
Science, Computational Science, and Comjmter 
Science: At a Crossroads 

he U.S. Congress passed the High Performance Computing and 

Communications Act, commonly known as the HPCC, in December 1991. 
This act focuses on several aspects of computing technology, but two have 
received the most attention: computational science as embodied in the 
Grand Challenges (Table 1) and the National Research and Educational 
Network (NREN). The Grand Challenges are engineering and scientific 
problems considered tital to the economic well-being of the U.S. Many of 
these problems, such as drug design and global climate modeling, have 
worldwide impact. The NREN is to be an extremely high speed network, 
capable of transmitting in the terabit-persecond range--approximately ten 
times faster than we can currently transmit data. The exact goals of the HPCC 
are published in a pamphlet and updated annually [7] 

The science and engineering components of the HPCC require an inter- 
disciplinary approach to solving very difficult problems. The solutions 
require the concerted actions of physical scientists, engineers, mathematical 
scientists, and computer scientists. Computational science embraces this 
collaborative effort among many diverse disciplines. In the final analysis, the 
“answer” may have to be pieced together from the many viewpoints. 

Our purpose is to ask whether today’s computer scientists are able to take 
up the challenge of computational science. Some might argue that compu- 
tational science is not an interest of computer science; that current areas of 
interest comprise the total domain. Indeed, it is strange that one has to argue 
for scientific applications as a part of computer science, since, after all, 
modern computing’s roots are in scientific and engineering applications. 

An exact definition of computational science is open to debate. There are 

many programs in the U.S. and elsewhere that use the term, and each 
program probably has its own view of computational science. We outline the 
Clemson University view of computational science as one possible approach. 
That view recognizes three components to computational science: applica- 
tions, algorithms, and architectures. We visualize this as a pyramid supporting 
the science and engineering. Applications need not be restricted to the 
traditional science and engineering applications; for example, complex 
econometric models can also benefit from computational science. 

The conduct of computational science, in the Clemson view, is inter- 
disciplinary. This interdisciplinary thinking demands that the constituent 
disciplines (physical sciences, engineering, mathematics, computer science) 
maintain their autonomy. Within computational science, a computer 
scientist retains expertise in computer science, but emphasizes applications 
in science or engineering. 

Although computationaJ science is not for every computer scientist, 
computational science is an idea whose time has come-again. 
Our premises: 

1. Computational science is addressing problems that have important 
implications for humankind. These problems are complex and their 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F198366.198386&domain=pdf&date_stamp=1994-12-01












Ultimately, we see the academic involvement in computational 

science as spanning high school. 

undergraduate, and graduate studies. 

Checking my bookshelf tw texts used 

in the data structures-algorithm 
c”u,-ses, 1 find not one of the five “sea 
the word “optimal”; it dots not ap- 
pear in the index ol’any of the fix. 1 
theu looked for the word “average.” 
Two did not ux the term at all. Tw” 
have wbrcctions on average case 
analysis. One actually did wmr dcri- 
vations. Nonr suggratrd any empiri- 
cal validation. The concept of “opti- 
mat” is central to many scientific and 
cnginrcring disciplines. 

As another example, I computed 
the amount ot scientific and cngi- 
neering literature indexed in the 
ACM Qmiu 10 Com$~uling Lilumlrrr~ [I]. 

There were 377 pages used to list the 
literature by CR catrgory. Only 17 
pages (about 4.5 percent) werr 
needed for the 3.2 Physical Sciences 
and Engineering catrgory, but 35 
pages were devoted to “information 

procrssing” applications. Also inler- 
rsting is the fact that only tw” pages 
were devoted to numerical tincar at- 
gebra. Why is so much artention paid 
t” business applications? And why is 
so little attention paid t” engineering 
and scientific applications? 

We would argue the following: we 
should USC scientific, mgincrring, 
and mathematical contexts precisely 

because such contexts represent “at- 
ural subject areas that the student al- 
ready understands. After all, we live 
in a physical world. For example: 

l A natural--and perhaps the sim- 
plest-way to approach parallelism 
is through simple numerical mod- 
els. Nature is inherently parallel, 
and mat students have personally 
cxprrirnccd the phenomena that 
are being modeled. 
l Natural questions of correctness 
of computation are usually evident 
in simptc numerical probtcms. 
l The vagaries of iinitenrss can be 

easily demonso-ated in small, easy- 
to-understand programs. 
l The validation of computer 

models gives cmp&zal import t” 
programs and is a natural drvctop- 
ment ground Sor software testing 
C”“Cepts. 
l Simulations of physical systema 
are far easier t” justify and explain 
than simulations of non-physical 

systems. 
l Some algorithms~simulated .w 
mating and generic algorithms, fm 

example--are derived firom physical 
principles. If the underlying physics 
or biol”gy is understood, the atgo- 
rithm is understood intuitively. 

Lack Of Emphasis by Faculty 
The preceding points could bc randy 
overcome if faculty put rmphasis on 
the use of scientific principles and 
proper mathematics. But how many 
times have we dismissed a difficult 
marhematicat point as “useless” when 

it realty is “too hard” to teach or be- 
cause it is hard t” understand? The 
message is clear to the studcnt: sci- 
ence and mathematics are neither 
interesting nor important “r.just to” 
difficult. More fundamental, diff~wtt 
details can be dismissrd as insignifi- 
cant, leading the students into a false 
sense of security (“IS you ignore thr 

hard parts, they cannot hurt you.“). 
With the possible exception of vi- 

sualization, computer science has 
been at odds with acirncc and mgi- 
neering interests. While there are 
occasional calls for “more mathemat- 
ics” in the computer science curric- 
ula, there are just as many who la- 
ment the inclusion of mathematics. 
Really, now: what is the relationship 
of mathematics and computer sci- 
ence? Perhaps we would like it to be 

that “Keal computer scientists don‘t 
do math-or databases, either.” 

There does seem t” be bad blood 
between the groups; for example, we 
have all heard pronouncements on 
the programming language issue. At 
a recent conference, the author par- 
ticipatcd in a panel on computational 
science. One computer scientist put 

out the suggestion tha Foruan 
should be abolished--without regard 
to the fact that the community has 
many welt-tested, well-understood 
programs in Fortran, and that most 

scientists and engineers program 
only in Fortran. The argument was 
that programs in a newer language 
would br so much bcttcr because of 
thr work in vectoricing. The scientista 
counter-and I am afraid we are not 
hearing this argument welt [14]- 
that those old, empirically validated 
programs are the purpose ofprogram- 
m&g. Catrulating the wrong answer 

quickly is not any help. Programs are 
not the &ject of science, knowledge is. 

Those old, antiquatrd programs are 
well tested and agree with the empiri- 
cal relations observed in the real 
world. We in computer science are 
forgetting the Hamming dictum [lo]: 

The language debate, if indeed it IS a 
debate, will not just go away. But arc 
WC asking the right questions [14]? If 
we continue with an attitude [14] that 
the wartd is anxiously waiting for the 
next program-or programming 

language-we wilt not endure as a 
discipline. If we continue imbuing 
our students with this attitude, we 
will continue t” sex declining enrolt- 
ments as the sciences and engineer- 
ing disciplines draw the best and the 
brightest. We also run the risk that 
the application disciplines wilt alter 
their own curricula t” embrace the 
useful parts of computer science. 

The Results 

The result of these and orher facrors 
is that computer science (or perhaps 
even computer engineering) students 
do not understand science and are ill 
equipped t” deal with scientific and 
engineering software. However, com- 
puter science students are not irre- 
w&ably lost t” science. The author 
has been involved, along with mathe- 












