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Abstract

We study competitive equilibria in the classic Shapley-Shubik assignment model with indivisible
goods and unit-demand buyers, with budget constraints: buyers can specify a maximum price they are
willing to pay for each item, beyond which they cannot afford the item. This single discontinuity intro-
duced by the budget constraint fundamentally changes the properties of equilibria: in the assignment
model without budget constraints, a competitive equilibrium always exists, and corresponds exactly
to a stable matching. With budgets, a competitive equilibrium need not always exist. In addition,
there are now two distinct notions of stability, depending on whether both or only one of the buyer
and seller can strictly benefit in a blocking pair, that no longer coincide due to the budget-induced
discontinuity. We define weak and strong stability for the assignment model with transferable utilities,
and show that competitive equilibria correspond exactly to strongly stable matchings.

We consider the algorithmic question of efficiently computing competitive equilibria in an extension
of the assignment model with budgets, where each buyer specifies his preferences over items using
utility functions uij , where uij(pj) is the utility of buyer i for item j when its price is pj. Our main
result is a strongly polynomial time algorithm that decides whether or not a competitive equilibrium
exists and if yes, computes a minimum one, for a general class of utility functions uij . This class
of utility functions includes the standard quasi-linear utility model with a budget constraint, and in
addition, allows modeling marketplaces where, for example, buyers only have a preference ranking
amongst items subject to a maximum payment limit for each item, or where buyers want to optimize
return on investment (ROI) instead of a quasi-linear utility and only know items’ relative values.
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1 Introduction

Consider a market with n unit demand buyers and m sellers, each selling one unit of an indivisible good.
The buyers specify their preferences over items via utility functions uij(pj), which is the utility of buyer
i for item j when its price is pj. So far, this is the classic Shapley-Shubik assignment model [36] which
captures a variety of matching markets including housing markets and ad auctions [23, 39], except for the
extension to general utility functions instead of the quasi-linear utilities in the original model. Shapley
and Shubik show that a competitive equilibrium always exists in their model, and later work [14, 33, 24]
shows that a competitive equilibrium must also exist for the model with general utility functions uij(·),
provided these uij(·) are strictly decreasing and continuous everywhere.

Now suppose we extend the assignment model with an extra budget constraint: a buyer i can specify
a maximum price bij that he is able to pay for item j, above which he cannot afford the item. That is,
the utility function uij(·) can now (possibly) have a discontinuity at pj = bij . Budgets are a very real
constraint in many marketplaces such as advertising markets, and have led to a spate of recent work
on auction design [10, 4, 6, 31, 21, 5, 9], where the addition of the budget constraint, while seemingly
innocuous, introduces fundamental new challenges to the problem. As we will see, the same happens
in the Shapley-Shubik assignment model: the discontinuity introduced by the budget constraint is not
merely technical, but fundamentally changes the properties of competitive equilibria. First, a competitive
equilibrium no longer always exists (Example A.1 in Appendix A). Second, and related to the first, while
competitive equilibria in the original model correspond precisely to stable matchings [36], this is not quite
true with budgets since the different notions of stability no longer coincide as in the original model, i.e.,
there is no longer a single unique notion of stability.

A weakly stable matching is one where there is no unmatched buyer-seller pair where both the buyer
and seller can strictly benefit by trading with each other, where a seller’s payoff is the payment he receives
for his item. A strongly stable matching is one where there is no unmatched buyer-seller pair where one
party strictly benefits and the other weakly benefits from the deviation (an example of the seller only
weakly benefiting is when the buyer i strictly prefers to buy seller j’s item at its current price, but not
at any higher price). Without the budget-induced discontinuity, these two notions can be shown to be
identical given the continuity of uij(·). However, with the discontinuity at bij introduced by the budget
constraint, they are no longer equivalent: a weakly stable matching does not possess the envy-freeness
property of a competitive equilibrium and, as we show in Theorem 3.1, it is strongly stable matchings
that correspond to competitive equilibria.

A natural question, then, is the following: Given a marketplace where buyers have such general utility
functions uij(·) with budget constraints, is it possible to determine whether a competitive equilibrium
exists, and if yes, compute one, for instance a buyer-optimal one, efficiently? This question is an
interesting theoretical problem in its own right, given the extensive applications of the Shapley-Shubik
model, and is analogous to the problem of computing strongly stable matchings in the Gale-Shapley
marriage model when preference lists have ties [26] in the more complex setting of equilibrium prices.

Our original motivation, though, comes from matching markets, such as the (online and TV) ad-
vertising market, where bidders do not always fit the standard model of quasi-linear utility optimizers.
One obvious example of this is bidders in advertising markets with budget constraints; these cannot be
captured by quasi-linear utility models. As another example, bidders in advertising markets may not
be able to accurately estimate their values for items, but only be able to specify a preference ordering
amongst items along with a maximum payment limit for an item – this is because the precise value of
placing an ad depends on factors such as conversion rates which are difficult to estimate, while deter-
mining the relative ordering amongst different placement options is much easier. Such bidders cannot
specify their values for each item in the quasi-linear utility model as well. A third kind of bidders that
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do not fit the standard model are advertisers who want to optimize return on investment (ROI), which
is value divided by price rather than value minus price; again, these advertisers might also be able to
better estimate the ratios of values rather than the values themselves. An algorithm that computes a
fair and efficient assignment of items with such general inputs can significantly improve the advertising
marketplace by making it much easier for advertisers to participate and bid in the market. Of course,
clearing a real advertising marketplace would require solving a model with multiple units of supply and
demand for each seller and buyer — we take the first steps towards this rather difficult problem by
solving the market clearing problem for the unit demand case.

The remainder of the paper is organized as follows: We first discuss our main result in Section 1.1, and
related work in Section 1.2, 1.3. In Section 2, we define our model and solution concept, and in Section 3
we prove that competitive equilibria correspond to strongly stable matchings in the assignment model
with budgets. In Section 4, we present our strongly polynomial time algorithm to compute a competitive
equilibrium and outline its proof of correctness. Finally, in Section 5, we address the issue of strategic
behavior in the marketplace.

1.1 Main Result

Our main result answers the question of computing competitive equilibria, if they exist, for a general class
of utility functions uij(·) which are continuous and strictly decreasing on [0, bij ] as in [14, 16], and satisfy
an additional mutual consistency condition that allows increasing prices in a way that guarantees strongly
polynomial runtime. This class of utility functions, which we will call consistent utility functions, is quite
general and models, in addition to the standard quasi-linear utility model with a budget constraint,
marketplaces where buyers who only have a preference ranking amongst items subject to a maximum
payment limit for each item, or where buyers want to optimize ROI and only know items’ relative values.

Theorem. Suppose we are given an instance of the assignment model with consistent utility functions
uij. Then, if a competitive equilibrium exists, a minimum competitive equilibrium exists as well; further,
the problem of deciding whether or not an equilibrium exists, and computing a minimum one, can be
solved in strongly polynomial time.

Note that for arbitrary utility functions, even when competitive equilibria exist, a minimum one
(Definition 4.1) need not. For example, if utility functions are only weakly rather than strictly decreasing,
there exist instances (Example A.2) where competitive equilibria exist but the associated price vectors
are not comparable, so no minimum equilibrium exists.

The constructive proof of this result is provided by algorithm Alg-Min-Equilibrium, which returns
a minimum competitive equilibrium if any competitive equilibrium exists for the given instance, or reports
no equilibrium exists. Starting with the zero price vector p = 0, the algorithm constructs a bipartite
dynamic demand graph G+(p) based on the demand sets — the set of items with maximal, positive,
utility at the current prices p. It then identifies the set of “over-demanded” items in this demand graph,
which is captured by the critical set A of buyers and its neighborhood N(A) in G+(p): not all buyers
in A can be matched to distinct items in N(A). Therefore, there can be no equilibrium at price p,
and the prices of items in N(A) need to be raised until these items are no longer over-demanded. The
algorithm recursively increases the prices of over-demanded items using a subroutine Price-Increment.
Eventually, after all critical sets have been eliminated, the algorithm checks whether there is a matching
that satisfies the conditions for a competitive equilibrium, namely all buyers are assigned an item in
their demand set and every item with price greater than zero is assigned to a buyer.

There are two key challenges to developing a strongly polynomial time algorithm that returns a
minimum competitive equilibrium for general utility functions uij with budget constraints. The first
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comes from the fact that we allow rather general utility functions. The algorithm needs to increase
prices of over-demanded items in each step to the maximum extent possible to ensure a fast runtime,
while making sure that prices do not overshoot any equilibrium price vectors. However, to ensure that
the algorithm does successfully find a minimum equilibrium or else correctly reports that no equilibrium
exists, it is crucial that only the prices of items in the neighborhood of the critical set are increased, at
every vector of prices through the course of the algorithm. That is, the prices of items in N(A) can only
be raised as long as we can be sure that the critical set and its neighborhood of the resulting demand
graph does not change. Due to the generality of the utility functions we consider, it is possible that the
neighborhood (which is the demand set) of a buyer i ∈ A changes “non-monotonically” if the prices of
items in N(A) are not increased carefully, in the sense that items can drop out and then return again to
i’s neighborhood–this can potentially lead to an exponential runtime despite preserving the condition on
critical sets required for correctness. The subroutine Price-Increment uses the consistency property
of the utility functions to increase prices to the maximum extent possible in such a way that an edge
(i, j), for any i ∈ A, vanishes from the demand graph if and only if uij(pj) ≤ 0. That is, item j drops out
of i’s demand set only if its price reaches to the threshold where i cannot obtain positive utility from j.
Such an edge (i, j) that is removed from the demand graph never appears again through the remainder
of the algorithm; this is crucial to the strongly polynomial runtime.

The second challenge is to deal with the discontinuity introduced by the budget constraint: For any
edge (i, j) in the demand graph, while buyer i’s utility from buying an item passes continuously through
the value constraint vij , pj where uij(pj) = 0 (i.e., i is indifferent between buying and not buying the
item), there is a discontinuity at budget constraint pj = bij where i is not indifferent between these two
actions. While the budget constraint has the same property as the value constraint that a buyer obtains
negative utility at any higher price, our algorithm needs to account for a change in edge structure in
the demand graph differently: At price pj = bij , buyer i still strictly prefers to buy the item, so the
price of this item would have to be strictly higher in any equilibrium. The algorithm accounts for the
discontinuity introduced by the budget using a careful marking process that tags such items whose prices
need to be increased later to ensure envy-freeness. The set of marked items in the final output of the
algorithm has a nice property relating the two solution concepts weakly and strongly stable matchings
(Proposition D.1).

Finally, in Section 5, we consider the minimum equilibrium as a mechanism, and show that truth-
bidding is a Nash equilibrium if there is a competitive equilibrium.

1.2 Related Work

The classic paper of Demange, Gale and Sotomayor [17] gives two auction-based processes that converge
to a minimum equilibrium for the Shapley-Shubik model [36], introducing the idea of increasing prices of
over-demanded items to derive a minimum equilibrium. The key differences, in addition to the fact our
algorithm is strongly polynomial time, are that we need to account for the discontinuity introduced by
the budget constraint which means an equilibrium need not exist in our model, and that the more general
utility functions we allow requires a more involved price increment process. We note that the equilibrium
existence results in [14, 16, 33] for general utility functions uij(·) are non-algorithmic, and also require
that the utility functions must be continuous everywhere on R which rules out budget constraints.

A number of recent papers study the assignment model with budget constraints. Aggarwal et al. [1]
initiate the study of sponsored search advertising with budget-constrained bidders in the assignment
model with quasi-linear utilities and solve the problem of finding a buyer-optimal stable matching. They
also show that this simple addition of a budget constraint to quasi-linear utilities is surprisingly powerful
and can be used to model a number of different types of buyers, including buyers who do not know the
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precise values for items but only have a preference ranking amongst them. While our model is similar
to [1] except for our generalization to utility functions uij(·), the solution concept used in [1] turns out
to be that of weak stability (see Section 3). In contrast, as Theorem 3.1 shows, competitive equilibrium,
which is the solution concept we focus on, corresponds to strong stability, leading to a completely different
algorithmic problem (the minimum strongly stable matching, even when it exists, can be quite different
from the buyer-optimal weakly stable matching, as we show in Example A.3 and A.4 in Appendix A).

A number of other recent papers study the special case of quasi-linear utilities with budget constraints
in the assignment model. [22] improves the result in [1] to compute a buyer-optimal weakly stable
matching without making an assumption on the market necessary in [1]. In the same model [28] asks
whether there exists a price vector that can support a given allocation in an envy-free fashion, and how
to compute the minimal and maximal such price vector. Of course, this is different from the question
of whether there exists any allocation and price vector that is envy-free and, in addition, clears the
market. In the same model again [38] observes that a competitive equilibrium need not exist in the
presence of budgets, and then focuses on the problem of suitably modifying the notion of competitive
equilibrium to a ‘rationed equilibrium’, which is guaranteed to always exist despite the budget constraint,
and designing an auction that returns such an equilibrium. The solution concept of rationed equilibrium
differs from a competitive equilibrium, even in instances where competitive equilibria do exist, as shown
by Example A.6 in Appendix A.

Most recently, Ashlagi et al. [2] study a specialized version of the budget-constrained quasi-linear
utilities model in the context of sponsored search, where buyer i’s value for an item (slot) j with click-
through rate rj is of the form vij = virj , and budgets are item-independent bij = bi. It gives a GSP-like
auction which converges to a Pareto efficient envy-free outcome when buyer types (vi, bi) are distinct.
This work differs from ours in two ways. First, motivated by the practical need to generalize the GSP
auction, [2] works under assumptions that guarantee that their auction always returns a nontrivial
assignment; in contrast, we ask the theoretical question of whether or not there exists a competitive
equilibrium for a given instance, and how to find a minimum one if it does.

Second, the bidder model in [2] is subtly different from ours: This difference, while seemingly in-
significant, does lead to different outcomes for an identical input, so that our algorithm cannot be viewed
as a generalization of theirs to arbitrary utility functions. For technical convenience, [2] assumes that a
buyer derives negative utility for prices pj ≥ bij , whereas our bidder model, in keeping with the models
introduced in [1, 38] (as well as the classical market equilibrium and auction literature [30]), assumes
that a buyer can pay a price up to and including his budget, i.e., he derives negative utility only for
prices pj > bij. In Example A.5 in Appendix A, we give instances where the outcomes returned by
the auction of [2] are not competitive equilibria in our model (and in fact can differ from a competitive
equilibrium in a significant way) — therefore, the auction in [2] does not solve the problem of finding a
competitive equilibrium for a special case of our model.

1.3 Computational Market Equilibrium Paradigm

Our approach to the matching market problem follows the computational competitive market equilib-
rium paradigm, which has received extensive attention in the theoretical computer science literature.
Competitive market equilibrium is a vital concept in economics and has long been established as a stan-
dard benchmark of efficiency and fairness in the analysis of markets [41, 3]. Computational issues in this
context have also been extensively studied in computational economics [35, 7]. While both the existence
and computation issues are closely related to the fixed point problem [8], the problem’s computational
complexity was identified to be at least as hard as PPAD [32] in terms of the aggregated demand func-
tions [32] through Uzawa’s reduction [37], for Leontief economies [13] through a connection to two-player
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Nash equilibrium [15, 11], for Arrow-Debreu markets with Arrow-Debreu utility functions [18], as well
as for additively separable utilities [12, 40].

Algorithmic issues have also attracted much interest recently in the Arrow-Debreu model [19, 27, 42],
especially in the Fisher market setting [20, 7]. Most known polynomial time algorithms to compute a
market equilibrium, e.g. [20, 27], rely crucially on the fact that items are divisible (i.e. real variables).
Our problem has one important difference — items are indivisible, i.e., sold completely to at most one
buyer. With integral variables, it is known that the problem is in general computationally difficult
and polynomial time algorithms are known only for very limited special cases [19]; also, a solution is
not guaranteed to exist. Introducing extra budget constraints on top of the integral variables adds
another dimension to the problem, since these render the utility functions non-smooth. These two
additional constraints make the traditional primal-dual based approach inapplicable to our problem,
and the development of a polynomial time solution poses a combinatorial challenge.

While a competitive equilibrium need not exist in our model, our strongly polynomial time algorithm
determines whether or not there is an equilibrium, and computes one in case it exists. In this sense, our
work contributes to the successful computational competitive market equilibrium paradigm with new
positive algorithmic solutions, albeit for a special (but very important) class of problems, and opens up
the possibility of a feasible computational equilibrium pricing model in practical markets.

2 Model and Competitive Equilibrium

We have a market with n unit-demand buyers, and m indivisible items. Unit demand means that each
buyer wants at most one item and indivisible means that each item can be sold to at most one buyer.
We will denote buyers by i and items by j throughout.

Buyers’ preferences over items are described using utility functions uij : R
+ ∪ {0} → R, that specify

the utility of a buyer for an item as a function of its price: uij(pj) is the utility of buyer i for item j when
the price of item j is pj. Higher utility items are more preferable; we say that buyer i (strictly) prefers j
to j′ if uij(pj) > uij′(pj′), is indifferent between j and j′ if uij(pj) = uij′(pj′), and weakly prefers j to j′

if uij(pj) ≥ uij′(pj′). In particular, a utility of 0, uij(pj) = 0, means that i is indifferent between buying
item j at price pj and not buying anything at all; a negative utility uij(pj) < 0 means the buyer strictly
prefers to not buy the item at price pj .

For each buyer-item pair (i, j), we assume that there is a maximum price bij ∈ [0,∞) that i is able
to pay for j (set bij to be infinity if there is no such upper bound); we will call bij the budget specified
by buyer i for j. We set uij(pj) = −1 for pj > bij (here the value −1 can be replaced by any negative
number). For simplicity, we also assume that uij(pj) ≥ −1 for any pj ≥ 0; this is without loss of
generality since negative values are not of interest for any buyer. We will also assume that there are
m dummy buyers each with budget zero and utility zero for each item j when pj = 0, i.e., bij = 0 and
uij(0) = 0 (note that for such buyers, uij(pj) = −1 when pj > 0). This assumption is without loss of
generality, and implies that the number of items is always less than or equal to the number of buyers,
i.e., m ≤ n.

The utility functions permitted by our model are quite general, and allow modeling a fairly large
class of marketplaces:

• Marketplaces with buyers who have quasi-linear utilities and budgets, uij(pj) = vij−pj for pj ≤ bij ,
and negative utility for pj > bij , where vij is the value of buyer i for item j and bij is the
corresponding budget. Note that such valuations cannot be captured without the budget constraint
— for example, a buyer might have the same payment limit for all items but different valuations
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for each of them, all larger than the budget, so the budget constraint is a nontrivial extension to
the model.

• Marketplaces with return on investment (ROI) based buyers with budget constraints, i.e., buyers
who want to maximize the ratio uij(pj) = tij/pj subject to a limit on their payment, where tij is
the value that i has for item j (set uij(0) =∞ if tij > 0; and uij(0) = 0 if tij = 0). Note that such
preferences cannot be written as quasi-linear preferences vij − pj (with budgets) for any choice of
vij ,

1 (although they can be rewritten as M − xijpj for adequately large M).

We point out that we can also model buyers who know only the relative values tij/ti1 of items for
j = 2, . . . ,m (ti1 is i’s value for the first item), and need not know exactly the magnitudes of their
values tij (set uij(pj) = xij/pj , where xij = tij/ti1).

• Marketplaces where buyers who only know their preferences for any given prices, but not their
values: Buyers who can only rank items in order of preference, and have budget constraints for
each item. For example, a buyer who prefers item j1 over all other items as long as its price is
less than or equal to bij1 , else prefers item j2 as long as price is less than or equal to bij2 , and so
on (set uij(pj) = Mij − pj for adequately large values of Mij that ensures the utility values do not
intersect when pj ≤ bij). A simple special case is a buyer who has a fixed preference ranking over
items and a single budget constraint.

Given an instance of the problem, i.e., a set of n ·m utility functions uij(·), the output of the market
is a tuple (x,p), where

• x = (x1, . . . , xn) is an allocation vector, where xi is the item that i wins. If i does not win any
items, denote xi = ∅. Note that different buyers must win different items, i.e., xi 6= xi′ for any
i 6= i′ if xi, xi′ 6= ∅.

• p = (p1, . . . , pm) ≥ 0 is a price vector, where pj is the price charged for item j.

Given an output (x,p), if xi = j (i.e., i wins item j), the utility that i receives is uij(pj). If xi = ∅
(i.e., i does not win any item), his utility is defined to be 0 (for simplicity, we denote this by uixi(pxi) = 0).
We consider the following solution concept in this paper.

Definition 2.1 (Competitive equilibrium). We say a tuple (x,p) is a competitive equilibrium if (i) for
any item j, pj = 0 if no one wins j in allocation x, and (ii) for any buyer i, the utility of i is maximized
by his allocation at the given vector of prices. That is,

• if i wins item j (i.e., xi = j), then uij(pj) ≥ 0 (this implies immediately that bij ≥ pj); and for
every other item j′, uij(pj) ≥ uij′(pj′).

• if i does not win any item, then for every item j, uij(pj) ≤ 0.

The first condition above is a market clearing condition, which says that all unallocated items are
priced at 0 (or at some given reserve price). The assumption that there is a dummy buyer for each item
allows us to assume, without loss of generality, that all items are allocated in all equilibria. The second

1To see why, consider a single buyer with two items j1, j2 and utility functions 1/p1, 2/p2 respectively, and budget
infinity for both items. This buyer prefers item j1 for all prices (p1, p2) such that 2p1 ≤ p2. If there are values v1, v2 (of
course v1 < v2) for which these preferences can be rewritten as quasi-linear utilities, item j1 is preferred for all price pairs
satisfying p2 −p1 ≥ v2− v1 = ∆. But for any choice of ∆, at prices (∆/3,∆) the buyer strictly prefers j2 in the quasi-linear
utility model but j1 in the ROI model, whereas at prices (3∆, 5∆) he strictly prefers j1 in the quasi-linear utility model
but j2 in the ROI model. Thus the two models cannot be equivalent.
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is a fairness, or envy-freeness condition, which says that each buyer is allocated an item that maximizes
his utility at these prices (note that if an item is priced above the buyer’s budget for that item, he has
negative utility and therefore does not want the item). That is, given the budget constraints, if i wins
item j, then i cannot obtain higher utility from any other item; and if i does not win any item, then i
cannot obtain a positive utility from any item at these prices.

3 Stability

Competitive equilibria are closely related to the concept of stability, where no pair of agents can mutually
benefit by deviating from their current assignment. Observe that one way to interpret the price pj of an
item j is that it is the payoff received by the ‘seller’ of item j if the item is sold (the payoff is 0 if the
item is not sold); all sellers prefer higher payoffs. We can define the following two notions of stability
for a two-sided market with transferable utilities:

Definition 3.1 (Weak and strong stability). Given an individually rational allocation x and an associ-
ated payoff vector p, where no buyer derives negative utility and pj ≥ 0 is the payoff to seller j, we say
the tuple (x,p) is

• weakly stable if there is no blocking pair (i, j), j 6= xi, such that uij(p
′
j) > uixi(pxi) for some

p′j > pj ;

• strongly stable if there is no blocking pair (i, j), j 6= xi, such that (i) uij(p
′
j) ≥ uixi(pxi) for some

(ii) p′j ≥ pj, and at least one of inequalities (i) and (ii) is strict.

That is, to block a weakly stable matching, both sides of the blocking pair (i, j) must strictly benefit
relative to their current allocation, i.e., buyer i’s utility must strictly increase and seller j must be able
to receive a strictly higher payoff by deviating. For strong stability, however, only one side in a blocking
pair needs to strictly benefit, while the other side need only weakly benefit from the deviation2.

When the utility functions uij(·) are strictly decreasing and continuous everywhere as in [14, 16],
the conditions for weak and strong stability turn out to be identical: if there is a pair (i, j) where i’s
utility from j is strictly larger than from xi, there must exist a price p′j = pj + ǫ > pj at which i still
strictly prefers j to xi. That is, if i strictly prefers j, it is always possible for i and j to deviate in such a
way that both i and j strictly benefit from the deviation. So weakly and strongly stable matchings are
identical, and there is a unique notion of stability in the original matching model.

However, with the budget constraint, this is no longer the case: suppose there is a pair (i, j) such
that uij(pj) > vixi(pxi) ≥ 0 as before. Depending on whether pj < bij or pj = bij , there may or may
not exist a strictly profitable deviation for both i and j: in the first case, there exists a p′j > pj with
uij(p

′
j) > uixi(pxi); but in the second case, there is no p′j > pj for i to continue to prefer j over xi,

i.e., there is no strictly profitable deviation for j. That is, with the addition of the budget constraint,
the two notions of “weak” and “strong” stability are no longer equivalent as in the original assignment
model: the non-equivalence is precisely because a buyer’s utility can go from strictly positive to strictly
negative without passing through 0 at the point of discontinuity at bij. We point out the analogy with
the situation in the Gale-Shapley marriage model [25], when ties are introduced into preference lists, the
two notions of stability no longer coincide [26].

2Note that when uij(·) is strictly decreasing, if there is a pair (i, j) having strict inequality (ii) in the definition for strong
stability, this pair will have strict inequality (i) as well, so it is enough to check (i) to decide strong stability.
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Since there are two distinct notions of stability in the matching model with budgets, at most one of
these can be the same as a competitive equilibrium. The following claim shows that the solution concept
of a competitive equilibrium coincides exactly with that of strong stability3.

Theorem 3.1. Suppose that the utility functions uij(·) are strictly decreasing on domain [0, bij ]. Then,
(x,p) is a competitive equilibrium if and only if it is also strongly stable.

Proof. If (x,p) is a competitive equilibrium, since all unallocated items are prices at 0, each pj is precisely
the payoff that the corresponding seller j receives. Since uixi(pxi) ≥ 0 and pj ≥ 0 for any i and j, (x,p)
is individually rational. By the definition of competitive equilibrium, we have uixi(pxi) ≥ uij(pj) for any
j 6= xi. If pj = bij , clearly i and j cannot be a blocking pair. If pj < bij, since the utility functions are
strictly decreasing, uij(p

′
j) < uij(pj) for all p

′
j > pj; thus i and j are not a blocking pair as well. Hence,

there exists no strongly blocking pair (i, j) and (x,p) is strongly stable.
Conversely, if (x,p) is strongly stable, then uixi(pxi) ≥ 0 and pj ≥ 0 for any i and j by individual

rationality. Consider each pj as the price of item j. If item j is not sold to any buyer, the payoff that
seller j receives is 0 and thus pj = 0; hence the market clearing condition holds. For any buyer i, if there
is j 6= xi such that uij(pj) > uixi(pxi), then (i, j) would be a strongly blocking pair since i obtains more
utility and seller j gets the same amount of payoff. Hence, the envy-freeness condition also holds, which
implies that (x,p) is a competitive equilibrium.

4 Computing a Minimum Competitive Equilibrium

In this section, we present a strongly polynomial time algorithm to determine if a competitive equilibrium
exists, and find a minimum one if it does, for a class of utility functions uij(·) that satisfy the conditions
below; the first two are identical to those required in [14, 16]. We will refer to a set of mn utility functions
uij(·) that satisfy these properties as consistent utility functions.

1. Continuity. Each function uij(·) is continuous on [0, bij ].
4

2. Monotonicity. Each function uij(·) is strictly decreasing on [0, bij ].

Since the uij is strictly decreasing, we can define the inverse function u−1
ij (q) = p if uij(p) = q

for any q ∈ R; if there is no such p, define u−1
ij (q) = ∞. Define the threshold value vij = u−1

ij (0),
which (if vij 6= ∞) is the price at which buyer i becomes indifferent between buying j and not
buying anything. For quasi-linear utilities, vij is exactly the value of buyer i for item j; however
for ROI-based buyers, this value vij is ∞ (and vij = 0 if tij = 0; for such case, to guarantee
monotonicity, we can set bij = 0).

3. Consistency. The consistency condition is the one that relates utility functions uij(·) across buyers
and items by transitive paths. We say that a path P = (j1, i1, j2, . . . , iℓ−1, jℓ) is transitive with
respect to price vector p if uikjk(pjk) = uikjk+1

(pjk+1
) ≥ 0 for k = 1, . . . , ℓ − 1 (buyers and items

can be repeated). That is, P is such that each buyer ik gets equal utility from its two neighboring

3The reason that notion of stability used in [1] corresponds to weak stability is because the inequality (4) in [1] is not
strict, which translates exactly to being able to strictly increase the price for item j when j belongs to a blocking pair.

4Note that since uij(pj) = −1 when pj > bij , the utility function uij(·) might not be continuous on the whole domain
R

+∪{0}. Actually, we really only require uij(·) to be continuous where it is non-negative (note that uij(pj) can be negative
for pj < bij , for instance, with quasi-linear utilities where vij < bij), but requiring the property on [0, bij ] is without loss of
generality since negative values are not of interest.
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items jk and jk+1 in the path. The consistency property relates uij(·) using such transitive paths,
defined formally as follows.

Suppose a path P is transitive with respect to p, as well as with respect to another price vector
q > p, where each price qjk is within the value and budget constraints of its neighbors on path
P . Then any buyer i in the market (not only those on path P ) who weakly prefers j1 to jℓ in p

continues to weakly prefer j1 to jℓ in q when qj1 is within the value and budget constraints of i.
That is, if qj1 ≤ min{vij1 , bij1}, then uij1(pj1) ≥ uijℓ(pjℓ) implies uij1(qj1) ≥ uijℓ(qjℓ).

5 In other
words, when prices are increased from p to q while maintaining the transitivity of path P , all
buyers continue to have the same preference over items in the path in both price vectors p and q

(subject to their value and budget constraints).

While the consistency condition might appear to be strong, it is easy to verify that it holds for each
of the buyer models discussed in the previous section. For example, for quasi-linear buyers with budgets,
the only way to maintain the transitivity of a path starting from a price vector p is to increase all prices
by the same increment ǫ, i.e., pj ← pj + ǫ. Since the price increment is identical for all items, all buyers
retain their preference ordering across items. For ROI-based buyers, transitivity and consistency hold
when pj ← (1+ ǫ)pj . We note that the consistency condition is not about the (existence of) price vector
q itself, but rather, the relative preference ordering of buyers over items in the two price vectors p and
q (the existence of such q can be shown easily using the continuity and monotonicity of the uij(·) as
long as the relevant value and budget constraints are not tight at p). The consistency property gives us
a way to increase prices efficiently (see Section 4.2).

In what follows, we will assume that all utility functions uij(·), for i = 1, . . . , n and j = 1, . . . ,m, of a
given instance satisfy the above conditions. Naturally, the functions uij and their inverses u−1

ij must be
polynomial time computable as well; this is an implicit assumption in all our results. Our main result is
the following.

Theorem 4.1. Suppose we are given an instance of the assignment model with consistent utility functions
uij. Then, if a competitive equilibrium exists, a minimum competitive equilibrium exists as well; further,
the problem of deciding whether or not an equilibrium exists, and computing a minimum one, can be
solved in strongly polynomial time.

We must first clarify what we mean by a minimum equilibrium — There are three reasons a minimum
equilibrium may not exist. (i) First, there may exist no equilibrium at all for the given instance, due to the
budget constraint, as shown by Example A.1. (ii) Second, equilibria may exist, but the associated price
vectors may not be comparable, so that a minimum equilibrium does not exist. (Indeed, Example A.2 in
Appendix A shows that if the utility functions are not strictly decreasing, a minimum equilibrium does
not exist because the equilibrium price vectors are incomparable.) (iii) Finally, since we deal with real
number prices rather than restricting to integer prices, the set of equilibrium prices for an item need
not contain its infimum; strictly speaking, therefore, a minimum equilibrium price need not exist even
though equilibria might exist and are comparable.

It will turn out that for utility functions in our model (i.e., satisfying the above three conditions),
(ii) never happens. However, we will want to distinguish between instances of type (i) which have no
competitive equilibrium at all, versus those of type (iii) where an equilibrium exists, but the set of
equilibrium prices does not contain the infimum.

We therefore define a ‘p+’ notation to deal with such instances: a minimum equilibrium with price
pj+ for an item j means that there is no equilibrium with that item priced at pj or less, but there does

5Note that if uij1 (pj1) = uijℓ (pjℓ), we can use the two inequalities (the other one is by switching j1 and jℓ) to conclude
that uij1 (qj1) = uijℓ (qjℓ ), given value and budget constraints on j1 and jℓ.
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exist an equilibrium with price pj+ ǫj , where ǫj > 0 is an arbitrarily small precision. The term ‘p+’ does
not really refer to any particular price, but is just our notation for the concept of a real number that
can be arbitrarily close to p (from the right). In particular, for any given real number p′ > p, we have
p < p+ < p′. We use this notation to formally define a minimum competitive equilibrium as follows.

Definition 4.1 (Minimum competitive equilibrium). Define the infimum price vector p where pj is the
infimum of all equilibrium prices for item j, and let T = {j | there is an equilibrium where j is priced at pj}.
Suppose there is an allocation vector x∗ such that for every ǫ > 0, there exist 0 ≤ ǫj ≤ ǫ for which (x∗,q)
is a competitive equilibrium, where qj = pj if j ∈ T and qj = pj + ǫj otherwise. Then we say (x∗,p∗) is
a minimum competitive equilibrium and p∗ is the minimum equilibrium price vector, where p∗j = pj if
j ∈ T and p∗j = pj+ otherwise.

Note that p∗ is not really a vector of prices, since it includes some entries of the form ‘p+’: the
definition above gives a precise way to translate this “conceptual price vector” into an actual vector of
prices. For example, consider the quasi-linear vij − pj utility model with budgets, with three buyers
i1, i2, i3 and two items j1, j2. Every buyer-item pair (i, j) has the same value vij = 10; and bi1j1 =
bi1j2 = bi2j1 = bi2j2 = 10 and bi3j1 = bi3j2 = 2. Then in the above definition, we have p = (2, 2) and
p∗ = (2+, 2+). Hence, (x∗,p∗), where x∗1 = j1 and x∗2 = j2, is a minimum competitive equilibrium —
for any small ǫ > 0, (p1 + ǫ, p2 + ǫ) is an equilibrium price vector supporting x∗.

The infimum price vector p and minimum equilibrium price vector p∗ are both uniquely defined for
any given instance (if no equilibrium exists at all, they can be defined as ∞). In general, there may be
no equilibrium price vector associated with p∗, as Example A.2 in Appendix A shows. Theorem 4.1,
however, implies that when the utility functions are consistent, there must exist an equilibrium price
vector associated with p∗ whenever p∗ 6=∞, i.e., the instance has a minimum equilibrium price vector,
which is p∗.

To prove Theorem 4.1, we will first begin with some essential preliminaries in Section 4.1, after
which we describe the price increment process and its properties in Section 4.2. We finally present the
algorithm Alg-Min-Equilibrium and outline its proof of correctness in Section 4.3. All proofs can be
found in the Appendix.

4.1 Preliminaries

Dynamic Demand Graph G and G+. Given a price vector p = (p1, . . . , pm), define its associated
demand bipartite graph to be G(p) = (U, V ;E), where U corresponds to the set of buyers and V
corresponds to the set of items, and (i, j) ∈ E if uij(pj) > 0 and uij(pj) ≥ uij′(pj′) for any j′ ∈ V . That
is, for the given price vector p, N(i) gives the demand set of buyer i, i.e., items that bring maximal,
strictly positive, utility to buyer i. In the algorithm, when prices change, the demand set of every buyer
will be updated accordingly, as also the edge set E.

Note that in graph G, there may be isolated buyers in U which are priced out of the graph because
their utility becomes non-positive for every item (i.e., for each item j, pj ≥ vij or pj > bij). That is,
i ∈ U is isolated if for every j ∈ V uij(pj) ≤ 0. At the same time, items in V may also be isolated
since no buyer can get a maximal positive utility from them. We denote U+ = {i ∈ U | N(i) 6= ∅} and
V + = {j ∈ V | N(j) 6= ∅} to be the set of non-isolated buyers and items in graph G, respectively, and
define G+(p) = (U+, V +;E). Clearly G+ is a subgraph of G: they have the same edge set E, and a
vertex of G is in G+ only if it has a non-empty neighbor set. Note that as the algorithm develops, U
and V are fixed and E is the only dynamic set in G; whereas in G+, both U+ and V + are dynamic as
well. The critical set of G+ will play a central role in the algorithm.
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Critical Set. The notion of the critical set in a bipartite graph is used centrally by our algorithm
to identify over-demanded items in G+(p) that “block” a competitive equilibrium at price p. Given a
bipartite graph G = (U, V ;E), the deficiency of a subset A ⊆ U is defined to be δ(A) = |A| − |N(A)|,
where N(A) ⊆ V is the set of neighbors of A. For simplicity, we denote N({i}) by N(i) and N({j}) by
N(j). The deficiency of graph G is defined to be δ(G) = maxA⊆U |A| − |N(A)|, the maximum deficiency
taken over all subsets of U . Since the deficiency of an empty set is 0, δ(G) ≥ 0. (Note that symmetrically,
the deficiency δ(G) can be defined in terms of vertices in V as well.)

A maximally deficient set is a subset A ⊆ U such that δ(A) = δ(G). A subset A ⊆ U is called critical
if it is maximally deficient and contains no maximally deficient proper subset. Note that if A1 and A2

are maximally deficient, then so does A1 ∩ A2. Hence, there is a unique critical set [29, 26]. If graph G
has no non-empty critical set, we have |A| ≥ |N(A)| for any A ⊆ U ; thus by Hall’s theorem [34], there
is a maximum matching of size |U | in G. Irving [26] showed a simple polynomial time algorithm to find
the critical set.

The following theorem about critical sets, proved in Appendix B, will be needed for the algorithm.

Theorem 4.2. Given a bipartite graph G = (U, V ;E), let A ⊆ U be the critical set of U . Then the
following two claims hold:

• If we add some edges between A and N(A), A remains the critical set of the resulting graph.

• If we delete some edges between U \A and N(A), A remains the critical set of the resulting graph.

4.2 Increasing Prices: Subroutine Price-Increment

In this subsection, we describe the subroutine Price-Increment used by the main algorithm Alg-

Min-Equilibrium to increase prices of over-demanded items. Price-Increment operates on a vector
of prices p and a subset of buyers S, and raises the prices of items that belong to the neighborhood
N(S) of S in G+(p) in a manner that preserves transitivity of all paths between S and N(S) at price
p. The output returned by Price-Increment is the smallest price vector q at which either an item
j /∈ N(S) is added to the demand set of a buyer i ∈ S, or the price of some item j ∈ N(i) reaches either
the value vij or the budget bij of a buyer i ∈ S.

The main algorithm will use Price-Increment to increase the prices of items in the neighborhood
N(S) of the critical set S of buyers in the dynamic demand graph G+(p). This set of items in N(S) is
over-demanded at price vector p when S 6= ∅, so there can be no equilibrium at p since not all buyers
in S can be matched to distinct items in N(S). Ideally, we would like to increase prices of these over-
demanded items as much as possible to make the algorithm efficient. However, to ensure that the main
algorithm does converge to a (minimum) equilibrium price vector, it is crucial that only the prices of
items in the neighborhood of the critical set are increased at every vector of prices through the course of
the main algorithm. The properties of the utility functions, together with Theorem 4.2 on the structure
of critical sets, allows us to guarantee that there is a way to increase prices such that the structure of
the critical set does not change until the price of an item j ∈ N(i) reaches either the value vij or budget
bij of a buyer i ∈ S, or becomes large enough to match the utility of an item outside N(S). (Note that
with arbitrary utility functions and arbitrary price increments, an item j ∈ N(i) may drop out of the
demand set of i before its utility reaches zero because it no longer gives maximal utility, which can also
cause a change in the structure of the critical set. However, the consistency property imposed on the
utility functions gives a way to increase prices (preserving transitivity) for which this cannot happen, so
that it is enough to check for these three conditions. See Appendix C for a more detailed discussion.)

In general, the price vectors at which these three events (pj = vij, bij , or u−1
ij′ (pj′) for j′ /∈ N(S))

occur for different buyer-item pairs (i, j) may also not be comparable. Once again, the properties of the
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utility functions allow us to guarantee that this does not happen, as shown in Price-Increment and
its proof of correctness in Appendix C.

The subroutinePrice-Increment is given below. The connected component C in Price-Increment

is specified as an input by the main algorithm, and will turn out to be a connected component of the
critical set and its neighborhood in G+.

Price-Increment

1. Let p = (p1, . . . , pm) denote the current price vector and G+(p) be the associated demand graph

2. Given a connected component C = S ∪N(S) in G+

3. For each edge (i0, j0) ∈ C

(a) let ui0
max = maxj /∈N(S) ui0j(pj) be the maximal utility i0 obtains from items not in N(S)

(b) let qi0j0 = min
{

vi0j0 , bi0j0 , u
−1
i0j0

(ui0
max)

}

, where vi0j0 = u−1
i0j0

(0) and bi0j0 is the budget

(c) define vector q
i0j0 = (qi0j0j )j∈N(S) as follows:

• let qi0j0j0
= qi0j0

• for any pair of edges (i, j), (i, j′) ∈ C with qi0j0j′ being defined and qi0j0j not, let

qi0j0j = u−1
ij

(

uij′ (q
i0j0
j′ )

)

(if qi0j0j > qi
′j = min

{

vi′j , bi′j , u
−1
i′j (u

i′

max)
}

for any

i′ ∈ S ∩N(j), set q
i0j0 = ∞ and break the local "for" loop of Step (3))

4. Define q = (qj)j∈N(S) to be the minimum of the vectors q
i0j0 for all (i0, j0) ∈ C

5. Set pj = qj for each j ∈ N(S) and pj = pj for each j /∈ N(S).

Since both uij(·) and u−1
ij (·) can be computed in polynomial time, ui0max, q

i0j0 , and therefore qi0j0 ,

can be computed in polynomial time. Thus Price-Increment is in strongly polynomial time.

Note that for each (i0, j0) ∈ C, there could be different paths that lead to defining the value qi0j0j for

an item j in Step (3), and it is not a priori obvious that each of these leads to the same value. However,

as the first claim of the following theorem implies, the price vector qi0j0 is indeed uniquely defined in

Step (3). It is also not obvious that these price vectors can all be compared; the second claim says that

all different qi0j0 and qi′0j
′
0 are comparable; thus the minimum price vector q in Step (4) is well-defined

and satisfies q 6= ∞. The last claim says that all buyers in S continue to weakly prefer their neighbors

in N(S) in G+(p) with respect to price vector q; this property is crucial to the analysis of the main

algorithm.

Theorem 4.3. Suppose that the utility functions are consistent. Given initial price vector p in Step (1),

the following claims hold in Price-Increment:

• Price vector qi0j0 in Step (3) is well-defined for any edge (i0, j0) ∈ C, and qi0j0 ≥ p: any two alter-

nate ways to define qi0j0j in Step (3) lead to the same value (that is, suppose there are (i, j), (i, j′)

and (i′, j), (i′, j′′) in C, where both qi0j0j′ and qi0j0j′′ have already been defined. The value qi0j0j will be

the same irrespective of which of these is used to define it).

• For any edges (i0, j0), (i
′
0, j

′
0) ∈ C, the vectors qi0j0 ,qi′0j

′
0 are comparable; the minimum price vector

q defined in Step (4) exists and satisfies qj0 ≤ qi0j0j0
for all (i0, j0) ∈ C (this implies that q 6=∞).

• For any buyer i ∈ S and item j ∈ N(i), where N(i) is the neighborhood of i in G+(p), i weakly

prefers j to all other items with respect to price vector q. That is, uij(qj) ≥ uij′(qj′) for any j′ ∈ V .
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4.3 Main Algorithm Alg-Min-Equilibrium

The algorithm is essentially composed of two parts — Steps (1-6) to eliminate all possible critical sets

and Steps (7-9) to determine if there is a feasible assignment to clear the market. Starting with a price

of 0 (or any reserve price vector) for all items, Step (3) of the algorithm recursively increases prices to

eliminate critical sets corresponding to over-demanded items using the subroutine Price-Increment.

The increased price vector returned by Price-Increment corresponds to to one of the following three

events, at which the critical set S or its neighbor set N(S) of the dynamic demand graph might change

(the other two possibilities, edges added between S and N(S) or edges deleted between U \S and N(S),

do not change the critical set by Theorem 4.2). In each case, we appropriately update the dynamic

graphs G and G+ (Step (3)) as follows and proceed with the new demand graph and its critical set:

• A buyer becomes indifferent between his neighboring items in N(S) and some item in V + \N(S),

in which case we simply update G and G+ and return to the price increment process again.

• The price pj of j ∈ N(S) reaches the utility threshold of some neighbor i, i.e., pj = vij for some

edge (i, j) ∈ G+: We remove all edges incident to the buyer since its maximal utility has dropped

to zero (note that at this new price vector, i’s utility for all items in N(i) is zero). Clearly, the

buyer will not obtain positive utility afterwards (i.e., permanently priced out of the algorithm) and

become an isolated vertex in G, and thus, will not belong to G+ any more.

• The price pj of j ∈ N(S) reaches the budget of some neighbor i, i.e., pj = bij for some edge

(i, j) ∈ G+: The edge (i, j) will be deleted6 (permanently) and a marking operation will be

performed on items in N(S). The marking process is because of the need to ensure that the price

of such an item in any output returned by the algorithm is strictly larger than the price at which this

edge was deleted, since otherwise the item will be over-demanded and the resulting output cannot

be an equilibrium. We note that the status of an item, marked or unmarked, remains the same in

all subsets of the demand graphs used by the algorithm. In addition, the set of marked items in

the final stage of the algorithm has an interesting property related to weakly stable matchings (see

Proposition D.1).

Once the algorithm eliminates all critical sets in G+, it exits Step (3) with some price vector, say

p∗. The set of items now contains some marked and some unmarked items; the marked items are those

whose price must be strictly larger than p∗j in any equilibrium whereas the price of unmarked items need

not be increased. It is possible that there is a buyer i ∈ U+ such that some items in N(i) are marked

and some are unmarked (e.g., node i2 in Example 4.1): This buyer i, who was indifferent between a

marked item j1 and an unmarked item j2 at prices p∗, will no longer be indifferent after the prices of

marked items are raised, but will strictly prefer j2. In this sense, graph G+(p∗) does not correctly reflect

the demand sets for buyers and a matching in G+(p∗) need not be a competitive equilibrium: the graph

must be further processed to ensure that every buyer is genuinely indifferent between his neighbors in

the demand graph, i.e., either all items in his demand set are marked, or all items in his demand set

are unmarked. The reduced graph G′ is defined in Step (4) as a subgraph of G+(p∗) containing only

edges to unmarked items, and Step (5) deals with nonempty critical sets in G′ by marking all items in

its neighborhood. Note that if the critical set and its neighborhood includes an edge which is tight on

the budget constraint, such an edge must be deleted (since after the price increase due to marking, this

6Note that after this edge is deleted, new edges may immediately appear between i and other utility-maximizing items
j′ with uij′ > 0 (if such exist) in the dynamic demand graph G+.
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edge will lead to negative utility), returning us to Step (3), since we can no longer guarantee that the

critical set in G+(p∗) is the same as before Step (5) (specifically, that it is empty).

Finally, since prices keep increasing and deleted edges will never appear again, the algorithm arrives

at Step (6), where we construct G∗, a subgraph of G′, with the property that the demand set of every

buyer in U+ contains either all marked or all unmarked items, so G∗ captures the exact demand relation

for all buyers.

Steps (7-9) of the algorithm determine if there is a feasible assignment. Let N∗(i) denote the neighbor

set of i in G∗ defined in Step (6). Since G∗ correctly illustrates the demand sets of all buyers, any buyer

i with N∗(i) 6= ∅ obtains his maximal positive utility from items in N∗(i). The construction of G′ and

G∗ is such that since G′ has no critical set, G∗ does not either (Proposition 4.1), so that all buyers in U+

can be matched to an item in their demand sets (note that the set of buyers in G∗ is the same as U+).

The only remaining condition that needs to be satisfied to guarantee a competitive equilibrium is that

every item that has a price greater than 0 (or its reserve price) can be matched to a buyer. We therefore

construct graph H ⊇ G∗ in Step (7) by adding those buyers who obtain maximal utility 0 from certain

items back into consideration. That is, we add edge (i, j) to graph H if the buyer i /∈ U+ derives utility

0 from an unmarked item j and can afford it (bij ≥ pj). (Only unmarked items are considered since if j

is marked, pj will be set to be pj+ in Step (8.b) and i will obtain a negative utility from j.) These edges

added in Step (7) help us to assign as many items as possible. Finally, if there is a maximum matching

of H with all items being assigned and all buyers in U+ being matched (to their neighbors in G∗), it is

returned as an equilibrium allocation; if no such maximum matching exists, Step (9) reports that there

is no competitive equilibrium.

The algorithm is given formally in the next page. Example 4.1 below illustrates partial stages of

Step (3) and (5) of the algorithm.

Example 4.1. Consider the quasi-linear vij−pj utility model with five buyers i1, . . . , i5 and three items j1, j2, j3.
All buyers have the same budgets for all three items, ∞, 190, 2, 1, 1, respectively. The value vectors for three items
are (1000, 100, 100) and (200, 11, 11) for buyer i1 and i2, respectively, and (20, 10, 10) for i3, i4, i5. The stages
of each run of Step (3) of the Alg-Min-Equilibrium are shown in the following first five figures (where black
vertices on the left denote the critical set and on the right denote marked items, respectively):
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1

1

2

190

∞

(20, 10, 10),

(20, 10, 10),

(20, 10, 10),

(200, 11, 11),

(1000, 100, 100),

value budget price

0

0

1

0

0

2

1

1

2

1

1

190

step (3)

i5

i4

i3

i2

i1

j3

j2

j1

1

1

190

step (5)

After Step (3) (the above fifth figure), i2 has three neighbors, unmarked j1 and marked j2, j3, which means that
i2 will strictly prefer j1 to j2, j3. If we restrict on reduced subgraph G′ containing only unmarked item j1, a
new critical set arises, which is {i1, i2}. Hence, in Step (5) the algorithm will set j1 to be marked. When this
happens, since the budget of i2 on j1 is tight (i.e., bi2j1 = 190 = pj1), we will have to delete edge (i2, j1) in
Step (5.b). Eventually the algorithm will return assignment {(i1, j1), (i2, j2), (i3, j3)} (or {(i1, j1), (i2, j3), (i3, j2)})
and minimum equilibrium price vector (190+, 1+, 1+).
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Alg-Min-Equilibrium

1. Let pj = 0 for each item j, and set j to be unmarked

2. Let G = (U, V ;E) and G+ = (U+, V +;E) be the dynamic demand graph

3. While G+ has a non-empty critical set

(a) let S ∪ N(S) be a connected component in the subgraph induced by the critical set and
its neighbors of G+

(b) for all items j ∈ N(S), increase pj using Price-Increment on component S ∪ N(S); the
new prices satisfy one of the following conditions:

(α) there are i ∈ S and j /∈ N(S) (where either bij > pj, or bij = pj and j is unmarked)
such that i can get the same maximal utility from j as it gets from items in N(i)

(β) there are i ∈ S and j ∈ N(S) such that vij = pj, i.e., uij(pj) = 0

(γ) there are i ∈ S and j ∈ N(S) such that bij = pj

(c) if the price of any marked item is strictly increased in the above step, unmark the
item

(d) if condition (α) is satisfied, make all such (i, j) a new edge

(e) if condition (β) is satisfied, delete all edges incident to all such i in G

(f) if neither condition (α) nor (β) is satisfied but (γ) is satisfied

• set j to be marked for each j ∈ N(S)

• for each pair i ∈ S and j ∈ N(S) satisfying bij = pj, delete edge (i, j) in G

4. Define a reduced subgraph G′ from G+ by deleting all edges (i, j) ∈ E if j is marked and all
singleton vertices

5. If G′ has a non-empty critical set (denoted by S′ ⊆ U+)

(a) set j to be marked for j ∈ N ′(S′), where N ′(S′) is the set of neighbors of S′ in G′

(b) if there are i ∈ S′ and j ∈ N ′(i) such that bij = pj

• for each pair i ∈ S′ and j ∈ N ′(i) satisfying bij = pj, delete edge (i, j) in G

• goto Step (3)

else goto Step (6)

6. Define a graph G∗ from G+: for each i ∈ U+ with at least one unmarked neighbor,
delete all edges connecting i with a marked neighbor (i.e., delete (i, j) ∈ E if j is marked)

7. Extend G∗ to H (with vertex set U ∪ V ) by adding all edges (i, j) if i /∈ U+, uij(pj) = 0
and j is unmarked

8. If there is a maximum matching7 M of H (of size m) covering all buyers in U+, output

(a) an assignment of each buyer i ∈ U according to M

(b) a price for each j ∈ V to be pj if j is unmarked and pj+ if j is marked8

9. Else, return No Equilibrium Exists

To prove that the algorithm is correct, we need to prove two things:

• If the algorithm returns (x,p), then it is a competitive equilibrium, and it is a minimum equilibrium.

• If the algorithm does not return an output, there exists no competitive equilibrium.

Note that these statements imply immediately that if there exists a competitive equilibrium, there also

exists a minimum equilibrium.

7The existence of such maximum matching can be determined in polynomial time by, e.g., finding a maximum weighted
matching of H (assign a large weight for edges in G∗ and a small weight for edges in H \G∗).

8When setting the price to be pj+, we still need to keep the same preference for all marked items. The existence of such
a vector is guaranteed by Proposition 4.2 and it can be computed by subroutine Price-Increment.
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As discussed earlier, the algorithm only increases prices of items which are in the neighbor set of the

critical set S of G+(p) using the subroutine Price-Increment. This allows us to divide the analysis

of the algorithm into stages, defined as follows. Divide the algorithm into phases according to every

execution of Steps (3.e), (3.f) or (5,b), i.e., the deletion of any edge between the critical set and its

neighbor set, because of either vij = pj (deleting all edges incident to i) or bij = pj (deleting edge (i, j)).

Further, divide every phase into stages according to every execution of Step (3.d), i.e., the addition of

edges between S and V \ N(S). We have that the critical set of G+(p) remains the same within each

stage until the final price at which that stage ends.

The following crucial lemma is proved for every stage in the algorithm, which guarantees that if the

output (x,p) returned by the algorithm is indeed an equilibrium, it is also a minimum equilibrium; this

in particular implies that the price vector p at Steps (6, 7) of the algorithm is precisely the infimum

price vector defined in Definition 4.1.

Lemma 4.1. Let minj be the minimum equilibrium price of item j (if an equilibrium exists), and let p

be the price vector at the end of any stage. Then, pj ≤ minj for any j for every stage in the algorithm.

Further, if j is marked, then pj < minj.

To show that the output of the algorithm is indeed a competitive equilibrium, we establish the

following claims. Proposition 4.1 guarantees that every buyer with a nonempty demand set (recall that

the demand set contains only items leading to strictly positive utility) in graph H defined in Step (7)

can be matched to an item in his demand set.

Proposition 4.1. The graph G∗ in Step (6) of the algorithm has no non-empty critical set. Thus, there

exists a maximum matching in H in which every buyer in U+ is matched.

The following fact, which simply follows from Step (6) of the algorithm, guarantees that if a buyer

in U+ is matched to a marked neighbor in H, he will not prefer any unmarked items as long as the

increment of prices of marked items in Step (8.b) is sufficiently small.

Fact 4.1. The items in the neighborhood N∗(i) of a buyer i ∈ U+ in graph G∗ are either all marked or

all unmarked.

In addition, we need to ensure that the prices of all marked items can be increased in Step (8.b)

in such a way that the demand structure does not change at the increased prices: without this, we

cannot be sure that a matching in H will indeed correspond to an equilibrium. (Of course, if we were to

restrict ourselves to quasi-linear utility functions with budget constraints, then increasing all prices of

marked items by the same small ǫ > 0 changes all utilities by the same amount, so that the structure of

the demand graph is preserved; that the prices of marked items can be increased without changing the

demand structure needs proof because we allow more general utility functions.) The following lemma

shows that there exists a strictly higher price vector inducing the same demand sets, so that no buyer

strictly prefers one marked item in his demand set to another after the prices are increased. Thus,

assigning a buyer in U+ to any item in his demand set indeed maximizes his utility even after each

item’s price has been increased.

Proposition 4.2. Let p be the price vector when defining graph H in Step (7). Consider graph H: let T

be the set of marked items and S be the neighbor set of T . Then, for any ǫ > 0, there exists qj = pj + ǫj
for all j ∈ T , where 0 < ǫj < ǫ can be arbitrarily small, and qj = pj for j /∈ T , such that (i, j) ∈ G+(q)

if and only if (i, j) ∈ G+(p) for any i ∈ S and j ∈ T .
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Putting these lemmas together ensures that the final allocation x matches all buyers in U+ to an

item which maximizes their utility. That is, the matching x returned by the algorithm satisfies all the

envy-free conditions necessary for a competitive equilibrium.

Finally, requiring the matching defined by x to have size m ensures that (x,p) satisfies the market

clearing condition as well. According to the definition of competitive equilibrium, we have the following

conclusion.

Lemma 4.2. For any given instance of the problem, if Alg-Min-Equilibrium outputs (x,p), then it

is a competitive equilibrium.

The following Lemma 4.3 immediately implies the second statement needed for the proof of correct-

ness, by proving the contrapositive. The proof of this lemma proceeds by showing, using Lemma 4.1,

that the matching x defined by any competitive equilibrium (x,p) must be contained in the graph H in

Step (8) of the algorithm; in which case the algorithm will return an output, yielding a contradiction.

Lemma 4.3. For any given instance of the problem, if a competitive equilibrium exists, then Alg-Min-

Equilibrium will output one.

The last result we need is about the runtime of the algorithm.

Lemma 4.4. The algorithm Alg-Min-Equilibrium runs in strongly polynomial time.

Therefore, Lemmas 4.2 and 4.3, together with Lemma 4.1, imply that Alg-Min-Equilibrium pro-

duces a minimum competitive equilibrium if a competitive equilibrium exists for that instance, and this

is done in strongly polynomial time by Lemma 4.4. This gives us the main result Theorem 4.1.

5 Minimum Equilibrium Mechanism

A natural question that arises in our assignment model is strategic behavior by buyers, since the utility

function they report affects the final utility they receive from their allocation. Suppose we are given

a marketplace, and a family of consistent utility functions such that any set of mn utilities drawn

from it are consistent (e.g., all quasi-linear utilities with budgets). Consider the minimum equilibrium

mechanism game, where the strategy space of every buyer consists of all utility functions from this set,

and the private information of every buyer, as in [16], is the true utility functions over different items.

Given reported strategies/bids of utility functions from every buyer i for every item j, the minimum

equilibrium mechanism computes a minimum competitive equilibrium if there exists one, and outputs

nothing otherwise (i.e., all items remain unassigned).

The following claim, proved in Appendix E, shows that truthful bidding is a Nash equilibrium if

there does exist a competitive equilibrium with the true utility functions. The reason for not considering

dominant strategy truthfulness is explained immediately after the theorem.

Theorem 5.1. Let uij(·) be the true (private) utility function of buyer i for item j. If a competitive

equilibrium exists when all buyers bid their true utility functions, then truthful bidding constitutes a Nash

equilibrium in the minimum equilibrium mechanism.

The condition that a competitive equilibrium exists with truthful bids is necessary in the claim.

This is because when an equilibrium does not exist, it is possible that buyers can submit untruthful

modified utility functions for which a competitive equilibrium does exist, with an allocation that gives
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positive utility to all buyers (in contrast with 0 utility when the mechanism does not allocate any items.)

This implies that the minimum equilibrium mechanism is not dominant-strategy truthful, since whether

truthful bidding is optimal or not depends on whether an equilibrium exists or not, which, of course

depends on all the submitted utility functions: that is, the optimality of truthful bidding for a particular

buyer cannot be independent of the bids submitted by other buyers.

Example 5.1. Consider the quasi-linear utility with budgets model with three buyers i1, i2, i3 and two

items j1, j2. Values vij and budgets bij = bi (all buyers have the same budgets for both items) are given

below:

vi1,j1 = 300, vi1,j2 = 30, bi1 = 100
vi2,j1 = 200, vi2,j2 = 20, bi2 = 100
vi3,j1 = 10, vi3,j2 = 1, bi3 =∞

In this example, when everyone bids truthfully, it is easy to verify that no equilibrium exists. However,

if buyer i2 bids, e.g., v′i2j1 = 50, v′i2j2 = 20 and b′i2 = 100, he will win j2 in the minimum equilibrium

mechanism at price pj2 = 1 (and i1 wins j1 at price pj1 = 31), from which he obtains a positive utility.

6 Conclusion

In this paper, we presented a strongly polynomial time algorithm that decides whether or not a compet-

itive equilibrium exists and if yes, computes a minimum one, for a general class of utility functions uij
with budgets in the assignment model. We note that the algorithm can be easily adapted to compute

a maximal competitive equilibrium (i.e., all items are priced at the maximum among all equilibria) by

a symmetric process of reducing prices. It would be interesting to explore the algorithmic limits of our

approach to compute competitive equilibria efficiently. The most natural and practically applicable, yet

technically very challenging, extension is to the setting with multi-unit demand buyers and multi-unit

supply sellers; we leave this as an open problem for future work.
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A Examples

In this section, we list a number of examples used in the main context. Except for Example A.2, the

utilities are all quasi-linear vij − pj with budget constraints; also, unless otherwise specified, buyers have

the same budget for all items. The first example shows that in general a competitive equilibrium may

not exist.

Example A.1. There are two buyers i1, i2 and one item j, with values vi1 = vi2 = 2, and budgets

bi1 = bi2 = 1. When price pj ≤ 1, both buyers desire the item; whereas when pj > 1, both of them vanish

due to budget constraints.

A competitive equilibrium may not exist even if all values and budgets are different. For example,

suppose there are three buyers i1, i2, i3 and two items j1, j2, with values and budgets given below:

vi1,j1 = 20, vi1,j2 = 1, bi1 = 2
vi2,j1 = 7, vi2,j2 = 10, bi2 =∞
vi3,j1 = 0, vi3,j2 = 30, bi3 = 5

In this example, all values and budgets are different, yet there is no competitive equilibrium: there is no

equilibrium when pj1 ≤ 2 or pj2 ≤ 5 because both items are over-demanded, but at any price beyond this

at least one of the items remains unsold since both buyers i1 and i3 are priced out. Thus the condition

that unsold items must be priced at zero cannot be satisfied.

The following two examples show that even when a competitive equilibrium exists, a minimum

equilibrium may not, for the two types of reasons discussed in Section 4. The first shows that if the

utility functions are not strictly decreasing, even if continuity and consistency are satisfied, a minimum

equilibrium does not exist because the equilibrium price vectors are incomparable. The second shows

that the infimum of competitive equilibrium prices need not support a competitive equilibrium.

Example A.2. There are three buyers i1, i2, i3 with infinite budget each and two items j1, j2. The utility

functions are ui1j1(pj1) = 1− pj1, ui2j2(pj2) = 1 − pj2, and ui3j1(pj1) = ui3j2(pj2) = 10 (every undefined

pair has negative utility for any price). There are two equilibrium price vectors (1, 0) (where i3 wins j1
and i2 wins j2) and (0, 1) (where i3 wins j2 and i1 wins j1), but there is no minimum equilibrium in this

example.

Example A.3. There are two buyers i1 and i2 and one item j, with values vi1 = 20 and vi2 = 100,

and budgets bi1 = 3 and bi2 = 1. Allocating the item to the first buyer at any price pj ∈ (1, 3] is an

equilibrium (buyer i2 is envy-free due to his budget bi2 < pj). In this example, there is no exact minimum

equilibrium, because there is no smallest real number bigger than 1. By our Definition 4.1 of minimum

equilibrium, allocating the item to buyer i1 at price pj+ where pj = 1 is a minimum equilibrium.

In the above Example A.3, allocating the item to buyer i1 at price pj = 1 is a buyer-optimal weakly

stable matching [1]: buyer i2, who is not envy-free in the competitive equilibrium concept, does not

form any blocking pairs (in particular, (i2, j) is stable since j cannot obtain more payment from i2 due

to his budget bi2 = pj = 1; this is illustrated by formula (4) in the definition of stability in [1]). While

this buyer-optimal weakly stable matching looks quite similar to the minimum equilibrium, the following

example shows that they can be quite different in both allocations and prices.

Example A.4. There are four buyers i1, i2, i3, i4 and three items j1, j2, j3 with values and budgets given

below (only i1 has different budgets for different items):
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vi1,j1 = 100, vi1,j2 = 50, vi1,j3 = 0, bi1j1 = 10, bi1j2 = bi1j3 =∞
vi2,j1 = 100, vi2,j2 = 100, vi2,j3 = 10, bi2 = 10
vi3,j1 = 24, vi3,j2 = 25, vi3,j3 = 20, bi3 =∞
vi4,j1 = 0, vi4,j2 = 0, vi4,j3 = 100, bi4 = 5

The buyer-optimal weakly stable matching computed by [1] is {(i1, j1), (i2, j2), (i3, j3)} at price vector

(10, 10, 5). The last buyer i4, again due to his tight budget constraint bi4 = pj3 = 5, does not form a block-

ing pair with item j3. In the minimum equilibrium, however, the allocation is {(i1, j2), (i2, j3), (i3, j1)} at

price vector (10+, 11+, 6+). Further, if vi3,j1 = 0 rather than 24 defined above, the buyer-optimal weakly

stable matching remains the same but no competitive equilibrium exists.

The following example shows that the solution returned by [2] is not a competitive equilibrium in

our model (indeed, it can be much different from any competitive equilibrium in allocations and prices),

and does not possess the efficiency property characteristic of competitive equilibria.

Example A.5. Consider an example in [2] where there are two buyers i1, i2 and one item j with values

vi1 = 7 and vi2 = 8, and budgets bi1 = 10 and bi2 = 7. In the competitive equilibrium studied in this

paper, i2 wins the item at price pj = 7 (note that i1 has utility 0 even if he wins the item). In the

solution of [2] with strict boundary condition, i1 wins the item at the same price. The second buyer i2,

who has bi2 = 7 dollars in pocket and deserves more value (i.e., vi2 = 8) for the item, is eliminated. As

a result, this output is not a competitive equilibrium and its efficiency can be arbitrarily bad (note that

the value vi2 can be arbitrarily large).

Further, the solution returned by [2] can be much different from any competitive equilibrium, even

in the special sponsored search setting considered in [2]. Consider another example with three buyers

i1, i2, i3 and two items j1, j2 with values and budgets given below:

vi1,j1 = 10, vi1,j2 = 1, bi1 =∞
vi2,j1 = 100, vi2,j2 = 10, bi2 = 10
vi3,j1 = 50, vi3,j2 = 5, bi3 = 5

Note that the implicit click-through rates of j1 and j2 are 10 and 1, respectively. The minimum compet-

itive equilibrium in our paper has allocation {(i2, j1), (i3, j2)} with price (10, 1). In the solution concept

of [2] with strict budget constraint, the allocation is {(i1, j1), (i2, j2)} with price (10, 5).

The following example shows that the auction described in [38] may not generate a competitive

equilibrium, even if it exists.

Example A.6. There are four buyers i1, i2, i3, i4 and two items j1, j2 with values and budgets given

below:

vi1,j1 = 10, vi1,j2 = 0, bi1 = 1
vi2,j1 = 10, vi2,j2 = 0, bi2 = 1
vi3,j1 = 5, vi3,j2 = 10, bi3 =∞
vi4,j1 = 5, vi4,j2 = 10, bi4 =∞

Assume that reserve prices are pj1 = pj2 = 0. In this example, a minimum competitive equilibrium is

xi3 = j1 and xi4 = j2 at price vector (1+, 6+). In the algorithm of [38], we increase pj1 (which is a

minimal over-demanded set) to 2 and it becomes under-demanded (since i1, i2 have no enough budget and

i3, i4 prefer j2 at this moment); thus we set pj1 = 1 and allocate it to one of i1 and i2 permanently. Next

since j2 is over-demanded as well, we increase its price and eventually it is allocated to one of i3 and i4
at price pj2 = 10. This outcome is only a rationed equilibrium [38] but not a competitive equilibrium as

both i3 and i4 strictly prefer item j1.
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B Critical Set: Proof of Theorem 4.2

Proof. We prove the two claims respectively.

• We first prove the first part. Let G′ denote the resulting graph after adding edges between A and

N(A). For any subset of vertices B ⊆ U , let N ′(B) denote the neighbor set of B in G′. Note that

we have N(B) ⊆ N ′(B); thus |B| − |N ′(B)| ≤ |B| − |N(B)|. Further, for the critical set A of G,

by the rule of adding edges, we have N(A) = N ′(A); thus |A|− |N(A)| = |A|− |N ′(A)|. Therefore,

G and G′ have the same deficiency, i.e., δ(G) = δ(G′). For any subset A′ ⊆ A, we have

|A| − |N ′(A)| = |A| − |N(A)| > |A′| − |N(A′)| ≥ |A′| − |N ′(A′)|

where the strict inequality follows from the fact that A is the critical set of G. Hence, A is the

critical set of G′ as well.

• For the second part, assume otherwise that A′ ⊆ U , A′ 6= A, is the critical set of graph G′, where G′

is obtained from G by deleting some edges between U \A and N(A). In the following discussions,

for any subset B ⊆ U , N(B) and N ′(B) denote the set of neighbors of B in G and G′, respectively.

Note that N ′(B) ⊆ N(B).

Let X1 = A′ ∩A and X2 = A′ \X1 be a partition of A′. Assume that X2 6= ∅. Let

Y = {j ∈ V \N(A) | ∃ i ∈ X2 s.t. (i, j) ∈ E}

be the set of neighbors of X2 which are not in N(A) (in both G and G′). Since X1 ⊆ A, we have

N(X1) = N ′(X1) ⊆ N(A). For X2, it can be seen that |X2| ≤ |Y |. This is because, otherwise

|A ∪X2| − |N(A ∪X2)| = |A|+ |X2| − (|N(A)| + |Y |) > |A| − |N(A)|

which contradicts to the fact that A has maximal deficiency in G. Hence,

|X1| − |N
′(X1)| ≥ |X1| − |N

′(X1)|+ |X2| − |Y | ≥ |X1 ∪X2| − |N
′(X1 ∪X2)| = |A

′| − |N ′(A′)|

which contradicts to the assumption that A′ is the critical set of G′.

Hence, X2 = ∅ and A′ ⊆ A, which implies that

|A′| − |N(A′)| = |A′| − |N ′(A′)| ≥ |A| − |N ′(A)| = |A| − |N(A)|

where the inequality follows from the fact that A′ is the critical set of G′. Since A is the critical

set of G, we must have A′ = A.

C Analysis of Price-Increment

Theorem 4.3 follows immediately from the following three lemmas. In all lemmas and their proofs, p

denotes the initial price vector at Step (1) of Price-Increment.
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Lemma C.1. For any edge (i0, j0) ∈ C and item j ∈ N(S), the value qi0j0j is well-defined in qi0j0 in

Step (3.c) and qi0j0 ≥ p. Further, in the process of the Step (3) where qi0j0j has not been defined yet,

for any (i, j), (i, j′) ∈ C with qi0j0j′ already being defined and (i′, j), (i′, j′′) ∈ C with qi0j0j′′ already being

defined (i.e., there are different choices i or i′ to define qi0j0j ), the defined value qi0j0j will be the same for

either choice.

Proof. Let T = N(S). Note that qi0j0j0
= qi0j0 is well-defined by the subroutine. Let T ′ ⊆ T be the

subset items whose values qi0j0j are not defined. Then for any buyer i ∈ S, its set of neighbors N(i) in

N(S) is either in T ′ or T \ T ′. Let S′ = {i ∈ S | N(i) ⊆ T ′}. Then S′ ∪ T ′ and (S \ S′) ∪ (T \ T ′) are

disconnected, a contradiction to the fact that C is a connected component.

Given the initial price vector p = (p1, . . . , pm), each buyer obtains his maximal positive utility from

its neighbor items in T ; thus ui0j0(pj0) > ui0max. Since the utility function uij(·) is decreasing, by the

definition of vij and bij , we have pj0 ≤ min{vi0j0 , bi0j0 , u
−1
i0j0

(ui0max)} = qi0j0 = qi0j0j0
. Then by induction

on the process of defining values qi0j0j in the algorithm, we have qi0j0 ≥ p. (Note that if any qi0j0j =∞,

then certainly qi0j0 =∞ ≥ p.)

It remains to show that the value qi0j0j is uniquely defined. We use induction on the order of item

j ∈ N(S) in which qi0j0j is defined. By the rule of Step (3) of Price-Increment, the value qi0j0j0
is

uniquely defined. For each item j whose value qi0j0j is about to define in the process, if there are two

possible ways (the argument for more than two ways is the same) to define qi0j0j0
, say (i, j), (i, j′) ∈ C

with qi0j0j′ being defined and (i′, j), (i′, j′′) ∈ C with qi0j0j′′ being defined, assume without loss of generality

that qi0j0j0
is defined in terms of buyer i, i.e., qi0j0j = u−1

ij (uij′(q
i0j0
j′ )). Since all utility functions are strict

decreasing, it suffices to show that ui′j(q
i0j0
j ) = ui′j′′(q

i0j0
j′′ ). Consider the path starting from j, i, j′ to j0

according to the backward order of defined values, and then from j0 to j′′ according to the forward order

of defined values. By induction and the definition of qi0j0j , this is a transitive path in both p and qi0j0 .

Thus by the consistency property, i′ has the same preference over j and j′′, i.e., ui′j(q
i0j0
j ) = ui′j′′(q

i0j0
j′′ ).

This completes the proof of the claim.

Lemma C.2. For any edge (i0, j0) ∈ C, if qi0j0 6= ∞, then for any buyer i ∈ S and j ∈ N(i), where

N(i) is the neighborhood of i in G+(p), we have uij(q
i0j0
j ) ≥ uij′(q

i0j0
j′ ) for any other item j′ ∈ N(S),

i.e., i still weakly prefers j to all other items in N(S) at price qi0j0. In particular, this implies that for

any j, j′ ∈ N(i), uij(q
i0j0
j ) = uij′(q

i0j0
j′ ).

Proof. By the subroutine Price-Increment of defining new price vectors, for any qi0j0 6=∞, we have

qi0j0j ≤ qij ≤ min{vij , bij} for any (i, j) ∈ C. Thus all prices qi0j0j defined by the algorithm are upper

bounded by vij , bij for any edge (i, j) ∈ C.

Consider any buyer i and two items j, j′ where j ∈ N(i). Let j0, i1, j1, . . . , iℓ, jℓ = j be the path

to define qi0j0j in Step (3.c), where (ik, jk−1), (ik, jk) ∈ C for k = 1, . . . , ℓ. That is, qi0j0jk
is deter-

mined according to qi0j0jk−1
in Step (3.c). Hence, we have uikjk−1

(qi0j0jk−1
) = uikjk(q

i0j0
jk

). Similarly, if

j0, i1′ , j1′ , . . . , iℓ′ , jℓ′ = j′ is the path to define qi0j0j′ in Step (3.c), where (ik′ , j(k−1)′), (ik′ , jk′) ∈ C for

k′ = 1′, . . . , ℓ′, then we have uik′j(k−1)′
(qi0j0j(k−1)′

) = uik′jk′ (q
i0j0
jk′

). Now consider putting the two paths

together: j = jℓ, iℓ, . . . , j1, i1, j0, i1′ , j1′ , . . . , iℓ′ , jℓ′ = j′, which is transitive in both p and qi0j0 . Since

j ∈ N(i), we have uij(pj) ≥ uij′(pj′). By the consistency property, we have uij(q
i0j0
j ) ≥ uij′(q

i0j0
j′ ).
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The above lemma, as well as the following Lemma C.3, implies that in the minimum price vector q

(defined in terms of one of qi0j0 6= ∞), all buyers in S still weakly prefer their old neighbors in C to

all other items with respect to q (including those items not in N(S), since qj0 ≤ qi0j0 as Lemma C.3

proves, no buyer will strictly prefer an item not in N(S)), yielding the third claim of Theorem 4.3. The

following lemma gives the proof of the second claim of Theorem 4.3.

Lemma C.3. For any (i0, j0), (i
′
0j

′
0) ∈ C, qi0j0 and qi′0j

′
0 are comparable. Further, the minimum vector

q is well-defined and satisfies qj0 ≤ qi0j0 for all (i0, j0) ∈ C, where qi0j0 is defined in Step (3.b) of the

algorithm. In particular, this implies that q 6=∞.

Proof. Similar to the above proof, we assume that all prices defined by the algorithm are upper bounded

by vij , bij for any edge (i, j) ∈ C. Consider any qi0j0 ,qi′0j
′
0 6= ∞, where (i0, j0), (i

′
0j

′
0) ∈ C, we first

show that qi0j0 and qi′0j
′
0 are comparable. Assume without loss of generality that qi0j0j0

≤ q
i′0j

′
0

j0
(the

same analysis below holds when qi0j0j0
≥ q

i′0j
′
0

j0
). For any item j ∈ N(S), consider defining vector qi0j0 in

the algorithm and let j0, i1, j1, . . . , iℓ, jℓ = j be the path to define qi0j0j , where (ik, jk−1), (ik , jk) ∈ C for

k = 1, . . . , ℓ. That is, qi0j0jk
is determined according to qi0j0jk−1

in Step (3.c). Hence, we have uikjk−1
(qi0j0jk−1

) =

uikjk(q
i0j0
jk

). If qi0j0j1
> q

i′0j
′
0

j1
, then by the strict monotonicity of utility functions, we have

ui1j1(q
i′0j

′
0

j1
) > ui1j1(q

i0j0
j1

) = ui1j0(q
i0j0
j0

) ≥ ui1j0(q
i′0j

′
0

j0
)

This contradicts to Lemma C.2 which implies that ui1j0(q
i′0j

′
0

j0
) = ui1j1(q

i′0j
′
0

j1
) given (i1, j0), (i1, j1) ∈ C.

Therefore, qi0j0j1
≤ q

i′0j
′
0

j1
. We can do the same analysis through all edges along the path, and at the

end conclude that qi0j0j = qi0j0jℓ
≤ q

i′0j
′
0

jℓ
= q

i′0j
′
0

j . Therefore, for any item j ∈ N(S), qi0j0j ≤ q
i′0j

′
0

j , i.e.,

qi0j0 ≤ qi′0j
′
0 .

It remains to show that there is (i0, j0) ∈ C such that qi0j0 6= ∞. For any item j, we say its value

qi0j0j feasible if for any i ∈ N(j), qi0j0j ≤ qij = min{vij , bij , u
−1
ij (uimax)}. For simplicity, we assume without

loss of generality that in Step (3.c) of the algorithm, it always tries to define as many feasible values as

possible before reaching any item j having an infeasible value (from which the algorithm sets qi0j0 =∞).

This will only affect the execution of Step (3.c), but not the outcome of the algorithm.

Consider any (i0, j0) ∈ C, if qi0j0 = ∞, let j1 be the first item with an infeasible value set by the

algorithm and T1 be the set of items whose (feasible) values qi0j0j have been defined at that moment.

Note that j1 /∈ T1. Next let i1 = argmini∈N(j1) q
ij1 and consider defining vector qi1j1 in the algorithm.

Similarly, if qi1j1 = ∞, let j2 be the first item with an infeasible value set by the algorithm and T2 be

the set of items whose (feasible) values qi1j1j have been defined at that moment. Note that j1 ∈ T2 and

j2 /∈ T2. Similar to the argument in the first part of the proof, since qi1j1j1
= qi1j1 < qi0j0j1

, we can show

that for any j ∈ T1, q
i1j1
j ≤ qi0j0j ; thus T1 ⊂ T2. Next let i2 = argmini∈N(j2) q

ij2 and consider defining

vector qi2j2 in the algorithm and the process continues: for any Tk associated with vector qik,jk , value

qikjkj is feasible for any j ∈ Tk. In the process, we always increase the number of items with feasible

values. Therefore eventually we will reach to a vector such that all items have feasible values. Hence, in

the minimum price vector q, all prices are feasible, i.e., qj ≤ qij for any (i, j) ∈ C.

The following claim gives an equivalent way to view the subroutine Price-Increment: instead of

increasing all prices from p to q directly, it can be decomposed into a “continuous” process where all

prices are increased continuously and simultaneously. That is, increase from p to r, and then from r
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to q (the process can be divided further into arbitrarily small amount of increment). This idea will be

helpful for our analysis in the following sections.

Proposition C.1. Assume that subroutine Price-Increment increases prices of items N(S) from p

to q, where p < q. For each item j ∈ N(S), let minj be any value satisfying pj < minj < qj. If we

add an extra condition in Step (3.b) of the subroutine by requiring that qij ≤ minj for every (i, j) ∈ C,

then the subroutine will outputs a minimum price vector (denoted by r) that satisfies p < r < q, and all

properties regarding q in Theorem 4.3 still hold for r. Further, there is j0 ∈ N(S) such that rj0 = minj0.

Proof. The introduction of minj for each item j gives another upper bound on qij for any (i, j) ∈ C.

The subroutine and analysis of the above Lemma C.1, C.2 and C.3 remain the same (except whenever

we talk about the upper bound of qij , say the definition of feasibility in the proof of Lemma C.3, this

new bound minj should be included as well), and thus all properties regarding q in Theorem 4.3 still

hold for r.

For the new implementation with the extra condition qij ≤ minj, we use symbol ‘r’ instead of

‘q’ to denote all computed prices. Consider any edge (i, j) ∈ C and the computation of rij, i.e., the

implementation of the algorithm on edge (i, j). Since minj < qj ≤ qij = min{vij , bij , u
−1
ij (uimax)},

where the second inequality follows from Lemma C.3, in Step (3.b) of the new implementation, we have

rij = minj. Therefore, if r
ij 6=∞, we have rijj = rij = minj. Since r 6=∞ by Lemma C.3, the minimum

price vector r is obtained at some ri0j0 6= ∞ where (i0, j0) ∈ C; thus rj0 = ri0j0j0
= minj0 . This implies

that r < q. Since p < q and pj < minj < qj for any j ∈ N(S), we have p < r by the consistency

property. Therefore, p < r < q.

D Analysis of Alg-Min-Equilibrium

In this section, we will prove all claims in Section 4.3, which gives the proof of the main Theorem 4.1.

We will first prove Proposition 4.1 and 4.2.

Proposition 4.1. The graph G∗ in Step (6) of the algorithm has no non-empty critical set. Thus, there

exists a maximum matching in H in which every buyer in U+ is matched.

Proof. Consider the graph G∗ in Step (6). For any i ∈ U with N∗(i) 6= ∅ (recall that N∗(S) is the

neighbor set of S in graph G∗), all items in N∗(i) are either marked or unmarked. Define

X1 = {i ∈ U | N∗(i) 6= ∅ and all items in N∗(i) are marked}

and

X2 = {i ∈ U | N∗(i) 6= ∅ and all items in N∗(i) are unmarked}

Assume that S is the critical set of G∗. Let S1 = S ∩X1 and S2 = S ∩X2. Note that S = S1 ∪ S2 and

N∗(S1) ∩N∗(S2) = ∅.

We claim that |S2| ≤ |N
∗(S2)|. Consider the last execution of the algorithm in the Step (5) right

before moving to Step (6). There are two possibilities that the algorithm moves to Step (6), the “if”-

condition in main statement of Step (5) fails or the “if”-condition in Step (5.b) fails. We consider each

of them separately.
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• The “if”-condition fails in the main statement of Step (5). It implies that G′ has no non-empty

critical set, and hence |S2| ≤ |N
′(S2)|, where N ′(S2) is the neighbor set of S2 in graph G′. At

the same time, Step (5) will be skipped. Hence, all edges in G′ are in G∗, which implies that

|S2| ≤ |N
∗(S2)|.

• The “if”-condition holds in the main statement of Step (5) and the “if”-condition fails in Step (5.b),

i.e., the algorithm transits to Step (6) after executing Step (5.a). Let S′ be the critical set of G′ in

that execution. Since all items in N ′(S′) only get marked here, all edges incident to S′ are kept and

all items in N∗(S′) are marked in G∗. Hence, S2 ⊆ U+\S′. Observe that N∗(S2) = N ′(S2)\N
′(S′)

(because for any j ∈ N∗(S2), j is unmarked, and thus, j ∈ N ′(S2) \N
′(S′); on the other hand, for

any j ∈ N ′(S2) \N
′(S′), j is not marked by Step (5), hence j ∈ N∗(S2)). Therefore,

|S′ ∪ S2| − |N
′(S′ ∪ S2)| = |S

′|+ |S2| − |N
′(S′)| − |N∗(S2)| > |S

′| − |N ′(S′)|

where the last inequality is by assumption. This contradicts to the fact that S′ is the critical set

of G′.

Hence, |S2| ≤ |N
∗(S2)|, which implies that

|S1| − |N
∗(S1)| ≥ |S1|+ |S2| − |N

∗(S1)| − |N
∗(S2)| = |S| − |N

∗(S)|

Thus, we must have S2 = ∅ by the minimality of the critical set S, i.e., all items in the neighborhood of

S in G∗ are marked. By the rule of defining G∗ in Step (6), all items in the neighborhood of S in G+

are marked as well.

Therefore, for any neighbor j of S in the last run of Step (3), if j is marked then j is a neighbor

of S in G∗; if j is unmarked then it must be converted to marked in Step (5.a), otherwise some buyer

in S would have unmarked neighbor in G+ and thus would only have unmarked neighbor in G∗, which

contradicts to the fact that S ⊆ X1. Therefore, all neighbors of S in the last run of Step (3) remain

to be the neighbors of S in G∗. Since there is no critical set when the algorithm gets out of Step (3),

we know that |S| is less than or equal to the size of its neighborhood in G+, thus |S| ≤ |N∗(S)|. This

implies S cannot be the critical set of G∗.

Proposition 4.2. Let p be the price vector when defining graph H in Step (7). Consider graph H:

let T be the set of marked items and S be the neighbor set of T . Then, for any ǫ > 0, there exists

qj = pj + ǫj for all j ∈ T , where 0 < ǫj < ǫ can be arbitrarily small, and qj = pj for j /∈ T , such that

(i, j) ∈ G+(q) if and only if (i, j) ∈ G+(p) for any i ∈ S and j ∈ T .

Proof. By the construction of graph G∗ and H in Step (6, 7) of the algorithm, for any buyer i ∈ S its

neighborhood N∗(i) is either all marked or all unmarked. Hence, N(S) = T . Note that all new added

edges in Step (7) only connect to unmarked items, i.e., not incident to T . Consider any i ∈ S and

items j, j′, where j ∈ N(i) and j′ /∈ N(i), we have uij(pj) > uij′(pj′). Since all utility functions are

continuously decreasing, there is δj, 0 < δj < ǫ, such that uij(pj + ǫj) > uij′(pj′) for all 0 < ǫj ≤ δj (note

that the inequality is guaranteed due to pj < min{vij , bij} since j ∈ T is marked). Actually, we can pick

δj to be sufficiently small so that the above inequality holds for any i ∈ N(j) and j′ /∈ N(i). Now we

can apply Proposition C.1 to all items in T (i.e., set up an upper bound δj to increase), from which we

can increase all pj for j ∈ T by an arbitrarily small amount and the demand graph structure remains

the same.
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Next we will prove Lemma 4.1, 4.2, 4.3 and 4.4.

Lemma 4.1. Let minj be the minimum equilibrium price of item j (if an equilibrium exists), and let p

be the price vector at the end of any stage. Then, pj ≤ minj for any j for every stage in the algorithm.

Further, if j is marked, then pj < minj.

Proof. We will prove the claim by induction on stages. At the beginning all prices are 0 and the claim

follows obviously. Consider any stage in the algorithm. Assume that the claim holds at the beginning

of the stage, and we will show that the claim still holds at the end of the stage. Let C = S ∪ T be

the connected component of the critical set specified by Step (3.a) in that stage, i.e., implemented by

subroutine Price-Increment, where S is the set of buyers and T = NC(S) is its neighbor set, where

NC(S) is the neighbor set of S in C. Denote by p = (pj)j∈T the price vector of items in T at the end of

the stage by Alg-Min-Equilibrium.

We first prove that pj ≤ minj for any item j ∈ T . Assume otherwise that there is j ∈ T such

that pj > minj. Consider price vector q = (qj)j∈T returned by subroutine Price-Increment with the

initial setup equal to the price vector at the beginning of the stage, plus an extra condition qi0j0 ≤ minj0

in Step (3.b) of the subroutine for all edges (i0, j0). By applying Proposition C.1, we know that such

minimum price vector q exists, and its prices are guaranteed to be upper bounded by the minimum

equilibrium price vector, i.e., qj ≤ minj for any j ∈ T . Further, there is j0 ∈ T such that qj0 = minj0 ,

and q < p (note that this p is not the initial price vector when we run Price-Increment, but the final

price vector of the considered stage). Let D denote the demand graph of buyers S at price vector q, and

ND(i) denote the neighbor set of any i ∈ S in D. Note that ND(i) ⊆ T , in particular, ND(S) ⊆ T ; and

by Lemma C.2, C ⊆ D, i.e., C is a subgraph of D.

Let (x∗,p∗) be an equilibrium with p∗j0 = minj0 and M∗ be the corresponding matching. By the

above argument, we have qj ≤ minj ≤ p∗j for any j ∈ T , and qj0 = minj0 = p∗j0 . Hence,

uij(qj) ≥ uij(p
∗
j ), ∀ i ∈ S, j ∈ T

Let Z ⊆ S be a subset of buyers to which there is an alternating path from j0 in D in terms of matching

M∗ (i.e., edges are not in M∗ and in M∗ alternatively). Note that Z 6= ∅ since for any item j ∈ T , it

must have at least two neighbors in S in C (otherwise, we can find a smaller critical set).

We claim that for each i ∈ Z, x∗i ∈ ND(i) (i.e., i wins an item in ND(i) in the equilibrium (x∗,p∗)).

This can be shown by induction on the distance between i and j0 in the alternating path. If the distance

is one, i.e., j0 ∈ ND(i), since qj0 < pj0 , i can get a positive utility from j0 at price vector q. Since

qj0 = p∗j0 , i must be a winner in the equilibrium and its utility satisfies

uix∗
i
(p∗x∗

i
) ≥ uij0(p

∗
j0
) = uij0(qj0)

Hence,

uix∗
i
(qx∗

i
) ≥ uix∗

i
(p∗x∗

i
) ≥ uij0(qj0)

That is, the utility that i can get from x∗i is at least as large as its maximal utility in D. Hence,

x∗i ∈ ND(i) and all inequalities in the above are tight. In particular, this implies that p∗x∗
i
= qx∗

i
as the

utility function is strictly decreasing. If the distance between i and j0 is 3 via an alternating path, say

(i, j1, i0, j0) where i0 wins item j1 in the equilibrium, then what we just showed implies that p∗j1 = qj1 .

Since j1 ∈ ND(i), the situation of j1 for i is the same that of j0 for i0. Hence, we can apply the same

argument to conclude that x∗i ∈ ND(i) and p∗x∗
i
= qx∗

i
. Therefore, we can show inductively that the claim

holds for all buyers in Z with distance 3, 5, 7, . . . , to j0.
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Hence, in the equilibrium (x∗,p∗), each i ∈ Z wins item x∗i ∈ ND(i). Therefore, {(i, x∗i ) | i ∈ Z}

defines a matching. Let Y = {x∗i | i ∈ Z}. Since |S| > |T | and Y ⊆ ND(S) ⊆ T , clearly S \Z 6= ∅. Note

that for any i ∈ S \Z, there is no edge between i and Y in D (otherwise, there would be an alternating

path between j0 and i, and we would put i into Z). That is, ND(S \ Z) ⊆ T \ Y . Hence,

|S \ Z| − |NC(S \ Z)| ≥ |S \ Z| − |ND(S \ Z)|

≥ |S \ Z| − |T \ Y |

= |S \ Z|+ |Z| − |T \ Y | − |Y |

= |S| − |T |

which contradicts to the fact that S ∪T is a connected component of the critical set. Therefore, we have

pj ≤ minj for any j ∈ V , which completes the proof of the first part.

It remains to show that pj < minj if j is marked for any j ∈ V . If the price of j is marked at the

beginning of the considered stage and its price is not increased, by induction assumption, we still have

pj < minj . Thus, it suffices to consider the case when Step (3.f) of Alg-Min-Equilibrium occurs,

where all items in T are set to be marked. For this case, we need to show that pj < minj for any

j ∈ T . Assume otherwise that there is j0 ∈ T such that pj0 = minj0 . It can be seen that that for every

i ∈ S, i can get a positive utility from items in N(i), where N(i) is the neighbor set of i in the demand

graph at the end of the stage (as if i gets utility 0 from any j ∈ N(i), then vij = pj for every j ∈ N(i)

and Step (3.e) will be executed). This is exactly the property used in the above first part to draw a

contradiction. Thus, by the same argument, we can show that pj < minj for any j ∈ T .

For Step (5.a) of the algorithm where items in the neighbor set of the critical set of G′ are set to be

marked as well, its proof of pj < minj is the same as above. This completes the proof of the lemma.

Lemma 4.2. For any given instance of the problem, if Alg-Min-Equilibrium outputs (x,p), then it

is a competitive equilibrium.

Proof. This follows by the rule of the algorithm and the construction of the demand graph G∗ in Step (6)

— each (i, j) ∈ E represents that i gets its maximal utility from j for the given price vector. Note that

{i ∈ U | N∗(i) 6= ∅} = U+, and any i ∈ U+ is matched to an item in N∗(i) by the algorithm. Note

that all items in N∗(i) are either marked or unmarked. If they are marked, the price of each j ∈ N∗(i)

is pj+ by Step (8.b). Since uij(pj) > 0 and the increment of all marked items from pj to pj+ is at

the same pattern rate, i still prefers item j with a positive utility. Further, if N∗(i) = ∅, i.e., i is a

simpleton vertex, then for any j ∈ V , we have either vij ≤ pj or bij ≤ pj, and if vij > pj and bij = pj ,

j must be marked. That is, i cannot get a positive utility anyway, no matter if i is matched or not.

Therefore, everyone is satisfied with the corresponding allocation given price vector p. Moreover, since

the matching in Step (8) has size of m, all items are allocated, which implies that the market clearing

condition is satisfied. Hence, (x,p) is an equilibrium.

Lemma 4.3. For any given instance of the problem, if a competitive equilibrium exists, then Alg-Min-

Equilibrium will output one.

Proof. Let (x∗,p∗) be an equilibrium and M∗ be the corresponding matching. By adding dummy buyers

as discussed in Section 2, all items are allocated. Let p = (pj)j∈V be the price vector of the algorithm

Alg-Min-Equilibrium when it moves to Step (6) and consider the demand graph G∗ defined in Step (6).

By Lemma 4.1, we have pj ≤ p∗j for any j, and pj < p∗j if j is marked.
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Let X = {i ∈ U | N∗(i) 6= ∅}, where N∗(i) is the neighborhood of i in G∗. By Lemma 4.1, we have

|X ′| ≤ |N∗(X ′)| for any X ′ ⊆ X. In particular, |X| ≤ |N∗(X)|. Consider any i ∈ X. Note that i obtains

a positive maximal utility from items in N∗(i) (otherwise, all edges incident to i would be deleted by

Step (3.d)). We claim that x∗i ∈ N∗(i) for any i ∈ X, i.e., i wins an item in N∗(i) in the equilibrium

(x∗,p∗). Assume otherwise that there is i0 ∈ X such that either x∗i0 = ∅ or x∗i0 /∈ N∗(i0). Let

Z = {j ∈ N∗(X) | j is allocated to a buyer in U \X in the equilibrium (x∗,p∗)}

Note that Z 6= ∅ by the assumption of i0. For each j ∈ Z, let T (j) ⊆ X be set of buyers to which

there is an alternating path from j in G∗ in terms of matching M∗ (i.e., edges are not in M∗ and in M∗

alternatively), restricted on buyers in X (i.e., all edges in the alternating path are incident to buyers in

X). By the assumption of i0 and the fact that |X ′| ≤ |N∗(X ′)| for any X ′ ⊆ X, there must be an item

in Z, denoted by jℓ ∈ Z, such that i0 ∈ T (jℓ). Assume that the alternating path from jℓ to i0 is

(jℓ, iℓ−1, jℓ−1, . . . , i1, j1, i0)

That is, j1 ∈ N∗(i0), jk+1 ∈ N∗(ik) and x∗ik = jk, for k = 1, . . . , ℓ − 1. Suppose that x∗iℓ = jℓ, i.e.,

buyer iℓ wins jℓ in the equilibrium. Note that iℓ /∈ X by the assumption of jℓ ∈ Z; thus we must have

viℓjℓ ≤ pjℓ or biℓjℓ < pjℓ . Since pjℓ ≤ p∗jℓ , we must have p∗jℓ = pjℓ = viℓjℓ to guarantee that iℓ obtains a

non-negative utility in the equilibrium. Further, note that iℓ−1 obtains his maximal positive utility from

jℓ in G∗, (but jℓ is allocated to iℓ in the equilibrium at price p∗jℓ = pjℓ,) we must have jℓ−1 ∈ N∗(iℓ−1)

and p∗jℓ−1
= pjℓ−1

. Continue with this argument through the above path and we will conclude that

p∗j1 = pj1 eventually. This implies that i0 strictly prefers j1 ∈ N∗(i0) to all other items not in N∗(i0) in

the equilibrium, but i0 does not win any item in N∗(i0), a contradiction.

Hence, for any i ∈ X, x∗i ∈ N∗(i). This implies that the matching defined by {(i, x∗i ) | i ∈ X} exists

in graph H ⊇ G∗ (defined in Step (7) of the algorithm). Let Y = {x∗i | i ∈ X}. For any item j /∈ Y ,

it must be allocated to a buyer i /∈ X in the equilibrium (x∗,p∗). If vij > pj, since N∗(i) = ∅, we

much have bij < p∗j , which contradicts to the equilibrium condition. Hence, we must have vij = pj = p∗j
and bij ≥ pj. Thus, by Step (7) of the algorithm, edge (i, j) will be added to H. Therefore, matching

{(i, x∗i ) | i ∈ U} exists in graph H, which implies that the algorithm will return an allocation and price

vector. By Lemma 4.2, it must be an equilibrium.

Lemma 4.4. The algorithm Alg-Min-Equilibrium runs in strongly polynomial time.

Proof. In each phase, since there are at most mn possible edges in the bipartite graph and each stage

will introduce at least one new edge, we will have at most mn stages. Further, we will remove at least

one edge between the critical set and its neighbor set for each phase. Since all prices keep increasing,

all deleted edges by Steps (3.e), (3.f) and (5,b) will never be added back. Hence, there are at most

mn phases, which implies that there are at most m2n2 stages in total. In each stage, the algorithm

calls a subroutine Price-Increment to compute the price level to which one of the conditions (3.b.α),

(3.b.β) or (3.b.γ) is satisfied, and increase prices to that level. Note that by the assumptions of utility

functions, subroutine Price-Increment can be implemented in strongly polynomial time. Further,

by the following characterization shown by Irving [26], which says that given a maximum matching of

G+ = (U+, V +;E), the critical set of U+ consists of unmatched vertices together with those reachable

from them via an alternating path, finding the critical set is equivalent to finding a maximum matching.

This gives us the result.
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Finally, we note that the marked items in the final output of the algorithm Alg-Min-Equilibrium

has an interesting connection to weakly stable matching, as the following claim shows.

Proposition D.1. In Step (8.b) of the algorithm, if the price of every marked slot j is not set to be

pj+, then the final output (x,p) is not a competitive equilibrium but a weakly stable matching.

Proof. Due to Lemma 4.1, for any marketed slot j, its price pj is strictly smaller than its price in all

equilibria. Hence, the output (x,p) cannot be a competitive equilibrium. To see that (x,p) is a weakly

stable matching, consider any buyer i and item j 6= xi. Since matching x is determined according to

the demand graph H defined in Step (7) of the algorithm, we have either uixi(pxi) ≥ uij(pj) (if xi = ∅,

denote uixi(pxi) = 0), or uixi(pxi) < uij(pj) but bij = pj (for this case, j must be marked). For the

latter case, the seller for item j cannot obtain more revenue from i due to his tight budget constraint.

Hence, (i, j) cannot be a weakly blocking pair, which implies that the output (x,p) is a weakly stable

matching.

E Minimum Equilibrium Mechanism: Proof of Theorem 5.1

Proof. For any fixed truthful bids of utility functions uij(·) of all other buyers, i 6= i0, we will analyze

the strategic behavior of buyer i0. Assume that the minimum equilibrium is (x,p) when i0 bids ui0j(·)

truthfully (where the minimum price is either an exact value pj or notation pj+). Consider any other

possible utility functions u′i0j(·) that i0 bids. Assume that the minimum equilibrium is (x′,p′) when i0
changes his bid to u′i0j(·). It suffices to show that the utility of i0 in equilibrium (x,p) is larger than or

equal to his utility in (x′,p′). Assume without loss of generality that x′i0 = j0, i.e., i0 wins item j0 in

equilibrium (x′,p′) (if i0 does not win any item, then certainly he cannot obtain more utility).

Since (x,p) is an equilibrium, the utility of every buyer i is maximized at the corresponding allocation

xi given price vector p. That is, if xi = j, then uij(pj) ≥ 0 and for any other item j′ 6= j, either bij′ < pj′

or uij(pj) ≥ uij′(pj′); if xi = ∅, then for any item j, either bij < pj or vij ≤ pj . Hence, when i0 bids

u′i0j(·) untruthfully, to obtain a higher utility, no matter whether xi0 = ∅ or xi0 6= ∅, it must be p′j0 < pj0
(if pj0 is with “+” notation, i.e., pj0+, we have p′j0 ≤ pj0 < pj0+). For simplicity, for any buyer i, if

xi = ∅, we denote uixi(pxi) = 0.

Define

T = {j ∈ V | p′j < pj} and S = {i ∈ U | x′i ∈ T}

where S is the subset of buyers who win items in T in equilibrium (x′,p′). That is, |S| = |T | and all

buyers in S win all items in T in (x′,p′). Note that since j0 ∈ T , S, T 6= ∅. In particular, this implies

i0 ∈ S. Further, we claim that all buyers in S win all items in T in equilibrium (x,p) as well. Otherwise,

there is i /∈ S and j ∈ T such that xi = j. Since uij(p
′
j) > uij(pj) ≥ 0, i must win an item in equilibrium

(x′,p′). Assume that x′i = j′ /∈ T . Thus, bij′ ≥ p′j′ ≥ pj′ . Hence,

uij′(p
′
j′)

(1)

≥ uij(p
′
j) > uij(pj)

(2)

≥ uij′(pj′)

where (1) follows from equilibrium (x′,p′) and (2) follows from equilibrium (x,p), a contradiction to the

fact that p′j′ ≥ pj′.

Given S and T , define an output (y,q) from (x,p) and (x′,p′) as follows:

• Let yi = x′i if i ∈ S, and yi = xi if i /∈ S.

31



• Let qj = p′j if j ∈ T , and qj = pj if j /∈ T .

Since all buyers in S win in all items in T in both equilibria (x,p) and (x′,p′), the allocation defined

by y is feasible. Note that for any item j, qj ≤ pj (and qj < pj if j ∈ T ). We next analyze the utility of

every buyer in (y,q).

• For any buyer i /∈ S, we have xi, x
′
i /∈ T . By equilibrium (x,p), i weakly prefers yi to all other

items in V \ T in (y,q). For any item j ∈ T , we have either bij < p′j = qj or

uiyi(qyi) = uixi(pxi)
(1)

≥ uix′
i
(px′

i
)
(2)

≥ uix′
i
(p′x′

i
)
(3)

≥ uij(p
′
j) = uij(qj) (∗)

where (1) follows from equilibrium (x,p), (2) follows from p′
x′
i
≥ px′

i
as x′i /∈ T , and (3) follows

from equilibrium (x′,p′). Note that in (∗), if xi = ∅ or x′i = ∅, we can build the same series of

inequalities and show that uij(qj) ≤ 0. That is, i (weakly) prefers his allocation yi to all items in

T in output (y,q).9

• For any buyer i ∈ S, i 6= i0, we have xi, x
′
i ∈ T . By equilibrium (x′,p′), i weakly prefers yi to all

other items in T in (y,q). For any item j /∈ T , either bij < pj = qj or

uiyi(qyi) = uix′
i
(p′x′

i
)
(1)

≥ uixi(p
′
xi
) > uixi(pxi)

(2)

≥ uij(pj) = uij(qj) (#)

where (1) follows from equilibrium (x′,p′), and (2) follows from equilibrium (x,p). That is, i

strictly prefers his allocation yi to all items in V \ T in output (y,q).

It remains to consider the utility of i0 in output (y,q). Note that the equilibrium (x′,p′) is computed

in terms of the false bid u′i0j(·) from buyer i0, whereas the true utility of i0 should be computed in terms

of ui0j(·) rather than u′i0j(·). Thus it is possible that i0 strictly prefers other items to yj0 in (y,q) in

terms of his true utility functions ui0j(·). In the following we adjust allocations and prices for items in

T in (y,q) so as to satisfy i0 as well.

Let G be the real demand bipartite graph (i.e., the utility of i0 is in terms of ui0j) with respect to

price vector q restricted on the sub-instance given by S and T (i.e., ignore all buyers U \ S and items

V \ T ). Let S′ ⊆ S be the critical set of buyers of G and T ′ = N(S′), where N(S′) is the neighbor set

of S′ of G. We recursively increase all prices qj for j ∈ T ′ continuously and simultaneously according

to subroutine Price-Increment. In the process of increasing prices, the demand bipartite graph G,

as well as the critical set S′ and its neighbor set T ′, will be updated dynamically with respect to the

current price vector q. Note that when prices increase, items T \ T ′ might enter into the demand set

of i ∈ S′, and an edge (i, j) where i ∈ S′ and j ∈ T ′ might be broken due to budget constraint. The

process stops when the critical set of G becomes ∅.

We claim that at the end of the process when G has no non-empty critical set, the price of every

item j ∈ T has qj < pj. Otherwise, consider the first implementation of subroutine Price-Increment

where there is j ∈ T whose price qj is increased to be at least pj at the end of the implementation.

By Proposition C.1, the implementation of Price-Increment can be viewed as a process of increasing

9If there were no budget constraints, we could easily get a contradiction to the minimum equilibrium (x,p) at this point
— construct a new equilibrium (x,p∗) from (x,p) by reducing all prices pj for j ∈ T a very small amount in a similar
(converse) manner as Proposition 4.2 to keep the same demand preference. With budget constraints, however, (x,p∗) may
not be an equilibrium: buyers in S may strictly prefer other items in T to xi since they become to have enough budgets to
some more preferred items.
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prices continuously. Consider the first moment when there is j ∈ T whose price qj is increased exactly

to pj in the process; and consider the price vector q = (qj)j∈T , demand graph G, critical set S′ and its

neighbor set T ′ at that moment. Let V ′ = {j ∈ T | qj = pj} and U ′ = N(V ′) be the neighbor set of V ′.

Since only prices of items in T ′ are increased, we have V ′ ⊆ T ′. By the definition of the critical set, we

have |U ′| > |V ′|. Otherwise,

|S′| − |T ′| = |S′ \ U ′|+ |S′ ∩ U ′| − |T ′ \ V ′| − |V ′| ≤ |S′ \ U ′| − |T ′ \ V ′| ≤ |S′ \ U ′| − |N(S′ \ U ′)|

where the last inequality follows from N(S′ \ U ′) ⊆ T ′ \ V ′, a contradiction. Hence, there is i ∈ U ′ such

that i wins an item in T \ V ′ in equilibrium (x,p), i.e., xi ∈ T \ V ′. Therefore, for any j ∈ N(i) ∩ V ′,

we have

uij(pj) = uij(qj)
(1)

≥ uixi(qxi)
(2)
> uixi(pxi)

where (1) follows from the demand set of i, and (2) follows from the fact that qxi < pxi when xi ∈ T \V ′.

This contradicts to the fact that (x,p) is an equilibrium.

At the end of the increment process when G has no non-empty critical set, we know that for any

subset U ⊆ S, |U | ≤ |N(U)|. By Hall’s theorem and the fact that |S| = |T |, there is a perfect matching

M between S and T . We define an output (x∗,p∗) from (y,q), where q is the price vector at the end

of the above increment process: allocations of buyers in S are defined according to M and allocations

of buyers in U \ S remain the same as y; and p∗ = q. Similar to the inequalities established in (∗) and

(#) above, we can show that all buyers get their utility-maximal allocation in (x∗,p∗). Hence, (x∗,p∗)

is an equilibrium. This contradicts to the fact that (x,p) is a minimum equilibrium.

Therefore, we have p′j0 ≥ pj0 , i.e., buyer i0 will never obtain more utility from bidding untruthfully.

This implies that it is of best interest to bid truthfully for the minimum equilibrium output.
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