
HAL Id: hal-00531081
https://hal.science/hal-00531081

Preprint submitted on 2 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Dynamic Constraint-Based BMC Strategy For
Generating Counterexamples

Hélène Collavizza, Nguyen Le Vinh, Michel Rueher, Samuel Devulder, Thierry
Gueguen

To cite this version:
Hélène Collavizza, Nguyen Le Vinh, Michel Rueher, Samuel Devulder, Thierry Gueguen. A Dynamic
Constraint-Based BMC Strategy For Generating Counterexamples. 2010. �hal-00531081�

https://hal.science/hal-00531081
https://hal.archives-ouvertes.fr

A Dynamic Constraint-Based BMC Strategy For
Generating Counterexamples∗

Hélène Collavizza,
helen@polytech.unice.fr

University of Nice - Sophia

Antipolis, I3S-CNRS, BP 145 06903

Sophia Antipolis Cedex, France

Nguyen Le Vinh,
lvnguyen@polytech.unice.fr

University of Nice - Sophia

Antipolis, I3S-CNRS, BP 145 06903

Sophia Antipolis Cedex, France

Michel Rueher
michel.rueher@gmail.com

University of Nice - Sophia

Antipolis, I3S-CNRS, BP 145 06903

Sophia Antipolis Cedex, France

Samuel Devulder
samuel.devulder@geensoft.com

Geensys, 120 Rue René Descartes,

29280 Plouzané, France

Thierry Gueguen
thierry.gueguen@geensoft.com

Geensoft, 120 Rue René Descartes,

29280 Plouzané, France

ABSTRACT

Checking safety properties is mandatory in the validation
process of critical software. When formal verification tools
fail to prove some properties, the automatic generation of
counterexamples for a given loop depth is achievable, and
is therefore an important issue in practice. We propose in
this paper a dynamic constraint based exploration strategy
for software bounded model checking. Constraint solving
is integrated with state exploration to prune state space.
Experiments on a real industrial Flasher Manager controller
show that our system outperforms state of the art bounded
model checking tools.

Keywords

bounded model checking, dynamic exploration strategy, con-
straint programming, counterexamples, program testing

1. INTRODUCTION
In modern critical systems, software is often the weakest

link. Thus, more and more attention is devoted to the soft-
ware verification process [5]. Software verification includes
formal proofs (automatic or semi-automatic), functional and
structural testing, manual code review and analysis. In prac-
tice, formal proof methods that ensure the absence of all
bugs in a design are usually too expensive, or require man-
ual efforts. Thus, automatic generation of counterexamples

∗This work was partially supported by the ANR-07-SESUR-
003 project CAVERN and the ANR-07 TLOG 022 project
TESTEC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

violating a property on a limited model of the program is
an important issue. Typically, it is an open challenge in real
time applications where bugs must be found for realistic time
periods.

Bounded Model Checking (BMC) techniques have been
widely used in semiconductor industry for finding deep bugs
in hardware designs [4], and are also applicable for software
[14]. In BMC, falsification of a given property is checked
for a given bound. BMC mainly involves three steps (as de-
scribed in [15]): (1) the program is unwound k times, (2)
the program and the property are translated into a propo-
sitional formula φ such that φ is satisfiable iff there exists a
counterexample of depth less than k, and (3), a solver (SAT-
solver or more recently SMT-solver) is used for checking the
satisfiability of φ.

In this paper, we propose a dynamic constraint based
exploration strategy for BMC of C programs. Instead of
translating the program and the property into a big proposi-
tional formula and using a constraint solver at the last stage
of BMC, constraint solving is integrated with state explo-
ration to prune the state space as early as possible. More
precisely, our strategy is based on the following observation:
when the program is in an SSA-like form1, a faulty path
can be built in a dynamic way. The Control Flow Graph
(CFG) does not have to be explored in a top down (or bot-
tom up) way, and compatible blocks can just be collected
in a non-deterministic way. The Dynamic Post-condition-
Variable driven Strategy (DPVS), takes advantage of this
observation. DPVS starts from the post-condition and dy-
namically collects program blocks which involve variables of
the post-condition. Iteratively, it collects blocks which in-
volve the variables used in the blocks where post-condition-
variables are defined, and so on. Collecting as much informa-
tion as possible on a given variable enforces the constraints
on its domain and reduces the search space. Thus, incon-
sistencies are detected as early as possible, and unfeasible

1SSA (Static Single Assignment) form is an intermediate
representation used in compiler design: it is a semantics-
preserving transformation of a program in which each vari-
able is assigned exactly once [12].

program paths can be cut.
DPVS has been evaluated on a real industrial applica-

tion, called Flasher Manager, a controller that drives several
functions related to the flashing lights of a car. On this real
application, DPVS outperforms CBMC, a state of the art
bounded model checker.

Outline of the paper

Section 2 shows how our approach works on a small exam-
ple and introduces the new exploration strategy. Section 3
describes the application we used to validate our approach.
Section 4 reports experimental results and presents further
research directions.

2. DPVS, THE NEW CONSTRAINT BASED

SEARCH STRATEGY
In this section, we first describe our approach in very gen-

eral terms and describe the search process on a small exam-
ple. Then, we detail the search algorithm.

void foo(int a, int b)
1. int c, d, e, f ;
2. if(a >= 0) {
4. if(a < 10) {
5. f = b− 1;
6. }
7. else {
8. f = b− a;
9. }
10. c = a;
11. if(b >= 0) {
12. d = a; e = b;
13. }
14. else {
15. d = a; e = −b;
16. }
17. }
18. else {
19. c = b; d = 1; e = −a;
20. if(a > b) {
21. f = b + e + a;
22. }
23. else {
24. f = e ∗ a− b;
25. }
26. }
27. c = c + d + e;
28. assert(c >= d + e); // property p1

29. assert(f >= −b ∗ e); // property p2

Figure 1: Program foo

2.1 Informal Presentation
Consider a program P with a precondition pred, a post-

condition post which is a conjunction of some properties,
and a particular property prop from post. The following
pre-processing steps are performed:

1. P is unwound k times (the unwound program is called
Puw),

2. Puw is then translated into DSAPuw, its DSA (Dy-
namic Single Assignment) form [3], where each vari-
able is assigned exactly once on each program path,

3. then DSAPuw is simplified according to the specific
property prop by applying slicing techniques,

4. the CFG (called G) of the simplified DSAPuw is built,

5. the domains of all variables of G are filtered by prop-
agating constant values along G.

The constraint based dynamic exploration of G works as
follows. DPVS uses a constraint store S and a queue of vari-
ables Q. Q is initialized with the variables in prop, whereas
S is initialized with the negation of prop. As long as Q is not
empty, DPVS removes the first variable v and searches for
a program block where variable v is defined. All new vari-
ables (except input variables) of this definition are pushed
on Q. The definition of variable v as well as all conditions
required to reach the definition of v are added to the con-
straint store S. If S is inconsistent, DPVS backtracks and
searches for another definition; otherwise the dual condition
to the one added to S is cut off to prevent DPVS from los-
ing time in exploring trivially inconsistent paths. When Q is
empty, the constraint solver searches for an instantiation of
the input variables that violates the property, that’s to say
a counterexample. If no solution exists, DPVS backtracks.

Now, let us illustrate this process on a very small example,
the program foo displayed in Figure 1. Program foo has
two post-conditions: p1 : c >= d + e and p2 : f > −b ∗ e.
Assume we want to prove property p1. Figures 2 and 3
depict the paths explored by DPVS on the simplified CFG.
The search process first selects node (4) where variable c0 is
defined. To reach node (4), the condition in node (0) must
be true. Thus, this condition is added to the constraint
store S and the other alternative is cut off. At this stage,
S contains the following constraints: {c1 < d0 + e0 ∧ c1 =
c0 + d0 + e0 ∧ c0 = a0 ∧ a0 ≥ 0} which can be simplified
to {a0 < 0 ∧ a0 ≥ 0}. This constraint store is inconsistent
and thus DPVS selects node (8) where variable c0 is also
defined. To reach node (8), the condition in node (0) must
be false. Thus, the negation of this condition is added to
the constraint store S and the other alternative is cut off.
Now, constraint store S contains the following constraints:
{c1 < d0+e0∧c1 = c0+d0+e0∧c0 = b0∧a0 < 0∧d0 = 1∧e0 =
−a0} which can be simplified to {a0 < 0 ∧ b0 < 0}. This
constraint store is consistent and the solver will compute a
solution, e.g., {a0 = −1, b0 = −1}. These values of the input
variables are a test case which demonstrates that program
foo violates property p1.

This small example illustrates how DPVS works. It can
also help to understand the intuition behind this new strat-
egy: DPVS collects the maximum information on the vari-
ables which occur in post-condition to detect inconsistencies
as early as possible; this is especially efficient when a small
sub-set of the constraint system is inconsistent.

2.2 Algorithm
We now detail algorithm DPVS (see algorithm 1).
DPVS selects a variable in Q and tries to find a coun-

terexample with its first definition; if it fails it iteratively
tries with the other definitions of the selected variable.

DPVS sets the color of conditional node u to red (resp.
blue) when condition of u is set to true (false) in the current

Figure 2: Search process for p1, step 1

Figure 3: Search process for p1, step 2

path. In other words, when the color is set to red (resp.
blue) the right (resp. left) successor link of u is cut off.
color[u] is initialized to blank for all nodes.

DPVS returns Sol which is either an instantiation of the
input variables of P satisfying constraint system C or ∅ if
C does not have any solution. Solutions are computed by
function solve, the finite domain solver. Function solve is
a complete decision procedure over the finite domains. On
the contrary, function isfeasible, used in line 27, only per-
forms a partial consistency test. In other words, it detects
some inconsistencies but not all of them. However, function
isfeasible is much more faster than function solve; this is
the reason why we chose to only perform this test each time
the constraints derived from the definition of a variable are
added to the constraint store. This partial consistency check
can either be done with the finite domain solver (CP) or
with the linear programming solver (LP). Of course, the LP
solver can only work on a linear relaxation of the constraint
system.

It is easy to show that Sol, the solution computed by
DPVS is actually a counterexample. Indeed, these values
of the input data satisfy the constraints generated from:

• pred, the required precondition;

• ¬prop , the negation of a conjunct of the post-condition;

• one definition of all variables in V (prop) and one def-
inition of all variables (except the input variables) in-
troduced by these definitions;

• all conditions required to reach the above mentioned
definitions.

Algorithm 1 : DPVS

% du[x]: set of blocks where variable x is defined

% ancc[u]: set of ancestors of u which are conditional nodes

% dr[u, v]: a boolean which is true (resp. false) when the
condition of ancestor v of node u has to be true (resp. false)
to reach u

% M : set of marked variables (a variable is marked if it has
already been put into the queue); M is initialized with ∅

% S: the constraint store which is initialized with const(pred∧
¬(prop)) where const is a function that transforms an ex-
pression in SSA form into a set of constraints

% Q: the set of temporary variables which is initialized with

V (prop)

Function DPVS(M, S, Q) returns counterexample

1: if Q = ∅ then
2: return solve(S)
3: else
4: x← POP(Q)
5: for all u ∈ du[x] do
6: Cut← FALSE; SAVE(Q, M, color)
7: S1 ← S∧ const(def [x, u])

{% def [x, u] denotes the definition of x in block u}

8: Vnew ← V (def [x, u]) \M

9: PUSH(Q, Vnew); add(Vnew, M)
10: for all v ∈ ancc[u] do
11: if color[v] = blank then {%no branch is cut off}
12: Vnew ← V (condition[v]) \M
13: PUSH(Q, Vnew); add(Vnew, M)
14: if dr[u, v] then {% Condition must be true}
15: S1 ← S1∧ cons(condition[v]))
16: color[v]← red {% Cut the right branch}
17: else {% Condition must be false}
18: S1 ← S1 ∧ ¬ cons(condition[v])
19: color[v]← blue {% Cut the left branch}
20: end if

21: else

22: if (color[v] = red ∧ dr[u, v])
∨ (color[v] = blue ∧ ¬(dr[u, v])) then {%no

branch is reachable}
23: Cut← TRUE
24: end if

25: end if

26: end for
27: if ¬Cut ∧ isfeasible(S1) then
28: result← DPVS(M, S1, Q)
29: if result 6= ∅ then
30: return result

31: end if
32: end if
33: RESTORE color, Q, M
34: end for
35: return ∅
36: end if

Thus, there exists at least one executable path which takes
as input values sol and computes an output that violates the
property prop. Otherwise, when no solution can be found,
we can state that there does not exist any input values that
violate property prop; in other words that no counterexam-
ple can be found.

3. THE FLASHER MANAGER APPLICATION
In this section we describe the application we used to val-

idate our approach. This real time industrial application
comes from a car manufacturer and has been provided by
Geensoft2. A complete description of this application –with
all source code– can be found at http://users.polytech.

unice.fr/~rueher/Benchs/FM/.
The complexity of this problem is due to the fact that a
property must be checked during many stages of execution
of the code.

3.1 Description of the module
The Flasher Manager is the controller that drives several

functions related to the flashing lights of a car. The flashing
lights serve several purposes:

1. Under normal operation, when the driver wishes to in-
dicate a direction change, the CBWS_HAZARD_R or CBWS_-
HAZARD_L Boolean inputs rise from 0 to 1. The correspond-
ing light (driven by the CMD_FLASHER_R or CMD_FLASHER_L
output respectively) shall then oscillate between an on/off
state over a period of 3 time-units (typically 3 seconds).
Then, when the input falls back to 0, the corresponding
output light shall stop flashing. This is called the Flash-
ers_left and Flashers_right functions.

2. The driver has the ability to lock and unlock the car from
the distance using a RF-key. The state of the open and
close buttons of the key is reported to Boolean inputs:
RF_KEY_UNLOCK and RF_KEY_LOCK respectively. The man-
ager has to indicate the state of the doors to the user using
the following convention:

• If the unlock key is pressed while the car is unlocked,
nothing shall happen.

• If the unlock key is pressed when the car is locked,
both lights shall flash with a period of 10 time-units
during 20 time-units (slow flashes). This is the Warn-
ing_slow function.

• If the lock button is pressed while the car is unlocked,
both lights shall go on for 10 time-units, and then
shall go off.

• If the lock button is pressed while the car is locked,
both lights shall flash during 60 time-units with a pe-
riod of 1 time-unit (quick flashes for a long time). This
is the Warning_fast function. It is typically used to
locate the car in an over-filled place.

3. Finally the driver has the ability to press the warning but-
ton. When a WARNING is present (reflected in the value of
the WARNING input), both lights shall flash with a period of
3 time-units. This is called the Warning function.

3.2 Program under test
We have been asked to check the following property (p1):

The lights should never remain lit

The Simulink model of the Flasher Manager has first been
translated into a C function3, named f1. Function f1 in-
volves 81 Boolean variables including 6 inputs and 2 outputs
2See http://www.geensoft.com/en/
3This translation is done with a proprietary tool of Geensys.

and 28 integer variables. Function f1 contains 300 lines of
code and mainly consists of nested conditionals including
linear operations and constant assignments, as illustrated
by the piece of code displayed in Figure 4.

and1_a=((Switch5==TRUE)&&(TRUE!=Unit_Delay3_a_DSTATE));
if ((TRUE==((and1_a-Unit_Delay_c_DSTATE)!= 0))) {

rtb_Switch_b=0;
}
else {
add_a = (1+Unit_Delay1_b_DSTATE);
rtb_Switch_b = add_a;

}
superior_a = (rtb_Switch_b>=3);

Figure 4: Piece of code of the f1 function

Property (p1) of the Flasher Manager concerns the be-
haviour of the Flasher Manager for an infinite time period.
Practically, we can only check a bounded version of prop-
erty (p1): we consider that the property is violated when the
lights remain on for N consecutive time periods. We thus
introduce a loop (bounded by value N) that counts the num-
ber of times where the output of the Flasher Manager has
consecutively been true. After the loop, if this counter is
equal to N , then the property is violated in the sense that
the output has remained true for all the period of time. The
value of the bound N is fixed as great as possible as shown
in section 4; its maximal value is mainly determined by the
capabilities of the tools. The part of the C program that
corresponds to this bounded version of property (p1) is dis-
played in Figure 5.

// number of time where the output has been consecutively true
int count = 0;
// consider N periods of time
for(int i=0;i<N;i++) {

// call to f1 function to compute the outputs
// according to non deterministic input values
f1();
if (Model_Outputs4)

// the output has been consecutively true one more time
count++;

else
// the output has not been consecutively true
count=0;

}
// if count is less than N, then the lights did not remain lit
assert (count<N)};

Figure 5: C program under test

4. EXPERIMENTS AND DISCUSSION
In this section, we report and discuss the experiments we

have done to validate our approach.

4.1 Tools
DPVS is implemented in Comet4. There are many re-

4Comet is a hybrid optimization platform for solving com-
plex combinatorial optimization problems. Comet combines
the methodologies used for constraint programming, lin-
ear and integer programming, constraint-based local search,
and dynamic stochastic combinatorial optimization with a
language for modeling and searching (see http://dynadec.
com/technology/)

strictions on the C programs that the current prototype can
handle. Especially, input data are restricted to Booleans, in-
tegers and arrays of Booleans and integers. Pointers are not
handled5 and only run-time error-free programs are treated
(i.e. errors like dividing by zero or exceptions are not han-
dled).

We compared performances of DPVS with CBMC and
CPBPV*. CBMC6 [7] is one of the best bounded model
checkers. We used version 3.3.2 that calls the SAT solver
MiniSat2. CPBPV* is an optimized version of CPBPV [9,
10] which is implemented in Comet. Like CPBPV it uses
constraint stores to represent both the specification and the
program, and to explore execution paths of bounded length
over these constraint stores. However, contrary to CPBPV,
it works on a simplified CFG. A preliminary bound propa-
gation step is also performed.

Experiments were performed on a Quad-core Intel Xeon
X5460 3.16GHz clocked with 16Gb memory. All times are
given in seconds. OoM stands for “out of memory” whereas
TO stands for “time out” in the different tables. The time
out was set to 3 minutes for all benchmarks.

4.2 Experiments on the Flasher Manager
CBMC and DPVS found counterexamples that violate

the bounded version of property (p1). They also generated
data input sequences such that the flasher lights remain lit
for N consecutive periods of time.

For instance, here is a data input sequence that violates
this property for 5 time periods:

[(0,1,0,0,0,1),(0,1,0,0,0,1),(0,1,0,0,0,1),

(0,0,1,0,0,1),(0,0,0,0,0,1)]

where (0, 1, 0, 0, 0, 1) is the value of inputs in1 to in6 for the
first time period, (0, 1, 0, 0, 0, 1) the value of the inputs for
the second time period and so on.

Table 1 shows that DPVS outperforms the other ap-
proaches on the Flasher Manager application. DPVS is
able to generate counterexamples for instances up to 400
time periods before running out of memory. CPBPV* did
not manage to handle this application for instance with n

greater or equal than 10.

Table 1: Flasher Manager
N CBMC DPVS CPBPV*

5 0.134 0.026 0,837
10 0.447 0.055 TO
50 12.92 0.345 TO
75 32.74 0.602 TO
100 58.27 2.750 TO
150 138.19 1.552 TO
200 OoM 6.003 TO

4.3 Discussion
Experiments have shown that DPVS is very efficient to

find counterexamples of property p1 of the Flasher Man-

ager application. This can be explained by the fact that
DPVS is a bottom-up dynamic strategy7. Since p1 does not
5The prototype used for benchmarks was developed for real
time systems with strong programming rules.
6see http://www.cprover.org/cbmc
7It is well known in constraint programming that dynamic
strategies are more efficient when only one solution is re-
quired.

hold, it is not necessary to explore all the program paths.
The challenge is thus to find as early as possible one faulty
path. Starting from the variables of the precondition gives
more chance to early find this faulty path. Furthermore,
DPVS propagates the most information as possible taking
the variables the one after the others, and thus reduces the
search space.

We also tested DPVS on a well known academic exam-
ple: the binary search that determines whether a value v is
present in a sorted array t. On the contrary to property p1
of the Flasher Manager, this example is a correct program,
thus all program paths have to be explored. Furthermore,
this program has a very strong precondition, which seems to
recommend a top-down approach.

Table 2 reports the results of the experiments on a correct
version of the Binary Search program.

Table 2: Binary search (integers of 16 bits)
Length CBMC DPVS CPBPV*

4 5.732 0.529 0.107
8 110.081 35.074 0.298
16 TO TO 1.149
32 TO TO 5.357
64 TO TO 27.714
128 TO TO 153.646

CBMC and DPVS cannot handle this benchmark. CBMC
wastes a lot of time in building and exploring the whole for-
mula. The strategy used by DPVS is not well adapted for
this very specific program. On the contrary, the top-down
strategy used in CPBPV* outperforms the other checkers.
CPBPV* incrementally adds the decisions taken along a
path. This is particularly well adapted for the Binary Search

program which has a strong precondition. This precondi-
tion combined with the decisions taken along a path have a
strong impact on feasibility of the next conditions, and help
to prune infeasible paths.

Finding an efficient feasibility test is a critical issue: one
is face with the trade off of the pruning capabilities versus
the speed. We tried different combinations of finite domain
constraint solvers and linear programming solvers:

• CP-CP combination: the finite domain constraint solver
is used both to check the (partial) consistency at each
node and to search a solution;

• LP-CP combination: A linear programming solver is
used to check the (partial) consistency of a linear re-
laxation of the constraint system at each node, and
the finite domain constraint solver is used to search a
solution.

The reported results concern the CP-CP combination. Us-
ing a finite domain solver to check the partial consistency is
more efficient on this application than using a LP solver on a
linear relaxation of the constraints. Actually, the difference
does not come from the efficiency of the solvers itself but
from the choice points which are added by the linear relax-
ation. Let us explain this point on a small example. Con-
sider a test such that x == y, the negation of this test cor-
responds to the constraint x! = y which creates two choice
points: x < y and x > y.

Furthermore, the domains of the integer variables are small
for this application, and the propagation step we perform re-

duces the bounds of the domain. Thus, consistency checks
with CP are very efficient.

4.4 Related work
Bounded model checkers transform the program and the

post-condition to a big formula and use SAT solvers to prove
that the property holds or to find a counterexample [14].
SMT solvers are now used in most of the state of the art
BMC tools to directly work on high-level formula (see [2,
15, 11], and the last version of CBMC). Many improvements
have been studied for high-level BMC, such as the one pro-
posed in [15], in particular during the unrolling step and
to reuse previously learnt lemmas. But to the best of our
knowledge, these approaches do not explore the CFG in a
dynamic bottom-up approach, that collects non consecutive
program blocks.

Constraint Logic Programming (CLP) was used for test
generation of programs (e.g., [16, 17, 18, 1]) and provides
a nice implementation tool extending symbolic execution
techniques [6]. Gotlieb et al showed how to represent im-
perative programs as constraint logic programs: InKa [16]
was a pioneer in the use of CLP for generating test data for
C programs. Denmat et al developed TAUPO, a successor
of InKa which uses dynamic linear relaxations [13]. It in-
creases the solving capabilities of the solver in the presence
of non-linear constraints but the authors only published ex-
perimental results for a few academic C programs.

CPBPV [8, 9, 10] is a constraint-based framework for ver-
ifying the conformity of a program with its specification un-
der some boundness restrictions. The key idea in CPBPV is
to use constraint stores to represent both the specification
and the program, and to non-deterministically explore exe-
cution paths of bounded length over these constraint stores.
CPBPV provides a counterexample when the program is
not conforming to the specification. The point is that the
search strategies of CPBPV is not well adapted for search-
ing a counterexample. Indeed, CPBPV is based on a top
down exploration of the bounded feasible paths because it
has been designed for partial program verification. When
the goal is only to find a counterexample on a large and
complex program, this strategy may become very expen-
sive. In contrast, DPVS is a dynamic bottom up strategy
which has been designed to find counterexamples on tricky
programs.

5. CONCLUSION AND FUTURE WORK
In this paper we have introduced, DPVS , a dynamic con-

straint based strategy for bounded model checking. First
experiments with DPVS are very encouraging. DPVS be-
haves very well on a non trivial real application. Generating
test cases for realistic time periods is a critical issue in real
time applications. For the Flasher Manager application,
DPVS generated counterexamples for more significant time
periods than CBMC.

These results are impressive since DPVS is still a (slow)
academic prototype whereas CBMC is a state of the art
solver. Of course, other experiments on other applications
are required to refine and validate the proposed approach.
The dynamic strategy of DPVS is very well adapted for
problems with a strong post-condition. However, a static
top down strategy – like the one used by CPBPV* – is much
more efficient for problems with a strong precondition.

Future work also concerns the extension of our prototype.

We are working on a new version which handles pointers and
which has an interface with a floating point number solver
[6], to be able to evaluate the proposed approach on a larger
class of programs.

6. REFERENCES
[1] Elvira Albert, Miguel Gómez-Zamalloa, and Germán

Puebla. Test Data Generation of Bytecode by CLP Partial
Evaluation. In LOPSTR 2008, volume 5438 of LNCS,
pages 4–23. Springer, 2008.

[2] A. Armando, J. Mantovani, and L. Platania. Bounded
model checking of software using SMT solvers instead of
SAT solvers. International Journal on Software Tools for
Technology Transfer, 11(1):69–83, février 2009.

[3] Mike Barnett and K. Rustan M. Leino.
Weakest-precondition of unstructured programs.
Information Processing Letters, 93(6):281–288, 2005.

[4] Armin Biere, Alessandro Cimatti, Edmund Clarke, and
Yunshan Zhu. Symbolic Model Checking without BDDs. In
TACAS, volume 1579 of LNCS, pages 193–207. Springer,
1999.

[5] Thomas Bochot, Pierre Virelizier, Hélène Waeselynck, and
Virginie Wiels. Model checking flight control systems: The
Airbus experience. In ICSE 2009 (31st International
Conference on Software Engineering),Companion Volume,
pages 18–27. IEEE, 2009.

[6] Bernard Botella, Arnaud Gotlieb, and Claude Michel.
Symbolic execution of floating-point computations. Softw.
Test., Verif. Reliab., 16(2):97–121, 2006.

[7] E. Clarke, D. Kroening, and F. Lerda. A tool for checking
ansi-c programs. In TACAS 2004, volume 2988 of LNCS,
pages 168–176. Springer-Verlag, 2004.

[8] Hélène Collavizza and Michel Rueher. Exploration of the
capabilities of constraint programming for software
verification. In TACAS, volume 3920 of LNCS, pages
182–196. Springer, 2006.

[9] Hélène Collavizza, Michel Rueher, and Pascal Van
Hentenryck. CPBPV: A Constraint-Programming
Framework for Bounded Program Verification. In CP 2008,
volume 5202 of LNCS, pages 327–341. Springer, 2008.

[10] Hélène Collavizza, Michel Rueher, and Pascal Van
Hentenryck. CPBPV: A Constraint-Programming
Framework for Bounded Program Verification. Constraint,
15(2):238–264, 2010.

[11] Lucas Cordeiro, Bernd Fischer, and Joao Marques-Silva.
SMT-Based Bounded Model Checking for Embedded
ANSI-C Software. ASE, 0:137–148, 2009.

[12] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.
Wegman, and F. Kenneth Zadeck. Efficiently computing
static single assignment form and the control dependence
graph. ACM Trans. Program. Lang. Syst., 13(4):451–490,
1991.

[13] Tristan Denmat, Arnaud Gotlieb, and Mireille Ducassé.
Improving constraint-based testing with dynamic linear
relaxations. In 18th ISSRE, pages 181–190. IEEE
Computer Society, 2006.

[14] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher.
A survey of automated techniques for formal software
verification. IEEE Trans. on CAD of Integrated Circuits
and Systems, 27(7):1165–1178, 2008.

[15] Malay K Ganai and Aarti Gupta. Accelerating high-level
bounded model checking. In ICCAD, pages 794 – 801.
ACM, 2006.

[16] Arnaud Gotlieb, Bernard Botella, and Michel Rueher.
Automatic test data generation using constraint solving
techniques. In ISSTA, pages 53–62, 1998.

[17] Daniel Jackson and Mandana Vazir. Finding bugs with a
constraint solver. In ISSTA, pages 14–25. ACM Press, 2000.

[18] Nguyen Tran Sy and Yves Deville. Automatic test data
generation for programs with integer and float variables. In
ASE, pages 13–21. IEEE Computer Society, 2001.

