
Aspect-Oriented Analysis for Software Product Lines
Requirements Engineering

Patrícia Varela, João Araújo,
CITI/FCT,

Universidade Nova de Lisboa,
2829-516 Caparica, Portugal

patixinha@gmail.com, ja@di.fct.unl.pt

Isabel Brito,
Instituto Politécnico de Beja,

7800-050, Beja, Portugal
issb@estig.ipbeja.pt

Ana Moreira,
CITI/FCT,

Universidade Nova de Lisboa,
2829-516 Caparica, Portugal

amm@di.fct.unl.pt

ABSTRACT

Requirements analysis and modeling for Software Product Lines

demands the use of feature models, but also requires additional

models to help identifying, describing, and specifying features.

Traditional approaches usually perform this manually and, in

general, the identification and modularization of crosscutting

features is ignored, or not handled systematically. This hinders

requirements change. We propose an aspect-oriented approach for

SPL enriched to automatically derive feature models where

crosscutting features are identified and modularized using aspect-

oriented concepts and techniques. This is achieved by adapting

and extending the AORA (Aspect-Oriented Requirements

Analysis) approach. AORA provides templates to specify and

organize requirements based on concerns and responsibilities. A

set of heuristics is defined to help identifying features and their

dependencies in a product line. A tool was developed to

automatically generate the feature model from AORA templates.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications –

languages, methodologies.

General Terms

Design.

Keywords
Aspect-Oriented Requirements Analysis, Software Product Lines.

1. INTRODUCTION
Requirements Engineering includes the identification, analysis,

documentation, validation and management of requirements [15].

A requirement describes functionalities, constraints or quality

attributes in software systems. Our focus is on creating a synergy

between Software Product Lines Engineering (SPLE) and

Requirements Engineering benefiting from their concepts,

techniques and tools. Whilst Requirements Engineering

techniques can be used to elicit and specify domain and

application requirements, SPLE captures commonalities and

variabilities of product families promoting reuse [16]. Thus, in a

medium term, productivity can be increased.

One of the most used Software Product Lines (SPL) techniques to

specify requirements and handle their commonalities and

variations is feature modeling [8][14]. A limitation of feature

models is that they do not provide enough information on each

feature, such as behavior and a rationale for dependencies,

needing other models to supply that information. Another

difficulty is dealing with the crosscutting nature of (parts of) some

features. Aspect-oriented (AO) techniques [2] have been used

successfully to model crosscutting concerns. A concern refers to

any matter of interest of one or more stakeholders [11], and a

crosscutting concern is any concern that cuts across other

concerns. In the context of this paper a feature is a concern and,

therefore, we also talk about crosscutting features. A third

limitation is the lack of tools to automatically derive feature

models from requirements specifications, be them aspect-oriented

or not.

The application of requirements engineering techniques, such as

use cases [12], viewpoints [9] and goals [6], has improved SPLE

specifications [3][7][10] [13][18][20]. This resulted in documents

that provide models expressing different perspectives of the

requirements [16], therefore complementing and completing the

view of requirements specifications. However, requirements

elicitation and analysis for SPL could be enhanced if the

modularization of crosscutting features were addressed using

aspect-oriented techniques [2].

Aspect-Oriented Requirements Engineering (AORE)1 appeared to

address this problem by identifying, representing, specifying and

composing crosscutting concerns. Crosscutting concerns are

encapsulated in separate modules, known as aspects [2][17]. One

of the pioneering AORE approaches is AORA (Aspect-Oriented

Requirements Analysis) [5]. AORA offers some advantages with

respect to other existing approaches: a detailed template

specification for all types of concerns (functional, non-functional

or crosscutting); a set of concepts and techniques rigorously

defined in a metamodel; a set of composition operators to study

the impact of a set of concerns over a base; an efficient and

1 The interested reader can refer to http://www.aosd-

europe.net/deliverables/d11.pdf for a survey on AORE

approaches, or to the Early Aspects portal (www.early-

aspects.net).

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SAC’11, March 21-25, 2011, TaiChung, Taiwan.

Copyright 2011 ACM 978-1-4503-0113-8/11/03…$10.00.

667

rigorous conflict resolution method; and a supporting tool

developed based on the defined metamodel.

We adapt and extend AORA to support SPL development at

domain and application engineering levels. The result is the

PLAORA approach (Product Lines for Aspect-Oriented

Requirements Analysis). PLAORA provides a sound set of

heuristics to derive feature models taking into consideration the

identification of crosscutting concerns at domain and application

engineering levels, offers a tool to systematically and

automatically identify and generate common and variable

features, and uses the Analytic Hierarchy Process (AHP) [19], a

multi-criteria method, to identify and resolve conflicts.

In summary, the aim of this paper is to enrich the development of

SPL with the capabilities and advantages of AORA, where the

specification of concerns facilitates the automatic derivation of a

feature model.

This paper is structured as follows. Section 2 summarizes AORA

main concepts. Section 3 describes PLAORA. Section 4 applies

PLAORA to a case study. Section 5 discusses the evaluation of

the approach. Evaluation has been performed using case studies,

including an industrial case study, comparing our approach with

others, and collecting data from an experiment performed with a

group of ten master’s students. Section 6 presents some related

work, comparing PLAORA with other existing approaches.

Finally, Section 7 presents conclusions and future work

2. BACKGROUND

2.1 SPL
An SPL is a set of software systems, which share common

characteristics, satisfying the needs of a particular segment of the

market and are developed from a common set of core assets [16].

Domain Engineering and Application Engineering are the two

main processes of SPLE. These are complementary activities,

interacting as parallel processes forming a base model of a

software system. Domain Engineering identifies the SPL

commonalities and variabilities. Application Engineering

develops members of the product line through configuration,

reusing domain core assets and selecting different sets of

variations for each SPL product. As mentioned before, the

characteristics of an SPL are often specified using a feature

model. A feature model consists of a diagram composed of

features and additional information, such as semantic descriptions

of each feature variable points, reasons for each feature, priorities

and dependence rules [3]. A feature is a property of a system

relevant for some stakeholders and is used to capture common

characteristics or variables in SPL. The types of features, defined

are mandatory, optional and alternative.

2.2 AORA
AORA [5] is composed of three main tasks: identify concerns,

specify concerns and compose concerns. These tasks are

accomplished iteratively and incrementally. Identify concerns

aims at discovering the concerns of a system, where a concern is

as a set of coherent requirements defining a property that the

future system must provide. This is performed by analyzing the

initial requirements, transcripts of stakeholders’ interviews, etc.

Good sources for concern identification are the existing

catalogues, such as the NFR catalogue [6]. Specify concerns

provides textual and visual representations of concerns and their

relationships. All the useful information about a concern is

collected in a template (Tables 1 and 2 are examples). Finally,

Compose concerns offers the possibility to compose a set of

concerns, incrementally, until the whole system is obtained (if we

need that) and, at the same time, identify the impact of a set of

concerns on a given base. A composition occurs in a match point

which lists the crosscutting concerns that should be composed

with each (set of) base concern, forming a composition rule. A

composition rule is formed of concerns and pre-defined operators.

3. THE PLAORA APPROACH
Being in tune with SPLE, PLAORA also distinguishes between

Domain Engineering and Application Engineering. The product

line is created at the Domain Engineering level (according to the

process depicted in the top part of Fig.1), and then a product is

configured at the Application Engineering level (bottom of Fig.1).

Concern Templates & AORA specification

Conflicts identified & solved

Initial Feature Model

Validation

Application of

Heuristics H1-H6
Build Initial

Feature Model

Complete Feature Model

Identify and

specify concerns &

solve conflicts

Modularize &

Identify dependencies

Application of

Heuristics H7-H12

DOMAIN ENGINEERING

APPLICATION ENGINEERING

Configure

Feature Model &

AORA Templatesl

Solve conflicts that

appear at

configuration time

Product

1

2

3

4

Figure 1 PLAORA process.

The Domain Engineering part of the process initially consists of

the identification and specification of system concerns and the

conflict identification and resolution (step 1 in Fig. 1). The

specification of concerns can lead us to identify new concerns and

refine others previously identified. Next, the specification

templates are described and then the composition of concerns is

realized. Here conflict identification and resolution are carried out

using a multicriteria method as described in [4][5] where concerns

are ranked according to their importance to different stakeholders.

We will not focus on this, as this is not the contribution of this

paper.

Having all the concerns specified we can identify the features of

the SPL whose result is an initial feature model (step 2 in Fig. 1).

These are extracted from AORA templates with the help of a set

of heuristics. So features are derived from concern templates, with

their lists of responsibilities. The resulting feature model is then

refined with a complementary set of heuristics to modularize the

feature model and identify dependencies between features (step 3

in Fig. 1). That is, once the extraction of possible features is

completed, we identify the variability of the SPL and the different

kinds of dependencies between features taking into account

668

crosscutting concerns. The heuristics are described and

exemplified in Section 4.

Validation must be performed in parallel with the process just

described. In particular, stakeholders need to help validating (i)

the identified concerns and respective specifications, as well as

(2) guaranteeing that the feature model meets their needs.

At the end of domain engineering process, we have concern

templates and a feature model representing common and variable

requirements in the SPL. These templates and feature models are

analyzed and configured for a particular product of the SPL by

the Application Engineering process (step 4). Conflicts particular

to a specific configuration should be resolved here. Again we do

not discuss this here as it is out of scope of this paper.

4. APPLYING PLAORA AND

DESCRIBING THE DEVELOPMENT

HEURISTICS
PLAORA has been applied to two case studies, the Mobile

Phone2 and the Smart Home3 case studies. The Smart Home case

study was developed in the AMPLE project [1] and is not

described here due to space constraints.

The Mobile Phone case study is used to illustrate our approach.

The example’s aim is to develop software components to make

and answer calls, put phone calls on hold, insert contacts in a

contacts list, send and receive e-mails, SMS and MMS, take

pictures, set alarm and transfer data between two mobile phones.

Payments can be performed by ATMs or banks’ websites.

4.1 Domain Engineering
For the activities of Domain Engineering process presented in

Fig.1, we will focus on the major contribution of our approach:

building the initial and final feature model of an SPL. Due to lack

of space, let us assume that the modeling system’ concerns was

already performed and a list of concern templates provided. The

functional concerns for our problem are: Make call, Answer call,

Put phone call on hold, Enable voice mail, Receive MMS/SMS/E-

mail and Send MMS/SMS/E-mail. Also the non-functional

concerns are: Response Time, Usability, Correction,

Confidentiality, Availability, Integrity and Security. Two AORA

template examples, one functional and another non-functional, are

shown in Table 1 and Table 2, respectively.

Table 1. Template for “Make call”concern.

Name Make call

Sources
Knowledge of mobile phone software systems,

set of initial requirements, stakeholders

Stakeholders User, Mobile Phone Operator

Description
The user answers a call made to his mobile

phone

Decomposition <None>

Classification Functional

2 The complete specification can be found in

http://ctp.di.fct.unl.pt/~ja/MobilePhone_CaseStudy.pdf.

3 The complete specification can be found in

http://ctp.di.fct.unl.pt/~ja/SmartHome_CaseStudy.pdf.

List of responsibilities

1. The call is redirected by Mobile Phone Operator

2. Play signal (at least one of the alternatives, sound or vibration)

3. The screen displays the phone number

4. Push button (only one of the alternatives: accept or reject)

5. The call duration appears on the display

6. Choose loud voice mode, if desired

7. The call is disconnected, after finishing the conversation

List of contributions

<None>

List of priorities

1. User: Important

2. Mobile Phone Operator: Very Important

List of required concerns

1. Usability

Table 2. Template for “Response Time” concern.

Name Response Time

Sources

Knowledge of mobile phones software system,

set of initial requirements, stakeholders,

documentation, NFR Framework catalogue

Stakeholders
User, Mobile Phone Operator , Banking System,

Sender / Receiver

Description
The system must react in time, when users want

to use mobile phone functionalities

Decomposition <None>

Classification Non-Functional

List of responsibilities

1. The system reacts in time to establish the call

2. The system reacts in time to check if the time of holding the call

reached the limit

3. The system reacts in time to capture images

4. The system reacts in time to alert if SMS/MMS/e-mail were

successfully sent

5. The system reacts in time to alert that if SMS/MMS/e-mail were

received

6. The system reacts in time to search for devices within a range of the

phone

7. The system reacts to enable the voice mail

List of contributions

1. Availability contributes negatively (-) to Response Time

2. Correctness contributes negatively (-) to Response Time

List of priorities

1. User: Very Important

2. Mobile Phone Operator: Very Important

3. Banking System: Very Important

4. Sender/Receiver: Very Important

List of required concerns

<None>

Heuristics H1-H6 identify the features of the system from the

AORA templates. Initially, we assume that all features are

mandatory. Heuristics H7-H12 produce a feature model and

identify variability.

H1. Identify the root feature based on “sources” entry:
Analyze the “Sources” line to get the root feature of the feature

model. For example based on source “Knowledge of the mobile

phones system”, we get the feature “Mobile Phones”. Basically,

the root name will be the name of the system.

669

H2. Identify features based on the concerns’ name: Analyze

the “Name” line and obtain the system features through these

names, i.e., each concern originates a feature. For example,

“Make call”, “Answer call”, “Response Time”, “Security”

originate features with the same name. To improve readability of

the model we proposed a change in the notation on the feature

model: features resulting from non-functional concerns are

represented by a rectangle with rounded corners, while those from

functional concerns are represented by rectangles.

H3. Identify features that can be grouped based on concerns’

names: Analyze the “Name” line and make two types of feature

groups. (1) Concerns beginning with the same verb, but different

objects define a group where the parent feature is composed of the

common verb in features plus a generic noun (Verb + Noun). This

noun should be generic in order to specify the information

common to the sub-feature that you get. For example, considering

features “Send SMS”, “Send E-mail”, “Send MMS”, we obtain a

parent feature named “Send data”, as data is a more generic noun

that can be specialized as SMS, MMS or E-mail. As sub-features

we have the original “Send SMS”, “Send Email” and “Send

MMS” features. (2) The same object refers to different verbs. In

this case we define a generic verb and use the object that occurs

repeatedly originating the parent feature. For example, features

“Make call”, “Answer Call” and “Put phone call on hold” share

the word “call”, originating a group where we can define

“Processing call” as a parent feature.

H4. Identify features based on concerns’ “decomposition”:
Analyze the “Decomposition” line and, in the case of refinement,

the refined concerns are sub-features and the concern that was

refined is the parent feature. For example, features “Integrity” and

“Confidentiality” are subfeatures of “Security”. This refinement is

based on the catalogue for security offered in [6].

H5. Identify features based on the “list of responsibilities”:

Analyze “List of Responsibilities” and choose those starting with

a “Verb + Noun” and which play an important role in the system;

these may originate new features (or sub-features). For example,

“Make call” has sub-features “Dial number”, “Push the call

button”, “Choose a loud voice”, taken from responsibilities “Dial

number desired”, “Push the call button to start call” and “Choose

loud voice to the call if desired”. Features extracted using this

heuristic requires the user intervention to interact with the system.

Also, using “List of Responsibilities” check for additional

information to be defined as features to represent in the model,

like types of information or ways to achieve functionality. For

example, “Answer call” has the responsibility “Push button (only

one of the alternatives, accept call or reject call)” which gives us

the features “accept call”, “reject call”.

H6. Identify features based on the NFR catalog: Using existing

catalogues, such as [9], we can identify new features for the non-

functional requirements (NFRs). These features will be added to

the feature model.

H7. Identify variability from concern’s description: The

“Description” line identifies an optional feature if a modal verb

expresses non-obligatory, such as if “can” or “may” appear in the

description. This variability is related to the features extracted

from H2. For example, “Put phone call on hold” has the

description “The user can place a particular call waiting”, which

includes “can”. Hence, “Put phone call on hold” is optional.

H8. Identify variability for other features of the model:
Analyze in “List of Responsibilities” if responsibilities therein

have expressions such as “if desired”, “if wanted”, “if possible”,

for example; these are optional. The concern “Make call” has the

responsibility “Choose loud voice to the call mode, if desired”;

therefore, the feature “Choose loud voice” obtained by H5 is

classified as optional.

H9. Identify xor alternatives: Analyze “List of Responsibilities”

using expressions like “only one of the alternatives”; these are xor

alternatives. For example, the concern “Answer call” has a

responsibility “Push button (only one of the alternatives, accept

call or reject call)”. Therefore, the features “Accept call” and

“Reject call” are sub-features of the feature “Push button”

providing a xor alternative in the model.

H10. Identify or alternatives: Analyze in “List of

Responsibilities” expressions such as “at least one of the

alternatives”; these are identified as or alternatives. For example,

in “Answer call” template, the responsibility “Play signal (at least

one of the alternatives, sound or vibration) on your phone”,

allows the identification of the features “Sound” and “Vibration”.

These are alternative sub-features of the feature “Play signal”

providing or alternative in the feature model.

H11. Identify requires dependencies relationships in feature

model: “List of required concerns” in the template originates

requires dependencies relationships, represented by dashed

arrows. For example, in the “Answer call” template, the required

concern “Usability” originates a require dependency relationship

in the feature model. One feature that has more than one arrow,

pointing to itself, is identified as a crosscutting feature.

H12. Identify excludes dependencies relationships in feature

model: Those responsibilities in “List of Responsibilities” that

include expressions like “excluding the possibility of X” originate

excludes dependency relationship, where X identifies the other

feature present in the link. For example, the responsibility “The

service is active, excluding the possibility of putting phone call on

hold” in “Enable voice mail” template originates an excludes

dependency relationship in the model between the features

“Enable voice mail” and “Put phone call on hold”.

The 12 heuristics applied to our case study originated the feature

model in Fig.2, where variability is identified. For simplification

purposes we represented only requires dependencies relationships

for the features “Make Call” and “Answer call” as an example of

H11. To reduce the complexity of the feature model with respect

to the requires dependencies relationships, we added a small

rectangle labeled “requires” under the features (Fig.3) that require

others. The list of numbers after “requires” corresponds to the

numbers of the required features. This numbering is done from

left to right on the model, numbering only the features that were

extracted from the names of concerns (H2), as these are required

by other concerns. H11 can identify crosscutting features, those

that are required by at least another feature. Once we have

specified and modularized the SPL features following AO

principles, the crosscutting features emerge automatically: they

are those represented more than once over the rectangles with a

label “requires”. Fig.3 identifies “Usability”, “Response Time”

670

and “Availability” as crosscutting features (these have a black

triangle placed at the bottom right hand corner of features, as

shown in Fig.3). An example of a crosscutting functional feature

is “Mobile phone payment” specified in the URL provided 2. Note

that, the rectangle below the features in Figure 3 has the number

of the features that are required, e.g., “Send E-mail” (9) requires

Usability (11), and Response Time (12).

4.2 Application Engineering
AORA and the heuristics were used to capture the domain

engineering features. Now we can choose different

configurations, each one representing a different product of the

family. Both, the feature model and the AORA templates, are

configured for a specific product. Firstly, it is configured the

feature model and then the AORA templates.

Figure 2. Feature model: a version derived from the application of the 12 heuristics presented.

As an example we want a mobile phone application with the

following functionalities: make/answer calls and send /receive

SMS and MMS. Fig. 4 illustrates the feature model of the

configured application. Response Time and Usability are

crosscutting features, since they are required by several features,

recognized with a black triangle placed at the bottom right hand

corner of the features.

The changes in the templates are done at the level of

responsibilities and description of the concerns since these entries

in templates are those used to obtain the system’s variability. A

concrete application does not include “optional” features, or

“alternatives”, “or” and “xor”. Due to lack of space the

configuration of the AORA templates are not presented, but they

can be found in the URL provided2 .

Figure 3. Feature model - final version.

 Figure 4. Feature model to the application.

4.3 Tool support
The AORA tool specifies and composes concerns, keeping a

repository with all the identified elements and relationships. This

tool was extended to generate the feature model. This extension

implements the 12 heuristics offered by PLAORA. A snapshot of

the tool is presented in Fig. 5, showing a feature model. By

clicking on the yellow button (marked with circle “1” in the red

rectangle on the left hand side of figure), the feature model is

generated automatically (window on the right).

Tray diamond, marked with circle “2” in Fig. 5, represents the

root of the model, and the middle of the image shows the mobile

phone terms. The features of the system are thus connected by the

links “optional”, “mandatory”, “or”, “xor” and “excludes”. By

selecting the concern and clicking on the button marked with a

black triangle, the user can visualize the list of concerns that the

selected concern cuts across, as shown in small window in Fig.5

marked with circle “3”. The different colors for elements in this

diagram indicate the crosscutting features: red elements represent

671

crosscutting features and blue elements represent non-crosscutting

ones. A parser was implemented for the heuristics to collect

information from the repository, which is necessary to extract

features of the system. For example, at the responsibilities level, if

the first two words that compose the responsibility are a “verb +

noun”, we obtain the features according to H5. Also, to analyze if

the responsibility presents extra information, we need to verify if

that information (included between brackets) is useful. The

variability analysis is performed by analyzing if the responsibility

sentences contain reserved words, such as “if desired/if wanted/if

possible”, “only one of the alternatives”, “at least one of the

alternatives” and “excluding the possibility of”, which, in that

order, originate optional features, xor alternative, or alternative

and excludes dependencies relationships (H8-H10, H12) in the

feature model. Note that the expressions list is extensible.

Figure 5. Snapshot of the tool with the feature model.

NFRs are addressed by H6 (for example, “Response Time”). The

tool automatically adds the existing information in the

corresponding NFR catalogue. For instance, the feature

“Performance” is added and, consequently, its sub-features

“Time” and “Space”. Therefore, “Response Time” is a sub-feature

of “Time”. Also, if we have the concern “Security”, it will always

have as sub-features “Integrity”, “Confidentiality” and

“Availability”.

A second parser was implemented to identify optional features

(H7) taking into consideration if the description of the concerns

included words like “can” or “may”. Obviously, the parsers can

be extended to accept other expressions that will help to derive

the features, their kinds, and their relationships.

5. EVALUATION
PLAORA was evaluated in three ways: (1) based both on case

studies, in particular, Smart Home3 and Health Watcher4; (2)

based on a questionnaire5 answered by 10 MSc students; (3)

comparison to other approaches (Section 6.2).

The Smart Home case study helped us find several situations

needing improvement. For example, H8 was extended to consider

as variability the information provided in the list of

responsibilities, which is contained in brackets without reserved

4 The Health Watcher case study can be found in

http://ctp.di.fct.unl.pt/~ja/HW_CaseStudy.pdf.

5 The questionnaire can be found in

http://ctp.di.fct.unl.pt/~ja/Questionnaire.pdf.

expressions. These reserved expressions are “if desired” (in the

original H8), “only one of the alternatives” (H9), and “at least one

of the alternatives” (H10), corresponding features will be derived

in the model. The new heuristic is illustrated in the “Configure

security control system” concern3, where we have the

responsibility “Simulate presence (define rooms, insert date, set

initial time, set end time, set duration, set frequency)” where the

features “define room”, “insert date”, “set initial time”, “set end

time”, “set duration” and “set frequency” are defined as

mandatory and also the sub-features of “Simulate presence”.

Another issue is the list of numbers after “requires”, as shown in

Fig. 4. In the case of requirements change, all the numbering must

be redone. This problem can be solved by making the tool capable

of reflecting the impact of the change in the model.

The Health Watcher was also used to validate the approach,

where a PLAORA specification was given to a set of 10 Master’s

students with knowledge on SPL and AORE. The students were

asked to build individually a feature model based on given

specification and then to compare their feature model with the one

generated by the tool. At the end they were asked to answer a

questionnaire whose questions involved the identification of

features, the contribution of templates to identify features and to

create the feature model, comparison between the model

generated and the model drawn by hand, the advantage of the

implemented tool views, the advantage of representing aspects,

and the advantage of representing the requires dependency

relationships modularly.

The results obtained have the following positive points: (i)

existence of the functional and non-functional views on the

672

feature model; (ii) ability to expand and collapse features¸

reducing the complexity of the models; (iii) identify crosscutting

features and “requires” dependencies relationships

modularization. The negative points are: (i) representation of the

syntax of the model to be unabbreviated; and (ii) lack of a legend

to help the perception of the various features represented in the

model.

Some suggestions for improvement were presented: (i) transform

the abstract syntax of models into a standard one; (ii) add in the

models a different notation for those features that have the ability

to add/remove sub-features; (iii) add a descriptive label in the

buttons to add and remove sub-features of a given feature

previously selected; (iv) provide a legend to facilitate the

understanding of the models. These suggestions were later

implemented to improve the tool functionality.

6. RELATED WORK

6.1 Related AO SPL approaches
Silva et al. present an approach [18] to show that i* extended with

aspects can support variability for SPL. Heuristics are presented

to map the aspectual i* model to the feature model. However, the

approach needs to be improved to manage models’ scalability.

The approach considers that each feature, optional or alternative

is mapped into one aspect and this is not always the case. Our

proposal tries to covers these limitations and also offers tool

support.

Jayaraman et al. present an approach [13] aiming at maintaining

the separation of features during the modeling of systems based

on UML models. It also detects unwanted structural interactions

between the different types of features. Also, the basic features

are expressed in terms of class diagrams, sequence diagrams and

state diagrams in UML, while variable features are specified in

UMLT (UML Transformation), which is a UML representation of

transformations of graphs. Our proposal differs from theirs, since

we provide a set of heuristics to derive a feature model and they

do not specify a separate feature model.

Bonifácio and Borba present an approach [3] whose main

objective is to characterize the management of variability, as a

crosscutting concern. The specification of concerns variability is

done separately. It suggests a framework for modeling the process

of composition of variability in scenarios. This framework

provides a basis to describe variability as aspects mechanisms,

differently from existing approaches, since it considers the

contribution of different input languages. It presents the

specification of three forms of variability for use case scenarios,

such as, variability in function, variability in data and variability

in flow control. Our proposal differs from theirs as we offer a set

of heuristics to identify features, create feature models and help

identifying variability.

6.2 A comparative study
The aspectual SPL approaches described in Section 5.1 are now

compared with PLAORA. Table 3 summarizes the results of the

comparison.

Table 3. Comparison between AO approaches integrated in SPL.

 Approach

Criteria
PLAORA

Aspectual I* & SPL

[20]
MATA & SPL [13]

Use cases and Feature Models

[3]

Conflict

resolution

Offers rigorous decision support system

to identify (using contribution and

priorities) and solve conflicts with AHP

at a more abstract level.

Can be extended to

support the negative

contribution

relationship as in [6].

Uses pair-analysis for

identifying conflicts in more

detailed analysis models (e.g.

sequence diagrams).

No

Heuristics

For domain and application engineering,

as well as for identifying crosscutting

concerns.

Only used to reduce

the model complexity

& identification of

crosscutting.

No No

Tool

support

Models composition, variabilities with

feature models, product configuration,

configuration knowledge and conflict

detection. It maintains a repository of

elements & relationships, where all the

information is kept according to AORA

templates.

No

Allows automated

composition of UML models

of features and detection of

some kinds of feature

interactions.

Models composition of

scenario variabilities with

feature models, product

configuration, and

configuration knowledge.

Modelling reqs. Aspect and object oriented. Aspect and goal driven Aspect and object oriented. Aspect and UC oriented.

Modeling features Captures commonality & variability.
Captures commonality

& variability.

Captures commonality &

variability.

 Captures commonality &

variability.

Modeling

scenarios

Uses UML sequence diagrams and use

cases (from original AORA).
No

Uses UML sequence

diagrams.
Provides use cases.

Feature interaction

Identify requires and excludes

dependencies relationships in feature

model

No

Feature interactions can be

verified for consistency with

the relations captured in the

feature dependency diagram

No

Composition

Composition is built from simpler rules

using brackets, “(” and “)” for allocating

priorities to the operators: Enable “>>”

Disable “[>” Parallel “||” and Choice

“[]”.

Allows composition

trying to reduce the

complexity of the

models i*.

Supports composition for

UML class, sequence and

state diagrams using graph

transformations (all

composition mechanisms are

from original MATA).

Deals with scenario

variability as a composition

of different artifacts: SPL

UC &, feature models,

product configuration, &

configuration knowledge.

673

The set of comparison criteria is taken from [1]: Conflict

resolution (conflicts are inevitable and can arise between the

requirements, functional or non-functional); Heuristics (this is a

set of steps aimed at facilitating access to new theoretical

developments or discoveries, in our case to discover features);

Tool support (the approach presents a support tool, for

requirements management in support of its architecture,

traceability, or its evolution); Modeling requirements (activities

to capture the functional requirements, of a product line and their

dependencies on each other); Modeling features (consist of

activities to identify, study and describe the features relevant to a

given domain); Modeling scenarios (include not only the

functionality of systems and their interactions with users, but also

aspects); Composition (analyzes the composition in the

approach) and Feature interaction (occurs when the integration

of two features would modify the behavior of one or both).

In summary, our approach has the following advantages: it

provides a sound set of heuristics to derive a feature model that

takes into account the identification of crosscutting concerns at

domain and application engineering levels; a tool that offers a

systematic and automatic way to identify common and variable

features and a multi-criteria based method (AHP) to identify and

resolve conflicts at a more abstract level.

7. CONCLUSION AND FUTURE WORK
PLAORA is an aspect-oriented approach that supports elicitation

and analysis of requirements for SPL at domain and application

engineering levels. It offers a set of heuristics to automatically

derive feature model from aspect-oriented requirements

descriptions. This is done automatically by the extension

performed on the AORA tool. Aspect-orientation mechanisms

were very useful in the definition of PLAORA to identify

crosscutting features and consequently obtain a more modularized

feature model. It brings to the community several advantages, as

the comparison Table 3 shows.

As future work we need to work on the scalability of the model.

We are planning to implement two different views of the system

(functional and non-functional) to partially achieve this. Our final

goal is to use lexical analysis and text mining to ultimately

interpret the text offered by the AORA templates to extract initial

the initial feature model. The resulting approach needs to be then

applied to real case studies.

8. ACKNOWLEDGMENTS
This work was partially funded by the European AMPLE

project and FCT MCTES.

9. REFERENCES
[1] AMPLE, “Ample Project”, http://www.ample-project.net/.

Last access: August 2010.

[2] Baniassad, E., Clements, P., Araújo, J., Moreira, A., Rashid,

A., Tekinerdogan, B. Discovering Early Aspects. IEEE

Software, Vol 23(1), 2006.

[3] Bonifácio, R., Borba, P. Modeling Scenario Variability as

Crosscutting Mechanisms. AOSD’09, USA, 2009.

[4] Brito, I., Vieira, F., A. Moreira, A., Ribeiro, R. Handling

Conflicts in Aspectual Requirements Compositions,

Transactions on AOSD, Vol 4620, 2007, pp. 144-166.

[5] Brito, I. Aspect-Oriented Requirements Analysis. PhD

Thesis. Universidade Nova de Lisboa, Portugal, 2008.

[6] Chung, L., Nixon, B., Yu, E., Mylopoulos, J. Non-

Functional Requirements in Software Engineering. Kluwer,

2000.

[7] Classen, A., Heymans, P., Laney, R., Nuseibeh, B., Tun, T.

1st International Workshop on Variability Modelling of

Software-intensive Systems. Limerick. Ireland, 2001.

[8] Czarnecki, K., Helsen, S., Eisenecker, U. Staged

Configuration Through Specialization and Multi-Level

Configuration of Feature Models. SPLC’04 Conference.

Boston, USA, 2004.

[9] Finkelstein, A., Sommerville, I. The Viewpoints FAQ.

Software Engineering Journal: Special Issue on Viewpoints

for Software Engineering. IEE/BCS, 1996.

[10] Gomaa, H. Designing Software Product Lines with UML:

From Use Cases to Pattern based Software Architectures.

Addison-Wesley, 2004.

[11] IEEE 1471: Recommended Practice for Architectural

Description of Software-Intensive Systems. IEEE Computer

Society, 2000.

[12] Jacobson, I., Chirsterson, M., Jonsson, P., Overgaard, G.

Object-Oriented Software Engineering - a Use Case Driven

Approach. Addison-Wesley, 1992.

[13] Jayaraman, P., Whittle, J., Elkhodary, AM., Gomaa, H.

Model Composition in Product Lines and Feature Interaction

Detection Using Critical Pair Analysis. MoDELS’07

Conference, Springer, 2007.

[14] Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.

Feature-Oriented Domain Analysis (FODA) Feasibility

Study. Tech. Rep., CMU/SEI-90-TR-021, USA, 1990.

[15] Kotonya, G., Sommerville, I. Requirements Engineering:

Processes and Techniques. John Wiley, 1998.

[16] Pohl, K., Böckle, G., Van Der Linder F. Software Product

Line Engineering Foundations, Principles, and Techniques.

Springer, 2005.

[17] Rashid, A., Moreira, A., Araújo, J. Modularization and

Composition of Aspectual Requirements. AOSD'03

Conference. Boston, EUA, 2003.

[18] Silva, C., Alencar, F., Araújo, J., Moreira, A., Castro, J.:

Tailoring an Aspectual Goal-Oriented Approach to Model

Features. SEKE’08 Conference. California EUA, 2008.

[19] Saaty, T. The Analytic Hierarchy Process. McGraw-Hill,

1980.

[20] Yu, Y., Leite, J., Lapouchnian, A., Mylopoulos, J.

Configuring features with stakeholder goals. ACM

Symposium on Applied computing, 2008.

674

