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ABSTRACT

Web-based collaborations have become essential in today’s
business environments. Due to the availability of various
SOA frameworks, Web services emerged as the de facto tech-
nology to realize flexible compositions of services. While
most existing work focuses on the discovery and composi-
tion of software based services, we highlight concepts for
a people-centric Web. Knowledge-intensive environments
clearly demand for provisioning of human expertise along
with sharing of computing resources or business data through
software-based services. To address these challenges, we in-
troduce an adaptive approach allowing humans to provide
their expertise through services using SOA standards, such
as WSDL and SOAP. The seamless integration of humans
in the SOA loop triggers numerous social implications, such
as evolving expertise and drifting interests of human service
providers. Here we propose a framework that is based on
interaction monitoring techniques enabling adaptations in
SOA-based socio-technical systems.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed Applications;
H.3.5 [Online Information Services]: Web-based Ser-
vices; H.4 [Information Systems Applications]: Mis-
cellaneous

General Terms

Design, Human Factors, Management, Performance

Keywords

Human Expertise Provisioning, Service Adaptation

1. INTRODUCTION
The demand for models to support larger-scale flexible

collaborations has led to an increasing research interest in
adaptation techniques to enable and optimize interactions
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between collaboration partners. Such ecosystems compris-
ing people and services that interact in different organiza-
tional units are difficult to model in a top-down manner.
Challenges include, for example, changing interests and ex-
pertise of people, evolving interaction patterns due to dy-
namically changing roles of collaboration partners, or evolv-
ing community structures.

Web services enable loosely-coupled cross-organizational
collaborations. In particular, they provide the means to
specify well-defined interfaces and let customers and col-
laboration partners use an organization’s resources through
dedicated operations. However, offered resources are not re-
stricted to information and software-based services. Also
human expertise can be provided in a service-oriented man-
ner. For that purpose, the Human-Provided Services (HPS)
Framework [14] enables human participation in a SOA en-
vironment. A typical example is a document translation
service [15] that could be implemented in software too, but
mostly only with insufficient quality. HPS allows humans
to provide translation services in the same manner by let-
ting them receive and process requests through Web service
interfaces. With the human in the loop, traditional service-
oriented architectures (SOA) transform from pure technical
systems into socio-technical systems [5]. These systems are
characterized by both technical and human/social aspects
that are tightly bound and interconnected. The technical
aspects are very similar to traditional SOAs, including fa-
cilities to deploy, register and discover services, as well as
to support flexible interactions. Additionally, the social sys-
tem includes people and their habitual attitudes, values, be-
havioral styles and relationships. In particular, consider-
ing drifting interests of people, evolving skills, and varying
collaboration incentives requires enhanced technical infras-
tructures in terms of flexibility and adaptability. Due to
the support of loose coupling, sophisticated discovery mech-
anisms, and dynamic binding, Web services and SOA deem
to be the ideal technical framework to realize large-scale
socio-technical systems on the Web. We call the mix of soft-
ware services and humans interacting on the Web a Mixed
Service-oriented System.

The foundational pillars of such mixed systems utilized
in this paper are as follows: (i) Human-Provided Services.
We discuss the HPS concept letting people participate in
pure service-oriented environments. People reflect their abil-
ity and willingness to contribute by defining and offering
their own services using state-of-the-art SOA techniques.
(ii) Flexible Interaction Models. Interaction monitoring and
mining is applied to determine the behavior of services and
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Figure 1: Adaptive run-time provisioning.

user relations. Detecting behavior and relation changes is
the basis for effective service adaptations. (iii) Adaptive Ser-
vice Infrastructure. We discuss the need for run-time adap-
tation. In particular, we do not only adapt service behavior,
but also provided service features at run-time.

Approach Outline. Figure 1 depicts the overall ap-
proach to flexible run-time provisioning of human expertise.
In the monitoring phase, service interactions, i.e, SOAPmes-
sages, and major system events, such as service updates, are
captured. All interactions are annotated with tags and key-
words to categorize requests. Then, this data is analyzed
to learn about the service behavior in terms of reliability
and dependability that is described by various interaction
metrics [16]. Relations between clients and services are es-
tablished based on these calculated ranking metrics. The ac-
tual analysis is context-aware, e.g., considers message tags to
determine service behavior with respect to expertise areas.
In the planning and adaptation phase respectively, services
are rewarded and punished for their behavior. Capabilities
influence the future provisioning of particular service oper-
ations. In the execution phase future service discovery and
usage is influenced by adaptations to achieve optimal exper-
tise provisioning in SOA.

Contributions. This paper aims at addressing the fol-
lowing technical challenges found in mixed systems by apply-
ing Web services technologies and social network concepts:

• Service Avatar. This concept is used to represent hu-
man capabilities as services on the Web. A combina-
tion of WSDL and FOAF elements describe functional
and non-functional properties.

• Personal Provisioning. Social aspects require person-
alized service provisioning by establishing peer-to-peer
relations between clients and service providers on de-
mand.

• Feedback-based Adaptation. Observing and analyzing
annotated SOAP interactions enable context-aware cus-
tomization of personal services.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the concept of avatars and its application
to provide human expertise in SOA. Section 3 covers im-
plementation details of our adaptation infrastructure and
techniques. We run a small-scale simulation and discuss
evaluation results in Section 4. Section 5 deals with related
work and Section 6 concludes the paper.

2. HUMAN INVOLVEMENT IN SOA
We start with discussing the concept of avatars on the

Web and the realization using Web service standards.

2.1 Avatars on the Web
Avatars are a computer user’s representation of himself/her-

self, e.g., in form of a nickname or icon, in Internet com-
munities. More advanced models further include interests
and capabilities, such as in online gaming platforms. This
makes an avatar the ideal metaphor to represent humans
and their capabilities in service-oriented systems. Further-
more, an avatar does not only represent a human’s services
in an SOA environment, but can also actively act on behalf
of the human it represents. Based on contextual constraints,
such as the current load and assigned expertise areas, that
software component can automatically categorize or reject
requests. This process is configured through policies and
rules in advance to shape the behavior of services and unbur-
den the human from frequent but simple decisions. Figure
2 depicts the conceptual overview and explains our notion
of avatar.
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Figure 2: Adaptive human expertise provisioning.

HPS Layer. HPS [14] enhances the traditional SOA-based
systems by enabling people to provide services with the very
same technology as used by implementations of software-
based services (SBS). Various operations for different collab-
orative activities indicate a provider’s ability (and willing-
ness) to participate in ad-hoc as well as process-centric col-
laborations. The HPS Framework provides predefined data
types (XML schemas), operations, and compiled interfaces
to provide particular services. The design of services is sup-
ported via a Web-based ‘toolbox’ (graphical user interface)
enabling users to create services in a simplified manner. The
creation of services does not require any knowledge related
to SOA, Web services standards, or SOA runtime aspects.
Based on the designed HPS, a script is parameterized to cre-
ate and deploy corresponding avatars in the Genesis Hosting
Environment (detailed in the following section).

Composition Layer. People who provide their expertise
as services on the Web, select the required features, e.g.,
Web service interfaces to interact with clients, and compose
them, thus, predefine the capabilities of the instances man-
aged by their avatars. While these initial decisions represent
the rather static properties of an avatar, personal profiles



(modeled as FOAF1) are periodically updated by our sys-
tem to reflect social aspects, such as interests, interaction
behavior and provided service quality. Together these static
and dynamic properties characterize the avatar. The link
between situation dependent profiles and composition de-
cisions of the owner define the avatar’s current providable
instances. A high current load of the owner, for example,
must not only update the current profile but also influence
the avatars deployment strategy. Furthermore, to propagate
the current situation to its instances the avatar provides in-
stances with a connection to the current profile’s state.

Personal Provisioning Layer. Clients discover avatars by
accounting for (i) functional properties (FPs), i.e., the type
of supported interfaces, and (ii) non-functional properties
(NFPs), i.e., social aspects. Here, for each single client
an own service instance is deployed (peer-to-peer style).
Clearly, humans providing services cannot serve thousands
of concurrent requests as software services do. However,
publishing dedicated instances enables our system to per-
sonalize them gradually for each individual client that has a
long-term contract with the corresponding avatar.

2.2 On-demand Creation and Deployment
The concept of personalized provisioning is enabled by cre-

ating dedicated service instances for each single customer of
service providers. A standard service is instantiated (de-
rived from the avatar) and gradually customized according
to a client’s requirements and a provider’s behavior.

1 def profile = profilePlgIn.connect(); //current profile

2 def Language=datatype.create("tconf.xsd","langTypeA") //imports

3 def Status=datatype.create("tconf.xsd","statType")

4 def i=callinterceptor.create() //interaction logging

5 i.hooks=[in:"RECEIVE", out :"PRE_STREAM"] //hooks on streams

6 i.code={ m −> ...} //logged message

7

8 def arrSrv=webservice.build {//interface definition

9 // create web service

10 TranslationService(binding:"doc,lit", namespace="http://...") {

11 interceptors+=i //attach interceptor

12 docQueue = [:] //current document queue

13 repEP = "" //reporting endpoint

14 // create translateDoc operation, return doc refId

15 translateDoc(docref:String, fromLang:Language,

16 toLang:Language, response:int) {

17 def refId = genId(docQueue) //new id for doc

18 //active pre−processing with checks

19 if (profile.checkTotalLoad() < LOAD THR)

20 docQueue.put(refId,docref)

21 return refId

22 }

23 getJobStatus(refId:int, response:Status){

24 return report(refId)

25 }

26 cancelJob(refId:int){

27 docQueue.remove(refId)

28 }

29 setAsyncReportEP(wsdl:String) {

30 repEP = wsdl

31 }

32 }

33 }

34 def srv=arrSrv[0] // only one service declared, take it

35 def h=host.create("somehost:8181") // import back−end host

36 srv.deployAt(h) // deploy service at remote back−end host

Listing 1: Service deployment script.

1http://xmlns.com/foaf/spec/

Listing 1 displays a Groovy2 script for the Genesis envi-
ronment (G2) [9] that allows to create a Document Trans-
lation Service with the approach shown in Figure 2. The
first line connects the script content to the human’s cur-
rent profile via a G2-Plugin (profile). In the following two
lines the script imports type definitions from the HPS Layer
(Language and Status enumeration types). The service def-
inition follows. An array (arrSrv) collects the services. In
our case only the TranslationService is defined as follows.
The queue jobQueue collects the current jobs of a service
instance which resides in the Personal Provisioning Layer.
Operation translateDoc checks the assignment in an ex-
changeable behavior closure3, e.g., according to the current
overall load of the human determined by the profile. Then
the document is moved into the input queue if all checks
pass. The operation returns a unique refId which enables
clients to manage their requests (e.g., request job status).
The last three operations implement remote management.
The first, getJobStatus, provides auto-generated job status
reports. The second, cancelJob, allows the client to cancel
an ongoing operation. The last one enables the client to set
a callback endpoint for asynchronous human responses and
notifications. The last three statements deploy the service
in the G2 environment.

1 <?xml version="1.0" encoding="utf-8"?>
2 <definitions ...>
3 <types>
4 <schema elementFormDefault="qualified"

5 targetNamespace="http://socsoa.infosys.tuwien.ac.at/">
6 xmlns="http://www.w3.org/2001/XMLSchema">

7 <element name="translateDocRequ">
8 <complexType>
9 <sequence>

10 <element name="document" type="xsd:anyURI" />
11 <element name="fromLang" type="Language" />
12 <element name="toLang" type="Language" />
13 </sequence>
14 </complexType>
15 </element>
16 <simpleType name="Language">

17 <restriction base="xsd:string">
18 <enumeration value="German" />
19 <enumeration value="English" />
20 </restriction>
21 </simpleType>
22 ...
23 </schema>
24 </types>
25 <message name="translateDocRequest">
26 <part name="parameters" element="xsd1:translateDocRequ"/>
27 <message>
28 ...
29 <portType name="TSPortType">
30 <operation name="translateDoc">

31 <input message="tns:translateDocRequest" Action=.../>
32 <output message="tns:translateDocResponse" Action=.../>
33 </operation>
34 <operation name="getJobStatus"> ... </operation>
35 <operation name="cancelJob"> ... </operation>
36 ...
37 </portType>
38 <binding type="tns:TSPortType" name="..."> ... </binding>
39 <service name="TranslationService"> ... </service>
40 </definitions>

Listing 2: Document translation WSDL excerpt.

Listing 2 shows an excerpt of a document translation ser-
vice WSDL, created with the script in Listing 1, that is
provided by a human. Besides the translateDoc operation

2http://groovy.codehaus.org/
3A groovy closure is a reusable ‘code block’.



for submitting documents (and the omitted but mandatory
setAsynchReportEP to define the reporting endpoint for no-
tifying about finished jobs), there are further management
operations, including getJobStatus and cancelJob. Com-
plex data types, as shown for Language, are used to increase
the semantics of the service description, e.g., by providing
enumerations of available options.

Traditional service development procedures are clearly in-
sufficient in highly dynamic environments. As human ca-
pabilities evolve over time and interests or incentives for
offering expertise change, provided operations of an HPS
(and their signature) need to be adapted accordingly. For
instance, a human providing a document translation service
may learn a new language or discontinues the support of
rarely requested options. Furthermore, some kind of support
might be of low quality and/or not frequently used within
a community. Another reason for changing a service’s op-
erations is the permanent delegation of responsibilities and
balancing of features among a set of services.

2.3 Service Description and Discovery
An adaptive environment requires flexible service descrip-

tion and discovery mechanisms. Thus, before each request
the client gathers dynamically compiled metadata on the
current functional (FP) and non-functional properties (NFP)
to update its view. This is realized by wrapping the HPS’s
WSDL file and an extended FOAF description into a WS-
Metadata-Exchange4 (MEX) document.

1 <mex:Metadata>
2 <mex:MetadataSection Dialect="http://schemas.xmlsoap.org/wsdl/">

3 <wsdl:definitions>
4 <!−− Omitted −−>

5 </wsdl:definitions>
6 </mex:MetadataSection>
7 <mex:MetadataSection Dialect="http://xmlns.com/foaf/0.1/">

8 <rdf:RDF xmlns:foaf = "http://..."
9 xmlns:capability = "http://.../capability.owl#">

10 <foaf:Person rdf:about="http://www.infosys.../staff/">
11 <foaf:name>Harald Psaier</foaf:name>
12 <foaf:interest rdf:resource="http://.../hpsaier/interests.rdf"/>
13 <!−− Omitted −−>

14 <capability:op>
15 <capability:port id="TSportType">
16 <capability:op id="translateDoc">
17 <capability:opwsdlxpath>
18 wsdl:operation/[@name="TSportType"]
19 </capability:opwsdlxpath>
20 <capability:opmetricgrounding
21 rdf:resource="http://.../grounding-translateDoc.xml"/>
22 <capability:opmetric>
23 <capability:opmetricid>cost</capability:opmetricid>
24 <capability:opmetricvalue>100.0</capability:opmetricvalue>
25 </capability:opmetric>
26 <capability:opmetric>
27 <capability:opmetricid>reliability</capability:opmetricid>
28 <capability:opmetricvalue>0.8</capability:opmetricvalue>
29 </capability:opmetric>
30 ...
31 </capability:op>
32 </capability:port>
33 </foaf:Person>
34 </rdf:RDF>
35 </mex:MetadataSection>
36 </mex:Metadata>

Listing 3: Dynamically created avatar description.

Basically there are two different reasons for initiating a
discovery. First, for discovering an avatar. In that case

4http://www.w3.org/Submission/WS-MetadataExchange/

FPs are of primary interest, combined with capability met-
rics that reflect the overall satisfaction of an avatar’s clients.
Second, before a request, the potentially adapted profile (in-
cluding personalized metrics that reflect the avatar’s behav-
ior in the past) is retrieved. In both cases, our framework
uses SPARQL5 to define search queries on FOAF structures.

Listing 3 shows the sample response message to a MEX
GET request. The main response body comprises the cur-
rently offered operations in a WSDL (omitted, see Listing 2)
and the related NFPs in the second MetadataSection in
FOAF format. The elements with the capability prefix
provide the current NFP values for a related operation de-
fined in the WSDL section. In our current implementation,
such NFPs are costs and primarily quality metrics, such as
an avatar’s reliability and responsiveness. The XPath state-
ment identifies an operation uniquely. The following met-
ric grounding resource opmetricgrounding links a document
with metric definitions (meaning, measurement, unit, range
of values, etc.) to the listed metric ids. The description for
those mined metrics is similar to [11] for modeled QoS.

3. SYSTEM AND SERVICE ADAPTATION
We discuss our approach to adaptive service provision-

ing by highlighting the fundamental building blocks, and in
particular the adaptation of service instances itself.

3.1 Architectural Overview
Figure 3 shows an architectural overview of the whole

framework that enables provisioning of human expertise.
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The major components are organized in three layers:

• Monitoring Layer. SOAP interactions and environ-
ment events are logged and processed. Identified com-
posite events are triggered and forwarded to the adap-
tation module.

• Infrastructure Layer. The adaptation module checks
pre-defined rules to take appropriate steps, i.e., adapt-
ing the HPS templates in the HPS registry if a service
does not provide sufficient QoS or adapting the de-
ployed services in the G2 hosting environment [9], e.g.,
removing unused or expired operations from a service
instance and its WSDL interface (as shown later).

• User Portal. Users can discover potential services us-
ing the discovery module; and interact with particular
instances through the interaction module. These inter-
actions are logged to trigger future adaptations.

5http://www.w3.org/TR/rdf-sparql-query/



Parts of this system are described by references, for in-
stance the G2 hosting environment [9], and event triggering
based on SOAP monitoring [13]. Therefore, in this paper,
we revisit the interaction monitoring concept in SOA envi-
ronments from a technical point of view; deal with service
descriptions in terms of functional and non-functional prop-
erties to support the discovery process; and demonstrate
how to enable run-time adaptations in the Genesis hosting
environment (see also [12]).

3.2 Interaction Monitoring and HPS Profiling
Interaction Model. Avatars are not statically bound

to clients but are discovered at run-time. Thus, interac-
tions are ad-hoc and dynamically performed with often not
previously known partners. In SOA, interactions are typi-
cally modeled as SOAP messages. Besides standard SOAP
structures we use various header extensions, such as WS-
Addressing6, temporal properties (timestamps, deadlines),
and contextual annotations. The latter are realized through
tags/keywords that are assigned to messages to annotate in-
teractions. An excerpt of a typical SOAP request is depicted
in Listing 4.

1 <soap:Envelope
2 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

5 xmlns:types="http://socsoa.infosys.tuwien.ac.at/Type"
6 xmlns:ts="http://socsoa.infosys.tuwien.ac.at/TS">
7 <soap:Header>
8 <types:timesent value="2010-09-01T15:13:21"/>
9 <types:deadline value="2010-09-06T12:00:00"/>

10 <types:context tags="Web,Services,SOA,research,paper"/>
11 <wsa:MessageID>uuid:722B1240−...</wsa:MessageID>

12 <wsa:ReplyTo>http://socsoa..../Actor#Florian</wsa:ReplyTo>
13 <wsa:From>http://socsoa..../Actor#Florian</wsa:From>

14 <wsa:To>http://socsoa..../Actor#Daniel</wsa:To>
15 <wsa:Action>http://socsoa....ac.at/Type/RFS</wsa:Action>
16 </soap:Header>
17 <soap:Body>
18 <!−− applied document translation request −−>

19 <!−− schema details omitted −−>

20 </soap:Body>
21 </soap:Envelope>

Listing 4: Simplified SOAP interaction example.

Our system utilizes temporal properties of SOAP calls to
infer behavior metrics, such as the average time required
to process a request, availability or responsiveness metrics
(see [13, 16] for details). As demonstrated in our previous
papers, metrics are calculated using the most recent history,
and updated with a sliding window approach. Thus, old
data ages out automatically. For the sake of simplicity, we
only consider simple request-response patterns. A request
can be accepted by a service and further processed by the
corresponding avatar; or rejected immediately (e.g., due to
the lack of free capacities). More complex, long-running
interactions consisting of numerous intermediate responses
are not in the scope of this paper.

Dynamic Behavior Profiles. Since interests and skills
of people regarding their capabilities to process requests
from different domains usually widely vary, behavior met-
rics are context sensitive, i.e., bound to particular expertise
areas. Collections of these behavior metrics are used to cal-
culate NFPs and finally, to calculate service capabilities. For
instance, someone may be highly rewarded for providing a

6http://www.w3.org/Submission/ws-addressing/

document translation service while his/her document review
service for scientific papers is not highly ranked. Moreover,
the document translation service might be successfully used
for research papers in computer science, while it is not fre-
quently used to translate business documents. Human skills
and expertise evolve over time. Furthermore, interests alter
and drift. Thus, our monitoring and mining approach is the
key to timely compensation of behavior changes.

3.3 Adaptation Strategies
Various reasons require timely adaptations of services that

may affect the whole mixed service-oriented system. In par-
ticular, we study:

• Client-driven interventions are the means to protect
customers from unreliable services. For example, ser-
vices that miss deadlines or do not respond at all for a
longer time are replaced by other more reliable services
in future discovery operations.

• Provider-driven interventions are desired and initiated
by the service owners to shield themselves from mali-
cious clients. For instance, requests of clients perform-
ing a denial of service attack by sending multiple re-
quests in relatively short intervals are blocked (instead
of processed) by the service.

In general, adaptations can be less or more intrusive. We
basically focus on two distinct mechanisms: (i) interface
adaptations, and (ii) behavior adaptations. Interface adap-
tation means that single operations of a service are tem-
porarily or permanently modified or removed. These changes
can be triggered by the system due to request overloads or
falling capabilities of services (that receive low ratings from
clients). Behavior adaptations are more intrusive and alter
the behavior of avatars respectively of their deployed service
instances (though we cannot alter the behavior of humans
it represents). The Genesis framework [9] provides the ideal
technical grounding to perform seamless run-time modifica-
tions, i.e., without being forced to take a service offline and
redeploy it later again.

Client-driven interface adaptation example. Listing
5 demonstrates a typical adaptation desired by clients. In
that case we assume that an avatar has missed deadlines
several times. The system tries to protect the affected clients
by automatically undeploying the translateDoc operation
of the corresponding service instances (considered as ‘lazy
service’). Thus, clients can still retrieve the job status of
ongoing translation requests, but are not able to send new
ones. So, they are urged to discover alternative avatars or
at least to negotiate a new contract with the same avatar
(not shown here) who would deploy a new dedicated service
instance.

1 def lazySrvArr=analysis.getLazyServices()

2 lazySrvArr.each { lazySrv −>

3 webservice(name:lazySrv) { s−> name in s.name} { s−>

4 def o = s.getOperation("translateDoc") //get operation

5 s.deleteOperation(o) //delete operation

6 s.redeploy() //redeploy service and wsdl

7 }

8 }

Listing 5: Adapt interface and undeploy operation.



Provider-driven behavior adaptation example. List-
ing 6 demonstrates a typical adaptation desired by providers.
In that case we assume an avatar has highly varying working
speeds. Thus, in case of request bursts (exceeding predefined
thresholds THR), the system adapts the acceptance behavior
regarding incoming requests before missing any deadlines.
For instance, subsequent requests are rejected (or delegated
to similar services [16]) instead of being queued for a longer
time. The acceptance behavior is modified considering lower
and upper queue size limits.

1 def busySrvArr=analysis.getBusyServices()

2 busySrvArr.each { busySrv −>

3 webservice(name:busySrv) { s−>

4 if ("translateDoc" in s.operations.name && name in s.name)

5 def op=s.operations.grep{o −> o.name == "translateDoc"}[0]

6 op.behavior = {

7 if ( (profile.checkTotalLoad() < LOAD THR) &&

8 (profile.checkRquFrq() < FRQ THR) &&

9 (jobQueue.size() < QUEUE THR) )

10 docQueue.put(refId,docref)

11 ...

12 }

13 s.redeploy()

14 }{}

Listing 6: Adapt job acceptance behavior.

4. EVALUATION AND DISCUSSION
We perform a system evaluation in terms of performance

and scalability, and functional properties, i.e., the power of
the presented adaptation approach.

4.1 Performance and Scalability
We evaluated the performance of our approach regarding

the whole adaptation cycle. This loop includes logging of
interactions, analyzing and inferring NFPs, evaluating pre-
configured triggers (e.g., a service’s reliability falls below a
lower bound) and performing the actual adaptation. Costs
for monitoring, analysis and triggering have been measured
and discussed in detail in [16]. Thus, we focus on the actual
adaptation in our flexible hosting environment.
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Figure 4: Adaptation performance in G2.

We investigate both kinds of adaptation mechanisms, (i)
interface adaptation, and (ii) behavior adaptation. Our
testbed consists of variable amounts of deployed services
(from 100 to 600), and we assume that an adaptation for
20% of the total number of instances is triggered. Figure
4(a) depicts the average time in milliseconds that is required
to perform both, undeploying an operation of exactly one
service and redeploying the modified WSDL interface. The

scaleable adaptation approach of G2 aggregates change re-
quests and performs modifications in bulks. Thus, for only
100 services in total (i.e., 20 modified instances) the average
time is higher then for 200 services, but then rises nearly lin-
early. Figure 4(b) shows the required time for service behav-
ior adaptations in the same environment. Here, the actual
implementation of a single operation is exchanged. Note
that again due to bulk modifications the average time for
adapting one service instance decreases for higher amounts
of services (approximately until 500 services). Further note
that closure exchanges are approximately 10 times faster
than interface adaptations which require a redeployment of
the interface (but not of the decoupled underlying service
instance).

4.2 Scenario Simulation
We run a small-scale simulation using the Repast Sim-

phony7 simulation toolkit to (i) test the implementation of
our framework, and (ii) show the effects of different adap-
tation strategies. For that purpose we simulate human be-
havior in terms of reliability, expertise evolvement, unsteady
working styles and interest drifts; and show the application
of our adaptation approach.

Simulation Setup. The round-based simulation envi-
ronment consists of 5 avatars (a1 to a5) and 25 clients that
have different interests and behavior. Clients already have
relations to avatars, i.e., there are dedicated service instances
deployed for each client. Clients send one request every 10
rounds. An avatar needs between 1 and 2 rounds (random)
to process that request. Thus, an avatar can serve an aver-
age of 7 concurrent clients. Client and service/avatar inter-
actions are produced by simulated agents while for hosting
the services, capturing and analyzing interactions, and per-
forming adaptations our actual framework is utilized.

Experiment Setup. We distinguish between two dis-
tinct expertise areas, where each area is described by 10
different tags. Avatars have interest profiles consisting of 5
tags that reflect the types of requests that they are willing
to process. Clients send requests that are annotated with
up to 3 different tags. Initially each avatar has a clear pro-
file, either in area A (white nodes), or area B (black nodes)
– see Figure 5(a). Clients always send requests that match
exactly one expertise area (white or black) and avatars ac-
cept these requests if they match more than 50% with their
profile. In the initial state we have optimal conditions. No
avatar is overloaded and they match exactly their clients
requirements in terms of expertise.

Experiment Run. Major problems of human roles in
technical systems are caused by people’s drifting skills, evolv-
ing expertise and varying incentives and perception of risks.
In short, people do not follow strict specifications such as
software components do. In contrast, humans that provide
services may change their focus of work. Our service provi-
sioning system is able to tackle this problem by performing
appropriate run-time adaptations.

We assume that avatars shift their interests and there-
fore, their expertise areas. However, the deployed services
for long-term clients normally remain the same (e.g., con-
sider a provider having multiple clients, but who specializes
on translating documents in new domains). While a1’s inter-
est profile remains unchanged, the other simulated avatars

7http://repast.sourceforge.net
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Figure 5: Evolving service community structures.

(agents) gradually change their profiles to reflect such nat-
ural interest shifts. Figure 5 visualizes the setup. The cen-
tered circles represent the 5 avatars and the diamond shaped
symbols reflect a certain client’s static requirements, man-
ifested as a service instance that enables interactions be-
tween that client and the serving avatar. Comparing Figure
5(a) and 5(b) reveals that a2 changes from the black to the
white area, a3 does exactly the opposite, and a4 and a5 ex-
tend their expertise areas to include both black and white
(represented by gray nodes) expertise. As a consequence
avatars refuse requests that no longer match their expertise
areas. Furthermore, they register their new capabilities in
the centralized service registry. Profile changes are linearly
performed in the first 100 simulation rounds. Our system
has additional 150 rounds to apply adaptations and to re-
organize the network.

In particular, after interest shifts some avatars will not
match their clients’ requirements, and thus, begin to reject
their requests. Our system will undeploy operations of cor-
responding services that are used to submit new requests
and subsequently the whole service instance that connects a
client and an avatar exclusively. This forces clients to query
for new avatars that deploy new dedicated service instances
to interact with their clients. Queries for new avatars ac-
count for matching profiles and previously reliable behavior
(i.e., request success rate). Furthermore, based on changed
interest profiles, the acceptance behavior of services is mod-
ified so that the serving avatar gets requests that match
his/her new work area(s). Let us define the notion of suc-
cess rate sr as the amount of successfully served requests
in percent of one client-avatar relation, and global success
rate gsr as the average of all single success rates. We use
these metrics to measure the efficiency of applied adapta-
tions. Note, success rates decrease if avatars attract too
many clients and as a consequence become overloaded.

We demonstrate the impact of two fundamentally differ-
ent adaptation strategies, (i) a conservative and even more
tolerant strategy, and (ii) an aggressive strategy:

Conservative Strategy: The system collects multiple con-
secutive failures and violations of the clients interaction poli-
cies. In our simulation, clients are forced to stop interacting
with an avatar if more than 5 requests are unreplied in less
than 25 simulation rounds (interface adaptation due to drop-
ping success rate). The client’s memory has only a depth
of 25 rounds. Thus, with that strategy, clients are consid-

ered more tolerant, they forgive short-time unreliability, e.g.,
caused by temporal work overloads of avatars and stay as
long as possible with the same service provider.

Aggressive Adaptation Strategy: The system urges the
clients to change their service providers (i.e., avatars) af-
ter the first triggered misbehavior of avatars. This strategy
is more dynamic than the conservative one.

Experiment Results. Figure 5(b) visualizes the result-
ing network for the conservative strategy, and Figure 5(c)
for the aggressive one. Solid lines represent active relations
to avatars, while dashed lines visualize earlier relations. For
instance, in both cases client 15 changed from using services
from avatar a3 to avatar a2 according to their interest shifts.
Obviously – and as expected – the aggressive approach trig-
gers significantly larger numbers of adaptations compared
to the conservative one.

Regarding the conservative strategy, clients change avatars
rarely and only if the success rate of a serving avatar drops
significantly and does not recover within 25 rounds. Thus,
load on providers is unequally distributed (see Figure 5(b)).
As shown in Figure 6(a), interest drifts cause longer adapta-
tion cycles until the whole system returns to a steady state.
The gsr sharply drops and begins to recover at round 100
(when all profile changes are finished). Note, the depth of
the decrease highly depends on the tolerance of the system
and clients towards unreliable avatars; i.e., if less failures and
misbehavior are tolerated adaptations are triggered earlier
which guarantees a higher global success rate.
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Figure 6: Global success rate (and approximation).

The aggressive approach requires much more system in-
terventions, e.g., service adaptations and (re-)deployments.
The costs (compare performance evaluation before) have to
be considered with respect to the overall size of the envi-
ronment. However, the sr can be kept much higher during



the adaptation phase. Furthermore, the adaptation phase
is shorter compared to a more relaxed adaptation approach,
and a nearly equal distribution of load is reached (see Fig-
ure 5(c) where each avatar serves approximately the same
amount of clients).

5. RELATED WORK
Major software vendors have been working on standards

addressing the lack of human interaction support in service-
oriented systems. WS-HumanTask [2] and Bpel4People [1]
were released to address the emergent need for human inter-
actions in business processes. While Bpel4People based ap-
plications focus on top-down modeling of business processes,
mixed service-oriented systems target flexible interactions
and compositions of Human-Provided and Software-Based
Services [14]. This approach is aligned with the vision of the
Web 2.0, where people can actively contribute services. In
such networks, humans may participate and provide services
in a uniform way by using the HPS framework [14]. The ba-
sic vision of a hybrid human-computer document translation
system has been discussed by [15], however, not focusing on
the realization as a service-based system.

Enhanced flexibility of complex systems is introduced by
establishing a cycle that feeds back environmental condi-
tions to allow the system to adapt its behavior. The MAPE
cycle [7, 8] is considered as one of the core mechanisms to
achieve adaptability through self-* properties. Based on the
observed context of the environment, different adaptation
strategies can be applied [6] to guide interactions between
actors, the parameters of those strategies, and actions to pre-
vent inefficient use of resources and disruptions. While au-
tonomic computing allows for autonomous elements and ap-
plies these principles to distributed systems, current research
efforts leave the human element outside the loop. The avail-
ability of rich and plentiful data on human interactions in so-
cial networks has closed an important loop [10], that allows
to model social phenomena and to use these models in the
design of new computing applications such as crowdsourcing
techniques [3]. In the context of multi agent systems (MAS),
self-configuring social techniques were introduced in [4]. A
major challenge in adaptation and self-configuration is to
dynamically find the most relevant adaptation parameter.
Research relevant to this issue can be found in [17].

6. CONCLUSION AND FUTURE WORK
In this paper we motivated the trend towards socio-tech-

nical systems in SOA. In such environments social implica-
tions must be handled properly. With the human user in
the loop numerous concepts, including personalization, ex-
pertise involvement, drifting interests, and social dynamics
become of paramount importance. Therefore, we discussed
related Web standards and showed ways to extend them to
fit the requirements of a people-centric Web. In particular,
we outlined concepts that let people offer their expertise in
a service-oriented manner and covered the deployment, dis-
covery and selection of Human-Provided Services. In the fu-
ture, we aim at providing more fine-grained monitoring and
adaptation strategies. An example is the translation service
presented in this paper, where some language options are
typically used more often, or even more successfully than
others. In that case, data types could be modified to reduce
the number of available language options in the WSDL inter-

face description and to restrict input parameters. Harness-
ing delegation patterns that involve various participants, a
complex social network perspective is established in which
connections are not only maintained between one client and
an avatar, but also among avatars.
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