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Science: Rt a4 Crossroads

he U.S. Congress passed the High Performance Computing and
Communications Act, commonly known as the HPCC, in December 1991.
This act focuses on several aspects of computing technology, but two have
received the most attention: computational science as embodied in the
Grand Challenges (Table 1) and the National Research and Educational
Network (NREN). The Grand Challenges are engineering and scientific
problems considered vital to the economic well-being of the U.S. Many of
these problems, such as drug design and global climate modeling, have
worldwide impact. The NREN is to be an extremely high speed network,
capable of transmitting in the terabit-persecond range —approximately ten
timnes faster than we can currently transmit data. The exact goals of the HPCC
are published in a pamphlet and updated annually [7].

The science and engineering components of the HPCC require an inter-
disciplinary approach t solving very difficult problems. The solutions
require the concerted actions of physical scientists, engineers, mathematical
scientists, and computer scientists. Computational science embraces this
collaborative effort among many diverse disciplines. In the final analysis, the
“answer” may have to be pieced together from the many viewpoints.

Our purpose is to ask whether today’s computer scientists are able to take
up the challenge of computational science. Some might argue that compu-
tational science is not an interest of computer science; that current areas of
interest comprise the total domain. Indeed, it is strange that one has to argue
for scientific applications as a part of computer science, since, after all,
modern computing’s roots are in scientific and engineering applications.

An exact definition of computational science is open o debate. There are
many programs in the U.S. and elsewhere that use the term, and each
program probably has its own view of computational science. We outline the
Clemson University view of computational science as one possible approach.
That view recognizes three components to computational science: applica-
tions, algorithms, and architectures. We visualize this as a pyramid supporting
the science and engineering. Applications need not be restricted to the
traditional science and engincering applications; for example, complex
econometric models can also benefit from computational science.

The conduct of computational science, in the Clemson view, is inter-
disciplinary. This interdisciplinary thinking demands that the constituent
disciplines (physical sciences, engineering, mathematics, computer science)
maintain their autonomy Within computational science, a computer
scientist retains expertise in computer science, but emphasizes applications
in science or engineering,

Although computational science is not for every computer scientist,
computational science is an idea whose time has come—again.
Our premises:

1. Computational science is addressing problems that have important
implications for humankind. These problems are complex and their
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solutions desirable.

2. Computational science is unlikely
to succeed in the near term without
further advances in software and
hardware. Without computer sci-
ence involvement, the solutions to
these problems will take much
more time.

3. Computer science is generally
not participating in science and
engineering applications, nor is
it preparing students to do so in

the future.

Evidence for point 3 is presented in
this article and some remedies are
proposed. We hasten to add that all
the constituent disciplines may be in
similar situations; see, for example,
comments adapted from Robert Pike
in Computing the Future (17, p. 126].
We further point out the obvious
changes at the foundations of the sci-
entific method as evidence for these
itradisciplinary changes.

The Challenge of Computational
science

This section is primarily philosophi-
cal in nature, covering four principal
subject areas. The first area is the
environment of computational sci-
ence, with emphasis on the general
method of investigation. The second
area focuses on methods, in which we
outline our view of modeling. The
third area relates to the relationship
among the scientific application, al-
gorithms, and the architectures. Fi-
nally, there is a question of the verac-
ity of a computation. This section is
intended to address a broad-based
audience—computer scientists pri-
marily, but physical scientists, engi-
neers, and mathematicians as well.
We do not assume that all readers
are currently active in computational
science.

The Environment of Computational
science

Computational science is an emerg-
ing discipline characterized by the
use of computers to provide detailed
insight into the behavior of complex
physical systems. Computational sci-
ence uses computational methods to
conduct experiments that are either
too expensive or impossible to con-
duct in the real world. A brief perusal
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of the scenufic literature  clearly
shows that computer simulation is
enormously fruitful in most fields.
The interplay of experiment, tradi-
tional theory, computational

modeling has strong, symbiotic re-

and

sults. The simulations can be used to
provide unique insight into physical
processes. In order to improve this
capability, the full power of comput-
ing technology must be available to
the scientist and engineer. There are
many aspects to computing technol-
ogy, and we emphasize that compuia-
lional science 1s not synonymous with
supercomputing. Much scientific and
engineering work takes place on
workstations; it is as important to
have correct answers from a worksta-
tion as from a supercomputer. The
proper subject of computational sci-
ence is proper modeling and correct
computation.

The modern view of science recog-
nizes an interplay between theory
and experiment. This view was [irst
presented in a polished form by
Bacon in the Novum ()rgm.uum’ in the
17th century. Independently, Kepler
and Galileo emphasized mathematics
as the language of science. These two
thoughts have been merged into the
foundations of modern science. Mod-
ern science and engineering arose
through the interplay of theory and
experiment: theories are proposed
and the role of experiment is to sort
the theories out. Mathematics has not
been a bone of contention, except
perhaps for some areas like quantum
logic. However, there are problems
with differences between some areas
of classical mathematics and mathe-
matics needed for computation [12].

The standard model of scientific
inquiry must be altered to include
computer models. A simplified ver-
sion of the new (proposed) process:

* A model M is derived from physi-
cal or engineering principles. M
may contain submodels previously
developed.

® M is further developed using
numerical techniques into perhaps

"The Organum is Aristotle’s work on reasoning
and the scientific method. Bacon's book is ori-
ented toward changing the attitudes of his day,
which Bacon attributed 1o slavish following
of Aristotle. Science inthe 17th century wasorient-
ed toward reasoning, not experimental verification.
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many computational models C,.

® ‘The computational models €,
serve as a basis for experiments,
using visualization techniques or
perhaps automated tools, to explore
and validate the model M. Experi-
ments or data from real examples
of the system are processed as the
modeler attempts to validate the
model M.

® At some point, the computational
models C, provide insights into the
physical behavior of the system
under study. M will continue devel-
opment through refinement based
on the results of these computa-
tional experiments.

In our view, computational aspects
must be considered during model
formulation. The computer is too
often seen as capable of very fast com-
putation, but rarely are finite arith-
metic, numerical algorithms, archi-
tecture, program
taken into account in scientific formu-

and construction
lations. The scientist or engineer who
avoids these considerations is at a
grave disadvantage. In the same way
that sloppy experimental technique
cannot be tolerated, so too the inap-
propriate marrying of applications,
algorithms, and architectures cannot
be tolerated in computer modeling.
It is important to realize that com-
puter technology can be applied in-
appropriately. On the positive side,
the computer allows scientists and
engineers to  have unprecedented
control over their models.

The computer now allows the use
of non-linear methods where non-
physical assumptions were required
before (see the following subsection
“New Foundations—The New
Novum Organum). A simple example
in every sophomore physics book is
the pendulum: if we do not make the
“small-angle assumption,” the resul-
tant differential usually
makes use of elliptic functions for its
solution. Instead of having a nice
analytic function to investigate, we
must instead run many “numerical
experiments” before we can under-
stand the behavior of the pendulum.
Such experiments must be carefully
performed and
are always subject to both computer
and human error. Thus, computation

cquation
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The primary tmpact of computational science will be

the development of a new view

becomes part of the philosophy of
sclence.

Technical innovation is not without
its consequences for the computa-
tional scientist. Computational power
is often not accessible due to the ex-
otic nature of some of the newer ar-
chitectures (e.g., hypercubes) or the
admitted difficulty of programming
and debugging the models. Older,
validated models often are difficult to
port to the newer architectures. Algo-
rithms that work on one architecture
are often inappropriate on another.
Looking to the future, we see even
more exotic hardware that must be
integrated into an already complex
environment. Heterogeneous computing
environments are currently available to
large corporations and national labo-
ratories. Computational science is
thus involved in delivering technol-
ogy directly to the scientist and engi-
neer, while at the same time actually

enhancing fundamental scientific
models.
Computational science focuses

upon the development of computa-
tionally feasible models for physical
systems, developing algorithms for
solving issues arising in the modeling
process, and matching algorithms to
computer architectures. This should
be accomplished in an environment
that frees the scientist and engineer
from the confines of low-level pro-
gramming. The role of computa-
tional science is to provide the
scientist tools and computational en-
vironments that allow fruitful exploi-
tation of available resources without
having to resort to non-physical ap-
proximations simply to reduce the
model to a mathematically tractable
form. Scienusts should not have to be
concerned that the computing engine
is scalar, vector, and/or parallel with
shared or distributed memory.
Rather, with an appropriate environ-
ment in which to describe the model
and to specify the spatial configura-
tion and interactions, the details of

the solution within a class of algo-
rithms should be rather transparent.
The lack of a cohesive programming
model is perhaps the biggest obstacle
to computational science. What better
means of addressing this lack of a
programming model than through
computer science?

Our view of “computational sci-
ence” emphasizes interdisciplinary
involvement in the scientific process.
The Clemson Program has three
goals:

Goal 1. To find and eliminate unwar-
ranted assumptions and approxima-
tions in models;

Goal 2. To correctly marry the appro-
priate algorithms to the appropriate
architectures given a model and its
parameter space; and

Goal 3. To deal with the complexity
and veracity of the programming
PI"DCCSS.

The primary impact of computa-
tional science will be the development
of a new view of science. In order to

promote understanding of the role of
this proposal in the development of

computational science, we describe
our vision of how computational sci-
ence will evolve in the following three
subsections.

New Foundations—The New Novum
Organum

Computational science places science
and engineering first and makes
sound scientific modeling the basis.
The model reflects the scientist's or
engineer’s understanding of the
physical system. The models almost
inevitably incorporate assumptions
about how a system operates. These
physical assumptions require the use
of mathematical approximations.
Such assumptions we call physical,
since they are open to validation pro-
cedures within the science. A model
with only physical assumptions we
call (physically) exact. By contrast, as-
sumptions introduced into the model

for mathematical convenience lead to
a physically inexact model; such as-
sumptions we term ron-physical.

“Classically derived” models are
rarely physically exact. That is, such
models include non-physical assump-
tions needed to produce closed-form
solutions. We contend that such mod-
els are mathematically exact but physically
approximate. One is therefore left with
a nearly exact solution of approxi-
mated—and perhaps unrealistic—
models. Anecdotal evidence suggests
that these models may often give un-
satisfactory results when used in a
computational setting. An alternative
is to reformulate the models to be
more physically exact and therefore
more realistic. Unfortunately, these
newer models have no closed form
and generally are very hard to solve
numerically.

The lines between physically exact
and inexact may be blurred, but the
distinction is useful. For example,
consider the model of a pendulum
such as one might find in an under-
graduate physics book [9]. Figure 1
shows a diagram of a simple pendu-
lum. There is a point mass m at the
end of a rigid, massless bar of length
L. The pendulum swings in an arc
measured by the angle 8. At 6, the
restoring force is —mg sin @, ignoring
friction. In this model, the assump-
tions “point mass,” “massless bar,”
and “frictionless” are physical as-
sumptions, since they may be vali-
dated. The equation of motion is
given by:

d*6
ml—s =

P sin 6. (1)

This differential equation does not
have an analytic solution (although it
does have an elliptic solution [5]).
The next assumption is non-physi-
cal: since for small 8, sin 8 = 6, we can
rewrite the equation of motion to:

de

mLF = —-mgG (2)
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This latter equation is solvable by
analytic methods, leading to the well-
known sinusoidal solution. Actually,
the assumption that sin 8 = 6 is not,
in itself, all that bad as long as we stay
in the region for which that assump-
tion is true. However, “small” is a dif-
ficult quantity to determine. For ex-

ample, if the smallest relative error of

perception of an angle is 10 ° radi-
ans, the maximum angle would be
about 2 X 107? radians; that would
make the
twenty-foot chain about four inches.
Galileo might not have even seen
such a pendulum move.

It is important to note that the so-
lution to Equation (2) lets one talk
about all sorts of unrealistic things.
For example, in this linearized pen-
dulum, one can “wind up” the pen-
dulum, say to 47 (two times around)
and the equations of motion will “un-

maximum swing of a

wind” between —47 and 47. No real
an(lulqu does this, and hence we
would call the model non-physical.
Therefore, there 1s an important dis-
tinction between physical and non-
physical models. In our terminology,
we would say that Equation (2) is
“physically approximate but mathe-
matically exact,” while Equation (1) is
more “physically exact but mathe-
matically approximate.” It is mathe-
matically approximate because ellip-
tic integrals are solvable only by
computation of series [5].

Since we consider computational
interdisciplinary
deavor, there is a need to merge the

science  an en-
methods and viewpoints from the

individual disciplines involved.

Under the current methodologies of

science, mathematics plays a role as a
tool. For the outsider, certain ques-
tions about the basis of mathematics
are ignored [12]. The most important
question for the present discussion is
the question of computability. Ordi-
nary calculus, as taught to freshmen
and sophomores, assumes certain
things about existence, leading to
impredicative assumptions that are
inherently non-computational in na-
ture [2]. The reliance on computation
in computational science opens a very

important question: How much of

ordinary mathematics is usable in the

“In fact, the pendulum is now a torsional spring

[GNEOEE R OADS

-mg sin 8

Figure 1. Pendulum diagram

computational worldz This queston
has been addressed [3, 15], but the
results are not generally practiced. As
an illustration as to why this question
is important, take the recent “discov-
ery” of chaos. Chaos came to light
from computational solutions to
problems, but one must be sure that
chaos is a physical artifact and not a
computational Some models
were known, such as the logistics

one.

equation, which were chaotic, but 1t
was not until the computer got in-
volved that this attribute was seen.

The Clemson Program proposes
that modeling proceed by the follow-
ing principles:

e Physical Exactness. We strive o
identify non-physical (mathemaui-
cally convenient) assumptions and
eliminate them.

o Computability. We must identity
non-computable” relationships. No
mathematical relationship is exact
unless it follows directly from the
development of an exact model and
is computable. In this sense, most
mathematical relationships turn out
to be approximate.

® Bounded Errors. No formulation is
acceptable without « priori error es-
timates or a posteriori error results.
Because the computation is approx-

*Impredicative relations are the basis of non-
computability [12].
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unate, we must be able to tell “how
good” the answers are.

models must meet the
computational science criteria of no
unwarranted approximations
suitability for solution on state-of-the-

These new

and

art computers. We emph;isivc the
rederivation of models for their ex-
actness to physical principles. This
should not be taken to mean that we
consider only computer solutions to
these models.

To complete this subsection, con-
sider our pendulum example in light
of the paradigm of science given ear-
lier. The model M is that of the non-
lincar pendulum of Figure 1. Two
computational models come to mind:
€, as the numerical solution of the
elliptic integral and C, as a numerical
solution to the ditferential equation
defined by Equation (1). In either
case, ¢ and L are parameters. We
would have to explore the behavior of
the pendulum by “solving” the equa-
tions repeatedly for different values of
the parameters. Each run of the com-
putational models is an experiment.

Applications, Algorithms, and
Architectures

Assuming that models have been
properly formulated does not guar-
antee the appropriate numerical
method(s) or the optimal choice of
architecture is chosen for the compu-
tational models. ad-
vances have made new and special-
ized The
scientific computer center of the fu-
ture will have a network of diverse
machines. Compilers and operating
systems will have the difficult task of
managing these dispatchable ma-
chines. The scientists and engineers
will want to use these advanced archi-
tectures, but the task of knowing what

Architectural

machines  available.

machines are suitable for parucula
algorithms and data ranges will be-
come mind-boggling. If one makes
scientists deal with the intricacies of
distributed processing, it is more
likely productivity will be reduced
rather than increased.

The optimal algorithms for these
as-yet-unknown systems are most
likely not the ones that are optimal on
a von Neumann architecture. Our
experience with distributed algo-
rithms for hypercubes, for example,



would indicate the old algorithms will
not suffice for the new architectures.
The problems of designing, docu-
menting, debugging, and supporting
a large library of scientific routines
have been hinted at in the literature.
There is also a problem with an ex-
ploding number of versions: they
often differ only in architectural de-
tails. For example, consider the de-
velopment of the so-called Level 3
BLAS [6]. When LINPACK was origi-

nally conceived, the only model of

computation was the von Neumann
model. The Basic Linear Algebra
Subprograms—BLAS as they came to
be known—were motivated by vector
operations. The BILAS, which were
originally  considered  absolutely
primitive, have been redesigned sev-
eral times, as vector processors and
then distributed processors became
available. Designing and tuning such
a project as LINPACK, or its succes-
sor LAPACK [18], for a large number
of incompatible architectures will be
daunting, to say the least.

LINPACK also points out the dif-
ference between mathematics as prac-
ticed by the computationalist and by
the noncomputationalist. For the for-
mal mathematician, it is enough to
know that one can invert a matrix
using something like Gaussian elimi-
nation. That algorithm is probably
familiar to any undergraduate in sci-
ence (including computer science)
and engineering. Gaussian elimina-
tion, however, may not be the best
way to compute the inverse on a
computer. LAPACK, in fact, has
found that certain computers had to
be excluded from
optimal error characteristics were to
be obtained for the remaining
architectures.

Development and Verification
Support for Computational Science

The modeling environment will pro-
vide for visualization of results and
tools for developing models in the
computational science paradigm.
One major goal must be to extend
the concept of model derivation to
include the numerical and program-
ming aspects. Programming must be
considered an integral part of the
modeling process. The scientist must
believe and be able to verify that the

consideration if

output ot the computer model faith-
fully reflects the intended model. Too
often, the programming aspect is
considered an independent activity
separate from the rigorous rules of
science and mathematics. For a dis-
cussion of these areas, see [8].

Is Computer Science Qut of
Step?

In this section, we focus on computer
science and its place in computational
science. One would initially think that
computer science is well positioned to
make contributions  to
computational science. Computer sci-
entists certainly have the exposure to
programming and current architec-
tures and should be able to take the
specifications of a model and turn it

important

into code—How hard can that be?
The reality, however, is quite the
opposite. For example, in a recent
workshop, the following problem
specification was presented:

Tuke a string and tie it around the equator
of the (spherical) Earth. Add t feet to the
string. How high a tower must be built to

Table 1. Grand Challenges

pudl the string taut? Find the answer to the
best precision you can and defend the
number of digits you claim to have found.

The algebraic solution, which uses
and trigonometry
concepts, can be found very quickly
and is shown in Figure 2. The answer
requires solving an implicit trigono-
metric equation and then solving a
quadratic equation. The symbolic sys-
tem is one form of the answer; it is
pertectly acceptable unul the contrac-
tor asks how much steel should be
ordered.

Computing the nwmbers 1s very dif-
ficult due to the relative sizes of / and
R. The solution is made difficult by
several cancellations in the computa-
tions that must be removed in order
to obtain the desired accuracy. It
turns out that one can get about 21
digits of accuracy out of 28 digits of
precision on a Cray.” To find these 21
digits takes a significant amount of
work, involving many test programs
and a good bit of experimentation

college algebra

'We have since done better.

Astronomy

Human Genome Mapping
High 7, Semiconductors
Molecular Design of Drugs
Naval Architecture

Quantum Chromodynamics

Semiconductor Design

Structural Biology

Superconductivity

Underwater Acoustics

Weather, Climate, and Global Change
Modeling

Vision

Figure 2. The world on a string

Let / be the added length and
A denote the radius of the
“perfectly round” Earth. Then

R%+ x

(R+ h?

x=FR1tan 6

H—tand+
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and testing. The naive solution coded
in double precision does not work
well. This type of exercise is very
common in computational science.
Are computer science students pre-
pared to deal with such problems?
Certainly they should be if they ex-
pect to participate in computational
science.

There are some computer scien-
tists who say computational science is
a subdiscipline of computer science.
There are more radical computa-
tional scientists who have suggested
that computer science should be abol-
ished. Both extremes seem to miss
the mark. We argue that computer
science is not currently well posi-
tioned to address the challenges of
computational science due to instruc-
tors’ inherent attitudes toward engi-
neering and science and the attitudes
transmitted to their students. But we
also contend there is much computer
science to be done in computational
science and some computer scientists
would do well to seek out these op-
portunities. Let us begin by outlining
some reasons why computer science
is out of step with computational
science.

Lack of Foundations

In any mature discipline, there is a
basic set of principles. These princi-
ples are the “rules of the game” that
can be called the philosophy of that sci-
ence. These principles are known by
the workers in the field, if only infor-
mally. For example, the “scientific
method” [11] arises from the com-
bined experience and criticism of sci-
entists: how they work, what they will
accept as good work, and what they
reject. Interestingly enough, there
may be several philosophies in use at
any given time.

What, then, is a philosophy of com-
puter science? Where is the critical
analysis of methods? Where do we see
the skeptical, reasoned approach to
the discipline? Computer science
stands in danger of falling into the
“meaning” trap. Students can easily
see computer science as devoid of
meaning and programming as de-
void of empirical import. “Problem
solving” is often taught devoid of
problems: little “sound bites” of ideas
without a cohesive whole. Artificial

[GRINORE RO ADS

intelligence seeks to emulate human
intelligence by formal token systems
devoid of meaning. We develop a the-
ory of computational complexity that
deals with asymptotic behaviors in re-
gimes far beyond what algorithms are
called upon to support in practice.
All around us the ground rules are
changing, and computer scientists are
ill prepared to critically analyze their
own positions. They cannot deter-
mine what is new and what is old;
what has worked and what has not;
and why. That does not exempt us,
however, from improving our foun-
dations. There should indeed be a
philosophy of computer science ad-
dressing the questions of the various
positions taken on various issues. Our
students should be made to under-
stand what is opinion and what is
empirical fact and what the “rules of
the game” are. In engineering and
mathematics there are rules of the
game and these rules must be fol-
lowed. More important, we must be able
to explain to others what we stand
for. Here are some areas that need
further exploration and are of direct
interest to computational science:

Basic Questions. The philosophies of
mathematics and science explore two
issues: what objects exist (metaphysics);
and how we come to know about
these objects (epistemology). Algo-
rithms would seem to be one of com-
puterscience’s objects, yet textbooks—
and the field as well—continue to
eschew definitions of algorithms.
What is computational knowledge and
how do we achieve it?

Literature. What is the literature of
computer science? Programs? Algo-
rithms? Journal articles? If it is pro-
grams, are these programs to run
on all possible machines? And what
are the requirements for veracity?
Should a program appearing in a jour-
nal article be expected to run as is?

Formal Methods of Program Specifica-
tions. Should not a program be
proven to work and have the behav-
ior described formally? When are for-
mal methods appropriate? Are they
required to be validated in the sense
of a physical model? What is the em-
pirical import of formalisms? How do
formal methods (a formalism) convey
meaning (an empirical concept)?
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Numernical computation. Numerical
processes and floating-point applica-
tions are virtually ignored in the cur-
rent programming, compiler, and
data structure texts. When ad-
dressed, these issues are addressed
without application and without any
concept of correctness.

Another pervasive fundamental
problem is the lack of scientific rigor.
Most basic to science is a consensual
vocabulary and notation. Science and
mathematics have struggled ever
since Kepler to develop just such a
vocabulary. In computer science,
however, we have a hodge-podge of
definitions with no agreed-upon
foundation. No wonder scientists and
mathematicians are often frustrated
when working with computer scien-
tists. Likewise, computer scientists are
mystified by the strict notational and
definitional framework of the sci-
ences as well as the harsh require-
ments for proof.

Lack of Integration of Science and
Mathematics

The current ACM, CSAB, and 1EEE
recommendations for the computer
science curriculum include a signifi-
cant exposure to the sciences and
mathematics. The Clemson curricu-
lum for a B.S. in computer science is
probably typical:

1. One year of calculus—but no
multivariate calculus and no differ-
ential equations.

2. One semester each of discrete
mathematics, statistics, linear alge-
bra, and “decision science.”?

3. One year of natural science—
usually biology or chemistry.

4. One year of physics.

Most of these courses are completed
early in the training of the computer
scientist. What is missing? For one
thing, numerical analysis is conspicu-
ously absent! The contents of these
courses are rarely used in computer
science courses! On the one hand, we
might argue because these things
have no apparent relevance to com-
puter science, we should not waste
our students’ time.

Even within the current curricu-
lum, however, there are problems.

SStatistics, probability, linear programming.



Ultimately, we see the academic involvement in computational

science as spanning high school,

undergraduaate, aoand graduate studies.

Checking my bookshelf tor texts used
in the data structures-algorithm
courses, 1 find not one of the five uses
the word “optimal”; it does not ap-
pear in the index of any of the five. I
then locked for the word “average.”
Two did not use the term at all. Two
have subsections on average case
analysis. One actually did some deri-
vations. None suggested any empiri-
cal validation. The concept of “opu-
mal” is central to many scientific and
engineering disciplines.

As another example, 1 computed
the amount of scientific and engi-
neering literature indexed in the
ACM Guide to Computing Literature [1].
There were 377 pages used to list the
literature by CR category. Only 17
pages (about 4.5 percent) were
needed for the J.2 Physical Sciences
and Engineering category, but 35
pages were devoted to “information
processing” applications. Also inter-
esting is the fact that only two pages
were devoted to numerical linear al-
gebra. Why is so much attention paid
te business applications? And why is
so little attention paid to engineering
and scientific applications?

We would argue the following: we
should use scientific, engineering,
and mathematical contexts precisely
because such contexts represent nat-
ural subject areas that the student al-
ready understands. After all, we lve
in a physical world. For example:

* A natural—and perhaps the sim-
plest—way to approach parallelism
is through simple numerical mod-
els. Nature is inherently parallel,
and most students have personally
experienced the phenomena that
are being modeled.

e Natural questions of correctniess
of computation are usually evident
in simple numerical problems.

® The vagaries of finiteness can be
easily demonstrated in small, easy-
to-understand programs.

e The validation of computer

models gives empirical import to
programs and is a natural develop-
ment ground for software testing
concepts.

* Simulations of physical systems
are far easier to justfy and explain
than simulations of non-physical
systems.

® Some algorithms—simulated an-
nealing and genetic algorithms, for
example—are derived from physical
principles. If the underlying physics
or biology is understood, the algo-
rithm is understood intuitively.

Lack of Emphasis by Faculty
The preceding points could be easily
overcome if faculty put emphasis on
the use of scientific principles and
proper mathematics. But how many
times have we dismissed a difficult
mathematical point as “useless” when
it really is “too hard” to teach or be-
cause it is hard to understand? The
message is clear to the student: sci-
ence and mathematics are neither
interesting nor important or just too
difficult. More fundamental, difficult
details can be dismissed as insignifi-
cant, leading the students into a false
sense of security (“If you ignore the
hard parts, they cannot hurt you.”).
With the possible exception of vi-
sualization, computer science has
been at odds with science and engi-
neering interests. While there are
occasional calls for “more mathemat-
ics” in the computer science curric-
ula, there are just as many who la-
ment the inclusion of mathematics.
Really, now: what is the relationship
of mathematics and computer sci-
ence? Perhaps we would like it to be
that “Real computer scientists don’t
do math—or databases, either.”
There does seem to be bad blood
between the groups; for example, we
have all heard pronouncements on
the programming language issue. At
a recent conference, the author par-
ticipated in a panel on computational
science. One computer scientist put

out the suggestion that Fortran
should be abolished—without regard
to the fact that the community has
many well-tested, well-understood
programs in Forgran, and that most
scientists and engineers program
only in Fortran. The argument was
that programs in a newer language
would be so much better because of
the work in vectorizing. The scientists
counter—and 1 am afraid we are not
hearing this argument well [14]—
that those old, empirically validated
programs are the purpose of program-
ming. Calculating the wrong answer
quickly is not any help. Programs are
not the object of science, knowledge is.
Those old, antiquated programs are
well tested and agree with the empiri-
cal relations observed in the real
world. We in computer science are
forgetting the Hamming dictum [10}:

The purpose of programming is insight,
not numbers.

The language debate, it indeed itis a
debate, will not just go away. But are
we asking the right questions [147 If
we continue with an attitude [14] that
the world is anxiously waiting for the
next program—or programming
fanguage—we will not endure as a
discipline. If we continue imbuing
our students with this attitude, we
will continue to see declining enroll-
ments as the sciences and engineer-
ing disciplines draw the best and the
brightest. We also run the risk that
the application disciplines will alter
their own curricula to embrace the
useful parts of computer science.

The Results

The result of these and other factors
is that computer science (or perhaps
even computer engineering) students
do not understand science and are ill

-equipped to deal with scientific and

engineering software. However, com-
puter science students are not irre-
trievably lost to science. The author
has been involved, along with mathe-
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matics and physics faculty, in devel-
oping courses for computational sci-
ence. We have had a broad mix of
students, including computer sci-
ence, mathematical science, physics,
and engineering students, who have
taken the courses.

The computer science students,
after being given the instruction
needed to make up their prerequi-
site deficits, perform very well. Since
they already understand program-
ming, they can concentrate on the
algorithms.

The non-computer science stu-
dents find programming difficult and
often rely on the computer scientists
to deal with algorithm complexities.
The students in this class respond
enthusiastically when presented with
difficult problems involving higher
mathematics. One student, who is a
co-op student, summed it up best:
“I'm not sure I'd like to do this for a
living, but it's been the most realistic
use of my training.”

Computer science is not the only
loser: scientific and engineering
codes are being written using inap-
propriate, ineffective, and inefficient
algorithms because the scientists and
engineers are forced to “go it alone.”
The experience of computational sci-
ence teams, in theory and in practice,
is that no one has to go it alone and
that everyone benefits from the inter-
disciplinary team approach. The
problems facing science and engi-
neering are no longer solved by a sin-
gle person but instead by a team—
the nature of computational science is
inherently interdisciplinary.

Where Should Computer
Science Put Its Effort?
Computational science is an interdis-
ciplinary area and thus does not
properly contain any one of its sub-
disciplines; we do not think of it as an
independent discipline. All the con-
stituent disciplines must make adjust-
ments and concentrate efforts. There
are several different areas wherein
computer science can put out effort,
at the K-12 level as well as the under-
graduate and graduate level. In this
section, we argue that the high school
student is well equipped to enter the
computational science pipeline. At
the graduate level, we can offer pro-
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grams of study that famiharize the
students with scientific and engineer-
ing problems and their computa-
tional solution. Finally, there are re-
search programs that advance both
computer science and computational
science.,

Education

Ultimately, we see the academic in-
volvement in computational science
as spanning high school, undergrad-
uate, and graduate studies. Research
programs by computational scientists
will continue to absorb the well-
trained researcher for many years to
come.

There is an immediate problem of
publicizing the Grand Challenges
and justifying to high school and
undergraduate students the excite-
ment and importance of these and
other problems. This can most fruit-
tully be done by developing a sense of
curiosity in the physical world and an
appreciation of mathematical and
computer modeling, developing in
the students a curiosity relating to
observations of what can and cannot
be done with the computer. This per-
haps includes changing some cher-
ished teaching modules along the
line. As has been seen in competitions
such as SuperQuest at Cornell Univer-
sity and other state programs,® high
school students respond enthusiastic-
ally to real problems in science o1
engineering. Even videogames, with

their goal of realism, make use of

physical principles. Movies, such as

Star Wars, use enormous amounts of

supercomputing time to generate
their effects. How many computer
science graduates are able to step into
any of these endeavors?

Currently, there are too few
trained computational scientists to
form a critical mass on any one prob-
lem. We need to provide a program
serving the secondary school student
as well as the postdoctoral fellow. It is
necessary to increase interest in nu-

5There are several state programs. One is put on
by the North Carolina Supercomputing Center
at Research Triangle. The program involves
high school students around the state in a prob-
lem chosen by the students that uses supercom-
puting in the solution. Several other states, in-
cluding Alabama and New Mexico, have similar
programs. Clemson is inaugurating a program
for South Carolina.
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merical analysis, scienufic software
engineering, languages, algorithms,
and architectures as disciplines and as
requisite knowledge for all computa-
tional scientists. In the current situa-
tion, the expertise for computational
science comes from the constituent
disciplines.

Goals. The major educational goals
of computational science at all levels
are:

¢ To appreciate the role of compu-
tation in science and to stimulate
interest in computational science.

® To create a healthy sense of what
computation can and cannot do
with respect to scientific models.

¢ To insull understanding of the
application-algorithm-architecture
nature of computational science.

® To expose students to the conse-
quences of not following proper
computational practices.

The objective is to develop a cohesive,
comprehensive foundation for deal-
ing with numerical methods and soft-
ware. We must also be careful not to
identify computational science as the
traditional numerical analysis course.
Numerical textbooks are largely inde-
pendent of applications, counter to
the computational science viewpoint.
Too often, students are not intro-
duced to pathologies in computation
until they are out of school and the
results “count for real.” It is also true
that we do not hold scientific pro-
grams to the same rigorous standard
that the rest of science must meet.
The latter situation is unacceptable.
Such rigorous standards would be
called—at first blush—software engi-
neering of scientific software 1o differen-
tiate it from software engineering in
its more usual setting.

High School and Undergraduate
Programs. We need a comprehensive
curriculum in computational science.
Our view is that there need not be a
separate administrative unit to de-
velop a viable curriculum. Our initial
curriculum follows:

1. Each scientific or engineering
department that is participating in
the computational science program
would make available a course with
the approximate title “Computa-
tional Models in X.” The purpose



of these courses is to give the stu-
dents a choice of as wide a spec-
trum of subjects as possible.
2. Mathematics requirements are
kept to a minimum. At the high
school level, one can deal very ef-
fectively at the intuitive level. Signif-
icant problems can be dealt with
using only pre-computer concepts
such as elementary finite difference
techniques.
3. Most of the disciplines at the
undergraduate level already have
significant exposure to mathematical
science courses. For numerical
work, however, there are three
basic requirements: (i) sequences,
convergence, and error; (ii) differ-
ential equations; and (iii) linear al-
gebra.
4. Computational requirements are
likewise part of most technical sub-
ject areas. There are four subject
areas that should be studied:
(a) data structures specifically ori-
ented toward the problems in
computational science. We have
developed a list of some 60 spe-
cialized structures.
(b) design of graphical user inter-
faces. This includes graphics,
human-computer interaction, and
even compiler design.
(c) introduction to computability
theory, emphasizing recursion
and recursive functions, to under-
stand what is computable and
how to think about computation.
(d) software engineering of scien-
tific software.
5. Two computational science mod-
eling courses: one emphasizing
techniques for discrete models
and one empbhasizing continuous
models.

These courses must be developed
around modules emphasizing the in-
teractions of the application (prob-
lem); the analysis of numerical and
non-numerical algorithms; and the
appropriateness of the architecture(s)
available. This can be done by orga-
nizing around three units:

1. The first unit introduces a prob-
lem and should be discussed by
someone in the relevant field.

2. The second discusses possible
solution techniques. Various ap-
proaches should be tested in their

order of intuitive appeal.
3. The third unit—given after the
students have programmed and
studied their solutions—discusses
the teaching points. Each unit is
accompanied by written material.
The students will prepare a re-
port—much like a laboratory re-
port—on their solutions and obser-
vations.

The core problem for most com-

puter science curricula is the lack of

mathematics—most notably, the lack
of differential equations and a solid
linear algebra course. Most curricula
now have positive involvement and
reinforcement in the traditional sci-
ences: physics or chemistry. Since
there is not a mandated curriculum
in computer science, one needs to
work within the framework of the
CSAB checklist and the proposed
ACM-IEEE proposal. For example,
the Clemson program is accredited
by CSAB and the needed changes can
be accomplished within the current
B.S. curriculum: The student takes a
mathematical science or numerical
analysis applications emphasis’ and
two senior-level modeling courses.

We have tested this concept
through a special topics course that
included seniors and postgraduates.
The course we taught had engineer-
ing, physics, mathematics, and com-
puter science students. In some cases,
the problem was presented in word
problem form to make the problem
focused. In other cases, we have
taken a problem directly from the
experience of the student or some
important problem from the applica-
tion-oriented students. The trick is to
make the problem easily understood.

Contrary to the opinion of some,
many students react very favorably to
difficult problems that are presented
in an intuitive way. Also contrary to
opinion, many students can deal with
higher-level mathematical concepts,
particularly when developed in the
context of a real problem. In a tightly
controlled classroom situation, stu-
dents can explore issues in:

® Floating-point arithmetic;

® Numerical error and conditioning;
® Functional approximation and
interpolation;

s the equivalent of a minor.

® Linear and nonlinear differential
equations;

® Quadrature;

® Optimization;

® Experimental data techniques;
and

® Tables and interpolation

It is worth pointing out that tradi-
tional undergraduate mathematics
courses are open to much criticism
because the courses are taught
with an emphasis on formulas and
theorems but independent of mean-
ing. The richness of calculus, for ex-
ample, is in its applications. Even
with the current reform under way in
undergraduate mathematics, we are
unlikely to see Bishop’s criticisms
answered. The conclusion is that un-
dergraduate mathematics is not com-
putationally oriented and hence inap-
propriate for computational science.

We are also exploring the possibili-
ties of including aspects in high
school mathematics and science. In
this case, just asking the question of
how good the built-in trigonometric
functions are might be sufficient to
keep a high school class busy all se-
mester. Simply taking away the stu-
dents’ calculators and making them
deal with the tables of values is a valu-
able exercise in error analysis and in-
terpolation  without high-powered
mathematics being required. For ex-
ample, when asked for the value of ,
the value most often given is 3.14—
How good is that value?

The guidelines for the develop-
ment of individual problems are:

® The problems should be easy to
grasp and capable of full analysis

® The solutions should be intuitive
at the outset so the students can
propose better solutions as more is
understood.

® The students should address sev-
eral small problems extensively
rather than one or two large, com-
plicated problems.

® The course should expose com-
mon failures caused by commonly
used techniques when applied inap-
propriately.

There is a large number of quite sim-
ple but important problems that fall
into these guidelines. For example,
one can trace the history of the com-
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puting of 7 from Archimedes to the

current supercomputing efforts that
have recently been so widely touted.
In the process, the students learn
about series, acceleration methods,
finite difference algebra, limits, and
coding techniques, not to mention a
healthy dose of round-off error and
conditioning analysis. All of this can
be done with little or no reference to
anything above an intuitive gr
limits—or it can be done with the
most advanced concepts. The point is
that one can use this one problem
across a broad spectrum of students—
from high school students to Ph.D.
candidates.

When working actual physical
problems, such as we have done with
our class, we have found that the fol-
lowing rules make life easier:

® The working groups must be
small and multidisciplinary.

® The homework should emphasize
graphic/visualization techniques
over printing out and poring over
lists of numbe:
e Course materials should empha-
size literate explanations of the
methods employed and the pro-
grams written.

The syllabus developed is being ex-
panded and developed into a series
of teaching modules. When com-
pleted, these modules will be avail-
able from the North Carolina Super-
computing Center.”

A particular aspect of program-
ming needs to be dealt with: the ten-
dency to think of programs as some-
thing beyond explanation. In our
syllabus development work, we are
employing  literate  programming
techniques pioneered by D. E. Knuth
[19], using the FWEB program writ-
ten by John Krommes at Princeton
[13], both of which have proven
viable.

The Graduate Program. For the
graduate student who does not have
a background commensurate with
the preceding outline, most schools
would be able to add sufficient
courses to fill the gap, assuming the
students have a sufficient science

SContact Curtis Edge, Director of Education,
North Carolina Supercomputing Center, Re-
search  Triangle Park, NC 27709; edge@
nesc.org
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background.  Clemson ofters  the
usual fare of theoretical and applied
courses of interest to computational
scientists. Some are advanced archi-
tectures, compiling, computability,
computational complexity, operating
systems, and parallel and distributed
processing. These are directly usable,
subject to the criticisms given earlier,
are many of the topics in software
engineering, database management,
and graphics.

While many of the scientific ques-
tions posed by the Grand Challenges
are not directly related to computer
science research, some are: for exam-
ple, the Human Genome Project.
The history of genome decoding as a
coding theory/formal language prob-
lem is quite long. Visualization, by its
very nature, is tightly tied to current
graphics research.

There are many topics, however,
which have been hinted at in this arti-
cle that perhaps need to be expli-
cated. We list three obvious and active
areas of computer science r rch
having direct applicability to compu-
tational science: foundational issues,
software engineering, and program-
ming languages.

a

Research Issues

Research topics for computer science
in computational science are many
and varied—here, we touch on only
the three most obvious. First, there
are several foundational issues; in-
deed, there are several deep philo-
sophical issues. Second, there is the
problem of developing software; we
present a case that the current efforts
in software engineering are not appli-
cable to scientific software develop-
ment. Finally, there are several issues
about programming languages.

We propose that the program for
computer science’s contribution in
the computational sciences is the
sound basis of programming scien-
tific applications and should concen-
trate on the following issues.

Foundational Issues. One of the
problems for computer scientists who
are not also mathematicians is the
role of mathematics in computer sci-
ence. For those not familiar with the
history of mathematics, Kline [12] is
heartily recommended, if not re-
quired, reading. The basic point,
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tsts are introduced to formalistic
mathematics and not constructive
mathematics. The latter, with its
emphasis on objects, is much more
likely to appeal to an algorithmic view
[3, 15].

‘There are many intriguing ques-
tions that are of the mathematical/
computational nature. If we pick up
on Bishop’s program [3], we might
say that Bishop did not go far enough
for computational science purposes.
While we can have large numbers of
digits (say in a multiprecision pack-
age), the numbers are still finite and
bounded. We propose the following
program: to develop a sound theoret-
ical basis for deriving computer pro-
grams by taking the computational real
formulation as the specification. Such
a program would replace the “finite
but not a priori bounded” numbers of
the computational reals with the “fi-
nite and a priori bounded” numbers
of the machine.

The development of a sound un-
derstanding of the number systems
starts with Wilkinson [22]. The con-
cept of the Wilkinson set fits very nicely
with the ideas of denotational seman-
tics [2, 16]. This development should
be primarily algebraic in nature, add-
ing a level to the traditional algebraic
hierarchy. The constructive program
might also shift emphasis in develop-
ment of numerical mathematics. We
can, for example, achieve some re-
sults by replacing limits with extrapo-
lations. In this program, we might
shed some light on the age-old ques-
tion of the semantics of a mathemati-
cal expression. We might propose
that the semantics of the expression is
the appropriate numerical programs
that compute the expression to a cer-
tain accuracy. Here, we use “appro-
priate” to mean “appropriate to the
region of the parameter space under
investigation.”  Seldom  does
method suffice for all possible subre-
gions of the parameter space.

The last foundational issue to
touch on is that of complexity. While
asymptotic complexity continues to
be important for computer science,
there are other problems to address.
Asymptotic analysis has been mostly
successful in delineating worst-case
performance. The comparisons are

one




OoOur emphasis reflects experience

gained in industry: it it imperative that the students

work in interdisciplinary groups.

valid only for large inputs, something
meaningless in computational sci-
ence. However, a more important
criticism can be leveled: the current
scheme does not address how fast the
algorithms approach their asymptotic
speeds. This criticism can also be lev-
eled against
numerical codes. New methods and
ideas are available and should be ex-
plored [4, 21].

Practical Development Support.
While foundations have a place in
supporting computational science,
computer science can address issues
in the development tools and tech-

niques for the implementation of

models in the heterogeneous envi-
ronment. In this section, we allude to
some concrete suggestions for re-
search. This material is a very short
version of [20].

Some areas, such as architecture,
operating and graphics,
have applications to computer sci-
ence as well as to computational sci-
ence. We have alluded to the need
for problem-solving environments
[8] that make use of areas such as
computational geometry and artificial
intelligence. Even an area such as
database management—which we
associate more with business systems
than with scientific systems—has
important applications in managing
the large volume of data generated in
many types of scientific experiments.
Two areas should receive special
mention: software engineering and
programming languages.

The software engineering of scien-
tific systems can be quite different
from other kinds of systems. While
the concerns are much the same, the
method may be different. Scientific
models evolve over time; hence, the
management of change assumes spe-
cial importance. The role of the speci-
fication is evolutionary and based on
analysis. It is also the case that the
specification is not open to negotia-
tion. Testing assumes a different di-
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the development of

mension, since it is often hard to de-
termine what the "right answer” is.

Programming languages are an

important part of the development of

computational science. We are not
just thinking of the eternal “Fortran
versus C7 discussion. The basis of de-
sign for most scientific systems is ma-
trix-theoretic. Even problems that are
in only a single variable may employ
matrices—it is impossible to talk
about quadrature without talking
about “grids” and matrices. Primi-
tives in computational matrix algebra
probably look more like the BLAS
than one might conclude from a lin-
ear algebra text. There are also many
special matrix shapes that need to be
supported. With regard to arithme-

tic, there is the ongoing problem of

dealing with interrupts and the
proper support for IEEE arithmetic.

summary

Computational science is an emerg-
ing discipline offering opportunities
for computer scientists. Computa-
tional science is an interdisciplinary
approach to addressing the Grand
Challenges, the solutions to which are
considered vital to the economic
health of the U.S. The opportunities
for participation in computational sci-
ence range from the traditional areas
of computer science—such as lan-
guage development, system design,
and (non-numerical) algorithms—to
decidedly new areas such as software
engineering related to the develop-
ment and justification of scientific
programs.

The excitement of computational
science is in renovating the scientific
research paradigm. There are three
goals:

1. To find and eliminate unwar-
ranted assumptions and approxima-
tions in models;

2. To correctly marry the appropri-
ate algorithms to the appropriate ar-
chitecture given a model and its pa-

rameter space; and
3. To deal with the complexity and
veracity of the programming process.

The computational science program
proposes to develop a new approach
to science by the principles of physical
exactness, guaranteed computability,
and bounded errors.

The organizational paradigm is an
integrated, interdisciplinary focus on
applications - algorithms - architectures,
that is, the focus is on solving a class
of problems rather than generating
new pieces that might be fit together
into a solution.

The goals for computational sci-
ence courses are:

1. To create a healthy sense of what
computation can and cannot do with
respect to scientific models.

2. To instill appreciation of the appli-
cation-algorithm-architecture nature
of computational science.

3. To expose the students to the con-
sequences of not following proper
computational principles.

The conduct of the courses reflects
the philosophy of the professors as
well as the subjects themselves. Our
emphasis reflects experience gained
in industry: it is imperative that the
students work in interdisciplinary
groups. It is important the groups
understand that each member has a
special contribution based on the in-
dividual's background. We also em-
phasize the requirement for succes-
sive refinements to the original
model—something students tend not
to understand until they see the an-
swer unravel before them.

The concept of “laboratory” has
meaning only when teaching “labora-
tory techniques.” These techniques
range from using electronic mail and
programs such as ftp to benchmark-
ing and running numerical experi-
ments. We emphasize throughout the
course, not just in the laboratory ex-
ercises, that self-criticism and self-
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analysis are an indispensable part of
computational work.

While computational science is not
for every student and researcher,
there are plenty of exciting problems

to be addressed. It is time to make
computational science part of com-
puter science—and vice versa. @
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