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Abstract— We propose a highly scalable cluster-based 

hierarchical trust management protocol for wireless sensor 

networks (WSNs) to effectively deal with selfish or malicious 

nodes. Unlike prior work, we consider multidimensional trust 

attributes derived from communication and social networks to 

evaluate the overall trust of a sensor node. By means of a novel 

probability model, we describe a heterogeneous WSN comprising 

a large number of sensor nodes with vastly different social and 

quality of service (QoS) behaviors with the objective to yield 

“ground truth” node status. This serves as a basis for validating 

our protocol design by comparing subjective trust generated as a 

result of protocol execution at runtime against objective trust 

obtained from actual node status. To demonstrate the utility of 

our hierarchical trust management protocol, we apply it to 

trust-based geographic routing and trust-based intrusion 

detection. For each application, we identify the best trust 

composition and formation to maximize application performance. 

Our results indicate that trust-based geographic routing 

approaches the ideal performance level achievable by 

flooding-based routing in message delivery ratio and message 

delay without incurring substantial message overhead. For 

trust-based intrusion detection, we discover that there exists an 

optimal trust threshold for minimizing false positives and false 

negatives. Furthermore, trust-based intrusion detection 

outperforms traditional anomaly-based intrusion detection 

approaches in both the detection probability and the false positive 

probability. 

 
Index Terms— Trust management; security; wireless sensor 

networks; routing; intrusion detection; performance analysis. 

I. INTRODUCTION 

wireless sensor network (WSN) is usually composed of a 

large number of spatially distributed autonomous sensor 

nodes (SNs) to cooperatively monitor physical or 

environmental conditions, such as temperature, sound, 

vibration, pressure, motion or pollutants. A SN deployed in the 

WSN has the capability to read the sensed information and 

transmit or forward information to base stations or a sink node 

through multi-hop routing. While SNs have popularly used for 

various monitoring purposes such as wild animals, weather, or 

environments for battlefield surveillance, they also have 

severely restricted resources such as energy, memory, and 
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computational power. Further, wireless environments give 

more design challenges due to inherently unreliable 

communication. A more serious issue is that nodes may be 

compromised and perform malicious attacks such as packet 

dropping or packet modifications to disrupt normal operations 

of a WSN wherein SNs usually perform unattended operations. 

A large number of SNs deployed in the WSN also require a 

scalable algorithm for highly reconfigurable communication 

operations.  

In this work, we propose a hierarchical trust management 

protocol leveraging clustering to cope with a large number of 

heterogeneous SNs for scalability and reconfigurability, as well 

as to cope with selfish or malicious SNs for survivability and 

intrusion tolerance. We address the key design issues of trust 

management including trust composition (i.e., what trust 

components are considered), trust aggregation (i.e., how 

information is aggregated for each trust component), and trust 

formation (i.e., how trust is formed from individual trust 

components). The scientific contributions of the paper are as 

follows: 

1. Unlike most existing reputation and trust management 

schemes in the literature [1], we consider not only quality of 

service (QoS) trust derived from communication networks, but 

also social trust derived from social networks [2] to judge if a 

node is trustworthy to deal with selfish (uncooperative) or 

malicious nodes. 

2. Untreated in the literature, we design and validate a 

hierarchical trust management protocol that can dynamically 

learn from past experiences and adapt to changing environment 

conditions (e.g., increasing hostility or misbehaving node 

population) to maximize application performance and enhance 

operation agility. This is achieved by addressing critical issues 

of hierarchical trust management, namely, trust composition, 

aggregation, and formation. For trust composition, we explore 

novel social and QoS trust components. For trust aggregation, 

we identify the best way to aggregate trust (direct vs. indirect 

trust evaluation) and propagate trust (trust data collection, 

dissemination and analysis) for each individual trust 

component, and ascertain protocol accuracy by means of a 

novel model-based analysis methodology. For trust formation, 

we identify the best way to form trust out of social and QoS 

trust properties depending on application requirements to 

maximize application performance. Dynamic trust 

management is achieved by first determining the best trust 

formation model, given a set of model parameters specifying 

the environment conditions (e.g., increasing hostility) and then 

at runtime by learning and adapting to changing environment 
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conditions using the best trust formation model identified from 

static analysis. 

3. To achieve the goals of identifying the best trust 

composition, trust aggregation and trust formation for WSN 

applications, we develop a novel model-based analysis 

methodology for analyzing and validating protocol design. The 

novelty lies in the new design notion of objective trust derived 

from global knowledge or ground truth derived from the 

mathematical model against which subjective trust obtained as 

a result of executing the trust management protocol may be 

compared and validated. This requires a mathematical model 

based on Stochastic Petri Net (SPN) techniques [3] and an 

iteration solution technique be developed to faithfully describe 

a large number of heterogeneous mobile entities with a variety 

of QoS and social behaviors to yield global knowledge or 

ground truth of node status, thus providing objective trust 

against which subjective trust from protocol execution can be 

validated. The end product is a model-based analysis tool for 

evaluation of hierarchical trust management protocol designs 

applicable to a wide range of WSN applications, allowing trust 

composition, trust aggregation, and trust formation designs to 

be incorporated, tested and validated. 

4. Untreated in the literature, we explore and validate a 

new design concept of application-level trust optimization in 

response to changing conditions to maximize application 

performance or best satisfy application requirements. To 

demonstrate the utility of the hierarchical trust management 

protocol, we apply it to trust-based geographic routing [4, 5] 

and trust-based intrusion detection. For the trust-based 

geographical routing application, we identify the best trust 

formation model to optimize application performance in 

delivery ratio or message delay in the presence of misbehaving 

nodes. For the trust-based intrusion detection application, we 

identify the best trust formation model as well as the best 

application-level drop-dead trust threshold below which a node 

is considered misbehaving to optimize application performance 

in false alarm probability. 

The rest of the paper is organized as follows. In Section II we 

survey existing work in trust management for WSNs, as well as 

trust-based routing and trust-based intrusion detection in WSNs. 

In Section III, we describe the system model. In Section IV, we 

describe our hierarchical trust management protocol addressing 

the issues of trust formation, trust aggregation, and trust 

composition in a hierarchically structured WSN. In Section V, 

we develop a probability model to describe a clustered WSN 

consisting of a large number of nodes with vastly different 

social and QoS behaviors to yield ground truth node status for 

validation purposes. In Section VI, we apply the hierarchical 

trust management protocol to the clustered WSN described in 

Section V and identify the best trust aggregation model for 

each individual trust component, such that subjective trust 

obtained as a result of executing the protocol is close to 

objective trust obtained from ground truth node status. In 

Section VII, we apply the hierarchical trust management 

protocol to trust-based geographic routing as an application 

and identify the best trust formation model for optimizing 

application performance in delivery ratio and delay with 

dynamic trust management control. In Section VIII, we apply 

the hierarchical trust management protocol to trust-based 

intrusion detection with application-level trust optimization as 

another application, with results and physical interpretations 

given.  Finally in Section IX, we conclude the paper and outline 

some future research areas. 

II. RELATED WORK 

In the literature, trust has been used in WSNs for assessing 

the availability, reliability, or security property of a node (e.g., 

whether a node is malicious or not) based on past interaction 

experiences [6-11]. Ganeriwal et al. [7] proposed a 

reputation-based framework for data integrity in WSNs. The 

proposed reputation system takes information collected by each 

node using a Watchdog mechanism (for direct monitoring and 

observations) to detect invalid data and uncooperative nodes. 

Yao et al. [11] proposed a parameterized and localized trust 

management scheme for WSN security, particularly for secure 

routing, where each node only maintains highly abstracted 

parameters to evaluate its neighbors. Aivaloglou and Gritzalis 

[6] proposed a hybrid trust and reputation management 

protocol for WSNs by combining certificate-based and 

behavior-based trust evaluations. However, [6, 7, 11] cited 

above only considered a node’s QoS property in trust 

evaluation. Also the analysis was conducted based on a flat 

WSN architecture which is not scalable. Liu et al. [8] and 

Moraru et al. [9] proposed trust management protocols and 

applied them to geographic routing in WSNs. However, no 

hierarchical trust management was considered for managing 

clustered WSNs. Their work again evaluated trust based on 

QoS aspects only such as packet dropping and the degree of 

cooperativeness, while our work considers both QoS and social 

trust for trust evaluation of a SN. 

Capra et al. [12, 13] discussed the notion of human trust 

which could be formed from three sources:  direct experiences, 

credentials and recommendations. In particular, 

recommendations are trust information coming from other 

nodes in the social context. We consider only two sources in 

our notion of trust, namely, direct experiences and 

recommendations, since it is hard for SNs with limited 

resources to carry credentials. A significant difference of 

Capra’s work from our work is that we specifically consider 

individual QoS and social trust property, say, X, and devise 

specific trust aggregation protocols using direct experiences 

and recommendations to form trust property X, while Capra 

used the three sources of information to form human trust. 

Moreover, because different trust properties have their own 

intrinsic trust nature and react differently to trust decay over 

time, we identify the best way for each trust property X to take 

in direct experiences and recommendations information so that 

the assessment of trust property X would be the most accurate 

against actual status in trust property X. Another significant 

difference is that we consider trust formation as the issue of 

forming the overall “trust” out of individual social and QoS 

trust properties, while Capra considered it as the issue of 

forming human trust out of the three sources of trust 

information. Lastly, we introduce new design concepts of 
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dynamic trust management and application-level trust 

optimization in response to changing conditions to maximize 

application performance, and demonstrate the feasibility with 

trust-based applications, by identifying the best way to form 

trust as well as use trust out of individual social and QoS trust 

properties at runtime to optimize application performance.  

Shaikh et al. [10] proposed a group-based trust management 

scheme for clustered WSNs in which each SN performs peer 

evaluation based on direct observations or recommendations, 

and each cluster head (CH) evaluates other CHs as well as SNs 

under its own cluster. This work is similar to ours in that a 

hierarchical structure is employed for scalability. However, 

trust in their case is assessed only based on past interaction 

experiences in message delivery, which in our case is just one 

possible trust component along with other social and QoS trust 

components comprising the overall trust metric. Furthermore, 

we address the trust formation issue (i.e., how a peer-to-peer 

trust value is formed) to maximize application performance. 

Zhang et al. [14] followed the same hierarchical trust 

architecture and considered multi-attribute trust values instead 

of just one as in [10]. They also considered a decay function 

that captures the changing nature of trust in trust calculations. 

However, their work is theoretical in nature without addressing 

what trust attributes should be used (a trust composition issue), 

how trust is aggregated accurately (a trust aggregation issue), or 

what weights should be put on trust attributes to form trust (a 

trust formation issue). On the contrary, our work addresses all 

three aspects of trust management. Moreover, we address 

protocol validation issues by devising a mathematical model 

yielding objective trust against which subjective trust from 

protocol execution may be compared for assessing its accuracy.   

Intrusion detection is the last defense to cope with malicious 

nodes for WSNs in which SNs can be compromised due to 

capture or virus infection. Existing work was mostly based on 

anomaly detection [15] techniques to discover deviations from 

expected behaviors, including rule-based [16, 17], weighted 

summation [18], data clustering [19], and Support Vector 

Machine (SVM) [20]. In rule-based anomaly detection [16, 17], 

typically rules based on QoS metrics are being setup to detect 

suspected attack behaviors, e.g., if a SN does not forward a 

packet within a time limit, if a SN forwards the same packet 

multiple times without suppression, or if a packet is received 

directly from a non-neighbor SN or from a neighbor SN who is 

not supposed to send a packet during a particular time interval, 

then the SN in question is suspected of maliciousness. When a 

SN’s “maliciousness count” exceeds a tolerance limit, the SN is 

diagnosed as compromised. The main drawback of rule-based 

anomaly detection is that it cannot cope with anomalies not 

covered by rules, thus leading to high false negatives when 

unknown anomalies appear. In the weighted summation 

approach [18], each SN has a weight associated with it 

representing the trustworthiness of its sensor reading output. 

The system periodically calculates the average sensor reading 

output by taking a weighted summation out of all sensor 

reading outputs. The weight associated with a SN is 

dynamically updated according to the deviation of the SN’s 

output from the average output. A larger deviation results in a 

lower weight. Once the weight of a SN falls below a threshold, 

the SN is considered a malicious node. The main drawback of 

this approach is a high false positive probability may result. In 

the clustering based approach [19], SNs reporting similar 

sensor reading data out of selected data features are clustered 

together. Consequently, a SN that does not belong to any 

cluster or belong to a small cluster is considered an outlier or a 

compromised SN. The effectiveness of this approach hinges on 

the accuracy of the underlying clustering algorithm achievable 

only through heavy learning and computation which may 

impede its use for real time operation. In SVM-based anomaly 

detection [20], a kernel function is chosen to map the input data 

space into a higher-dimensional space. The anomaly detection 

is formulated as a quadratic optimization problem to find a 

minimum hyper-sphere that includes the majority of the data 

points with a certain degree of similarity. The data points that 

are outside of this hyper-sphere are considered anomalies. 

However, the challenge of using SVM-based intrusion 

detection in WSNs is the computational complexity of solving 

the optimization problem, thus preventing its use for real time 

operation. A general problem with anomaly detection is high 

false alarms because noises in wireless transmission may cause 

uncertainty of information, and limited resources may cause 

inability to collect accurate and needed information. In this 

paper, we develop and analyze trust-based intrusion detection 

and compare its performance with weighted summation [18] 

and data clustering [19] anomaly detection techniques. 

Trust-based intrusion detection has received much attention 

in the literature because of its elasticity against uncertainty and 

resiliency against attacks. Wang et al. [21] proposed an 

intrusion detection mechanism based on trust for mobile ad hoc 

networks (MANETs). They employed the concepts of evidence 

chain and trust fluctuation to evaluate a node in the network, 

with the evidence chain detecting misbehaviors of a node, and 

the trust fluctuation reflecting the high variability of a node’s 

trust value over a time window. Ebinger et al. [22] introduced a 

cooperative intrusion detection method also for MANETs 

based on trust evaluation and reputation exchange. They split 

the reputation information into trust and confidence for 

reputation exchanges and then combine them into 

trustworthiness for intrusion detection. Theodorakopoulos et al. 

[23] modeled trust evaluation as a path problem and used path 

semiring and distance semiring operators to combine opinions 

such that two nodes can establish an indirect trust relation 

without previous direct interactions. Here we note that most 

trust-based intrusion detection mechanisms employed for 

MANETs cannot be directly implemented in WSNs due to 

limited battery power and resources in SNs. In this paper, we 

propose hierarchical trust management leveraging clustering to 

implement light-weight trust-based intrusion detection for 

WSNs. To the best of our knowledge [1, 24], our work is the 

first to use trust to implement intrusion detection functionality 

and evaluate its effectiveness for clustered WSNs. 

This work extends from our preliminary work [25] which 

considered hierarchical trust management for WSNs and its 

application to trust-based routing, and [26] which considered its 

application to trust-based intrusion detection. The protocol 
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design is extended with new design concepts of (a) trust 

aggregation protocol accuracy, i.e., identifying and validating 

the best trust aggregation and propagation protocol setting for 

each individual trust property X such that subjective trust 

obtained as a result of protocol execution is close to objective 

trust or ground truth (b) dynamic trust management, i.e., 

identifying and validating the best way to form trust out of QoS 

and social trust properties dynamically (in terms of the best 

weights used for trust properties) in response to changing 

conditions such as increasing hostility to maximize application 

performance, and (c) application-level trust optimization, i.e., 

identifying the best way to use trust for application 

performance optimization. Both applications (described in 

Sections VII and VIII) have been substantially extended to 

demonstrate the feasibility of these new design concepts. 

III. SYSTEM MODEL 

We consider a cluster-based WSN consisting of multiple 

clusters, each with a cluster head (CH) and a number of SNs in 

the corresponding geographical area. CH nodes have more 

power and resources than SN nodes. The CH in each cluster 

may be selected based on an election protocol such as HEED 

[27] at runtime to balance energy consumption vs. CH 

functionality. A SN forwards its sensor reading to its CH 

through SNs in the same cluster and the CH then forwards the 

data to the base station or the destination node (or sink node) 

through other CHs.  

Leveraging this two-level of hierarchy in the WSN, our trust 

management protocol is conducted using periodic peer-to-peer 

trust evaluation between two SNs and between two CHs. The 

trust update interval is    which is a system design parameter. 

At the SN level, each SN is responsible to report its 

peer-to-peer trust evaluation results towards other SNs in the 

same cluster to its CH which performs CH-to-SN trust 

evaluation towards all SNs in its cluster. Similarly a CH is 

responsible to report its peer-to-peer trust evaluation results 

towards other CHs in the system to the base station which 

performs station-to-CH trust evaluation towards all CHs in the 

system. In Section IV, we will describe the protocols for 

performing peer-to-peer, CH-to-SN and station-to-CH trust 

evaluations.  

Unlike prior work, we compose our trust metric by 

considering both social trust and QoS trust to take into account 

the effect of both aspects of trust on trustworthiness. Social 

trust in the context of wireless sensors may include intimacy, 

honesty, privacy, centrality, and connectivity. QoS trust may 

include competence, cooperativeness, reliability, task 

completion capability, etc. We formulate our trust protocol 

such that it is generic and can take a combination of social trust 

and QoS trust metrics to form the overall trust metric. Without 

loss of generality, in this work we consider intimacy (for 

measuring closeness based on interaction experiences) and 

honesty (for measuring regularity/anomaly) to measure social 

trust derived from social networks. We choose energy (for 

measuring competence) and unselfishness (for measuring 

cooperativeness) to measure QoS trust derived from 

communication networks. The intimacy trust component 

reflects the relative degree of interaction experiences between 

two nodes. It follows the maturity model proposed in [28] in 

that the more positive experiences SN A had with SN B, the 

more trust and confidence SN A will have toward SN B. The 

honesty trust component strongly implies whether a node is 

malicious or not. The assumption is that a compromised node is 

malicious in nature and thus dishonest. Energy is an important 

metric in WSNs since SNs are extremely constrained in energy. 

We use energy as a QoS trust metric to measure if a SN is 

competent in performing its intended function. The 

unselfishness trust component reflects if a SN can 

cooperatively execute the intended protocol. 

Our trust management protocol can apply to any WSN 

consisting of heterogeneous SNs with vastly different initial 

energy levels and different degrees of malicious or selfish 

behaviors. We apply the trust management protocol to a 

clustered WSN in which a SN may adjust its behavior 

dynamically according to its own operational state and 

environmental conditions. A SN is more likely to become 

selfish when it has low energy or it has many unselfish neighbor 

nodes around. Further, a SN is more likely to become 

compromised when it has more compromised neighbors 

around. A CH consumes more energy than SNs. After a SN or 

CH is compromised, it may consume even more energy to 

perform attacks. On the other hand, a selfish node consumes 

less energy than an unselfish node as its selfish behavior is 

reflected by stopping sensing functions and arbitrarily dropping 

messages. 

A compromised SN can perform various attacks including 

forgery attacks, jamming attacks, Sybil attacks, denial of 

service attacks, black/sink hole attacks (absorbing and 

dropping packets), and slandering attacks. Depending on the 

system failure definition, some of these attacks if successfully 

performed are fatal. For example if a compromised node uses 

its shared secret key to perform a forgery attack and the 

tampered packet reaches the sink node, it can be considered as a 

system failure as the consequence of the sink node receiving 

false information may be catastrophic. Thus, the only defense 

of the system is to quickly detect and evict compromised nodes 

before a system failure occurs. In this paper, we show that our 

hierarchical trust management protocol is resilient to black/sink 

hole attacks and slandering attacks including good-mouthing 

attacks (recommending a bad node as a good node), and 

bad-mouthing attacks (recommending a good node as a bad 

node) in trust-based routing applications (in Section VII). Also 

our trust management protocol can be effectively applied to 

implement trust-based intrusion detection (in Section VIII) to 

deal with other types of attacks. 

IV. HIERARCHICAL TRUST MANAGEMENT PROTOCOL 

We first describe our hierarchical trust management 

addressing the problem of trust formation, trust aggregation and 

trust composition. Later we apply it to the clustered WSN 

described in the system model to demonstrate its effectiveness. 

Our hierarchical trust management protocol maintains two 

levels of trust: SN-level trust and CH-level trust. Each SN 
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evaluates other SNs in the same cluster while each CH 

evaluates other CHs and SNs in its cluster. The peer-to-peer 

trust evaluation is periodically updated based on either direct 

observations or indirect observations. When two nodes are 

neighbors within radio range, they evaluate each other based on 

direct observations via snooping or overhearing. Each SN sends 

its trust evaluation results toward other SNs in the same cluster 

to its CH. Each CH performs trust evaluation toward all SNs 

within its cluster. Similarly, each CH sends its trust evaluation 

results toward other CHs in the WSN to a “CH commander” 

which may reside on the base station if one is available, or on a 

CH elected if a base station is not available. The CH 

commander performs trust evaluation toward all CHs in the 

system. The election protocol is outside of the scope of the 

paper. The reader is referred to HEED [27] for a possible 

solution. 

These two levels of peer-to-peer trust evaluation process 

consider four different trust components described earlier: 

intimacy, honesty, energy, and unselfishness. The trust value 

that node i evaluates towards node j at time t,    ( ) , is 

represented as a real number in the range of [0, 1] where 1 

indicates complete trust, 0.5 ignorance, and 0 distrust.    ( ) is 

computed by: 

   ( )       
        ( )       

       ( ) 

                   
      ( )       

             ( ) 
(1)  

where w1, w2, w3, and w4 are weights associated with these four 

trust components with w1+ w2+ w3+ w4= 1. Deciding the best 

values of w1, w2, w3 and w4 to maximize application 

performance is a trust formation issue which we aim to explore 

in this paper (see Section VII and Section VIII). Here we note 

that in the special case in which intimacy and honesty are 

equally important and energy and unselfishness are also equally 

important, Equation 1 can be rewritten as     ( )  

                
        ( )     

       ( )              
      ( )  

   
             ( )   with  wsocial + wQoS = 1.   

A. Peer-to-Peer Trust Evaluation 

Here we describe how peer-to-peer trust evaluation is 

conducted, particularly between two peer SNs or two peer CHs. 

When a trustor (node i) evaluates a trustee (node j) at time t, it 

updates    
 ( ) where X indicates a trust component as follows: 

   
 ( )  

{
 
 

 
 

(   )   
 (    )      

        ( ) 

                                          

   
    

{(   )   
 (    )      

       ( )}  

          

 (2)  

In Equation 2, if node i is a 1-hop neighbor of node j, node i 

will use its new trust based on direct observations 

(   
        ( ))  and its old trust based on past experiences 

(   
 (    ) where    is the trust update interval) toward node 

j to update    
 ( ). A parameter   (     ) is used here to 

weigh these two trust values and to consider trust decay over 

time, i.e., the decay of the old trust value and the contribution of 

the new trust value. A larger   means that trust evaluation will 

rely more on direct observations. Here    
        ( ) indicates 

node i’s trust value toward node j based on direct observations 

accumulated over the time period        Below we describe 

how each trust component value    
        ( ) can be obtained 

based on direct observations for the case node i and node j are 

1-hop neighbors: 

   
               ( ): This measures the level of interaction 

experiences following the maturity model [28]. It is computed 

by the number of interactions between nodes i and j over the 

maximum number of interactions between node i and any 

neighbor node over the time period      . 

   
              ( ): This refers to the belief of node i that node 

j is honest based on node i’s direct observations toward node j. 

Node i estimates    
              ( ) by keeping a count of 

suspicious dishonest experiences of node j which node i has 

observed during [0  ] using a set of anomaly detection rules 

such as a high discrepancy in the sensor reading or 

recommendation has been experienced, as well as interval, 

retransmission, repetition, and delay rules as in [17, 29]. If the 

count exceeds a system-defined threshold, node j is considered 

totally dishonest at time t, i.e.,    
              ( )=0. Otherwise, 

   
              ( ) is computed by 1 minus the ratio of the count 

to the threshold. An assumption is that a compromised node 

must be dishonest. 

   
             ( ): This refers to the belief of node i that node 

j still has adequate energy (representing competence) to 

perform its intended function. It may be measured by the 

percentage of node j’s remaining energy. To calculate 

   
             ( ), node i estimates node j’s remaining energy 

by overhearing node j’s packet transmission activities over the 

time period [0, t], utilizing an energy consumption model as in 

[30-32].  

   
                    ( ) : This provides the degree of 

unselfishness of node j as evaluated by node i based on direct 

observations over       . Node i can apply overhearing and 

snooping techniques to detect selfish behaviors of node j such 

as not faithfully performing sensing and reporting functions, 

data forwarding functions [10], or the prescribed trust 

management protocol execution. Node i may give recent 

interaction experiences a higher priority over old experiences in 

estimating    
                    ( ) . An assumption is that a 

compromised node must be uncooperative and thus selfish. 

On the other hand, if node i is not a 1-hop neighbor of node j, 

node i will use its past experience    
 (    )  and 

recommendations from its 1-hop neighbors (   
       ( ) where 

k is a recommender) to update    
 ( ). Node i will only use its 

1-hop neighbors  (  ) as recommenders for energy 

conservation and scalability. If     is an empty set, then node i 

is an orphan in which case γ = 0 and node i will not be able to 

contribute to peer-to-peer trust management. The parameter γ is 

used here to weigh recommendations vs. past experiences and 

to consider trust decay over time as follows: 
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    ( )

      ( )
 (3)  

Here we introduce another parameter     to specify the 

impact of “indirect recommendations” on    
 ( ) such that the 

weight assigned to indirect recommendations is normalized to 

    ( ) relative to 1 assigned to past experiences. Essentially, 

the contribution of recommended trust increases proportionally 

as either    ( ) or   increases. Instead of having a fixed weight 

ratio    ( ) to 1 for the special case in which    , we allow 

the weight ratio to be adjusted by adjusting the value of   and 

test its effect on protocol resiliency against slandering attacks 

such as good-mouthing and bad-mouthing attacks. Here, 

   ( ) is node i’s trust toward node k as a recommender (for 

node i to judge if node k provides correct information). The 

recommendation    
       ( ) provided by node k to node i 

about node j depends on if node k is a good node. If node k is a 

good node,    
       ( ) is simply equal to    

 ( )   If node k is a 

bad node, it can provide    
       ( ) = 0 when node j is a good 

node by means of bad-mouthing attacks, and can provide 

   
       ( ) = 1 when node j is a bad node by means of 

good-mouthing attacks. In our analysis we assume this 

worst-case attack behavior to test our protocol resiliency. The 

new trust value    
 ( ) obtained from Equation 2 would be the 

average of the combined trust values of past trust information 

and recommendations collected at time t. 

B. CH-to-SN Trust Evaluation 

Each SN reports its trust evaluation toward other SNs in the 

same cluster to its CH. The CH then applies a generic statistical 

analysis method (such as Equation 4 below) to    ( ) values 

received to perform CH-to-SN trust evaluation towards node j. 

Further, the CH can also leverage    ( ) values received to 

detect if there is any outlier as an evidence of good-mouthing or 

bad-mouthing attacks. Based on the resulting CH-to-SN trust 

evaluation result toward node j, the CH determines whether 

node j is untrustworthy and needs to be excluded from sensor 

reading and routing duties. Specifically a CH, c, when 

evaluating a SN, j, will perform intrusion detection by 

comparing the system minimum trust threshold     with node 

j’s trust value,    ( ), obtained by: 

   ( )     
          ( )    

{   ( )} (4)  

where    is the set of SNs in the cluster. CH c will announce j 

as compromised if    ( ) is less than      otherwise, node j is 

not compromised. Note that we only take into account the trust 

values received from those SNs which are considered 

trustworthy by the CH. That is, CH c will take a trust 

recommendation from node i only if    ( )     . Later in 

Section VIII we will illustrate a statistical analysis 

methodology to implement trust-based intrusion detection as an 

application to hierarchical trust evaluation.  

C. Station-to-CH Trust Evaluation 

Here we first note that the transmission power and capacity 

of CHs generally are higher than those of SNs. Thus, the 

one-hop radio range of CHs is higher than that of SNs. Also a 

CH after gathering and possibly aggregating sensor readings 

will forward the information hop-by-hop to the base station 

through other CHs. Thus, there are a lot of interaction 

experiences between two neighbor CHs in a WSN, just like two 

SNs in a cluster. Consequently, CH-to-CH peer evaluation will 

be conducted in a similar way as SN-to-SN peer evaluation, as 

discussed in Section IV.A. Each CH reports its trust evaluation 

toward other CHs in the WSN to the base station which is 

infallible with physical protection. The CH commander resided 

on the base station then applies the same statistical analysis 

method (as in Equation 4) to    ( ) values received from all 

CHs in the system to perform station-to-CH trust evaluation 

towards CH j. The base station determines whether CH j is 

considered untrustworthy and needs to be excluded from 

cluster head duties.  

V.   PERFORMANCE MODEL 

We develop a probability model based on stochastic Petri 

nets (SPN) [3] techniques to describe the behavior of each SN 

or CH in the WSN described in Section III. It provides a basis 

for obtaining ground truth status of nodes in the system, thereby 

allowing us to derive objective trust against which subjective 

trust obtained as a result of executing our hierarchical trust 

management protocol can be checked and validated. We use 

SPN as our analytical tool due to its capability to represent a 

large number of states for complex systems where an 

underlying model is a semi-Markov or Markov model. Further, 

we develop a novel iterative hierarchical modeling technique to 

avoid state explosion problems and to yield efficient solutions.  

Figure 1 shows the SPN model that describes the behavior of 

a SN (or a CH). We consider a heterogeneous WSN consisting 

of NSN SNs uniformly distributed in an M×M square-shaped 

operational area. Each SN is attached to a CH based on its 

location and so the system will have NCH clusters each with a 

CH. CHs and SNs have radio range of R and r, respectively. 

The trust update interval is     Nodes are stationary after the 

initial deployment. 

Energy SN

CN DCN

T_ENERGY T_SELFISH T_REDEMP

T_COMPRO T_IDS
 

Figure 1: SPN Model for a Sensor Node or a Cluster Head. 

Below we explain how we construct the SPN model for 

describing the behaviors of a single node and how we compose 

a performance model for the entire WSN using a number of 

such SPN models (one for each node in the system). 

Energy: Place Energy indicates the remaining energy level 

of the node. The initial number of tokens in place Energy is set 

to      . A token will be released from place Energy when 

transition T_ENERGY is triggered. The rate of transition 

T_ENERGY indicates the energy consumption rate. A CH 

consumes more energy than a SN. The energy consumption rate 
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is also affected by a node’s state. It is lower when a node 

becomes selfish. It is higher when a node is compromised 

because it takes energy to perform attacks. We denote      , 

       and                as the energy consumption rates 

per    time for a normal SN, a normal CH, and a compromised 

node, respectively, which can be obtained by analyzing 

historical data with                               The 

energy consumption rates for a selfish SN and a selfish CH are 

       and        per    time unit, respectively, with 

      denoting the energy saving ratio of a selfish node 

compared with a normal node. 

Selfishness: In our WSN system model, a node may become 

selfish to save energy. A selfish node may stop reading data and 

drop packets it receives. An unselfish node may turn selfish in 

every trust evaluation interval    according to its remaining 

energy and the number of unselfish neighbors around. A selfish 

node may redeem itself as unselfish to achieve a service 

availability goal when it senses many selfish neighbor SNs 

around it to balance individual welfare vs. system welfare. We 

model these behaviors by putting a token into place SN when 

transition T_SELFISH is triggered and removing the token 

from place SN when transition T_REDEMP is triggered. A 

token in place SN thus indicates that the node is selfish. A 

node’s selfish probability is modeled by: 

          
         

     

 (   )
         

         

         

 (5)  

where µ is a weight associated with the energy term and (1-µ) is 

the weight associated with the selfish neighborhood term. 

          is energy consumed and       is the node’s initial 

energy level. Thus,                 represents the percentage 

of energy consumed.          
         

           is the percentage of 

unselfish neighbors where          
         

 is the number of 

unselfish neighbors and           is the total number of 

neighbors. A node’s selfish probability tends to be lower when 

a node has more energy and higher when the node has more 

unselfish neighbors as there are sufficient unselfish neighbors 

around to take care of sensor tasks. Thus, the rates of transitions 

T_SELFISH and T_REDEMP are given by             and 

(          )     respectively. All nodes are unselfish initially 

with no token in place SN. We set µ to 0.5 to give equal 

weighting to energy and selfish neighborhood terms for the 

example WSN described in Section III. 

Compromise: A node becomes compromised when 

transition T_COMPRO fires and a token is put in place CN. The 

rate to T_COMPRO is modeled by: 

           
         

           

         
              

 (6)  

where         is the initial node compromise rate which can be 

obtained by first-order approximation based on historical data 

about the targeted network environment. 

         
           

and           
             

 are the numbers of 

compromised and  uncompromised nodes in the neighborhood. 

         
           

          
             

  refers to the ratio of the 

number of compromised 1-hop neighbors to the number of 

uncompromised 1-hop neighbors. Equation 6 models that a 

node is more likely to be compromised when there are more 

1-hop compromised nodes around it due to collusive attacks. 

The hierarchically structured WSN has a trust-based intrusion 

detection system (IDS) in place (see Section VIII). We model 

the IDS behavior through transition T_IDS. A compromised 

node can be caught by IDS with the rate (     )      for 

transition T_IDS where     is the IDS false negative 

probability and      is the IDS detection interval. When a 

compromised node is detected by the IDS, a token will move to 

place DCN. In addition, we model false positives generated by 

the IDS (i.e., diagnosing a good node as a bad node) by 

associating a rate of          with transition T_IDS which is 

enabled only when the node is not compromised, that is, when 

there is no token in place CN. Note that all nodes are good, i.e., 

not compromised, initially. Note that trust-based intrusion 

detection (see Section VIII) will be used for determining IDS 

   and      Also since a compromised node will exhibit 

uncooperative behaviors (not following the protocol), a 

compromised node is selfish. This is modeled by moving a 

token to place SN when a token is moved into CN. Different 

from a selfish node, however, a compromised node will not 

redeem itself to become unselfish again as it is malicious in 

nature. 

The overall performance model for describing the behaviors 

of a WSN consists of NSN SPN subnet models one for each SN, 

and NCH SPN subnet models one for each CH, with vastly 

different energy consumption, selfish/redemption and 

compromise rates. Below we describe how one could leverage 

SPN outputs to obtain subjective trust and objective trust values 

to validate our hierarchical trust management protocol. 

A. Subjective Trust Evaluation 

Recall that under our proposed trust management protocol, 

node i will subjectively assess its trust toward node j,    ( ), 

based on its direct observations and indirect recommendations 

obtained toward node j according to Equations 1 and 2. In 

particular, for the direct trust assessment part when node j is a 

1-hop neighbor of node i, node i will apply intimacy, honesty, 

energy and unselfishness detection mechanisms in the protocol 

design described in Section IV to assess    
        ( ) based on 

direct observations over the time period        Because the 

assessment is direct, assuming that the detection mechanisms 

are effective,    
        ( ) computed by node i will be close to 

actual status of node j at time t, which can be obtained from the 

SPN model output. 

In Table 1, we show how to compute actual status of node j at 

time t and thus    
        ( ) based on assigning status values to 

states in the underlying semi-Markov chain of the SPN model, 

with the state representation of node j being (Energy, CN, DCN, 

SN). Specifically,     
              ( )  is approximated by 

assigning a status value of 0 (representing complete dishonesty) 

to states in which node j is compromised detected (i.e., DCN is 

1) and a status value of 1 (representing complete honesty) to all 
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other states. The reason is that a compromised node must be 

dishonest. The dishonesty detection mechanisms employed by 

node i for direct assessment of node j’s dishonesty, however, 

are at most as good as those employed by the IDS which will 

announce node j as compromised when it identifies node j as 

compromised, i.e., when DCN is 1.    
             ( ) is 

computed by assigning a status value of Energy/Einit to all 

states.    
                    ( ) is computed by assigning a status 

value of 1 to states in which node j is not selfish (i.e., SN is 0) 

and a status value of 0 to states in which node j is selfish (i.e., 

SN is 1).  

Table 1: Status Value Assignments to Compute    
        ( )  

Item Value Condition (of node j) 

   
               ( ) 

a/ c If mark(SN) = 1 AND mark(CN) = 0 

b/ c If mark(CN) = 1 

1 Otherwise 

   
              ( ) 

1 If mark(DCN) = 0 

0 Otherwise 

   
             ( ) mark(Energy)/Einit none 

   
                    ( ) 

1 If mark(SN) = 0 

0 Otherwise 

 

To compute     
               ( )  we first note that status 

information in intimacy is not directly available from the state 

representation. Based on our peer-to-peer trust evaluation 

protocol (Section IV.A),    
               ( ) is computed by the 

number of interactions between nodes i and j over the 

maximum number of interactions between node i and any 

neighbor node over the time period      . If during the period 

there is no interaction between nodes i and j, then 

   
               ( )     Here we predict what 

   
               ( ) would be when there is a normal level of 

interactions of data forwarding activities, conditioning on the 

status of node j, i.e., compromised, selfish or normal. We 

consider four types of interactions during geographic 

forwarding, given that node i is the initiating node: (1) 

Requesting: node i broadcasts a packet delivery request to its 

1-hop neighbors; (2) Reply: nodes that are closer to the 

destination node than node i will reply to node i; (3) Selection: 

node i selects up to L nodes with the highest trust values to 

forward the packet; (4) Overhearing: node i overhears if the 

packet has been forwarded. Node i then keeps track of its 

interaction experiences with node j to compute 

   
               ( )  Let the average numbers of interactions of 

node i with a selfish node, a compromised node and a normal 

node be a, b and c, respectively. The values of a, b, c are 

computed dynamically. Below we predict their values from 

node i’s perspective for the case in which a selfish node drops 

50% of packets and a compromised node drops 100% of 

packets. On the one hand, if node i requests a neighbor to 

forward a packet then (1) the expected number of interactions 

between node i and a selfish node j is 25%×50%×3 because 

there will be three interactions (reply, selection, and 

overhearing) only if the selfish node is in the quadrant closest to 

the destination node (with 25% probability) and does not drop 

the packet (with 50% probability); (2) the expected number of 

interactions between node i and a compromised node j is 0 

because a compromised node discards all requests from node i; 

and (3) the expected number of interactions between node i and 

a normal node j is 25%×3 because there will be three 

interactions only if that node is in the quadrant closest to the 

destination node (with 25% probability). On the other hand, if 

node i receives a request from node j to forward a packet, the 

expected number of interactions will be 25%×2 because from 

node i’s perspective there will be two interactions (reply and 

selection) only if node i is in the quadrant closest to the target 

node. Summarizing above, we have: 

                    

           

              . 

(7)  

Consequently, we compute     
               ( ) by assigning 

a status value of a/c to states in which node j is selfish (i.e., SN 

is 1), b/c to states in which node j is compromised (i.e., CN is 

1), and c/c = 1 to states in which node j is a normal node (SN=0 

and CN=0). 

Here we should emphasize that in practice node i would just 

follow the protocol execution to assess    
        ( )  using 

detection mechanisms designed to assess trust property X based 

on local information. The computational procedure described 

above is to predict    
        ( ) that would have been obtained 

by node i based on the argument that a node’s direct 

observation trust assessment would be close to ground truth. 

Once node i obtains     
        ( )  for X = honesty, energy, 

unselfishness and intimacy, it will compute    
 (  ) based on 

Equation 2 and subsequently    ( ) based on Equation 1 for 

subjective trust evaluation. 

B. Objective Trust Evaluation 

To validate subjective trust evaluation, we compute objective 

trust based on actual status as provided by the SPN model 

output using exactly the same status value assignment as shown 

in Table 1 to yield ground truth status of node j at time t. The 

objective trust value of node j,       ( ), is also a weighted 

linear combination of four trust component values: 

      ( )          
        ( )          

       ( ) 

                          
      ( )          

             ( ) 
(8)  

Note that here        
        ( )       

       ( )       
      ( ) and 

      
             

( )  are objective trust component values, 

reflecting node j’s ground truth status at time t. 

VI. TRUST EVALUATION RESULTS 

In this section, we show numerical results obtained through 

model-based evaluation as described in Section IV. The basis is 

the example WSN described in Section III characterized by a 

set of parameter values listed in Table 2. We consider a WSN 

with 900 SNs (and 81 CHs) evenly spread out in a 900m×900m 

operational area based on uniform distribution. The initial 
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energy lifetime of a SN varies from 360 days to 480 days while 

the CHs have much higher initial energy lifetime ranging from 

720 days to 960 days. The radio ranges of a SN and a CH are 

r=50m and R=150m, respectively. The WSN is assumed to be 

deployed in a hostile environment with the node’s average 

compromising interval in the range of 80 days to 360 days. We 

consider the worst case of good-mouthing attacks (providing 

the highest trust value of 1 for a malicious node) and 

bad-mouthing attacks (providing the lowest trust value of 0 

against a good node). The node is a good node at time t=0 and 

then becomes a bad node based on its compromise rate. The 

false positive and negative probabilities (Pfp and Pfn) are in the 

range of 1% to 5% as a result of trust-based intrusion detection 

(see Section VIII). Because of the anticipated long system 

lifetime, to save energy the trust update interval    is set to 80 

hours. Thus, the amount of energy consumed per     time for a 

normal SN is also set to 80 hours. The amount of energy 

consumed per     time for a normal CH and a compromised 

node are        = 160 hours and                = 240 hours, 

respectively. The energy saving ratio of a selfish node relative 

to a normal node,  , is 1/3 denoting that a selfish node will only 

consume energy at 1/3 of the speed of its unselfish counterpart. 

After 5-10 runs of trust update from the initial state, the test 

score quickly stabilizes but does not converge to a single value 

because we consider a dynamic environment in which trust in 

energy and honesty is decreasing over time due to energy 

consumption and node capture.   

Table 2: Default Parameter Values Used. 

Para

m 

Value Para

m 

Value Param Value 

M 900m R 150m r 50m 

NSN 900 NCH 81 Δt 80hrs 

α [0,1] β [0,100] 1/λc-init [80,360]days 

ΔE-SN 80hrs ΔE-CH 160hrs ΔE-compromised 240hrs 

ρ 1/3 TIDS 80hrs  Pfp,Pfn [1-5]%   

Einit [360,480] days for SNs, [720,960] days for CHs. 

 

Our trust evaluation consists of two parts. The first part is 

about trust composition and trust aggregation. The second part 

is about trust formation. Our assertion is that, because different 

trust properties have their own intrinsic trust nature and react 

differently to trust decay over time, each trust property X has its 

own best α and β values under which subjective assessment of 

   
 ( ) from Equation 2 would be the most accurate against 

actual status of node j in trust property X.  Once we are assured 

of the accuracy of each trust property X, we can then address the 

trust formation issue for each application in hand, i.e., 

identifying the best way to form trust out of individual QoS and 

social trust properties such that the application performance is 

maximized. We will evaluate trust formation in Section VII and 

Section VIII when we apply hierarchical trust management to 

trust-based geographic routing and trust-based intrusion 

detection.  

Recall that a higher α value indicates that subjective trust 

evaluation relies more on direct observations compared with 

past experiences while a higher β value indicates that subjective 

trust evaluation relies more on indirect recommendations 

provided by the recommenders compared with past 

experiences. Below we present CH-to-SN trust evaluation 

results based on peer-to-peer trust evaluation results reported 

by SNs in the same cluster, and compare them against objective 

trust evaluated based on the SN’s actual status. We omit 

reporting station-to-CH evaluation results here as the same 

trends have been observed.   

 
Figure 2: Effect of α and β on Accuracy of Subjective Trust 

Evaluation for X=Intimacy. 

Figure 2 shows the effect of α and β on the mean square error 

between subjective trust obtained from Equation 2 and 

objective trust obtained from actual status for X=intimacy. The 

diagrams for other trust properties exhibit a similar trend and 

are not shown here due to space constraints. We vary α from 0 

to 1 and β from 0 to 100 to cover all possible values. We see that 

as α increases (using a larger α indicates that subjective trust 

evaluation relies more on direct observations compared with 

past experiences), the mean square error first decreases and 

then increases. Subjective trust initially approaches objective 

trust as more recent direct observations are used. However, 

there is a crossover point (e.g., α ≥ 0.8 when β = 10) after which 

subjective trust deviates more from objective trust because of 

underestimation. On the other hand, as β increases (using a 

larger β indicates that subjective trust evaluation relies more on 

indirect recommendations provided by recommenders 

compared with past experiences), subjective trust initially 

approaches objective trust, but deviates more from objective 

trust after a crossover point (e.g., β ≥ 2 when α=0.6) is reached. 

This reason is that using too much indirect recommendations in 

subjective trust evaluation gives malicious nodes a higher 

change to successfully launch good-mouthing and 

bad-mouthing attacks. Figure 2 shows that using α=0.8 and β=2 

yields subjective trust values very close to objective trust values 

in X=intimacy with the mean square error less than 0.3%.  

The best α and β values intrinsically depend on the nature of 

each trust property as well as a given set of parameter values as 

those listed in Table 2 characterizing the environmental and 

operational conditions. We summarize the best α and β values 

for each trust property in Table 3. The last column “MSE” 

shows the mean square error between subjective trust and 

objective trust in trust property X. Since the trust score in 

individual trust property X reflects the actual trust value in 

property X, the combined trust score given by Equation 1 will 

also reflect the actual trust value given by Equation 8 (i.e., with 

MSE ≤ 0.9% for any combination). Overall, we observe a close 

correlation between subjective trust evaluation and objective 
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trust evaluation, thus supporting our claim that subjective trust 

obtained as a result of executing our proposed hierarchical trust 

management protocol approaches true objective trust. 

Table 3: Best α and β Values for Trust Property X. 

Trust Property α β MSE  

Intimacy 0.8 2 0.3% 

Honesty 0.7 1 0.9% 

Energy 0.6 1 0.1% 

Unselfishness 0.9 5 0.1% 

VII. TRUST-BASED GEOGRAPHIC ROUTING 

In this section, we apply the proposed hierarchical trust 

management protocol to trust-based geographic routing as an 

application. In geographic routing, a node disseminates a 

message to a maximum of L neighbors closest to the destination 

node (or the sink node). In trust-based geographic routing, 

node i forwards a message to a maximum of L neighbors not 

only closest to the destination node but also with the highest 

trust values    ( )  We conduct a performance analysis to 

compare our trust-based geographic routing protocol with 

baseline routing protocols, namely, flooding-based [33] and 

traditional geographic routing. In flooding-based routing, a 

node floods a message to all its neighbors until a copy of the 

packet reaches the destination node. It yields the highest 

message delivery ratio and the lowest message delay at the 

expense of the highest message overhead. 

Recall that for all routing protocols, the source SN first 

forwards a message to its CH (through multiple hops if 

necessary). Then, the CH forwards the message to the sink node 

through other CHs. Without loss of generality, we normalize 

the average delay for forwarding a message between two 

neighbor SNs to τ. The average delay between two neighbor 

CHs is normalized to 2τ. We collect data for delivering 1000 

messages, each with a source sensor and a sink node randomly 

selected. We consider two cases: L=1 and L=2 for both 

trust-based geographic routing and geographic routing. In the 

comparative analysis, we vary the degree of selfish or 

compromised nodes from 0% to 90%. Note that 30% of 

compromised or selfish nodes means that 30% of nodes are 

compromised or selfish in the system without a fixed ratio 

being used for these two types of nodes. We use parameter 

values as listed in Table 2 for characterizing environmental and 

operational conditions. We also use the optimal set of (α, β) for 

each individual trust property as identified in Section VI (see 

Table 3) to ensure subjective trust is close to objective trust. 

A. Best Trust Formation to Maximize Application Performance 

We first identify the best way to form trust out of social and 

QoS trust properties (i.e., identifying weights to assign to 

individual trust properties) so that the performance of 

trust-based geographical routing is maximized. Without loss of 

generality and for ease of disposition, we assume that the 

weights assigned to social trust properties, i.e., intimacy and 

honesty, are the same each of 0.5×wsocial, and the weights 

assigned to QoS trust properties, i.e., energy and unselfishness, 

are the same each of 0.5×wQoS with  wsocial + wQoS = 1. Figure 3 

shows the effect of wsocial on the message delivery ratio of 

trust-based geographic routing with varying population 

percentage of compromised or selfish nodes. We observe that 

using solely either social trust (wsocial =1) or QoS trust (wsocial 

=0) yields a lower message delivery ratio, while considering 

both social and QoS trust properties helps generate a higher 

message delivery ratio. Figure 3 identifies that for the example 

WSN described in Section III characterized by a set of 

parameter values listed in Table 2, the maximum message 

delivery ratio performance is obtained when wsoical=0.4 and 

wQoS=0.6. Hence, this weight setting represents the best trust 

formation in the trust-based geographical routing application.  

 
Figure 3: Effect of wsocial on Message Delivery Ratio. 

B. Dynamic Trust Management 

Figure 3 illustrates the utility of dynamic trust management 

and application-level trust optimization for trust-based 

geographic routing applications, i.e., when the system senses 

that the hostility expressed in terms of the percentage of 

compromised or selfish nodes (the Y coordinate of Figure 3) is 

increasing, it can dynamically adjust wsoical (the X coordinate) 

to optimize application performance in message delivery ratio 

(the Z coordinate of Figure 3). 

 

 
Figure 4: Message Delivery Ratio. 

C. Performance Comparison 

Figure 4 shows the message delivery ratio under various 

routing protocols. Our trust-based geographic routing protocol 

(L=1 or L=2) outperforms traditional geographic routing (L=1 

or L=2) and approaches flooding-based routing, especially as 

the percentage of compromised or selfish nodes increases. The 

delivery ratio for all three routing protocols drops below 0.1 

when the percentage of compromised or selfish nodes is higher 

than 80%. We observe that even the message delivery ratio of 
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our trust-based geographic routing without redundancy (L=1) 

is higher than that of the geographic routing with redundancy 

(L=2) when the percentage of compromised or selfish nodes is 

higher than 40%. We attribute this to the ability of trust-based 

geographic routing being able to successfully avoid forwarding 

messages to untrustworthy nodes based on    ( ) values 

obtained from our hierarchical trust management protocol. 

Figure 5 shows the average delay for those messages that are 

successfully delivered under various routing protocols for a 

special case in which the source SN and the sink node are at 

least a distance (700m) away. We create this case to ensure 

there are sufficient intermediate nodes on any path to reach the 

sink node. We first observe that the message delivery delay 

increases as the percentage of compromised or selfish nodes 

increases due to more messages being dropped by 

compromised or selfish nodes resided on shorter routes. 

Flooding-based routing has the best performance since it can 

always find the shortest path to reach the destination sink node 

through flooding. Geographic routing (L=1 or L=2) has almost 

the same performance with flooding-based routing due to its 

greedy nature for selecting nodes closest to the destination sink 

node for message forwarding. However, geographic routing 

with L=1 fails to deliver any message when the percentage of 

compromised or selfish nodes is higher than 50% because there 

is no short route to reach the destination node over a long 

distance. Trust-based geographic routing with L=1 has the 

highest delay but with L=2 approaches the performance of 

flooding-based routing and geographic routing. In general, 

traditional geographic routing performs better than trust-based 

geographic routing in message delay. This is expected because 

unlike traditional geographic routing, trust-based geographic 

routing tends to find forwarding nodes that are trustworthy but 

possibly not residing on the most direct path to the sink node. 

Consequently it incurs a higher delay compared with traditional 

geographic routing. However, we note that once we allow more 

message copies (e.g., L=2) to be disseminated by a node to its 

neighbors, trust-based geographic routing just like traditional 

geographic routing quickly approaches the ideal performance 

bound in message delay, especially as the percentage of 

compromised or selfish nodes increases.  

Figure 6 compares message overhead in terms of the number 

of message copies propagated before the destination sink node 

receives one copy. Both geographic routing and trust-based 

geographic routing perform significantly better than 

flooding-based routing. Trust-based geographic routing incurs 

more message overhead than traditional geographic routing 

because the path selected by trust-based geographic routing is 

often the most trustworthy path, not necessarily the shortest 

path. Nevertheless, we observe that the overhead increase of 

trust-based geographic routing over traditional geographic 

routing is small compared with that of flooding-based routing 

over traditional geographic routing. The system thus can 

effectively trade off message overhead for message delivery 

ratio and message delay. Finally, we observe that the number of 

message copies propagated for all three routing protocols is 

close to 3 when the percentage of compromised or selfish nodes 

is higher than 80%. The reason is that the message can be 

successfully delivered only when the source node and the sink 

node are close to each other. Otherwise, there is a high 

probability that compromised or selfish nodes reside on a long 

route will drop the message copies received. 

Overall Figures 4-6 demonstrate that our trust-based 

geographic routing protocol with L=2 can significantly improve 

the delivery ratio and message delay (close to those of 

flooding-based routing) in the presence of compromised or 

selfish nodes, without sacrificing too much message overhead. 

Here we note that the system can effectively trade off message 

overhead (energy consumption) for high delivery ratio and low 

message delay by adjusting the level of redundancy (L). As L 

increases the performance of our trust-based geographic 

routing protocol in delivery ratio and message delay will 

approach that of flooding-based routing. 

 
Figure 5: Message Delay with Source Sensor and Sink Node 

at a Distance Away. 

 

 
Figure 6: Message Overhead. 

VIII. TRUST-BASED INTRUSION DETECTION 

    In this section we apply hierarchical trust management to 

trust-based intrusion detection as another application. We first 

describe the algorithm that can be used by a high-level node 

such as a CH (or a base station) to perform trust-based intrusion 

detection of the SNs (or CHs respectively) under its control. 

Then we develop a statistical method to assess trust-based IDS 

false positive and false negative probabilities.  

Without loss of generality, in this section we illustrate how a 

CH performs trust-based intrusion detection on SNs in its 

cluster. A similar treatment applies to a base station performing 

trust-based intrusion detection on CHs in a WSN. 

A. Algorithm for Trust-Based Intrusion Detection 

Our trust-based IDS algorithm is based on selecting a system 
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minimum trust threshold,      below which a node is 

considered compromised and needs to be excluded from sensor 

reading and routing duties. The underlying principle is that a 

compromised node will exhibit several social and QoS trust 

behaviors, i.e., low intimacy and low honesty (for social trust) 

as well as low energy and low unselfishness (for QoS trust), 

thus exposing itself as a compromised node under hierarchical 

trust evaluation.   

A CH performs CH-to-SN trust evaluation toward node j 

after receiving    ( ) values from all SNs in the cluster. More 

specifically a CH, c, when evaluating a SN, j, will compute 

node j’s trust value,    ( ), by Equation 4. CH c will announce 

node j as compromised if    ( ) is less than      otherwise, 

node j is not compromised.  

B. Statistical Analysis 

Consider that the trust value toward node j is a random 

variable following normal distribution commonly used for 

statistical analyses with mean value   ( ). Also consider that 

there are n sample values of     ( )  submitted by n SNs 

considered trustworthy by the CH. With these n sample values, 

  ( ) is related to the sample mean, sample standard deviation 

and true mean following t-distribution with n - 1 degree of 

freedom as follows: 

  ( )  
   ( )̅̅ ̅̅ ̅̅ ̅    ( )

  ( ) √ 
 (9)  

where     ( ) ̅̅ ̅̅ ̅̅ ̅̅    ( )  and   ( ) are the sample mean, sample 

standard deviation, and true mean of node j’s trust value at time 

t, respectively. Thus, the probability that node j is diagnosed as 

a compromised node at time t is: 

  ( )    (  ( )     ) 

   (  ( )  
   ( )̅̅ ̅̅ ̅̅ ̅     

  ( ) √ 
) 

(10)  

The false positive of the IDS can be obtained by calculating 

  ( )  under the condition that node j is not compromised. 

Similarly, the false negative probability can be obtained by 

calculating     ( )  under the condition that node j is 

compromised. 

  
  ( )    (  ( )  

   
 ( )̅̅ ̅̅ ̅̅ ̅̅     

  
 ( ) √ 

) (11)  

  
  ( )    (  ( )  

   
 ( )̅̅ ̅̅ ̅̅ ̅     

  
 ( ) √ 

) (12)  

Equations 11 and 12 above give the false positive 

probability,   
  ( ), and false negative probability,   

  ( ), of 

our proposed trust-based intrusion detection algorithm at time t, 

respectively.    
 ( )̅̅ ̅̅ ̅̅ ̅̅  and   

 ( ) are the mean value and standard 

deviation of node j’s trust values reported by other nodes in the 

same cluster, under the condition that node j is not 

compromised.    
 ( )̅̅ ̅̅ ̅̅ ̅ and   

 ( )  are the mean value and 

standard deviation, under the condition that node j is 

compromised.    
 ( ) and     

 ( )  can be easily obtained by 

applying the Bayes’ theorem to the calculation of     ( ). 

  
  ( ) and    

  ( )  vary over time. The average false 

positive and false negative probabilities, denoted by   
  

 and 

  
  

can be obtained by weighting on the probability of node j 

being compromised at time t, i.e., 

  
  

 
∑ (  

  ( ) (    
 ( )))  

   

∑ (    
 ( ))  

   

 (13)  

  
  

 
∑ (  

  ( )  
 ( ))  

   

∑   
 ( )  

   

 (14)  

where   
 ( ) is the probability that node j is compromised at 

time t which can be obtained from the SPN model output, and 

SL is the anticipated WNS lifetime period over which the 

weighted calculation is performed. 

C. Best Trust Formation to Maximize Application Performance 

Here we identify the best way to form trust out of social and 

QoS trust properties (i.e., identifying weights to assign to 

individual trust properties) and to assign the minimum trust 

threshold, T
th

, so that the performance of trust-based intrusion 

detection is maximized, i.e., both false positives and false 

negatives are minimized. We again consider the example WSN 

described in Section III characterized by a set of parameter 

values listed in Table 2 with its lifetime SL=150 days.  

Figure 7 shows max(Pfp, Pfn) vs. T
th

 and wsocial in this system 

as a result of executing our trust-based intrusion detection 

algorithm, where Pfp and Pfn are the time-averaged false 

positive and false negative probabilities as calculated from 

Equations 13 and 14, respectively, over all nodes in the system. 

We observe that as the minimum trust threshold T
th

 increases, 

the false negative probability Pfn decreases while the false 

positive probability Pfp increases. More importantly, there 

exists an optimal trust threshold T
th,opt

 at which both false 

negative and false positive probabilities are minimized. As trust 

formation affects how trust is formed from social and QoS trust 

components, we also observe that T
th,opt

  is sensitive to wsocial. 

Figure 7 identifies that for the example WSN when T
th,opt

 = 0.6 

and wsocial = 0.6, both false positive and false negative 

probabilities are minimized to fall below 5%. 

 
Figure 7: Effect of T

th
 and wsocial on max(Pfp, Pfn). 

0

0.3

0.6

0.9

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

trust 
threshold 

(Tth) 

m
a

x(
P

fp
 ,P

fn
) 

weight of social trust 
(wsocial) 

False Positive False Negative 



 13 

 
Figure 8: Optimal Trust Threshold vs. System Lifetime. 

 

D.  Dynamic Trust Management 

Figure 7 is for the case in which the expected system lifetime 

SL is 150 days of operations. Figure 8 shows the optimal trust 

threshold T
th,opt

 as SL varies. Here, the value of wsocial is fixed to 

0.6 to isolate its effect. For a WSN with a prolonged operation, 

each SL value represents a time point characterized by a distinct 

hostility level such as the percentage of compromised and 

selfish nodes. We observe that as SL increases, the value of 

T
th,opt

 at which the false alarm probability is minimized 

decreases. The reason is that a node’s trust value decreases over 

time due to energy depletion even if the node is not 

compromised. The system sensing hostility change at runtime 

can apply the best wsocial and T
th,opt

 setting identified from static 

analysis to optimize application performance in false alarm 

probability. 

E. Performance Comparison 

We perform a comparative performance analysis of our 

trust-based intrusion detection algorithm with two anomaly 

detection schemes, namely, weighted summation [18] and data 

clustering [19]. We use the ROC (Receiver Operating 

Characteristic) curve [19] as the performance metric since both 

false negative probability (Pfn) and false positive probability 

(Pfp) are critical measures and ROC objectively reflects the 

sensitivity of detection probability (i.e., 1 - Pfn) as the false 

positive probability varies.  

The first baseline anomaly detection scheme is weighted 

summation-based IDS [18]. In this approach, each SN has a 

weight associated with it and this weight changes dynamically, 

reflecting the trustworthiness of the SN’s output relative to the 

average output out of all SNs. We use the trust recommendation 

value from each SN toward a particular SN, say, SNi, as the 

SN’s output. The average trust recommendation value is 

obtained by a summation of the trust recommendation values 

weighted by the respective weights from all SNs except SNi. If 

the trust recommendation value from a SN deviates too much 

from the average value, the weight value associated with that 

SN decreases by θ (weight penalty); otherwise the weight value 

remains the same. The weight value is updated dynamically 

until it falls below a weight threshold (wt), in which case the 

corresponding SN is reported as malicious. The weight penalty 

(θ) and weight threshold (wt) largely determine the false 

positive probability. We vary θ and wt over the range of [0, 1] to 

obtain the detection probability as the false positive probability 

varies.  

The second baseline anomaly detection scheme is fixed 

width data clustering-based IDS [19]. In this approach, the 

maximum radius of a cluster (cw) is defined and a data point is 

put into a cluster if the distance between the centroid of the 

cluster and this data point is smaller than cw; otherwise this data 

point makes a new cluster. Data points that exhibit dissimilarity 

with others will tend to cluster into a small cluster or standalone 

by themselves. These lone data points are reported as 

malicious. To apply fixed width data clustering-based IDS, we 

use trust values of SNs as collected by a CH as data points for 

clustering. As the maximum radius of a cluster cw affects the 

false positive and negative probabilities, we vary cw over the 

range of [0, 0.2] to collect the performance results. 

In our trust-based intrusion detection algorithm, the false 

positive and negative probabilities essentially depend on the 

minimum trust threshold (T
th

) and the weight of social trust 

(wsocial). We vary these two parameters over the range of [0, 1] 

to collect the performance results.  

 

 
Figure 9: Performance Comparison of IDS Schemes in 

Detection Probability vs. False Positive Probability. 

 

In Figure 9 we compare the ROC curves of our trust-based 

IDS algorithm against those by weighted summation-based IDS 

and fixed width data cluster-based IDS for SL=240 days. The 

results presented are the best results of all three IDS schemes by 

fine-tuning the design parameters as described above under the 

same network environment characterized by Table 2.  

We observe from Figure 9 that as a design tradeoff, as the 

false positive probability increases, the detection probability 

increases for all IDS schemes. We observe that our trust-based 

IDS algorithm outperforms both weighted summation-based 

IDS and fixed width data clustering-based IDS, especially 

when the false positive probability is limited to 5% which is 

considered desirable in intrusion detection. The strength of our 

trust-based IDS algorithm is especially pronounced when the 

false positive probability approaches zero. This is very 

desirable since our trust-based IDS algorithm can still maintain 

a high detection probability (>90%) when the false positive 

probability is close to zero at which the detection probability of 

anomaly detection-based IDS schemes drops sharply.  
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IX. CONCLUSION 

In this paper, we proposed a hierarchical dynamic trust 

management protocol for cluster-based wireless sensor 

networks, considering two aspects of trustworthiness, namely, 

social trust and QoS trust. We developed a probability model 

utilizing stochastic Petri nets techniques to analyze the protocol 

performance, and validated subjective trust against objective 

trust obtained based on ground truth node status. We 

demonstrated the feasibility of dynamic hierarchical trust 

management and application-level trust optimization design 

concepts with trust-based geographic routing and trust-based 

IDS applications, by identifying the best way to form trust as 

well as use trust out of individual social and QoS trust 

properties at runtime to optimize application performance. The 

results indicated that our trust-based geographic routing 

protocol performs close to the ideal performance of 

flooding-based routing in delivery ratio and message delay 

without sacrificing much in message overhead compared with 

traditional geographic routing protocols which do not use trust. 

Our trust-based IDS algorithm outperforms traditional 

anomaly-based IDS techniques in the detection probability 

while maintaining sufficiently low false positives. 

There are several future research directions, including (a) 

devising and validating a decentralized trust management 

scheme for autonomous WSNs without base stations; (b) 

investigating the impact of the cluster size and the trust update 

interval to the protocol performance and lifetime of a given 

WSN; and (c) investigating the feasibility of applying 

hierarchical trust management to more dynamic networks such 

as mobile WSNs, mobile cyber physical systems, or MANETs. 
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