-from;

} composite~part~part~c;

typedef union part-c switch

(part-class part-class) {

case BASE-PART-PART-CLASS:

struct base-part-part-c base-part;

case COMPOSITE-PART-PART-CLASS:

84

struct composite~part~part~c composite-part;

default: ;

1 pakc;
typedef union part-c *access-part-c;

typedef struct made-from-c{

long how-many;

access-part-c component;

access-made-from-c next-made-from-c;

} made-from-c;

typedef struct suppliers-c {

char name_refll2];

access-suppliers-c next-supplier-c;

} suppliers-c;

typedef struct part-c-join *access-part-cjoin;

typedef struct part-c-join{

part-c part-c-elem;

access-par-cjoin part-cjoin;

} part-c-join;

typedef union part_c_variantjoin
*access-part-c-variantjoin;

typedef s true t base-part-part-c-varian tjoin (

access-part-c-variant-join part-c-join;

part-c part-c-base-part-elem;

} base~part~part~c~variant~oin;

typedef strut t
composite~part~part~c_variantjoin{

access-part-c-variantjoin part-cjoin;

part-c part~c~composite~part~elem;

] composite~part~part~crt_c_variantjoin;

typedef union part-c-variantjoin switch

(part-class part&iss) (

case BASE-PART-PART-CLASS:

struct base~part~part~c~varia.ntJoin base-part;

case COMPOSITE-PART-PART-CLASS:

struct composite~part~part~crt_c_variantjoin
composite-part;

default: ;

typedef struct params~l

{ [string] char *p-l ;

[string] char *p-2;

1 p=-Kl;
void OPEN-DATABASEX-I-l([in] params-1*
Ph
void INSERTX-l-l([in] part-c* p);

access~part~c~variantjoin

RETRIEVEX-l-l(void);

void DELETEX-l-1 (void);

access-par~c~variantjoin
RETRIEVEX-2- 1 (void);

access-part~c~variantjoin
RETRIEVEX-3- 1 (void);

access-part-c-variantjoin
RETRIEVEXQ- 1 (void);

access~part~c~variantjoin
RETRIEVEX-5-l (void);

access~part~c~variantjoin
RETRIEVEX-6-l (void);

void DELETEX-2-l(void);

void EXIT-DATABASEX-1-l (void);

1

) part-c-variantjoin;

85

