
A MOTIF-BASED INSTRUCTOR INTERFACE FOR A MAINTENANCE TRAINER
by

M. Catherine Moan*
Sara Talley
Steve Ford

Frontier Engineering, Inc.
Stillwater, Okkahoma

1. Abstract

Many maintenance trainers of the pasi have provided a crude
and tedious way of enlcring lesson data. inserting
malfunctions, and changing p(ar‘ameters.

This paper describes an instructor interface which uses the
Motif Graphical LJser Interface (GIJI) to provide a fast. easy
means lo accomplish lesson planning and training.

2. Introduction

The F-16 Engine Start System Maintenance Trainer
(ESSMT) provides maintenance training for the General
Electric (GE) FlOO-GE-100 and -129 engined F-16C
Aircraft. The trainer provides students with realistic
training for operating and maintaining the Engine Start
System and accomplishes the uaining objectives identified
below:

. Major component identification

. Major component location

. Operational checkout

. Fault isolation/correction

The ESSMT is composed of three major components:
instructor station, student station, and computational
system as shown in Figure 1. The instructor station
consists of a 17” color X-terminal with a Surface
Acoustical Wave (SAW) touchscreen and keyboard
interfaced with the computational system.

The instructor station provides the following capabilities:

. Instructional feature co~urols (including log-in, lesson
selection, system self-tesl, etc.)

. Parameter selection

. Malfunction insertion and sequencing

. Freeze cor111-01

. Rate co~urol

@PYNffiHT @ l%‘d BY THE ASSOtIAnON FOR UU4PllTlHG !tACltlHERY, INc
Permission to COPY without fee all or part of this material ir granted prwided
that the copier are not made or distributed for direct commercial *rage, h
ACfl copwt notice and the title of the publii and itr date appa, ad
notice is gim that the wpying is by pennisrion of the AsIo&tion for
Computing lladinery. To copy othetwise. or to republah. requires a fee
and/or specific pennissian.

0 I994 ACM O-8979 I -684-O/94/0006 3.50

The student station consist of an interactive video display
system, simulated sound system, and a simulation panel
representing the F-16C Engine Start System with
associated components and support equipment. This station
provides support for all sludenl actions throughout the
exercise interactions.

The computational system is housed in a VME chassis
containing a 25 MHz 68030 computational processor unit
(CPU), a analog-to-digital/digital-to-analog board, and
seveml digital l/O boards.

The ESSMT software is executed under the Wind River
Systems VxWorks real-time operating system. VX-
Windows from VisiCom Laboratories, Inc., along with
Transportable Applications Environment (TAE) libraries are
used to provide an X-window. Motif GlJl for the instructor
station. The student station is controlled by application-
specilic software. All newly developed application software
is written in the Ada programming language in accordance
with the ANSIMIL-STD-18lSA.

2. Rapid Prototyping

The ESSMT development environment consisted of a Sun
SPARCstalion operating under the Sun OS operating
syslem with X-terminals connected via Ethernet.
VADSWorks. a tight integration of the Verdix Ada
compiler/linker and Wind River VxWorks real-time
executive. along with TAE was used during development o!
the ESSMT software.

All the instructor menu screens were conceptually drawn up
on paper, and were then quickly developed on the
developmenr system using TAE. The menus at this stage
contained an exact visual replication of the final product,
and some limited interaction between menus. An example
of we of these menus is shown in Figure 2. This rapid
prototyping allowed the instructor to easily identify
proficiencies and deficiencies in the design of the menus.
When deficiencies were identified, the menu was then
quickly corrected. After a few iterations during this
prototyping phase, all the menus and the interaction
between them were approved before the coding phae began.

* Clurrently with Hughes Training, Inc. in Arlington,
Texas.

86

http://crossmark.crossref.org/dialog/?doi=10.1145%2F197978.197986&domain=pdf&date_stamp=1994-07-01

Figure 1. Engine Start System Maintenance Trainer (ESSMT)

Parameter Menu - Lesson Planning

Nltmgan Pmchfga Hydnulk Pmuurm
Acoumuktor #l Total#l

NHmqan Pruhaqo Nydmutk Pmuura
Accumulator m TOW12

Ambient
T9mpwau~

0 115F

0 St=

0 15F

Aircmtt Eiattaq

Figure 2. Instructor Parameters Menu

87

Once the menus were approved, TAE was used to generate
Ada “skeleton” code. This code contained all the procedures
necessary to display each menu, and the code for limited
interaction between the menus.

3. Problems Encountered

The following problems were encountered by using TAE to
create the menus and to automatically generate the Ada
code:

1. The 68030 processor is JIO longer supported with TAE.
2. The Motif objects available in TAE did JIO~ directly

correspond to what was needed, and at times could not
be modified with TAE code.

3. Some of the TAE code uses stream I/(.) for reading
files, and this is 11ot available under VxWorh.

4. Certain Unix calls are 110t supported under VxWorks.

The following paragraphs will describe each of these
problems in more detail and the solution that was
implemented.

3.1. 68030 TAE Object Code

TAE Version S.2 was used because of its keyboard traversal
capability; however, the Motorola 68030 is 11ot supported
with this version. Basically, this means that the 68030
object code was not delivered with version 5.2: however,
TAE does provide source code, and makefiles. All of the
source code was transferred to a sun3 machine in order to
use the default C compiler and all the TAE environment
v‘ariablcs were ch<anged to correspond to the JI~W directory
structure. The makefiles were then modified for the
ESSMT environment. Some excerpts from the makefile
Makefile.Xm are listed here with the areas in bold
indicating the changed areas.

Maketile.XM

Generic m,ake variables

SHELL = /bin/sh
AR=arcq
BOOTSTRAPCFLA(;S =
ASSEMBLE = false
1 IAVETERMLIB = yes
cc=cc
CCOPTS =
c++ =g++
CPP = /lib/cpp $(STD-CPP-DEFINES)
LD++ = CC -pipe
PREPKOCESSCMD =

cc -E S(STD-CPP~DEFINES)
LD=cc

LN = In -s
KANLIB = ranlib
RM=rm-f
STD-CPP-DEFINES =
STD-C++DEFINES = -DXTFUNCPROTO
STD-CDEFINES = -D-NO-PROTO
EXTRA-C++FLAGS =

-I/home/kathy/taeZ/MOTIF
EXTRA-CFLAGS =

-I/home/kathy/tae2/MOTIF
EXTRA-LOAD-FLAGS =
EXTRALIBS =
APP-C++FLAGS =
APP-CFLAGS =
APP-LOAD-FLAGS =
APP-LINKLIBS =
SYSLIBS = $(TERMLIB) $(MATHLIB) $(CLIB)
(:++SYSLIBS = S(TERMLIB) $(MATHLIB)

$(CLIB) $(C++LIB)
C++DEBlJGFLAGS =
CDEBIJGFLAGS =
LDDEBUGFLAGS =
C++FLAGS = $(C++DEBCJGFLAGS)

$(C++INCLUDES)
$(APP-C++INCLUDES)
$(EXTRA-C++FLAGS)
$(APP-C++FLAGS)
$(STD-C++DEFINES)

(IFZAGS = $(CDEBIJGFLAGS) $(CINCLUDES)
$(APP-CINCLUDES) \
$(EXTRA-CFLAGS) $(APP-CFLAGS)
$(STD-CDEFINES) $(CCOPTS)

LDFLAGS = $(LDDEBUGFLAGS)
$(EXTRA-LOAD-FLAGS)
!§(APP-LOAD-FLAGS)

TAECONFIGDIR = $$TAE/config
WPTDEPLIB = $(TAELIB)/libwpt.a
XTERMDEPLIB = $(TAELIB)/libxtenn.a
DDODEPLIB = $(TAELIB)/libddo.a
WMWDEPLIB = $(TAELIB)/libwmw.a
TAECDEPLIB = $(TAELIB)/libtaec.a
TAEDEPLIB = $(TAELIB)/libtae.a
WPTDEPLIBS = $(WPTDEPLIB)

$(XTERMDEPLIB) $(DDODEPLIB)
$(WMWDEPLIB)

TAEDEPLIBS = $(TAECDEPLIB)
$(TAEDEPLIB)

DEPLIBS = $(WPTDEPLIBS) $(TAEDEPLIBS)

.SI.JFFIXES: .cc .C

.Cl.0:
S(C++) -c $(C++FLAGS) $<

.cc.o:
S(C++) -c $(C++FLA(;S) $<

88

Make file for the wpt widget library ‘1ibwmw.a’.

03-jan-92 New -I entries (see PRI257); new depend
target...ljn

LIBRARY = wmw

CINCLUDES = \
-I/home/kathy/tae2/XMMAK \
-I$(TAEXM) \
-I$(TAEINC) \
-I$(TAEINCXM) \
-I$(TAETOP)/lih

SRCS = $(TAEXM)/*.c

OBJS = \
Box.0 \
Icon.0 \
PageEdit. \
Pu1ldown.o \
Radio.0 \
TextEdit. \
TextList.

all::

all::

@echo I’ ”
@echo ” Creating library $(LIBRARY)...”

@$(MAKE) -e lib$(LIBRARY).a

lib$(LIBRARY).a::
@echo ” Building library $(LIBRARY)...”

lib$(LIBRARY).a:: $(OBJS)
$(RM) $@
!§(AR) $@ $(OBJS)
$@ANLIB) $63
@echo ‘I Finished building library

$(LIBRARY).”

3.2. TAE Motif Objects

TAE has several pre-defined Motif objects to enable quick
development of displays. This was very useful in the rapid
prototyping phase; however, during actual implementation,
some of the objects needed slight modification. Several of
these modifications occurred easily through changing or
adding attributes to the objects as shown in the examples
listed:

a. XtSetArg(al[ac], XmNlistSpacingS); ac++;
was added to TextListc to adjust the spacing in the
textlist object allowing list selection with the
touchscreen.

b. SetTarget (void*) tempstring, 0) was added to
textlistRt.cc to allow deselection of all entries in a
textlist.

c. Added check for keysym == XK-Return to
buttonRt.cc to allow for <CR> to select the widget
along with the space bar.

However, the size of the scroll bars on the textlist had to
be changed in order to be used with a touchscreen. The
following code depicts how the correct attributes were set
and the widget was unmapped and mapped to reflect the
change.

XtSetArg(al[O],XmNverticalScrollBar,&vsb);
XtSetArg(al[l],XmNhorizontalScrollBar, &hsb);
XtGetValues (XtParent(sel->textlist.list),al,2);

if (vsb) {
XtSetArg (al[O], XmNwidth, 40);
XtSetValues (vsb, al, 1);

if (hsb) (
XtSetArg (al[O],
XtSetValues(hsb,

1

XmNheight, 40);
al, 1);

XtUnMapWidget (sel->textlist.list);
XtMapWidget (sel->textlist.list);

3.3. Stream I/O

TAE uses objects called DDOs for implementing picture-
type objects. This code was implemented using stream I/O
calls in Unix. This presented a problem when porting the
code to VxWorks. VxWorks. version 5.0.2 does not
support these stream If0 calls. This problem was solved
by modifying the TAE source code that contained stream
I/O calls and replacing these calls with file I/O calls. A
cross-section of the changes made to selectionc. illustrating
the types of changes made to all the TAE files containing
stream I/O, are shown here.

45a46.47
> #include <stdio.h>
> #include <unistd.h>
215,216c217.218
< void Selection::Skip (ivistream& from) {
< while (from >> buf && strcmp(buf, startdata) !=O) (

> void Selection::Skip (FILE* from) {
> while (fscanf(from, “O/OS”, huf)

&& strcmp(buf,startdata) != 0 {

89

221~229
< void Selection::ReadVersion (ivistream& from) (

> void Selection::ReadVersion (FILE* from) {
229~23 1
< from >> buf;

> fscanf (from, “~/OS”, buf);
232~233
< from >> versionnumber;

> fscan(from, “%d”, &versionnumber);
25 1~252
c void Selection::ReadGridSpacing (ivistream& from,
State* state) {

> void Selection::ReadGridSpacing

(FILE* from, State* state) {
258~259
C from >> buf;

> fscanf(from, ” %s”, buf);
260~26 1
< from >> g;

> fscanf (from, “%lf”, &g);
376.377~376.378
< from >> lookahead;
C from.putback(lookahead);
---_
> fscanf(from, ” % c”, &lookahead);
> fscanf(from, ” %c”, &lookahead);
> fseek (from, -(sizeof(lookahead)),

SEEK-CUR);
386~387,390
C from>>p>>w>>l>>r;

> fscanf (from, “%u”, &p);
> fscanf (from, “%u”, &w);
> fscanf (from, “%u”, &I);
> fscanf (from, “%u”, &r);
39oc394
< if (undefined II !from.good()) (
--___
> if (undefined II ferror(from) (

3.4. Unsupported Unix Calls

Many of the routines included in the TAE source code were
Unix calls that were not supported by VxWorks. Most of
these were not used in the ESSMT application; therefore,
“dummy” files were created for these procedures. However,
there were several procedures that were needed. When this
occurred, the procedures was written in Ada and became a
part of the ESSMT application. The subroutine memchr()

was one of these procedures. The Ada package specification
and body are shown here.

with system;
with C-strings;

-- Unit Name: TAE-VADSWORKS-SUPPORT-PKG
-- Unit Type: Package Specification

-- Description:

-- The TAE-VADSWORKS-SUPPORT-PKG package
-- provides support routine neccessary
-- to support TAE in the VADSWORKS environment.

-- Unit Function:

-- function MEMCHR
-- searches memory for a specified character

__-------------------------------------

package TAE-VADSWORKS-SUPPORT-PKG is

____________________---
-
-- Unit Name: MEMCHR
-- Unit Type: Package Function

90

function MEMCHR(SEARCHSTRING : in
C-strings.c-string;
SEARCH-CHAR : in integer;
BYTE-COUNT : in integer) return
system.address;

private

pragma extemal(C, MEMCHR);
pragma external-name (MEMCHR. “-memchr”);

end TAE-VADSWORKS-SUPPORT-PKG;

-- Unit Name: TAE-VADSWORKS-SUPPORT-PKG
-- Unit Type: Package Specification

-- Description:

-- The TAE-VADSWORKS-SUPPORT-PKG package
-- provides support routine neccessary
-- to support TAE in the VADSWORKS environment.

-- Unit Function:

-- function MEMCHR

-- searches memory for a specified character

package body TAE-VADSWORKS-SUPPORT-PKG is

-
-- Unit Name:
-- Unit Type:
-

MEMCHR
Package Function

function MEMCHR(SEARCH-STRING : in
C-strings.c-string;
SEARCH-CHAR : in integer;
BYTE-COUNT : in integer) return
system.address is

-- Variable used to index into string being searched
____-_-______--_____--

CHAR-INDEX : integer;

begin -- TAE-VADSWORKS-SUPPORT-PKG
null;

end TAE-VADSWORKS-SUPPORT-PKG;

begin -- MEMCHR 4. Conclusion

begin

-- Set index into string to start at beginning.

CHAR-INDEX := 1;

--
-- Look through memory BYTE-COUNT number
-- of bytes to determine SEARCH-CHAR appears.
-- If it does, return the address of it. If it doesn’t,
-- return 0.
----------___--

while (CHAR-INDEX < BYTE-COUNT) loop

if (SEARCH-STRING(CHARJNDEX) =
CHARACTER’VAL(SEARCH-CHAR)) then

return(system.ADDRESS(SEARCH_STRING
(CHAR-1NDEX)‘ADDRESS));

end if;

CHAR-INDEX := CHAR-INDEX + I ;
end loop;

return (system.ADDRESS’REF(O));
end;

end MEMCHR:

With some additional effort, a very impressive and easy-to-
use instructor interface for a maintenance trainer was
created. With very little improvement in the tools used
during development, this method would not require any
more effort than the previous instructor interfaces
implemented.

REFERENCES:

Heller, Dan, Motif Programming Manual. O’Reilly & Associates, Inc., Sebastopol, CA, 1991.

Release Notes for the Transportable Applications Environment (TAE Plus), Version 5.2, (Unix Implementation), Century
Computing, Incorporated, Laurel, Maryland, December 1992.

VxWorks 5.0 - Programmer’s Guide, Wind River Systems, Inc.

91

