A MOTIF-BASED INSTRUCTOR INTERFACE FOR A MAINTENANCE TRAINER

A by
Check for M Calhel‘inc MO&U]*
- Sara Talley
Steve Ford

Frontier Engineering, Inc.
Stillwater, Oklahoma

1. Abstract The student station consist of an interactive video display

Many maintenance trainers of the past have provided a crude
and tedious way of entering lesson data, inserting
malfunctions, and changing parameters.

This paper describes an instructor interface which uses the
Motif Graphical User Interface (GUI) to provide a fast, easy

means to accomplish lesson planning and training.

2. Introduction

The F-16 Engine Start System Maintenance Trainer

(ESSMT) provides maintenance training for the General
Electric (GE) F100-GE-100 and -129 engined F-16C
Aircraft. The trainer provides students with realistic
training for operating and maintaining the Engine Start
System and accomplishes the training objectives identified
below:

¢ Major component identification
¢ Major component location

« Operational checkout

« Fault isolation/correction

The ESSMT is composcd of three major components:
instructor station, student station, and computational
system as shown in Figure 1. The instructor station
consists of a 17" color X-terminal with a Surface
Acoustical Wave (SAW) touchscreen and kcyboard
interfaced with the computational system.

The instructor station provides the following capabilities:

« Instructional feature controls (including log-in, lesson
selection, system self-test, etc.)

+ Parameter selection

» Malfunction insertion and sequencing

¢ Freeze control

« Rate control

COPIRIGHT © 1994 BY THE ASSOOATION FOR COMPUTING MACHINERY, INC
Permission o copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage, the
ACM copynight notice and the title of the publication and its date appear, and
notice & gven that the copying fs by permission of the Assocation for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or spedfic permission.

©1994 ACM 0-89791-684-0/94/0006 3.50

system, simulated sound system, and a simulation panel
representing the F-16C Engine Start System with
associated components and support equipment. This station
provides support for all student actions throughout the
exercise interactions.

The computational system is housed in a VME chassis
containing a 25 MHz 68030 computational processor unit
(CPU)), a analog-to-digital/digital-to-analog board, and
several digital 1/0 boards.

The ESSMT software is executed under the Wind River
Systems VxWorks real-time operating system. VX-
Windows from VisiCom Laboratories, Inc., along with
Transportable Applications Environment (TAE) libraries are
used to provide an X-window, Motif GUI for the instructor
station., The student station is controlled by application-
specific software. All newly developed application software
is written in the Ada programming language in accordance
with the ANSI/MIL-STD-1815A.

2. Rapid Prototyping

The ESSMT development environment consisted of a Sun
SPARCstation operating under the Sun OS operating
system with X-terminals connected via Ethernet.
VADSWorks, a tight integration of the Verdix Ada
compiler/linker and Wind River VxWorks real-time
executive, along with TAE was used during development of
the ESSMT software.

All the instructor menu screens were conceptually drawn up
on paper, and were then guickly developed on the
development system using TAE. The menus at this stage
contained an exact visual replication of the final product,
and some limited interaction between menus. An example
of one of these menus is shown in Figure 2. This rapid
prototyping allowed the instructor to easily identify
proficiencies and deficiencies in the design of the menus.
When deficiencies were identified, the menu was then
quickly corrected. After a few iterations during this
prototyping phase, all the menus and the interaction
between them were approved before the coding phase began.

* Currently with Hughes Training, Inc. in Arlington,
Texas.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F197978.197986&domain=pdf&date_stamp=1994-07-01

STUDENT INTERACTIVE
MON TOR

POWER CONTRGL
PasL

O TAUC TOR COMBOLE
ARYY.

NN

u

/L

ENONL STARY SYSTEM
SRALATON PANEL

Figure 1. Engine Start System Maintenance Trainer (ESSMT)

|F-16C ESSMT Instructor Disptay |

Parameter Menu - Lesson Planning

o o
@ @ Current Maifunction
™ ™
- :-J
o d
. - -
=i :]
: n ¥ B
2000 - 2z 2
| :
]
Nitrogen Precharge Hydraulic Pressure L]
Accumuiator #1 Total #1 o
19, e
-2
- TRAAEE—
- 2.0
~ 1
Ambient Alrcraft Battery
Temperature
115 F
O s8sF
Nitrogen Precharge Hydraulic Pressure O 15F
Accumuiator #2 Total #2
O -30F
l Quit Menu ILock Screeny
Erasmmr Eragrosrng, e,

Figure 2. Instructor Parameters Menu

Once the menus were approved, TAE was used to generate
Ada "skeleton” code. This code contained all the procedures
necessary to display each menu, and the code for limited
interaction between the menus.

3. Problems Encountered

The following problems were encountered by using TAE to
crcate the menus and to automatically generate the Ada
code:

1. The 68030 processor is no longer supported with TAE.

2. The Motif objects available in TAE did not directly
correspond to what was needed, and at times could not
be modified with TAE code.

3. Some of the TAE codc uses stream /() for reading
files, and this is not available under VxWorks.

4. Certain Unix calls are not supported under VxWorks.

The following paragraphs will describe each of these
problems in more detail and the solution that was
implemented.

J.1. 68030 TAE Object Code

TAE Version 5.2 was used because of its keyboard traversal
capability; however, the Motorola 68030 is not supported
with this version. Basically, this means that the 68030
object code was not delivered with version 5.2; however,
TAE does provide source code, and makefiles. All of the
source code was transferred to a sun3 machine in order to
use the default C compiler and all the TAE environment
variables were changed to correspond to the new directory
structure. The makefiles were then moditied for the
ESSMT environment. Some excerpts from the makefile
Makefile. Xm are listed here with the areas in bold
indicating the changed areas.

Maketile. XM

#
Generic make variables
#

SHELL = /bin/sh
AR =arcq
BOOTSTRAPCFLAGS =
ASSEMBLE = false
HAVETERMLIB = yes
CC=cc
CCOPTS =
C++ =g++
CPP = /lib/cpp $(STD_CPP_DEFINES)
L.D++ = CC -pipe
PREPROCESSCMD =

cc -E $(STD_CPP_DEFINES)
LD=cc

LN =In-s

RANLIB = ranlib

RM=mm -f

STD_CPP_DEFINES =

STD_C++DEFINES = -DXTFUNCPROTO

STD_CDEFINES = -D_NO_PROTO

EXTRA_C++FLAGS =
-I/home/kathy/tae2/MOTIF

EXTRA_CFLAGS =
-I’/home/kathy/tae2/MOTIF

EXTRA_LOAD_FLAGS =

EXTRALIBS =

APP_C++FLAGS =

APP_CFLAGS =

APP_LOAD_FLAGS =

APP_LINKLIBS =

SYSLIBS = $(TERMLIB) $(MATHLIB) $(CLIB)

C++SYSLIBS = $(TERMLIB) $(MATHLIB)
$(CLIB) $(C++LIB)

C++DEBUGFLAGS =

CDEBUGFLAGS =

LDDEBUGFLAGS =

C++FLAGS = $(C++DEBUGFLAGS)
$(C++INCLUDES)
$(APP_C++INCLUDES)
$(EXTRA_C++FLAGS)
$(APP_C++FLAGS)
$(STD_C++DEFINES)

CFLAGS = $(CDEBUGFLAGS) $(CINCLUDES)
$(APP_CINCLUDES) \
S(EXTRA_CFLAGS) $(APP_CFLAGS)
$(STD_CDEFINES) $(CCOPTS)

LDFLAGS = $(LDDEBUGFLAGS)
$(EXTRA_LOAD_FLAGS)
$(APP_LLOAD_FLAGS)

TAECONFIGDIR = $$TAE/config
WPTDEPLIB = $(TAELIB)/libwpt.a
XTERMDEPLIB = $(TAELIB)/libxter.a
DDODEPLIB = $(TAELIB)libddo.a
WMWDEPLIB = $(TAELIB)libwmw.a
TAECDEPLIB = $(TAELIB)/libtaec.a
TAEDEPLIB = $(TAELIB)/libtac.a
WPTDEPLIBS = $(WPTDEPLIB)
S(XTERMDEPLIB) $(DDODEPLIB)
$C(WMWDEPLIB)

TAEDEPLIBS = $(TAECDEPLIB)
$(TAEDEPLIB)
DEPLIBS = $(WPTDEPLIBS) $(TAEDEPLIBS)

SUFFIXES: cc .C
.C.o:

S(C++) -¢ S(C++FLAGS) $<
L0

S(C++) -¢ $(C++FLAGS) $<

88

#

Make file for the wpt widget library 'libwmw.a'.
#
03-jan-92 New -1 entries (see PR1257); new depend

target...ljn
LIBRARY = wmw

CINCLUDES =\
-I/home/kathy/tae2/ XMMAK \
-I$(TAEXM) \
-I$(TAEINC) \
-I$(TAEINCXM) \

-I$S(TAETOP)/lib
SRCS = $(TAEXM)/*.c
OBJS =\

Box.o \

Icon.o \

PageEdit.o \
Pulldown.o \
Radio.o \
TextEdit.o \
TextList.o

all::
@echo " "
@echo " Creating library $(LIBRARY)..."
all::
@$(MAKE) -e lib$(LIBRARY).a

lib${LIBRARY).a::

@echo " Building library $(LIBRARY)..."
lib$(LIBRARY).a:: $(OBIJS)

$(RM) s @

$(AR) $@ $(OBIJS)

$(RANLIB) $@

@echo " Finished building library
$(LIBRARY)."

3.2. TAE Motif Objects

TAE has several pre-defined Motif objects to enable quick
development of displays. This was very useful in the rapid
prototyping phase; however, during actual implementation,
some of the objects needed slight modification. Several of
these modifications occurred easily through changing or
adding attributes to the objects as shown in the examples
listed:

a. XtSetArg(al[ac], XmNlistSpacing,5); ac++;
was added to TextList.c to adjust the spacing in the
textlist object allowing list selection with the
touchscreen.

89

b. SetTarget (void*) tempstring, 0) was added to
textlistRt.cc to allow deselection of all entries in a
textlist.

c¢. Added check for keysym XK_Return to
buttonRt.cc to allow for <CR> to select the widget
along with the space bar.

However, the size of the scroll bars on the textlist had to
be changed in order to be used with a touchscreen. The
following code depicts how the correct attributes were set
and the widget was unmapped and mapped to reflect the
change.

XtSetArg(al[0],XmNverticalScrollBar,&vsb);
XtSetArg(al{1),XmNhorizontalScrollBar, &hsb);
XtGetValues (XtParent(sel->textlist.list),al,2);

if (vsb) {
XtSetArg (al[0], XmNwidth, 40);
XtSetValues (vsb, al, 1);

}

if (hsb) { _
XtSetArg (al[0], XmNheight, 40);
XtSetValues(hsb, al, 1);

}

XtUnMapWidget (sel->textlist.list);
XtMapWidget (sel->textlist.list);
3.3. Stream I/O

TAE uses objects called DDOs for implementing picture-
type objects. This code was implemented using stream /O
calls in Unix. This presented a problem when porting the
code to VxWorks. VxWorks, version 5.0.2 does not
support these stream /O calls. This problem was solved
by modifying the TAE source code that contained stream
I/O calls and replacing these calls with file /O calls. A
cross-section of the changes made to selection.c, illustrating
the types of changes made to all the TAE files containing
stream 1/O, are shown here.

45a46,47
> #include <stdio.h>
> #include <unistd.h>
215,216¢217,218
< void Selection::Skip (ivistream& from) {
< while (from >> buf && strcmp(buf, startdata) !=0) {
> void Selection::Skip (FILE* from) ({
> while (fscanf(from, " %s', buf)
&& strcmp(buf,startdata) '= 0 {

227¢229
< void Selection::ReadVersion (ivistream& from) {

> void Selection::ReadVersion (FILE* from) {
229¢231
< from >> buf;

> fscanf (from, " %s", buf);

232c233

< from >> versionnumber;

> fscan(from, " %d', &versionnumber);
251c252

< void Selection::ReadGridSpacing (ivistream& from,
State* state) {
> void Selection::ReadGridSpacing

(FILE* from, State* state) {

258¢259

< from >> buf;

> fscanf(from, '%s', buf);

260c261

< from >> g;

> fscanf (from, " %If", &g);
376,377¢376,378

< from >> lookahead;

< from.putback(lookahead);

> fscanf(from, “%c", &lookahead);
> fscanf(from, " %c', &lookahead);
> fseek (from, -(sizeof(lookahead)),

SEEK_CUR);
386¢387,390
< from>>p>>w>>1>>r;
> fscanf (from, "%u", &p):;
> fscanf (from, "%u", &w);
> fscanf (from, "%u", &l);
> fscanf (from, " %u", &r);

390c¢394

< if (undefined I from.good()) {

> if (undefined [l ferror(from) {
3.4. Unsupported Unix Calls

Many of the routines included in the TAE source code were
Unix calls that were not supported by VxWorks. Most of
these were not used in the ESSMT application; therefore,
"dummy" files were created for these procedures. However,
there were several procedures that were needed. When this
occurred, the procedures was written in Ada and became a
part of the ESSMT application. The subroutine memchr()

20

was one of these procedures. The Ada package specification
and body are shown here.

with system;
with C_strings;

-- Unit Name:
-~ Unit Type:

-- Description:

-- The TAE_VADSWORKS_SUPPORT_PKG package
-- provides support routine neccessary
-- to support TAE in the VADSWORKS environment.

-- Unit Function:

-- function MEMCHR
-- searches memory for a specified character

TAE_VADSWORKS_SUPPORT_PKG
Package Specification

package TAE_VADSWORKS_SUPPORT_PKG is

-- Unit Name:
-- Unit Type:

MEMCHR
Package Function

function MEMCHR(SEARCH_STRING : in
C_strings.c_string;
SEARCH_CHAR : in integer;
BYTE_COUNT :in integer) return
system.address;

private

pragma external(C, MEMCHR);
pragma external_name (MEMCHR,

_memchr");

end TAE_VADSWORKS_SUPPORT_PKG:

-- Unit Name: TAE_VADSWORKS_SUPPORT_PKG
-- Unit Type: Package Specification

-- Description:

-- The TAE_VADSWORKS_SUPPORT_PKG package
-- provides support routine neccessary
-- to support TAE in the VADSWORKS environment.

-- Unit Function:

-- function MEMCHR

-- searches memory for a specified character -- Look through memory BYTE_COUNT number
- -- of bytes to determine SEARCH_CHAR appears.
-- If it does, return the address of it. If it doesn't,
-- return 0.

package body TAE_VADSWORKS_SUPPORT_PKG is

while (CHAR_INDEX < BYTE_COUNT) loop

-- Unit Name: MEMCHR if (SEARCH_STRING(CHAR_INDEX) =

-- Unit Type: Package Function CHARACTER'VAL(SEARCH_CHAR)) then

- return(system. ADDRESS(SEARCH_STRING
(CHAR_INDEX)ADDRESS));

end if;
function MEMCHR(SEARCH_STRING : in CHAR_INDEX := CHAR_INDEX + I;
C_strings.c_string; end loop;
SEARCH_CHAR : in integer;
BYTE_COUNT : in integer) return return (system. ADDRESS'REF(0));
system.address is end;
end MEMCHR,;

-- Variable used to index into string being searched

begin -- TAE_VADSWORKS_SUPPORT_PKG
null;
CHAR_INDEX : integer; end TAE_VADSWORKS_SUPPORT_PKG;

begin -- MEMCHR 4. Conclusion

begin With some additional effort, a very impressive and easy-to-
use instructor interface for a maintenance trainer was
created. With very little improvement in the tools used

during development, this method would not require any
more effort than the previous instructor interfaces

CHAR_INDEX :=1: implemented.

-- Set index into string to start at beginning.

REFERENCES:
Heller, Dan, Motif Programming Manual, O'Reilly & Associates, Inc., Sebastopol, CA, 1991.

Release Notes for the Transportable Applications Environment (TAE Plus), Version 5.2, (Unix Implementation), Century
Computing, Incorporated, Laurel, Maryland, December 1992,

VxWorks 5.0 - Programmer's Guide, Wind River Systems, Inc.

91

