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CÉSAR KUNZ, IMDEA Software Institute and Universidad Politécnica de Madrid

A certificate is a mathematical object that can be used to establish that a piece of mobile code satisfies some
security policy. In general, certificates cannot be generated automatically. There is thus an interest in devel-
oping methods to reuse certificates generated for source code to provide strong guarantees of the compiled
code correctness. Certificate translation is a method to transform certificates of program correctness along
semantically justified program transformations. These methods have been developed in previous work, but
they were strongly dependent on particular programming and verification settings. This article provides
a more general development in the setting of abstract interpretation, showing the scalability of certificate
translation.
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1. INTRODUCTION

A certificate is a mathematical object that establishes the validity of a logical formula
and that is self-contained and self-explanatory, and can be checked independently
and automatically. Certificates arise naturally in many areas of mathematics, and in
many different forms. In particular, certificates are common in the context of program
verification, where they are used for automatic checking of program correctness;
in this context, certificates provide evidence that a program meets its specification,
where specifications may take the form of type annotations or assertions, and certifi-
cates may take the form of type derivations, derivations in Hoare-like logics, or proof
terms for verification conditions. While certificate checking for program correctness
is reasonably understood, certificate generation remains a challenging problem.
Although it is possible to generate certificates automatically for specific properties
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that are enforceable by automated program analyses, and in particular type systems,
certificate generation remains interactive in the general case. It is therefore of interest
to develop methods that assist and simplify the construction of certificates.

The purpose of this article is to investigate methods for transforming certificates of
program correctness. We focus on two instances of this general goal: certifying analy-
sis and certificate translation. The aim of certifying analysis is to transform a proof
of program correctness from one verification formalism to another; typically, a certi-
fying analyzer will transform a proof using static analysis of a program into a proof
of the same program based on deductive program verification. Certifying analyzers
are proof-producing, in the sense that they return, in addition to their result, a formal
proof of correctness that can be checked automatically. Certifying analyzers differ from
certified analyzers [Cachera et al. 2004] in that the certificate establishes the validity
of a single instance of the analysis, as certifying compilers [Necula and Lee 1998] do.

The aim of certificate translation is to transform a correctness proof for a source
program into a correctness proof for a program built by transformations on the source
program. In general, certificate translation considers settings where the source and
transformed programs are verified using similar methods—for instance, abstract in-
terpretation, type systems, or deductive program verification. Certificate translation
differs from certifying compilation [Necula and Lee 1998] in that the latter gen-
erates a proof of correctness—rather than transforming an existing one—and from
certified compilation [Leroy 2006], in that it proves the preservation of a particu-
lar property for a particular program—rather than establishing a general semantic
equivalence.

The primary application of certifying analysis and of certificate translation is to
provide automated means to construct certificates of executable code from interactive
verification of source programs. Typically, the source program will be written in a
high-level language and the transformed program will be obtained by optimizing com-
pilation. Certificate translation allows for extracting guarantees on executable code
from the results of source code verification, and to extend the scope of Proof Carrying
Code [Necula and Lee 1996; Necula 1998] to a wide range of program properties. More
specifically, certificate translation allows code producers to verify their source code us-
ing program verification environments, and yet to extract certificates of the executable
code that can then be sent to the code consumers.

Certifying analysis and certificate translation are tightly connected, since the trans-
formation from the source to the target program is usually justified through a program
analysis, whose automatic certification is required to build a certificate for the target
program. Section 2 illustrates this issue.

Previous works on certificate translation and other methods have been developed
for specific compilation infrastructures and verification settings; see Section 7 for an
overview. However, a limitation of earlier work is the lack of a unifying framework in
which to formulate and analyze the basic concepts underlying certificate translation.
The lack of a framework makes it difficult to assess the generality and scalability of
certificate translation, and even to find the commonalities between the different re-
sults in the literature. The present article overcomes this limitation: we capture the
essence of certificate translation in the setting of abstract interpretation [Cousot and
Cousot 1977, 1979], a general framework for analyzing programs, and to reason about
program analyses at large. Abstract interpretation is a natural framework to model
certificate translation, since it provides a common model for two of its key components,
namely: the verification environment in which the original certificate c is produced
and the static analysis that justifies the program optimization. Furthermore, abstract
interpretation provides a natural setting to analyze the relation between different ver-
ification methods.
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Adopting the framework of abstract interpretation for studying certificate transla-
tion provides significant leverage on earlier work. First, it allows us to be generic, and
to abstract away from the specifics of programming languages, program transforma-
tions, and verification methods. Concretely, we are able to formulate in an abstract
setting a set of constraints on the verification methods and program transformations
that guarantee the existence of certificate translators. The generality of the approach
is demonstrated through examples, and specifically through a principled rediscovery of
the results of Barthe et al. [2009]—to the exception of dead code, which in the present
article is handled differently from Barthe et al. [2009]. Second, the framework al-
lows us to derive new certificate translation results, by casting the verification frame-
works considered as abstract interpretations, and by showing that the optimizations
considered can be built by instantiating and combining our general transformations.
For example, Kunz [2010] derives from our results proofs of correctness of certificate
translation for a concurrent imperative language. In a similar way, the framework
allows through mild modifications leveraging results to more general settings. For ex-
ample, Section 5.4 extends the results of certificate translation to program analyses
whose results can be expressed as 2-properties, that is, properties about two runs of
programs. Third, the framework allows us to address issues that do not immediately
relate to certificate translation nor certifying analysis, including the possibility of de-
veloping hybrid certificates that can be checked by the collaboration of two verification
formalisms, typically static analysis and deductive verification.

This article is an extended version of the conference article that formalizes certifi-
cate translation in the setting of abstract interpretation [Barthe and Kunz 2008]. The
main contributions are as follows:

— The introduction of certified solutions, extending the notion of solution with certifi-
cates (Section 3). Informally, every abstract semantics yields for each program a
system of dataflow equations, expressed as a set of constraints. A solution for a pro-
gram is a labeling of its program points with abstract properties that satisfy the set
of constraints induced by the abstract semantics. By extension, a certified solution
consists of a solution S and a certificate that S satisfies the dataflow constraints;

— Sufficient conditions for the existence of certifying analyzers (in Section 4). Certi-
fying analyzers extend program analyzers by providing certificates of correctness
for the results they generate, and are used as inputs by certificate translation algo-
rithms. We consider both cases where the verification settings are based on symbolic
evaluation and verification condition generation;

— Sufficient conditions for the existence of certificate translation algorithms that map
certificates of source programs to certificates of transformed programs (in Sec-
tions 5 and 5.4). We consider three transformations, code duplication, local code
transformation, and code coalescing, which can be combined to model a large set
of program optimizations. For each transformation, we provide a set of proof oblig-
ations from which one can build certificate translation algorithms: that is, we de-
scribe algorithms that take as input the certificates for the proof obligations of the
original program and return certificates for the transformed program;

— Instantiations of the certifying analyzers and certificate translation algorithms. For
conciseness, we consider a simple sequential imperative language and standard
optimizations: loop unrolling, common subexpression elimination, induction vari-
able strength reduction, and dead variable elimination. This instantiation allow
us to clarify our contributions and to recover, up to minor differences, the results
of Barthe et al. [2009];

— A formal definition of hybrid verification (in Section 6). The interaction between
two verifiers helps reducing the contract specification effort, as well as reducing the
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Fig. 1. Fast exponentiation algorithm.

complexity of the verification conditions. We use our abstract framework to model
the collaboration between two verifiers. Based on this formalization, we provide a
set of sufficient conditions to transfer a hybrid verification result into a nonhybrid
certified solution.

2. MOTIVATING EXAMPLE

Certificate translation is best illustrated through an example; although the notions
used throughout the example are only defined in subsequent sections, the example is
sufficiently simple to convey an intuition about the issues with certificate translation,
and its relationship with certifying analysis.

Consider the fast exponentiation algorithm fexp in Figure 1; in the figure ./2 denotes
integer division. The algorithm takes as input two integers x and y, computes xy, and
stores the final result in x. Using X and Y to denote the initial values for x and y
respectively, one can specify the behavior of fexp with pre- and postconditions:

{x = X ∧ y = Y}fexp{x = X Y }.
Here the precondition captures the usage of X and Y as initial values of x and y,
whereas the postcondition captures the correctness of the algorithm.

Using a verification condition generator, one can certify the correctness of the pro-
gram with respect to its specification in two steps. First, one must provide a loop
invariant; in this case, we define the loop invariant as w ∗ xy = X Y . Then, one must
provide certificates for the proof obligations; more concretely, one must provide a triple
(cpre, cinv , cpost) where:

(1) cpre is a certificate of the formula

(x = X ∧ y = Y ) =⇒ 1 ∗ xy = X Y

stating that the precondition entails the invariant;
(2) cinv is a certificate of the formula

(w ∗ xy = X Y ∧ y �= 1) =⇒
((y mod2=1 =⇒ w ∗ x ∗ (x2)

y
2 = X Y ) ∧ (y mod 2 �=1 =⇒ w ∗ (x2)

y
2 = X Y ))

stating that the invariant is preserved by the body of the loop, assuming the guard
of the loop holds;

(3) cpost is a certificate of the formula

(w ∗ xy = X Y ∧ y = 1) =⇒ w ∗ x = X Y

stating that the invariant, when strengthened with the negation of the loop guard,
entails the postcondition.
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Fig. 2. Specialized exponentiation algorithm.

The certificates cpre and cpost are built by applying substitutivity of equality and el-
ementary reasoning, whereas the certificate for cinv is built using basic properties of
exponentiation and certificates for the two lemmas:

y mod 2 = 1 =⇒ y = 2 ∗ y/2 + 1
y mod 2 �= 1 =⇒ y = 2 ∗ y/2.

Now suppose that Y = 2k for some k; then the algorithm fexp can be optimized
into the algorithm pexp shown in Figure 2. Indeed, the assumption on Y entails that
y mod 2 �= 1 holds for each loop iteration, and therefore the if statement can be re-
moved, as its test always fails.

The objective of certificate translation is to build from c a certificate c′ of the correct-
ness of pexp its specification, that is, of

{x = X ∧ y = Y ∧ ∃k. Y = 2k.}.pexp{x = X Y }.
As for the fast exponentiation algorithm, one must provide a loop invariant and a triple
(cpre, cinv , cpost) of certificates for verification conditions. If we choose the invariant used
for fexp, then the second proof obligation becomes:

(w ∗ xy = X Y ∧ y �= 1) =⇒ w ∗ (x2)y/2 = X Y ,

which cannot be proved without knowing that y mod 2 �= 1. Now, consider the strength-
ened invariant

w ∗ xy = X Y ∧ ∃k′. y = 2k′ .

Using the strengthened invariant, the program pexp can be certified by providing a
triple (c̄pre, c̄inv , c̄post) where:

(1) c̄pre is a certificate of the formula

(x = X ∧ y = Y ∧ ∃k. Y = 2k) =⇒ 1 ∗ xy = X Y ∧ ∃k′. y = 2k′

stating that the precondition entails the invariant;
(2) c̄inv is a certificate of the formula

(w ∗ xy = X Y ∧ ∃k′. y = 2k′ ∧ y �= 1) =⇒ (w ∗ (x2)y/2 = X Y ∧ ∃k′. y/2 = 2k′ )

stating that the invariant is preserved by the body of the loop, assuming the guard
of the loop holds;

(3) c̄post is a certificate of the formula

(w ∗ xy = X Y ∧ ∃k′. y = 2k′ ∧ y = 1) =⇒ w ∗ x = X Y ,

stating that the invariant, when strengthened with the negation of the loop guard,
entails the postcondition.

The main contribution of this paper is to provide a principled approach for building
the certificates c̄pre, c̄inv and c̄post from cpre, cinv and cpost, respectively. It is direct to

ACM Transactions on Programming Languages and Systems, Vol. 33, No. 4, Article 13, Publication date: July 2011.



13:6 G. Barthe and C. Kunz

build the certificates c̄pre and c̄post; on the contrary, building the certificate c̄inv is not
immediate. According to our approach, the certificate c̄inv is built from the certificate
cinv , and from an automatically generated certificate ca. Informally, cinv is used to
establish the first conjunct of the conclusion from the first conjunct of the hypothesis,
whereas ca establishes that ∃k′. y = 2k′ is an invariant for the loop body, that is, it is a
certificate of the formula

(∃k′. y = 2k′ ∧ y �= 1) =⇒ ∃k′. y/2 = 2k′ .

While the certificate cinv is retrieved from the source program, the certificate ca is built
by a certifying analysis that computes, for each program point, whether a variable
holds an arbitrary value, an even value, an odd value, or a power of 2. In its noncerti-
fying form, the analysis returns for each program point an annotation stating that y is
a power of two. Its certifying counterpart maps every annotation to a logical formula,
and produces a certificate for the annotated program: in this case, the annotation “is
a power of two” is translated to the formula ∃k′. y = 2k′ and the certificate proves the
annotated program.

3. PROGRAM, SEMANTICS, ABSTRACT INTERPRETATION

The purpose of this section is to introduce the framework in which we study the ex-
istence of certificate translators. Our framework is heavily inspired from abstract
interpretation, and only the notion of certified solution (see Section 3.4) appears to be
novel.

The section is organized as follows: first, we formalize programs as flow graphs
in Section 3.1. We then define abstract semantics of programs using transfer func-
tions over abstract states in Section 3.2; in Section 3.3 we define solutions of the
data flow constraints induced by the transfer functions. Solutions are the central
notion of this paper, and unify the main components of certificate translation: the
static analysis that justifies program transformations and the verification infrastruc-
ture used to prove program correctness. Next, in Section 3.4 we introduce certified
solutions, which extend solutions with certificates of the data flow constraints. Certi-
fied solutions are used in lightweight bytecode verification and in static analyses for
which fixpoint checking might be too costly. In Section 3.5, we define partial labelings,
which instead of providing a solution, provides sufficient information for the solution
to be efficiently computed. Partial labelings arise in verification infrastructures based
on verification conditions, and in lightweight bytecode verification. For completeness,
we also review in Section 3.6 the definition of concrete semantics and the definition of
soundness of an abstract semantics with respect to concrete semantics.

3.1 Programs

We view programs as flow graphs whose edges are decorated with statements.

Definition 3.1 Programs. A program consists of an annotated directed graph
〈N , E,G〉, where N is a finite set of nodes, with a distinguished initial node linit, and
E : N × N is a relation on nodes that describes the execution flow, and G : E → Stmt
is a function that assigns a statement to each pair of nodes in E . We let O ⊆ N denote
the set of nodes without successors, that is, l ∈ O iff for all l′ ∈ N , (l, l′) �∈ E .

The results of the paper are not tied to any programming language. However, it is
convenient for illustrative purposes to consider the minimalistic statement language
μStmt of Figure 3. In this setting, each edge is labeled with a sequential composition of
skip statements, assertions of the form assert b , where b is a boolean expression, and
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Fig. 3. Program statements.

Fig. 4. Program representation.

assignments of the form x := e, where x is a scalar variable drawn from a set of vari-
ables Var, and e is an expression. This set of statements is sufficiently expressive to
compile programs written in the simple imperative language used for the fast exponen-
tiation algorithm of Section 2. In particular, fexp is represented by the program given
in Figure 4. In the figure, the node l2 represents the header of the loop, and the edges
(l2, l3) and (l2, l6) represent the executions that enter or exit the loop body, respectively.
The node l3 represents the execution point immediately before the evaluation of the
condition y′ mod 2 = 1. The fact that the execution may follow two different branches,
that is, towards nodes l4 or l5, is modeled by the edges (l3, l4) and (l3, l5), representing
the cases in which the condition y′ mod 2 = 1 is satisfied or not, respectively.

3.2 Abstract Semantics

Abstract semantics assign to each program point a property that describes the set of
states that may reach that program point. The abstract properties form an abstract
domain A with a rich algebraic structure.

Definition 3.2 Abstract domain. A tuple A = 〈A ,,�,�,�,⊥〉 is an abstract domain
if:

— A is a set whose elements are called abstract properties;
— is a pre-order, i.e. a reflexive and transitive relation;
— � is a join operator, satisfying for all a,b , c ∈ A the conditions a a�b , and b  a�b ,

and

(a c ∧ b  c) =⇒ a� b  c;

— � is a meet operator, satisfying for all a,b , c ∈ A the conditions a � b  a, and
a� b  b , and

(c  a∧ c  b ) =⇒ c  a� b ;

—� is the greatest element in A, i.e. for all a ∈ A, a �;
—⊥ is the least element in A, i.e. for all a ∈ A, ⊥  a.

It is sufficient, for a particular style of abstract interpretation, to consider meet or join
semi-lattices, depending on the flow f of the interpretation. However, we find it more
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13:8 G. Barthe and C. Kunz

Fig. 5. Abstract domain of parity with powers of two.

convenient to require our domains to be lattices, since we may deal simultaneously
with analyses defined by forward and backward transfer functions.

Note that it is customary for abstract interpretation to require that the underlying
order of an abstract domain satisfies anti-symmetry, and thus is a pre-order. However,
it is not essential to require anti-symmetry to model approximation; see, for instance,
Section 5 of Cousot and Cousot [1992]. An informal argument is that the theory of
partial orders can be viewed as an extension of the theory of preorders with a new
relation, that is, equality, and a new axiom for anti-symmetry,that is,

∀a,b .(a b ∧ b  a) ⇔ a = b .

Hence every statement about partial orders can be reformulated as a statement on
preorders by replacing equality by its definition. Moreover, the natural domain for the
verification infrastructure is the domain of propositions, where the order  is logical
implication, which is a preorder rather than a partial order—more concretely, viewing
logically equivalent propositions as equal would later imply that logically equivalent
formula have the same sets of certificates, which is not desirable.

Turning back to our motivating example, we observe that it implicitly involves two
abstract domains: the domain of propositions and an abstract domain that extends
parity with powers of 2. The lattice of propositions has as its set of elements the set of
logical formulas, ordered by logical implication; then, � and � are defined as the logical
conjunction and logical disjunction, respectively, and finally⊥ = false and� = true. The
lattice for parity has elements even, odd, pow2, as well as elements � and ⊥. Figure 5
provides a graphical view of the lattice.

We now turn to the definition of abstract semantics.

Definition 3.3 Abstract semantics. An abstract semantics over an abstract domain
A is given by a pair I = 〈�.�A , f 〉, where

— for every statement s, �s�A : A → A is a monotone function. In the sequel, we often
omit the subscript A;

— f is the flow of the interpretation, either forwards (fwd) or backwards (bwd).

Typical examples of abstract semantics are the weakest precondition and strongest
postcondition calculus. The definition of wp and sp for μStmt is standard:

wp(x := e) φ .= φ[e/x]
wp(assert b ) φ .= b ⇒ φ

wp(skip) φ .= φ
wp(s1; s2) φ .= wp(s1) (wp(s2) φ)

sp(x := e) φ .= ∃x′. (φ[x′/x] ∧ x = e[x′/x])
sp(assert b ) φ .= b ∧ φ
sp(skip) φ .= φ
sp(s1; s2) φ .= sp(s2) (sp(s1) φ),

where φ[e/x] stands for the substitution of the expression e for x in φ.
Other typical examples of (forward) abstract semantics are value analyses, which

propagate knowledge about the value of a variable throughout the program points.
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Fig. 6. Abstract operators over extended parity domain.

Suppose that A is a lattice of abstract values; one can then define the lattice of abstract
environments as follows:

— its underlying set is (Var → A\{⊥A})∪{⊥}, and its pre-order is defined by the clauses
f ≤ g iff f = ⊥ or f x  g x for every x ∈ Var;

— the least element is ⊥ and the greatest element is λx.�;
— the join operator is defined by the clauses f � g = g if f = ⊥, f � g = f if g = ⊥, and

as λx. ( f x) � (g x) otherwise;
— the meet operator is defined by the clauses f � g = ⊥ if f = ⊥ or g = ⊥, and as
λx. ( f x) � (g x) otherwise.

Then, given an interpretation function for expressions, that is, given for every expres-
sion e a function

�e� : ((Var → A \ {⊥A}) ∪ {⊥}) → A

one can define the abstract semantics of a statement as follows. First, the abstract
semantics of x := e is defined by the clauses �x := e� ρ = ⊥ if ρ = ⊥ and otherwise

(�x := e� ρ) y =

{
ρ y if x �= y
�e� ρ if x = y.

The abstract semantics of assert b and skip is the identity. The abstract semantics of
a sequence is the composition of the abstract semantics of its components, that is,

�s1; s2� ρ = �s2�(�s1� ρ).

The abstract interpretation of an expression over an abstract environment of type
Var → A \ {⊥A} is defined by the abstract arithmetic operators shown in Figure 6.
In Section 4 we provide another example of value analysis.

3.3 Dataflow Equations and Solutions

The abstract semantics defines for each program a set of data flow equations. A com-
mon means to verify program properties is to consider solutions of these systems of
equations.

Definition 3.4 Solution. Let A be an abstract domain and let I = 〈�.�, f 〉 be an
abstract semantics over A.

— A labeling for a program 〈N , E,G〉 is a mapping S : N → A.
— A labeling S : N → A for a program 〈N , E,G〉 is a solution if the following holds:

— f = bwd and for every l in N , S(l) 
�

(l,l′)∈E
�G(l, l′)�(S(l′)); or

— f = fwd and for every node l′ in N ,
⊔

(l,l′)∈E
�G(l, l′)�(S(l))  S(l′).

Notice that, since E is a finite relation, the expressions
�

e∈E and
⊔

e∈E represent a
finite number of applications of the operations � and �, respectively.
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Fig. 7. Proof algebra.

Example 3.5. Consider the program shown in Figure 4 and the value analysis de-
fined in the previous section. Let ρ : Var → A \ {⊥A} be such that ρy = pow2 and
ρv = � for any other variable v. Let S be labeling such that S(l) = ρ for every l ∈ N .
One can see that S is a solution, as it satisfies the constraints given in Definition 3.4.
For instance, in order to show that ρy = pow2 is preserved by the assignment y := y/2,
one must check that �y := y/2�ρ  ρ, which holds from the definition of the abstract
operator ./2 shown in Figure 6.

Although we do not need it for this paper, we point out that it is possible to char-
acterize solutions as (pre- or post-) fixpoints over the functional lattice N → A of the
monotonic operator that associates to every labeling S ∈ N → A the labeling S′ such
that for every l ∈ N , S′(l) is defined as⊔

(l′,l)∈E
�G(l′, l)�(S(l′))

in the case when f = fwd—and dually in the case f = bwd. See, for instance, Hankin
et al. [2005] for more details on dataflow analyses.

3.4 Certified Solutions

A certified solution is a labeling with a certificate proving that it satisfies the data flow
constraints imposed by the analysis. In order to capture the notion of certified solution
at an appropriate level of abstraction, we do not commit to a particular representation
of certificates; instead, we define an abstract notion of proof algebra.

Definition 3.6 Proof algebra. A proof algebra for an abstract domain A is a function
C that assigns to every a,a′ ∈ A a set of certificates C(a a′) such that:

— C is closed under the operations of Figure 7, where a,b , c ∈ A;
— C is sound, that is, for every a,a′ ∈ A, if a � a′, then C(a a′) = ∅.

In the sequel, we write c : a  a′ or c : a′ � a instead of c ∈ C(a  a′). Moreover, we
sometimes use the function

trans : C(a b ) → C(b  c) → C(a c)

defined by composition of the algebra operations weak� and elim�.

The particular form of certificates is irrelevant for this article. In the context
of the lattice of logical assertions, it may be helpful for the reader to think about
certificates in the perspective of the Curry-Howard isomorphism [Sørensen and
Urzyczyn 2006]. Under this interpretation, propositions are types: conjunctions are
interpreted as products, disjunctions are interpreted as disjoint sums, implications
are interpreted as function spaces, etc. Then C is given by the typing judgment of a
typed λ-calculus. For example, the operator intro� is the term λ f. λg. λa. 〈 f a, ga〉 of
type (a ⇒ b ) ⇒ (a ⇒ c) ⇒ (a ⇒ (b ∧ c)). Likewise one can provide a type-theoretical
interpretation to the functions of Figure 7.
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Definition 3.7 Certified solution. Let A be an abstract domain and let C be a proof
algebra for A. Let I = 〈�.�, f 〉 be an abstract semantics over A. A certified solution
for a program 〈N , E,G〉 consists of a labeling S : N → A, and a family c = {cl}l∈N of
certificates such that for every l ∈ N ,

— if f = bwd then cl : S(l) 
�

(l,l′)∈E
�G(l, l′)�(S(l′));

— if f = fwd then cl :
⊔

(l′,l)∈E
�G(l′, l)�(S(l′))  S(l).

It follows from the soundness of the proof algebra that every certified solution is a
solution. Conversely, one can view every solution as a certified solution, by considering
proof-irrelevant proof algebras, that is, in which for every a,a′ ∈ A the set of certificates
C(a a′) is either empty, or is equal to the singleton set {•}, where • is a distinguished
element.

3.5 Partial Labelings

Many techniques, including lightweight bytecode verification [Rose 2003] and abstrac-
tion carrying code [Albert et al. 2005], do not bundle code with a full (certified) solution,
but with a partial labeling (and some certificates) from which a full (certified) solution
can be reconstructed. The purpose of this section is to show the construction of a (certi-
fied) solution from a (certified) partial labeling. We start by defining partial labelings.

Definition 3.8 Partial labeling. A partial labeling for a program 〈N , E,G〉 is a par-
tial function S : N ⇀ A such that entry and output nodes are annotated, that is,
O ∪ {linit} ⊆ dom(S), and such that the program is sufficiently annotated, that is, the
graph 〈N0, E ∩N0 ×N0〉 where N0 = N \ dom(S) is acyclic.

The first condition on partial labelings ensures that the program pre- and postcondi-
tion are specified—by its annotations on entry and output nodes—whereas the second
condition ensures that we dispose of sufficient annotations on loops to reconstruct a to-
tal labeling from the partial one. Note that a labeling can be seen as a partial labeling
S such that dom(S) = N . Moreover, note that given a partial labeling S for a program
〈N , E,G〉, one can define for every node its weight as the length of the shortest path to
an annotated node, i.e. a node that belongs to the domain of S. One can then reason
by induction on the weight of nodes.

We now show how to build a labeling from a partial one.

Definition 3.9 Annotation propagation, verification condition. Let annot be a par-
tial labeling for a program P = 〈N , E,G〉. The total labeling annot for the program
P is defined by the clause:

— if f = bwd, annot(l) =

⎧⎨
⎩

annot(l) if l ∈ dom(annot)�
(l,l′)∈E

�G(l, l′)�(annot(l′)) otherwise

— if f = fwd, annot(l) =

⎧⎨
⎩

annot(l) if l ∈ dom(annot)⊔
(l′,l)∈E

�G(l′, l)�(annot(l′)) otherwise.

For every l ∈ dom(annot), the verification condition vc(l) is defined by the clause

— vc(l) := annot(l)  �
(l,l′)∈E�G(l, l′)�(annot(l′)) if f = bwd;

— vc(l) :=
⊔

(l′,l)∈E�G(l′, l)�(annot(l′))  annot(l) if f = fwd.
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Fig. 8. Annotated program.

Example 3.10. A weakest precondition calculus is a typical example of verification
mechanisms that operate on partially labeled programs. Consider the program in
Figure 8. One can easily check that it is sufficient to annotate the set of labels {l1, l2, l7}:
a precondition, a postcondition, and a loop invariant, as shown in the figure. Indeed,
since the subgraph N \ {l1, l2, l7} is acyclic, a total labeling can be reconstructed from
a specification with domain {l1, l2, l7}. The weakest precondition fully annotates the
program, and extracts proof obligations as described above.

In the rest of this section, we show that it is sufficient to provide one certificate for
each l ∈ {l1, l2, l7}. In this particular example, this corresponds to the certificates ci, cl,
and c f introduced in Section 2.

The following lemma shows that, given a partial labeling annot, one can build cer-
tificates of the verification conditions for annot from certificates of the verification con-
ditions for annot.

LEMMA 3.11. Let annot be a partial labeling for a program 〈N , E,G〉 and assume
we have a certificate cl : vc(l) for every l ∈ dom(annot). Then there exists c′ such that
〈annot, c′〉 is a certified solution.

PROOF. By definition of annot, one sees that c′ defined as

c′(l) =

{
c(l) if l ∈ dom(c)
axiom(annot(l)) otherwise

is such that 〈annot, c′〉 is a certified solution.

In the sequel, we shall abuse language and speak about certified solutions of the form
〈annot, c〉 where annot is a partial labeling and c is an indexed family of certificates
that establish all verification conditions of annot.

3.6 Concrete Semantics

Although the technical development of the paper only refers to abstract semantics,
we provide a definition of program concrete semantics, and recall the definition of
soundness of abstract semantics w.r.t. concrete semantics. The concrete semantics of
programs is modeled as a transition relation between states.

Definition 3.12 Concrete semantics. Let Env be a set of environments. For every
s ∈ Stmt we assume given a transition relation �s� ⊆ Env × Env. We define the set of
states as State = N × Env, and the transition relation �⊆ State × State by the clause
〈l, η〉 � 〈l′, η′〉 if and only if (η, η′) ∈ �G(l, l′)�.
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The reflexive and transitive closure of the relation � is denoted by ��. Moreover, we
say that a program P with initial memory η, evaluates to η′, written P, η ⇓lo η

′, iff
〈linit, η〉 �� 〈lo, η′〉 and lo ∈ O.

For the statement language μStmt, we take Env to be the set of mappings from
variables to integer values, that is, Env = Var → Z, where Var is an infinite set of
variables. The concrete semantics is defined using the semantics of expressions, that
assigns to each expression e and environment η a value �e�η. Formally, the concrete
semantics is given by the clauses:

— (η, η′) ∈ �assert b � iff η = η′ and �b�η = true;
— (η, η′) ∈ �x := e� iff η′ = [η : x �→ n], where n = �e�η—and [η : x �→ n] is the unique

mapping such that

[η : x �→ n](y) =

{
n if x = y
η(y) otherwise

— (η, η′) ∈ �skip� iff η = η′; and
— (η, η′) ∈ �s1; s2� iff there exists η′′ s.t. (η, η′′) ∈ �s1� and (η′′, η′) ∈ �s2�.
We now define the soundness of an abstract semantics w.r.t. the concrete semantics.

Definition 3.13 Soundness. Let A be an abstract domain and 〈�.�, f 〉 be an abstract
semantics over A. Let |=A⊆ Env× A be a satisfaction relation. The abstract semantics
is sound (w.r.t. the concrete semantics and |=A ) iff for all s ∈ Stmt, a ∈ A and η, η′ ∈ Env
such that (η, η′) ∈ �s�:
— f = bwd and |=A η : �s�a implies |=a η

′ : a
— f = fwd and |=A η : a implies |=a η

′ : �s�a.
If an abstract semantics is sound w.r.t. the concrete semantics, then the solutions for
a program P provide a sound abstraction of its concrete semantics.

PROPOSITION 3.14 SOUNDNESS OF ABSTRACT INTERPRETATION. Let A be an ab-
stract domain and 〈�.�, f 〉 be an abstract semantics over A. Let |=A⊆ Env × A be a
satisfaction relation. Assume that 〈�.�, f 〉 is sound over the concrete semantics and |=A.
Then for every program P = 〈N , E,G〉, solution S for P, and edges (l, l′) ∈ E such that
〈l, η〉 � 〈l′, η′〉, if |=A η : S(l) then |=A η

′ : S(l′).

It follows from Proposition 3.1.4 that if P, η ⇓lo η′ and S is a solution for P, then
|=A η : S(linit) entails |=A η

′ : S(lo). When instantiated to program logics, the statement
coincides with the usual formulation of soundness.

4. CERTIFYING ANALYZERS

This section addresses the problem of automatically producing certified solutions from
solutions. More concretely, our goal is to transform solutions that are inferred by an
automatic program analysis, into certified solutions that can be verified using deduc-
tive methods. Therefore, we consider abstract domains A and A� that are related by a
monotone function γ : A� → A, and abstract semantics 〈�.�A , f 〉 and 〈�.�A� , f �〉 over A
and A� respectively. The concretization function γ maps static analysis results to the
logical representation of the deductive framework. Assuming that A is endowed with
a proof algebra, we want to transform every solution S for a program P over 〈�.�A� , f �〉
into a certified solution 〈γ ◦ S, c〉 for P over 〈�.�A , f 〉. Our main result gives sufficient
conditions for the existence and automated construction of certified solutions. In the
next section, we explain how to use the result of certifying analyzers in certificate
translation algorithms.
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We begin by defining the soundness of an abstract semantics with respect to
another.

Definition 4.1 Soundness. Let A and A� be abstract domains. Let γ : A� → A be a
monotone function. An abstract semantics 〈�.�A� , f �〉 over A� is sound (along γ ) with
respect to an abstract semantics 〈�.�A , f 〉 over A iff for all a ∈ A� and s ∈ Stmt, the
inequality 
s,a holds, where 
s,a is defined as follows:

— if f = f � = fwd then 
s,a is �s�A (γ (a))  γ (�s�A� (a));
— if f = f � = bwd then 
s,a is �s�A (γ (a)) � γ (�s�A� (a));
— if f = fwd and f � = bwd then 
s,a is �s�A (γ (�s�A� (a)))  γ (a);
— if f = bwd and f � = fwd then 
s,a is �s�A (γ (�s�A� (a))) � γ (a).

We now turn to certifying analyzers. Assuming that the abstract domain A is endowed
with a proof algebra, one can consider instead of soundness the stronger notion of
provable soundness.

Definition 4.2 Provable soundness. Let A and A� be abstract domains, and let γ :
A� → A. Assume that A is endowed with a proof algebra. An abstract semantics
〈�.�A� , f �〉 over A� is provably sound (along γ ) w.r.t. an abstract semantics 〈�.�A , f 〉 over
A iff the following holds:

— for every a,a′ ∈ A� s.t. a� a′, there exists the certificate:

monotγ (a,a′) : C(γ (a)  γ (a′))

— for every statement s and for every b ,b ′ ∈ A there exist the certificate function:

monot�s�A (b ,b ′) : C(b  b ′) → C(�s�A (b )  �s�A (b ′))

— for every a ∈ A� and s ∈ Stmt, there exists a certificate conss(a) of 
s,a, where 
s,a is
defined as in Definition 4.1.

PROPOSITION 4.3 EXISTENCE OF CERTIFYING ANALYZERS. Let A and A� be ab-
stract domains, and let 〈�.�A , f 〉 and 〈�.�A� , f �〉 be abstract semantics over A and A�

respectively. Let γ : A� → A and assume that 〈�.�A� , f �〉 is provably sound (along
γ ) over 〈�.�A , f 〉. Then, every solution for P over 〈�.�A� , f �〉 can be transformed into a
certified solution for P over 〈�.�A , f 〉.

PROOF. The proof proceeds by showing a step-by-step construction of the certificates
for γ ◦ S from the certificates assumed by hypothesis and applying the functions of the
proof algebra. The certificates are defined from the certificates cons, in Figure 9. In the
figure, s stands for G(l, l′) and T and T� stand for �G(l, l′)�A and �G(l, l′)�A� , respectively.
Consider for instance the case in which f = f � = fwd. As hypothesis, since S is a
solution over 〈�.�A� , f �〉 we have that T�(S(l)) � S(l′). From monotony of γ , we have
a certificate of γ (T�(S(l)))  γ (S(l′)), from which we obtain a certificate of the weaker
constraint γ (T�(S(l)))�T(γ (S(l)))  γ (S(l′)) by application of the proof algebra function
weak�. Since the abstract semantics 〈�.�A� , f �〉 is proved to be sound w.r.t. 〈�.�A , f 〉, we
have a certificate for T(γ (S(l)))  γ (T�(S(l))), which is combined with a certificate
of γ (T�(S(l))) � T(γ (S(l)))  γ (S(l′)) to obtain a certificate for T(γ (S(l)))  γ (S(l′)).
The final certificate for

⊔
l: (l,l′)∈E T(γ (S(l)))  γ (S(l′)) is obtained then by a repeated

application of the intro� operator over every predecessor of l′. The remaining cases are
symmetrical.
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Fig. 9. Construction of a certifying analyzer.

The remaining of this section is devoted to illustrate Proposition 4.3. We consider
the certification of a forward analysis with respect to a weakest precondition and
strongest postcondition calculus, and the certification of a weakest precondition with
respect to a strongest postcondition calculus.

Consider the forward abstract semantics �.�A� over the lattice (Var → Expr)⊥, where
Expr is the flat join semi-lattice of expressions: that is, the set of expressions plus the
� element. Let �e�ρ be defined as a substitution in e of every variable v s.t. ρv �= � by
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ρv. Suppose that A is the lattice of logical propositions and that γ maps elements of
(Var → Expr)⊥ to formulae as defined by the clauses:

γ (⊥) = false

γ (ρ) =
∧
ρv �=�

v = ρv

In this particular setting it is not difficult to provide a certificate

monotγ (ρ, ρ ′) : γ (ρ) ⇒ γ (ρ ′)

for every abstract environments ρ, ρ ′ such that ρ A ρ
′. Indeed, notice that the set of

terms in the conjunction γ (ρ ′) is a subset of the terms in γ (ρ). A procedure to build a
certificate monotγ (ρ, ρ ′) consists of an iterative application of the weak� operator over
the trivial certificate axiom(γ (ρ ′)) : C(γ (ρ ′) ⇒ γ (ρ ′)):

weak�(x1 = ρx1, . . .weak�(xk = ρxk,axiom(γ (ρ ′))) . . .) : C(γ (ρ) ⇒ γ (ρ ′)),

where the set of variables {x1, .., xk} is {x | ρx �= �∧ ρ ′x = �}.
The soundness of the abstract semantics 〈�.�A� , fwd〉 w.r.t. a weakest precondition

and a strongest postcondition verification setting is established by proving

γ (ρ) ⇒ wp(s) (γ (�s�ρ)) sp(s) (γ (ρ)) ⇒ γ (�s�ρ)

for all abstract environment ρ ∈ A and statement s, respectively. Consider, for in-
stance, the statement x := y + z and abstract environment ρ with ρ x = 5, ρ z = 7, and
ρ v = � for any other variable v. To verify the abstract analysis w.r.t. the weakest
precondition calculus, from definition of �.�, one must prove that∧

ρv �=�
v = ρv ⇒ wp(x := y + z) (x = �y + z�ρ ∧

∧
ρv �=�∧v �=x

v = ρv),

which from definition of wp is equivalent to

x = 5 ∧ z = 7 ⇒ y + z = y + 7 ∧ z = 7.

Assume we have for all expressions e, e1, e2, e′1, e
′
2 the certificate eq(e) : C(e = e) and the

certificate function plus eq : C(e1 = e′1) → C(e2 = e′2) → C(e1 + e2 = e′1 + e′2). Then the
certificate for the proof obligation above can be defined as

λ〈c, c′〉 : C(x = 5 ∧ z = y).〈plus eq(eq(y), c′), c′〉.
In Section 5, we make use of the certificates introduced in this section to certify the

partial analysis labeling shown in Figure 15. From Proposition 4.3 and the existence of
the certificates monotγ , monotwp, and cons, there exists a certified solution 〈S, c〉 such
that S associates the assertion y = 2 ∗ p to the node l1, the assertion y′ = 2 ∗ p∧ x = x′
to the nodes {l′2, l′3, l′5} and true to any other node. In the next section, we make the
implicit assumption that the analysis results used in the examples are certified.

To verify the abstract analysis w.r.t. the strongest postcondition calculus, one must
prove that

sp(x := y + z) (
∧
ρv �=�

v = ρv) ⇒ x = � y + z�ρ ∧
∧

ρv �=�∧v �=x

v = ρv,

which from definition of sp is equivalent to

∃x′. x′ = 5 ∧ z = 7 ∧ x := y + z =⇒ x = y + 7 ∧ z = 7.

Proposition 4.3 also considers the certification of verification settings at the same
level of abstraction, i.e., with γ : A → A� defined as the identity function. For example,
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to verify that a weakest precondition calculus is sound w.r.t. a strongest postcondition
calculus, one must show for every formula φ and statement s that sp(s) (wp(s)φ) ⇒ φ.
For the assignment x := e, one must discharge proof obligations of the form

∃x′. x = e[x′/x] ∧ φ[e/x][x′/x] ⇒ φ.

5. CERTIFICATE TRANSLATION

In this section, we provide sufficient conditions for the existence for certificate trans-
lators, that map certificates of a program P into certificates of another program P′,
derived from P by a program transformation. Rather than attempting to prove a gen-
eral result where P and P′ are related in some complex manner, we establish three
results for basic transformations that can be used in combination to cover many cases
of interest.

In a first instance, Section 5.1 considers a program transformation that consists
in duplicating fragments of the graph representation of P, modeling transformations
such as loop unrolling and function inlining. In a second instance, Section 5.2 requires
that the transformed program P′ is a subgraph of the original program P. This is
the case, for example, when P′ is derived from P by applying optimizations such as
constant propagation or common subexpression elimination. In a third instance, in
Section 5.3, we abstract away some of the structure of the program to deal with op-
timizations that do not preserve so tightly the structure of programs, such as code
motion. Finally, we generalize certificate translation to cover optimizations such as
dead variable elimination.

5.1 Code Duplication

Some program transformations change the program size with no effect in the execution
performance, enabling further program optimizations. Typical cases of code duplica-
tion are loop unrolling and function inlining. In this section, we model this class of
transformations as a duplication of fragments of the program graph representation.
Consider for instance the case of loop unrolling, in which one or more iterations of the
loop body are executed separately before entering the loop:

l1 : x := 0;
l2 : while b do

s
l3 : done

la : x := 0;
lb : if b then

s;
lc : while b do

s
done

ld : fi

In the program at the right, we duplicate one iteration of the statement s representing
the loop body. It is executed under the condition b in order to preserve the original pro-
gram semantics. In the transformed program, the unrolled iteration of the loop body s
is executed with the variable x holding the value 0, a condition that may be invalidated
by the successive loop iterations. To illustrate this transformation in our program rep-
resentation, consider the Figure 10. The graph on the left shows the structure of the
original program, where node l2 represents the head of a loop, and the edge (l2, l2) the
execution of the loop body. The graph on the right shows the result of unrolling the
first execution of the loop body. When execution reaches node lb , the transition (lb , lc)
(representing one execution of the loop body) is followed if the loop guard is satisfied;
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Fig. 10. Loop unrolling example.

Fig. 11. Original program after loop unrolling.

then the remaining loop iterations may proceed. If the loop guard is not satisfied, then
the execution continues to node ld.

In the rest of this section, we formalize code duplication in our abstract setting, and
show how to deal with certificate translation for this class of transformations.

Definition 5.1 Node duplication. A program P̊ = 〈N̊ , E̊, G̊〉 is the result of duplicat-
ing nodes of program P = 〈N , E,G〉 if there exists a surjective function π : N̊ → N
such that for every (l, l′) ∈ E̊
— (π l, π l′) ∈ E and
— G̊(l, l′) = G(π l, π l′).

Notice from this definition that 〈l1, σ1〉, 〈l2, σ2〉, . . . , 〈lk, σk〉 is an execution trace in P̊
only if 〈π l1, σ1〉, 〈π l2, σ2〉, . . . , 〈π lk, σk〉 is a trace in P.

Example 5.2. Figure 11 shows the result of applying loop unrolling: nodes l2, l3, l4
and l5 are duplicated into the nodes l′2, l′3, l′4, and l′5, respectively, and a new subset of
edges is defined accordingly. Formally, the duplicated graph is such that N ⊆ N̊ and
and a projection function π : N̊ → N can be defined as π l′2 = l2, π l′3 = l3, π l′4 = l4,
π l′5 = l5, and π l = l for any other node.

PROPOSITION 5.3. Let A be an abstract domain, I = 〈�.�, f 〉 an abstract semantics
over A, and C a proof algebra for A. Assume the certificates of Figure 12 exist for every
abstract elements a1,a2,b1,b2 ∈ A. Then every certified solution 〈annot, c〉 for P can be
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Fig. 12. Certificates required for certificate translation.

transformed into a certified solution 〈 ˚annot, c̊〉 for P̊, where ˚annot(l) = annot(π l) for all
l ∈ N̊ s.t. π l ∈ dom(annot).

PROOF. We proceed by induction, using the principle derived from the fact that
annot is a sufficient annotation. More concretely, one can attach to every node a weight
that corresponds to the length of the longest path to an annotated node, that is, a node
l in dom(annot).

To generate a certificate for the transformed program it is sufficient to provide the
following certificates:

— goal(l) : annot(π l)  ˚annot(l), if f = bwd, or
— goal(l) : ˚annot(l)  annot(π l), if f = fwd,

for all node l ∈ N̊ . Indeed, for instance when f = bwd, one can make use of the
certificate monot�.� in Figure 12 to generate certificates of the form

˚annot(l) 
�

(l,l′)∈E̊

˚annot(l′)

from the original certificates

annot(l) 
�

(l,l′)∈E
annot(l′),

the definition ˚annot(l) = annot(πl), and the certificate goal(l) for all l ∈ dom(annot), and
the certificate operator monot�.�.

We describe now the construction of certificate goal. For l ∈ N̊ such that π l is in
dom(annot), the certificate goal is trivial by definition of ˚annot, that is, an application
of the axiom operation of the proof algebra. For every l ∈ N̊ s.t. π l �∈ N , the certificate
goal(l) is defined by the following derivation steps:

p(l′):=goal(l′) : annot(π l′)  ˚annot(l′)
q(l′):=monot�s�(p(l′)) : �s�(annot(π l′))  �s�( ˚annot(l′))
r(l′):=weak�(q(l′)) :

�
(π l,π l′)∈E�s�(annot(π l′))  �s�( ˚annot(l′))

goal(l):=intro�({r(l′)}(l,l′)∈E̊ ) :
�

(π l,π l′)∈E�s�(annot(π l′))  �
(l,l′)∈E̊�s�( ˚annot(l′)),

where s stands for �G̊(l1, l2)� and for any label l′ with (l, l′) ∈ E̊ , goal(l′) stands an appli-
cation for the inductive hypothesis.

The expression weak�(X ) stands for weak�(c1,weak�({c2, . . . , ck})) for any sequence
X = {c1, c2, . . . , ck} (and similarly with intro�(X )). The inductive step for the forward
case is similar.
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Example 5.4. Consider again the program example shown in Figure 11, which is
the result of unrolling the loop of the original program shown in Figure 8. Assuming
that we have a certificate for the original program, we show how to obtain a certificate
for the transformed program.

First, the partial specification labeling is defined. In this case, the labeling is
extended by setting ˚annot(l′2) = annot(l2), and ˚annot(l) = annot(l) for any other l in
dom(annot). As the structure of the transformed program is not modified significantly,
the computation of a total labeling ˚annot is not affected either. A visual inspection
on the graph of Figure 11 should be sufficient to deduce that the graph structure is
almost preserved. Indeed, with the exception of the duplicated node l′2, for the dupli-
cated nodes l ∈ N̊ such that there is an edge (πl, l′) ∈ E we have a corresponding edge
(l, l′′) ∈ E̊ with πl′′ = l′. For the duplicated node l′2, there is the original edge (l2, l6)
but not a corresponding edge (l′2, l6): only the edge (l′2, l

′
3) is present in the transformed

program. However, one can see that this condition does not affect the computation
of the total labeling ˚annot from the partial labeling ˚annot, as l′2 is an annotated node
(i.e., l′2 ∈ dom( ˚annot)). The lack of edge (l′2, l6) does affect, however, the computation of
requirements for ˚annot to be a solution, as

˚annot(l′2) ⇒ wp(G̊(l′2, l
′
3)) ˚annot(l′3)

is now required instead of the original constraint

annot(l2) ⇒ wp(G(l2, l3))annot(l3) ∧wp(G(l2, l6))annot(l6).

From Proposition 5.3, we have a certificate for the goal annot(l3)  ˚annot(l′3). The exis-

tence of the certificate for ˚annot(l′2) ⇒ wp(G̊(l′2, l
′
3)) ˚annot(l′3) follows from the definitions

annot(l2) = ˚annot(l′2) and G̊(l′2, l
′
3) = G(l′2, l

′
3).

5.2 Edge Transformation

In this section, we consider a fundamental class of program transformations. These
transformations represent the effect of replacing statements when the result of an
analysis ensures that the semantics is preserved. This is the case, for instance, for
constant propagation, in which a static analysis infers whether at a given program
point some variable always holds the same constant value. In a second step, constant
propagation optimizes statements assuming the validity of the analysis results. Con-
sider the following fragment of code:

l1 : x := 0;
l2 : if b then y := y + x; x := x + 1 fi
l3 : while b do y := y + x; x := x + 1 done

Assume a static analysis infers that, for every program execution, x holds the value 0
at the program point l2. Then, the first occurrence of the statement y := y + x; x := x + 1
can be replaced by the semantically equivalent statement skip; x := 1. This program
transformation is reflected in the abstract program graph by a transformation on the
statements associated to the corresponding edges. Moreover, we also consider the case
in which some of the original edges are removed.

We first provide a formal characterization of the transformations under considera-
tion. We then state the existence of certificate translators based on the certifiability of
the analysis result that motivates the transformation.
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Fig. 13. Definition of goal(l) for certificate translation (case f = bwd).

Let P be a program 〈N , E,G〉. The program P′ = 〈N ′, E ′,G′〉 is a transformation of
P if P′ is a subgraph of P such that N ′ ⊆ N and E ′ ⊆ E .

The following result states that it is possible to translate the certificates as long as
there exists a certificate justif establishing a relation between the abstract semantics
of the original and transformed programs. Assume that we have a certified represen-
tation of the analysis result that enables the program transformation. The existence
of certifying analyzers follows from the results of Section 4.

PROPOSITION 5.5 EXISTENCE OF CERTIFICATE TRANSLATORS. Let 〈S, cS〉 be a cer-
tified solution over I such that for every (l1, l2) ∈ E ′ and a ∈ A:

— if f = bwd then justif(l1,l2) : S(l1) � �G(l1, l2)�(a)  �G′(l1, l2)�(a);
— if f = fwd then justif(l1,l2) : �G′(l1, l2)�(a)  S(l2) � �G(l1, l2)�(a).

Then, provided the certificates in Figure 12 are given for every a1,a2,b1,b2 ∈ A, one
can transform every certified labeling 〈annot, c〉 for P into a certified labeling 〈annot′, c′〉
for P′, where annot′(l) is defined as annot(l)�S(l) for every node l in dom(annot′), that is,
in dom(annot) ∩N ′.

PROOF. We build for every l in N ′ the certificate

— goal(l) : S(l) � annot(l)  annot
′
(l) if f = bwd, or

— goal(l) : annot
′
(l)  S(l) � annot(l) if f = fwd,

from which the existence of a certificate for annot′ follows.
We proceed by induction, using the principle derived from the fact that annot is a

sufficient annotation. More concretely, one can attach to every node a weight that
corresponds to the length of the longest path to an annotated node, that is, a node
l ∈ dom(annot). In the base case, where l ∈ dom(annot′), the certificate goal(l) is defined
trivially, since annot

′
(l) = S(l) � annot(l). For the inductive step, where l �∈ dom(annot′),

the proof is given in Figures 13 and 14 for the backward and forward case, respectively.
The application of certificates assoc←� , assoc→� and commut� is omitted in the proof for
readability.

The set of certificates justif required for certificate translation in Proposition 5.5
must be provided for each program optimization. It is thus an additional task based
on the definition of each optimization, and it can be interpreted as a proof of soundness
for each local transformation. Consider for instance the standard verification setting
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Fig. 14. Definition of goal(l) for certificate translation (case f = fwd).

based on weakest precondition calculus. Let s be a program statement and s′ its trans-
formed version. The predicate justif entails verifying that the proof obligation ψ ∧
wp(s, ϕ) ⇒ wp(s′, ϕ) holds for every ϕ, where ψ represents the condition that makes the
transformation of s into s′ a semantics preserving optimization. Assume, for instance,
the statement s .= x := y+z that is optimized to s′ .= x := y+7 based on the condition ψ .=
z = 7. The proof obligation justif can be interpreted as the semantics soundness of the
transformation: consider an initial state σ satisfying z =7, if for all σ ′ such that (σ, σ ′) ∈
�x := y+z� we have σ ′ ∈ ϕ then for all σ ′′ such that (σ, σ ′′) ∈ �x := y+7� we have σ ′′ ∈ ϕ.

The rest of certificates required in Proposition 5.5 are not dependent on the program
transformation but on the underling abstract domain. For simple domains as the value
analysis example of the next section, the constraints hold trivially and no certificate
is needed. In the lattice of logical formulae, assoc←∧ , assoc→∧ , and commut∧ are simply
built from the associativity and commutativity of logical conjunction: for every φ, ψ,
and ϕ we require a certificate for φ ∧ ψ ⇒ ψ ∧ φ and φ ∧ (ψ ∧ ϕ) ⇒ (φ ∧ ψ) ∧ ϕ (and
the reciprocal of the latter). Discharging the distributivity of the wp operator over
conjunctions of logical formulae, i.e. defining distr←(wp,∧) and distr→(wp,∧) entails verifying
the equivalence of wp(s, φ ∧ φ′) and wp(s, φ) ∧wp(s, φ′), which can be easily done in our
setting by simple case analysis in the statement s.

Using the results of Proposition 4.3, Proposition 5.5 can be instantiated to prove
the existence of certificate transformers for many common optimizations considered in
previous work [Barthe et al. 2009]. These include, in particular, optimizations that can
be classified as substitutions on the expressions defining the program, such as constant
and copy propagation, common subexpression elimination, and induction variable
strength reduction. In a nutshell, enabling certificate translation consists in first dis-
charging the proof obligations necessary to make the analyzer certifying, as explained
in Section 4. Based on the computed analysis result, the compiler optimizes the pro-
gram. Then, one provides a certificate justife for each edge e whose statement has been
modified. The translation procedure then merges these certificates with the original
one to produce a certificate for the optimized program. The following section illustrates
further this process for a particular instance of edge transforming optimizations.

Optimizations based on expression simplification. In this section, we instantiate the
transformation described above with a class of optimizations based on expression
simplification.
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Fig. 15. Program analysis after loop unrolling.

To simplify the presentation, we illustrate this kind of optimizations with a simple
transformation applied to the running example. Induction variable strength reduction
is postponed to next section, since it must be defined as a combination with transfor-
mations described in the following sections.

We now define the program transformation. Let �e�ρ stand for the substitution in e
of every variable v s.t. ρ v �= � by ρ v. For a program 〈N , E,G〉 we define the optimized
program as 〈N , E,G′〉, such that for every e ∈ E the statement G′(e) is defined as:

— �b�ρ if G(e) = assert b , and
— a := �e�ρ or a[�e′�ρ] := �e�ρ if G(e) is equal to the assignments x := e and a[e′] := e,

respectively.

Example 5.6. Consider the program in Figure 15. Suppose that we know (e.g., from
the execution context) that the program is called with the variable y satisfying the
precondition y = 2 ∗ p. Then, one can consider a static analysis that propagates this
information forward. As shown in the figure, an analyzer infers that the condition
y = 2 ∗ p can be propagated to the nodes l′2, l′3, l′4, and l′5. One can check that a labeling
S defined as S(l) .= y=2∗p for l ∈ {linit, l′2, l

′
3, l

′
4, l

′
5}, and S(l) .= � for any other node l ∈ N

is a valid solution. In a forward data-flow analysis this entails checking for instance
that S(l2), which is trivial since the statement G(l′2, l

′
3) represents the identity over the

abstract value y=2∗p (and similarly with nodes l′3, l′4, and l′5):

G(l′2, l
′
3) S(l′2)  S(l′3).

In the rest of this section we assume, however, that the analyzer is certifying. That
is, the abstract value y = 2 ∗ p is an actual logical formula, and there is a certificate of
the correctness of the specification S w.r.t. a weakest precondition verification setting.

Figure 16 shows a transformed version of the program of Figure 15, in which the
variable y′ has been replaced by the equivalent expression 2 ∗ p. We now describe the
requirements for certificate transformation, instantiated to the particular analysis,
verification framework, and program transformation considered in this case.
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Fig. 16. Program analysis after first transformation step.

Consider the proof obligation that states that the transformation preserves the ver-
ification result, assuming valid the result of the analysis. More precisely, for every
formula φ and edge (l, l′), one must provide a certificate

justif : S′(l) ∧ wp (G(l, l′))φ ⇒ wp (G′(l, l′))φ,

where S′ = γ ◦ S. To discharge this proof obligation one proceeds by case analysis
on G((l, l′)) and S(l). Let ρ stand for S(l). Consider for instance an edge (l, l′) such
that G((l, l′)) = x := e. Then, from the definition of the program transformation, we
have G′((l, l′)) = x := �e�ρ . From the definition of �.�ρ, it is straightforward to prove
γ (ρ) ⇒ e = �e�ρ by variable rewriting. By definition, wp (G(l, l′))φ and wp (G′(l, l′))φ
are equal to φ[e/x] and φ[�e�ρ/x], respectively. Therefore, in this case, the proof obligation
justif is

γ (ρ) ∧ φ[e/x] ⇒ φ[�e�ρ/x],

which can be proved simply by expression rewriting as well. By Proposition 5.5, from
the existence of the certificate justif shown above, one can build a certificate for the
optimized program in Figure 16, with labeling annot′(l) = annot(l) ∧ S(l) for all nodes
l ∈ dom(annot).

Figure 17 shows the final version of the optimized program, in which trivially decid-
able jump statements have been eliminated (nodes l′2 and l′3) and unreachable nodes
have been removed (node l′4), and in which assignments have been simplified (node l′5).
The corresponding transformation of the certificate is not explained since it relies on a
trivial analysis result (S(l) = true for all l ∈ N ).

5.3 Program Skeletons

Proposition 5.5 requires that the transformation is justified for each edge of the pro-
gram; this rules out several well known optimizations such as statement swapping
or code motion, whose justification involves more than one statement. Consider, for
example, a program 〈N , E,G〉 with N = {l1, l2, l3}, E = {(l1, l2), (l2, l3)}, and G(l1, l2) = c1
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Fig. 17. Program after optimizing transformations.

and G(l2, l3) = c2. Suppose that �c1; c2� = �c2; c1�, that is, that the order in which they
are executed does not alter the final state. Let the program 〈N , E,G′〉 be the result
of swapping statements c1 and c2, that is G′(l1, l2) = c2 and G′(l2, l3) = c1. Certifi-
cate translation for this transformation as an instance of the class of optimizations
in Section 5.2, requires proving that �c1� = �c2�, which does not necessarily hold. To
overcome this limitation, one must abandon the direct representation of programs,
where each edge represents one statement, and cluster several statements into a
single edge.

In this section, we formally capture this idea of clustering, and use it to extend the
applicability of the results of Section 5.2. We define a program skeleton by selecting
a set N̂ ⊆ N of program points to be preserved in the final graph. The final graph
preserves the program structure, but abstracts away the program points represented
by the nodes that are not in N̂ . In the following paragraphs, we formally define a pro-
gram P̂ = 〈N̂ , Ê, Ĝ〉 as a skeleton of program P = 〈N , E,G〉. For notational simplicity,
we assume the set of statements closed under sequential composition.

Definition 5.7. Let P = 〈N , E,G〉 be a program. Let l be a node with a single input
node l1 and a single output node l2, and assume (l1, l2) �∈ E . The program P \ {l} is
defined as 〈N̂ , Ê, Ĝ〉, where N̂ = N \ {l}, Ê = E \ {(l1, l), (l, l2)} ∪ {(l1, l2)}, Ĝ(la, lb ) is
equal to G(la, lb ), and Ĝ(l1, l2) = G(l1, l); G(l, l2) for all (la, lb ) �= (l1, l2). A program P̂ is a
skeleton of P if there exists l1 . . . lk s.t. P̂ is equal to P \ {l1} . . . \ {lk}.
In the rest of the section we let P̂=〈N̂ , Ê, Ĝ〉 be a skeleton of the program P=〈N , E,G〉.
One can show that for every l, l′ ∈ N̂ , 〈l, η〉�� 〈l′, η′〉 in P̂ only if 〈l, η〉�〈l′, η′〉 in P.

Let I = 〈�.�A, f 〉 be an abstract semantics over a domain A. We say that I is closed
under sequential composition if for all statements s1 and s2,

— �s1; s2� = �s1� ◦ �s2�. if f = bwd
— �s1; s2� = �s2� ◦ �s1�. if f = fwd.
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LEMMA 5.8. Let I = 〈�.�A, f 〉 be an abstract semantics. Suppose that I is closed
under sequential composition, and let S be a labeling such that dom(S) ⊆ N̂ . Then
〈S, c〉 is a certified solution for P iff 〈S, c〉 is a certified solution for P̂.

The results of Section 5.2 are immediately extended to a broader set of proof trans-
formations:

COROLLARY 1. Assume 〈S, c〉 is a certified solution for P with dom(S) ⊆ N̂ . Let
P′ = 〈N ′, E ′,G′〉 be transformed from P, and P̂′ = 〈N̂ ′, Ê ′, Ĝ′〉 a skeleton of P′. Suppose
that N̂ ′ ⊆ N̂ and Ê ′ ⊆ Ê and for every (l1, l2) ∈ Ê ′ and a ∈ A:

— if f = bwd then justif(l1,l2) : S(l1) � �Ĝ(l1, l2)�(a)  �Ĝ′(l1, l2)�(a);
— if f = fwd then justif(l1,l2) : �Ĝ′(l1, l2)�(a)  S(l2) � �Ĝ(l1, l2)�(a).

Then, provided the certificates in Figure 12 are given for every a1,a2,b1,b2 ∈ A, one can
provide a certified labeling 〈annot′, c′〉 for P′, where annot′(l) is defined as annot(l) � S(l)
for every node l in dom(annot′) = dom(annot) ∩N ′.

PROOF. Notice that P̂ is a program as defined in Definition 3.1. From Proposi-
tion 5.8, 〈S, c〉 is a certified solution for P and 〈annot, c〉 is a certified solution for P̂.
The corollary follows from the existence of the certificate justif and Lemma 5.5.

Corollary 1 restates the result of Proposition 5.5, but requiring the certificate
justif to be defined for every edge in Ê instead of every edge in E . Therefore, it is
a generalization that covers a wider range of program transformations. Consider,
for instance, the case of statement swapping, represented in the program graph by
swapping the interpretation of the edges (l1, l2) and (l2, l3). In this case, the structure of
the graph is preserved by the transformation, that is, N ′ = N and E ′ = E , but we have
�G′(l1, l2)� = �G(l2, l3)� and �G′(l2, l3)� = �G(l1, l2)�. We cannot show a correspondence
between �Ge� and �G′e� for any e ∈ {(l1, l2), (l2, l3)}. However, by abstracting the
intermediate node l2, we are in a position to analyze whether �G′(l1, l2)� ◦ �G′(l2, l3)� is
equal to �G(l1, l2)� ◦ �G(l2, l3)�, that is, whether �Ĝ′(l1, l3)� = �Ĝ(l1, l3)� holds.

Example 5.10. We illustrate how to apply the result of this section to the program
of Figure 17 to obtain the program of Figure 18. The program in the figure shows that,
after a program optimization, the edges (l′2, l

′
3) and (l′3, l

′
5) represent program transi-

tions that do not modify the execution state. That is modeled in the analysis domain
by defining �G(l′2, l

′
3)� and �G(l′3, l

′
5)� as the identity function in A. Let P′ be the re-

sult of removing the nodes l′3 and l′5, and replacing the edges (l′2, l
′
3), (l′3, l

′
5) and (l′5, l2)

by a single edge (l′2, l2). The abstract interpretation is such that �G(l′2, l2)� is equal to
�G(l′5, l2)� ◦ �G(l′3, l

′
5)� ◦ �G(l′2, l

′
3)�. However, this transformation is not considered in

Section 5.2, since it is not a single-edge by single-edge replacement.
We can apply, however, a preliminary node clustering transformation before apply-

ing the results of Proposition 5.5. We define then the set of edges N1 to be removed as
{l′3, l′5}; see Figure 18 for the result of node coalescing, plus a trivial statement trans-
formation that removes skip statements. It is straightforward to transform the certifi-
cates after the removal of skip statements, by application of Proposition 5.5, since we
have Ê = Ê ′ and �Ĝ e� = �Ĝ′ e� for every e ∈ Ê . To that end, the result of the analysis
S is defined as true for every annotated program node (that is, {l1, l′2, l2, l7}.) In the
figure, we simplify the presentation by writing formulas of the form ϕ ∧ true as ϕ. For
the translation of the certificate we require also the definition of the certificate justif,
which in this case is trivially provided by the proof algebra operators axiom and weak�
since wp(Ĝ e) = wp(Ĝ′ e).
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Fig. 18. Program after node coalescing.

Statement insertion. Consider a programming language as in the running example
and a specification provided by a labeling S. We say that a variable is fresh if it does
not occur in the program nor in the specification.

In our setting, the insertion of statements affecting fresh variables is modeled as the
addition of new nodes and edges to the graph representation. The new variables must
be chosen fresh not only with respect to the program syntax, but also with respect to
previous analysis or verification results. In consequence, the transfer functions of the
abstract interpretation that correspond to the inserted statements are defined as the
identity in the domain of the specification (although there may be a wider abstract
domain in which the transfer function is not the identity function).

This intuition is captured in the following result, which together with Corollary 1
enables us to establish the preservation of certified results in the presence of code
insertion.

PROPOSITION 5.11. Let 〈N , E,G〉 be a program and I = 〈�.�, f 〉 be an abstract inter-
pretation over the abstract domain A. Let A′ be a sublattice of A that is closed under
�Ge� for all edge e ∈ E . Then, the pair 〈S, c〉 such that S(l) ∈ A ′ for every l ∈ N , is a
certified solution over the abstract domain A iff it is a certified solution over the abstract
domain A′.

Consider for example the abstract interpretation I = 〈wp,bwd〉 over the lattice
A of logical formulae, where wp is defined as a weakest precondition transformer.
Consider a program P = 〈N , E,G〉 with (l1, l2) ∈ E and 〈S, c〉 a certified solution over
I. Let P′ be the result of inserting an extra program point between nodes l1 and l2 to
represent an affectation to a fresh variable x, occurring neither in the program nor in
the specification (that is, labeling S). One can formalize this transformation by setting
N ′ = N ∪ {l}, E ′ = (E \ {(l1, l2)}) ∪ {(l1, l), (l, l2)} and G′(l1, l) = G(l1, l2) and G′(l1, l) defined
as an assignment to x. In this case, we cannot immediately apply Corollary 1, since
Ĝ′(l1, l2) is not necessarily equal to Ĝ(l1, l2). Consider instead the abstract domain
Ax defined as the sublattice of the logical formulae that do not contain the variable
x. Since x is a fresh variable, it does not appear in S(l) for any l, and for all e ∈ E
the functions wp(G e) are closed on Ax. Then 〈S, c〉 is a certified solution for P over
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Fig. 19. Strength reduction example. Original program.

Fig. 20. Strength reduction example. Program after statement insertion.

the domain Ax by Proposition 5.11. We are now in a condition in which we can apply
Corollary 1, since for every ϕ ∈ Ax, �Ĝ(l1, l2)�(ϕ) = �Ĝ′(l1, l2)�(ϕ). Then, the pair 〈S, c〉 is
a certified solution for P′ over the abstract domain Ax. And again by Proposition 5.11
it is also a certified solution for P′ over the abstract domain A.

Example 5.12 Strength Reduction. Induction variable strength reduction can be
modeled as a composition of statement insertion and expression simplification. A ba-
sic induction variable is a variable that is incremented (or decremented) by a constant
value in a program loop. A derived induction variable is a variable that is assigned
in the loop an expression that is a linear function on a basic induction variable. In
the code shown in Figure 19, i is a basic induction variable and j is an induction
variable derived from i (assume that c does not modify neither the value of i nor j).
Strength-reduction reduces the cost of computing the expression a∗ i+b , by computing
an addition operation instead. The optimization can be modeled as a combination of
three steps. The final certificate is defined by composition of the certificate translation
procedures corresponding to each of the optimization steps.

Suppose we have a certified solution 〈annot, c〉 for the program example. As
in Barthe et al. [2009], we split the transformation in two steps. We first insert a
pair of assignments to a fresh variable j′. We then use the value held by the variable
j′ to optimize the assignment j := a ∗ i + b . The code in Figure 20 shows the result of
inserting fresh statements as a first optimization step.

From Proposition 5.11, since j′ is fresh w.r.t. both the program and the original
specification annot, we do not need to transform the original certificate.

After inserting the assignments to the fresh variable j′, a static analyzer can infer
that the invariant j′ = a ∗ i + b holds in the loop header. This is represented in our
formalism as a labeling S such that S(l) .= j′ = a ∗ i + b . Certifying the correctness of
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Fig. 21. Strength reduction example. Program after optimizing transformation.

this analysis result require discharging the proof obligations true =⇒ b = a∗ 0 + b and
j′ = a∗i+b =⇒ j′+a = a∗(i+1)+b , corresponding respectively to the establishment and
preservation of j′ = a∗ i+ b as invariant. The remaining program transformation is an
instance of the class of optimizations based on expression simplification, as described
in Section 5.2. That is, since j = j′ holds, one can substitute some occurrences of
the variable j by j′, returning the program shown in Figure 21. To transform the
original certificate, from Proposition 5.5, one must provide a certificate justif for every
statement that has been modified. This requires discharging the verification condition
of the form

j′ = a∗ i + b ∧ ϕ[x+a∗i+b/x] =⇒ ϕ[x+ j ′/x].

A final step, which is left for Section 5.4, consists of removing the assignments to
the now dead variable j.

5.4 Optimizations Based on Relational Analyses

This section provides a generalization of the results of Section 5.2 to allows one to deal
with optimizations such as dead variable elimination. The generalization consists in
relying on a generic composition operator instead of the lattice meet operator to merge
two analysis results. The results of the previous sections are recovered by defining
the composition as the meet operation of the lattice, which in logical terms amounts to
strengthening the annotations with the results of the analysis. For the particular case
of dead variable elimination, the composition operator is instantiated as a weakening
of the original annotations.

At the end of this section we compare the method proposed for dead variable elim-
ination to ghost variable introduction, an alternative technique developed in previous
work [Barthe et al. 2009].

For the simple imperative language considered in this paper, a variable is live at a
certain program point if the value it holds is used in at least one of the program points
reachable from it. However, a typical definition of variable liveness is given in terms of
the syntactic program representation: a variable x is live at a program node l if there
is a path from l that reaches a statement that reads the value of x, without traversing
an assignment to x.

Inspired by Benton’s Relational Hoare Logic [Benton 2004], we follow a relational
approach instead. Let X denote the set of variables that are relevant after the exe-
cution of a program. Given as input a set of variables X , a variable liveness analysis
computes a set of variables Y in which two environments must coincide in order to
reach corresponding environments that coincide in X . For instance, in order for two
environments η and η′ to coincide in the set {z} after the execution of x := y + z, they
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must coincide in {z}. If the final environments are required to coincide in {x, z}, then η
and η′ must coincide in {y, z}.

To express the results of the liveness analysis, we generalize the abstract domain A
of the certificate infrastructure to include relational propositions. An abstract domain
A is relational if the associated satisfaction relation |=A is a subset of (Env×Env)× A.
Hence, a relational proposition will be interpreted as a relation on execution environ-
ments. In the rest of this section we assume that every abstract domain represents a
relation on environments.

One particular relational domain consists of first-order formulae in which variables
are decorated with indices of the form 〈1〉 or 〈2〉.

The interpretation of a relational formula ϕ over a pair (η1, η2) is defined by mapping
every variable v〈1〉 in ϕ to η1v and every variable v〈2〉 to η2v.

The predicate transformer wp must be redefined accordingly. For instance, wp(x :=
e) φ is defined as the substitution φ[e〈1〉/x〈1〉][

e〈2〉/x〈2〉], where e〈i〉 is the result of indexing
every variable occurring at e with 〈i〉.

Example 5.13. In this example we illustrate a liveness analysis result as a rela-
tional property. The analysis domain is defined as the powerset of program variables.
The order relation of the abstract lattice is the inverse of the powerset lattice: X  Y
iff X ⊇ Y . A set of variables X associated to a program label l represents the variables
that are live at that program point. Under a relational interpretation, we say that two
states η and η′ are related by an abstract element (i.e., a set of variables) X if ηx = η′x
for all x ∈ X .

In our programming language setting, the abstract semantics for liveness analysis
is backwards and defined as follows:

�assert(b)� X = X ∪ FV(b)

�v := e� X =

{
(X ∪ FV(e)) \ {v} if v ∈ X
X otherwise.

Consider the program in Figure 21. One can check that the labeling S defined as:

S(lin) = {x}
S(l) = {i, j′, x}
S(lo) = {x}.

is a solution over the abstract semantics defined above. Indeed, it is clear that the
following constraints hold

{x}  {x} = �i:=0; j′ :=b�{x, i, j′}
{x, j′, i}  {x, i} = �assert(N < i)�{x}
{x, j′, i}  {x, j′, i} = �c�{x, j′, i},

where c denotes the loop body of the program in Figure 21.
As discussed in the previous sections, this analysis results can also be subject to cer-

tification. To that end, we first need to provide a convenient representation of abstract
values: a set X of live variables is represented as the relational formula

∧
v∈X v〈1〉 = v〈2〉.
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Fig. 22. Definition of goal for relational certificate translation (case f = bwd).

In this concrete example, the certification of the given analysis result requires the
existence of certificates for the following proof obligations

x〈1〉=x〈2〉 =⇒ x〈1〉=x〈2〉 ∧ b =b ∧ 0=0
x〈1〉=x〈2〉 ∧ i〈1〉=i〈2〉 ∧ j′〈1〉= j′〈2〉 =⇒ i〈1〉=i〈2〉 ∧ x〈1〉+ j′〈1〉=x〈2〉+ j′〈2〉

∧i〈1〉+1=i〈2〉+1 ∧ j′〈1〉+a= j′〈2〉+a
x〈1〉=x〈2〉 ∧ i〈1〉=i〈2〉 ∧ j′〈1〉= j′〈2〉 =⇒ i〈1〉=i〈2〉 ∧ x〈1〉=x〈2〉.

Existence of certificate translators. Let P = 〈N , E,G〉 be a program, and 〈annot, c〉 a cer-
tified solution for P, in the abstract interpretation I = 〈�.�, f 〉 over the abstract domain
A. Let P = 〈N ′, E ′,G′〉 be the result of transforming edges in P, justified by a solution
S over the abstract interpretation I. The following result generalizes Proposition 5.5
in terms of an arbitrary composition operator � : A × A → A.

PROPOSITION 5.14. Let � : A× A → A be a composition operator such that for every
a1,a2,b1,b2 ∈ A there exists a certificate

monot� : a1  a2 → b1  b2 → a1 � b1  a2 � b2.

Let 〈S, cS〉 be a certified solution over I such that for every (l1, l2) ∈ E ′ and a ∈ A:

— if f = bwd then justif(l1,l2) : S(l1) � �G(l1, l2)�(a)  �G′(l1, l2)�(a � S(l2));
— if f = fwd then justif(l1,l2) : �G′(l1, l2)�(a � S(l1))  S(l2) � �G(l1, l2)�(a).

Then, provided the certificate monot�s� defined in Figure 12 exists for all statement s and
a1,a2 ∈ A, every certified labeling 〈annot, c〉 for P can be transformed into a certified
labeling 〈annot′, c′〉 for P′, where annot′(l) = annot(l)�S(l) for every node l in dom(annot′) =
dom(annot) ∩N ′.

PROOF. The proof is similar to that of Proposition 5.5. The definition of the certifi-
cate goal such that

goal(l) : a �
�

(l,l′)∈E
�G(l, l′)�(annot(l′)) 

�
(l,l′)∈E

�G′(l, l′)�(annot
′
(l′)) if f = bwd

and

goal(l) :
⊔

(l′,l)∈E
�G′(l′, l)�(annot

′
(l′))  a �

⊔
(l′,l)∈E

�G(l′, l)�(annot(l′)) if f = fwd,

from which the existence of c′ follows, is given in Figures 22 and 23.
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Fig. 23. Definition of goal for relational certificate translation (case f = fwd).

Example 5.15. Consider again the liveness labeling S defined in Example 5.13. The
set of live variables {i, j′, x} associated to label l, indicates that j is not live. Since the
loop body at node l contains an assignment to the variable j and this variable is not
live at node l, i.e. j �∈ S(l), we may safely simplify the loop body by removing such
assignment. The transformed program is given in Figure 24.

By Proposition 4.3, we know that a certified solution 〈γ ◦ S, c′′〉 exists, where S is the
labeling defined in previous example.

In order to generate a certificate for the optimized program, we apply Proposi-
tion 5.14, using as � operator the composition of relations:

φ � ψ = ∃Z . φ[Z/X〈2〉 ] ∧ ψ[Z/X〈1〉 ],

where X is the set of free variables in φ or ψ. Notice that, given a set of live variables
X , one can equivalently define the composition γ (X )�φ as the existential quantification
in φ of the variables that are not in X .

From Proposition 5.14 we can transform the current certificate if we provide a cer-
tificate for the following goal

justif(l,l) : γ (S(l)) � �G(l, l)�(φ)  �G′(l, l)�(γ (S(l)) � φ).

If φ is a nonrelational proposition, γ (X ) �φ is equivalently denoted ∃y1, . . . , ym. φ where
{y1, . . . , ym} is the set of free variables in φ that are not in X . Then, the goal of the
certificate justif(l,l) has the form

 ϕ[a∗i+b/j] ⇒ ∃ j ϕ,

which can be easily discharged.

Comparison with ghost variable introduction. In this section we briefly review ghost vari-
able introduction [Barthe et al. 2009], an alternative certificate translation technique
in the presence of dead variable elimination. In the last paragraph, we position this
alternative technique with the relational method explained earlier in this section.

For simplicity, we consider a particular analysis and verification framework: a live-
ness analysis that computes a set of live variables for each program point, and a
weakest-precondition based verification framework over first-order formulas.

Consider a set of scalar variables Vg disjoint of V . Assume that for every variable v
in V there is a corresponding variable in Vg, denoted vg. Ghost variables are used only
for specification purposes, and thus can never affect a program behavior.

To that end, one must restrict the occurrence of ghost variables in a program code.
For instance, only ghost variables can be assigned the value of expressions containing
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Fig. 24. Program after dead variable elimination.

Fig. 25. Ghost variable introduction.

ghost variables. The following conditions characterize precisely the proper use of ghost
variables in a program 〈N , E,G〉:
— if G(l, l′) = x := e with x ∈ V then e must not contain ghost variables,
— if G(l, l′) = a[e′] := e, then ghost variables cannot occur neither in e nor in e′, and
— if G(l, l′) = b then b does not refer to a ghost variable.

In the rest of this section we assume that every program satisfies the constraints
above.

Ghost variable introduction [Barthe et al. 2009] consists of the replacement, instead
of removal, of dead variables by ghost variables. Let P = 〈N , E,G〉 be a program.
〈N , E,G′〉 is the result of introducing ghost variables if for all (l, l′) ∈ E :

— if G(l, l′) = x := e then G′(l, l′) = �x	S(l′) :=�e	S(l), and
— in any other case G′(l, l′) = G(l, l′).

where for a set of live variables X , �e	X stands for the result of substituting in e every
variable v that is not in X by vg.

Example 5.16. Consider the liveness labeling S defined above in this section with
S(l) = {x, i, j′}. Figure 25 shows the introduction of ghost variables to remove dead
assignments in the program in Figure 21. The assignment jg := a ∗ i + b is a proper
use of ghost variables and, as part of the specification, has no effect in the program
execution. Before analyzing how proof obligations change after ghost variable
introduction in this example, we first anticipate a transformation on the original
annotation. Let the specification annotg for the transformed program be such that for
all l ∈ N the assertion annotg(l) is the result of substituting in annot(l) every variable
v that is not live at l (i.e., variable j in this particular example) by the corresponding
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variable vg. Then, for the proof obligation enforcing the preservation of the loop
invariant:

annot(l) ⇒ N<i =⇒ annot(l)[.../...][a∗i+b/j][.../...]

we have the corresponding proof obligation after ghost variable introduction:

annot g(l) ⇒ N<i =⇒ annot g(l)[.../...][a∗i+b/j ′ ][.../...]

Independently of the assertion annot(l), notice that the new proof obligation coincides
with the original one up to renaming of dead variables. In the following, we formalize
this result, enabling to translate certificates after ghost variable introduction, and
compare this technique with the results of Proposition 5.14.

LEMMA 5.17. Let the labeling S represent the result of a variable liveness analysis.
Let 〈N , E,G′〉 be the result of ghost variable introduction in the program 〈N , E,G〉.
Let annot be a labeling from N to the domain of first order formulae. Let �annot	S
be a labeling such that for every l ∈ N �annot	S(l) = �annot(l)	S(l). Then, if annot
is a solution over a wp-based verification framework for 〈N , E,G〉, then �annot	S is a
solution for 〈N , E,G′〉.
In other words, one can show that for every proof obligation in the original program

annot(l) ⇒
∧

(l,l′)∈E
wp(G(l, l′)) (annot(l′)),

we have the following proof obligation for the transformed program

�annot(l)	S(l) ⇒
∧

(l,l′)∈E
�wp(G(l, l′))(annot(l′))	S(l).

That is, verification conditions differ only on a substitution of program variables by
ghost variables, and thus certificates can be easily transformed.

One advantage of ghost variable introduction over existential quantification is a
stronger final specification. Consider for instance a program P that satisfies the triple
{x = y}P{x = y}, and suppose that the variable y is not modified in P. If y is considered
dead, the transformed specification after ghost variable introduction is {x = yg}P{x =
yg}, whereas the existential quantification of dead variables yields {∃y. x = y}P{∃y. x =
y}. From the former, one can interpret that the original value of x is preserved by P,
whereas in the latter this is not the case. On a negative side, however, ghost variable
introduction requires the verification framework to deal with ghost variables in the
specification.

6. HYBRID CERTIFICATES

Section 4 describes a general method to certify the results of program analysis us-
ing verification environments based on weakest preconditions or symbolic execu-
tion. An alternative is to develop hybrid verification methods that combine program
analysis and deductive verification; such methods are common in modern verification
tools [Chalin and James 2007; Barnett et al. 2005; Wildmoser et al. 2005]. They allow
users to write weaker specifications, and generate smaller proof obligations.

In this section, we provide an abstract formalization of hybrid verification, and lift
the notion of solution and certified solution to this setting. We then apply the results
of the previous section to conclude that every hybrid certified solution can be trans-
formed into a certified solution. A direct consequence is that the soundness of hybrid
verification methods can be derived from the soundness of its components.
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Fig. 26. Hybrid verification example. Source code.

Fig. 27. Hybrid verification example. Graph representation.

6.1 Motivating Example

Consider the imperative program shown in Figure 26; its graph representation is given
in Figure 27. In comparison with the example of Section 2, the program is written in a
language that features constructs to store and load the values stored in an array. This
extended language distinguishes between scalar and array variables and considers for
each array a a new integer expression |a| that denotes the size of a; in the sequel, we
let a range over arrays. Moreover, the language features basic instructions a[e1] := e2
to store the value of e2 at the position determined by e1 in a and x := a[e] that assigns
to x the value stored in a at the position determined by e—it is customary to view a[e]
as an expression, but it is simpler for our presentation to consider an instruction that
combines array access with assignment to a scalar variable.

The semantics of statements is extended as follows. First, we define the set Env of
environments as (Envs×Enva) + Error where Error is a distinguished constant denoting
an error state, and Envs is the set of mappings from variables to integer values, that
is, Env = Var → Z, where Var is an infinite set of variables, and Enva is the set of
mappings from array variables and valid indexes to integer values, that is, Enva =
�a ∈ AVar.{0 . . . |a| − 1} → Z, where AVar is an infinite set of array variables. Then, the
concrete semantics is extended for the assignment x := a[e] by setting (η, η′) ∈ �x := a[e]�
iff one of the following holds.

— η = (ηs, ηa) and η′ = ([ηs : x �→ ηa an], ηa), where e evaluates to n in η, such that
0 ≤ n< |a|, and e′ evaluates to n′ in η, and [ηs : x �→ n] is defined as in Section 3;

— η = (ηs, ηa) and η′ = Error, where e evaluates to n in η, with n< 0 or |a| ≤ n;
— η = η′ = Error.

The semantics for the array assignment a[e] = e′ is defined in a similar fashion. Eval-
uation semantics is extended to error states: we say that a program P with initial
memory η, evaluates to η′, written P, η ⇓ η′, iff 〈linit, η〉 �� 〈lo, η′〉 for some lo ∈ O, or
η′ = Error and 〈linit, η〉 �� 〈l′′, η′′〉 for some η′′ ∈ Env, and �G(l′′, l′)� η′′ Error for some
successor l′ of l′′.
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In presence of error states, it is common to consider two postconditions, a postcon-
dition for abnormal termination, as well as the postcondition for normal termination.
For illustrative purposes, we implicitly assume that the postcondition for abnormal
termination is false, which is the standard way to state that a program will not ter-
minate abnormally. Under this convention, we consider triples of the form {ϕ}P{ψ},
whose validity is given by the clause |= {ϕ}P{ψ} iff for all environments η and η′, if
P, η ⇓ η′ and ϕ is satisfied by η then η′ �= Error and ψ is satisfied by η′.

Thus, a sound weakest precondition calculus must enforce the absence of out-of-
bound array accesses; in other words, it must ensure for every assignment x := a[e]
that the variable e evaluates to a value within the bounds of the array a. We must
therefore define wp(x := a[e]) ψ to be (0 ≤ e < |a|)∧ (ψ[x/a[e]]).

Let us know turn to establishing that the program in Figure 27 is correct. We want
to show that the final value of x is

∑|a|−1
j=0 a[ j]. A partial labeling appears inside squares

in Figure 27. There are two issues with this partial labeling.
The first issue is that it does not yield a solution: indeed, the loop invariant cannot

be established unless we strengthen the loop invariant at node l3 with the condition
0 ≤ i < |a|. In practice, a hybrid verification method would let users prove the program
without having to provide in their annotations conjuncts that can be inferred by static
analysis. In the first phase, a hybrid verification method relies on a static analysis that
infers partial information from the program; in this case, the static analyzer infers
the solution indicated inside a shadowed square in Figure 27—we omit the abstract
labeling for nodes l1 and l4 that are set to �. Then, a partial program specification
can be used, as it is not necessary to include the redundant information computed
in the first phase. However, the generation of verification conditions relies on the
analysis results. In this case, the weakest precondition considers the conjunction of
the assertion provided by the user and of the assertions inferred in the first phase. In
practice, from a logical representation S of the analysis result, and a partial labeling
annot, the strengthened specification maps each node l ∈ dom(annot) to the formula
annot(l) = annot(l) ∧ S(l).

The second issue is the size and complexity of proof obligations in the presence
of array accesses. Hybrid settings attempt to simplify the enforcement of inbound
array accesses by removing them from the verification conditions whenever a static
analyzer can discharge them automatically. In practice, a hybrid verification method
would let users prove the program without having to prove the annotations that can
be inferred by static analysis. In the first phase, the method will rely on a certifying
analysis that will prove that some array accesses are safe. In the second phase, it
will remove redundant fragments of the generated verification conditions. As a result,
verification conditions become smaller and thus the verification effort is reduced. For
example, we would define the weakest precondition as a function taking, in addition
to the postcondition, the logical characterization r of the analysis at the program point
considered, and set

wp(x := a[e]) ψ r =

{
(ψ[x/a[e]]) if r ⇒ 0 ≤ e < |a|
(0 ≤ e < |a|)∧ (ψ[x/a[e]]) otherwise.

Note that one can use a decidable approximation of implication in the first condition.
These issues are handled by two technical artifacts: solutions modulo and hybrid

abstract semantics. Solutions modulo characterize when a partial labeling can yield a
solution using the results of a previous solution. In contrast, hybrid abstract semantics
characterize when two solutions from distinct abstract semantics can be combined into
a single solution.
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6.2 Solution Modulo

This section formalizes the notion of solution modulo. Solutions modulo capture the
idea that hybrid methods allow users to write specifications that yield solutions when
combined with the result computed in the first phase, but that are not necessarily
solutions on their own.

Definition 6.1 Solution Modulo. Let A be an abstract domain. Let 〈�.�, f 〉 be an
abstract semantics over A. Let P = 〈N , E,G〉 be a program and let S be a solution for
P. A labeling S′ for P is a solution modulo S if

— f = fwd and for every (l, l′) ∈ E , �G(l, l′)�(S(l) � S′(l))  S′(l′)
— f = bwd and for every (l, l′) ∈ E , S(l) � S′(l)  �G(l, l′)�(S′(l′)).

Consider the program in Figure 27, and the labeling S′ defined as:

S′(l1) .= true
S′(l2) .= x =

∑i−1
j=0 a[ j]

S′(l4) .= x =
∑|a|−1

j=0 a[ j].

The labeling S′ does not satisfy the constraints required to be a solution over the wp-
based framework.

One can see, however, that S′ is a solution modulo S, where S is the labeling repre-
sented by a boxed annotation in the figure. For instance, one can check the validity of
the constraint S′(l2) � S(l2)  wp(G(l2, l4)) S′(l4) for the edge (l2, l4):

x =
i−1∑
j=0

a[ j] ∧ 0 ≤ i ≤ |a| ⇒ ¬(i< |a|) ⇒ x =
|a|−1∑

j=0

a[ j].

The following result states that the result of strengthening S′ with S is a solution.

LEMMA 6.2. Let S be a solution for a program P = 〈N , E,G〉. Suppose that, for every
statement s, �s� is distributive with respect to �. If S′ is a solution modulo S, then S� S′
is a solution.

The definition of solution modulo can be easily adapted to accommodate certificates.

Definition 6.3. Let A be an abstract domain. Let 〈�.�, f 〉 be an abstract semantics
over A. Let P = 〈N , E,G〉 be a program and let S be a solution.

A certified solution modulo S consists of a labeling S′ and a family of certificates
(c(l,l′))(l,l′)∈E such that for every (l, l′) ∈ E :

— if f = bwd then c((l, l′)) is a certificate for S(l) � S′(l)  �G(l, l′)�(S′(l′))
— if f = fwd then c((l, l′)) is a certificate for �G(l, l′)�(S(l) � S′(l))  S′(l′)

LEMMA 6.4. Let A be an abstract domain. Let 〈�.�, f 〉 be an abstract semantics over
A. Let P = 〈N , E,G〉 be a program and let 〈S, c〉 be a certified solution. Suppose that
we have the certificates distr←(�.�,�) and distr→(�.�,�) shown in Figure 12. If a labeling S′ is a
certified solution modulo S, then one can build a certificate c⊕ c′ such that 〈S�S′, c⊕ c′〉
is a certified solution.

PROOF.

— Case f = fwd. From the definition of certified solution modulo, we have that for
every (l, l′) ∈ E , c′((l, l′)) is a certificate for �G(l, l′)�(S(l)�S′(l))  S′(l′). The certificate
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c⊕c′ for the goal �G(l, l′)�(S(l)�S′(l))  S(l′)�S′(l′) is built by the following derivation
steps:

p1:=distr→(�.�,�) : C(�G(l, l′)�(S(l) � S′(l))  �G(l, l′)� S(l) � �G(l, l′)� S′(l))
p2:=weak�(c((l, l′))) : C(�G(l, l′)�(S(l)) � �G(l, l′)�(S′(l))  S(l′))
p3:=trans(p1, p2) : C(�G(l, l′)�(S(l) � S′(l))  S(l′))

c⊕ c′:=intro�(p3, c′((l, l′))) : C(�G(l, l′)�(S(l) � S′(l))  S(l′) � S′(l′))

— Case f = bwd. From the definition of certified solution modulo, for every (l, l′) ∈ E ,
c′((l, l′)) is a certificate for S(l) � S′(l)  �G(l, l′)�(S′(l′)). The certificate c ⊕ c′ for the
goal S(l) � S′(l)  �G(l, l′)�(S(l′) � S′(l′)) is built by the following derivation steps.

p1:=distr←(�.�,�) :C(�G(l, l′)� S(l′)��G(l, l′)� S′(l′)  �G(l, l′)�(S(l′) � S′(l′)))
p2:=weak�(c((l, l′))) : C(S(l′) � S′(l′)  �G(l, l′)�(S(l′)))
p3:=intro�(p2,

′ ((l, l′))) : C(S(l′) � S′(l′)  �G(l, l′)� S(l′) � �G(l, l′)� S′(l′))
c⊕ c′:=trans(p3, p1) : S(l′) � S′(l′)�G(l, l′)�(S(l′) � S′(l′))

6.3 Hybrid Semantics

We now formalize hybrid verification environments that take advantage of static
analysis results to simplify the verification conditions. This is done by considering
a labeling and two abstract semantics. The first abstract semantics is sound w.r.t.
the concrete semantics, the second one is defined with a simplified semantics func-
tion �.�hyb . The simplified abstract semantics is not necessarily sound, but can safely
describe the concrete semantics if the labeling is correct.

Definition 6.5 Hybrid semantics, sound hybrid semantics. Let A be an abstract do-
main, and 〈�.�, f 〉 be an abstract semantics over A.

— A hybrid abstract semantics over A is a pair of the form 〈�.�hyb , fhyb 〉, where �.�hyb
has the type Stmt → A → A → A.

— A hybrid abstract semantics 〈�.�hyb , fhyb〉 over A is sound w.r.t. 〈�.�, f 〉 if for all
statements s ∈ Stmt and a,b ∈ A,
— if fhyb = bwd then b � �s�hyb b a �s� a;
— if fhyb = fwd then �s� a b � �s�hyb b a.

Example 6.6. Consider the example of Figure 27. Assume the labeling S with
S(l3) .= 0 ≤ i < |a| is a solution over an abstract semantics 〈�.�, f 〉. Let wphyb a
predicate transformer that ignores out-of-bound array accesses, that is, such that
wphyb (z := a[i]) (0≤ i< |a|) ϕ is defined as ϕ[a[i]/z]). Recall that wp(z := a[i]) ϕ is defined as

0 ≤ i< |a|∧ ⇒ ϕ[a[i]/z]

Then, wphyb is a sound hybrid semantics over wp since for every ϕ:

0 ≤ i< |a| ∧wphyb (z := a[i])(0 ≤ i< |a|) ϕ  wp(z := a[i]) ϕ

The next definition characterizes hybrid solutions.

Definition 6.7. Let A be an abstract domain, let 〈�.�, f 〉 be an abstract seman-
tics over A, and let 〈�.�hyb , fhyb〉 be a hybrid abstract semantics that is sound w.r.t.
〈�.�, f 〉.
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A hybrid solution for a program P = 〈N , E,G〉 over the abstract semantics 〈�.�, f 〉
and 〈�.�hyb , fhyb〉 consists of a solution S : N → A for P over 〈�.�, f 〉, and of a labeling
Shyb : N → A such that

— if f = bwd, then for every l in N , Shyb (l) 
�

l′: (l,l′)∈E
�G(l, l′)�hyb S(l) Shyb (l′); or

— if f = fwd, then for every node l′ in N ,
⊔

l: (l,l′)∈E
�G(l, l′)�hyb S(l′) Shyb (l)  Shyb (l′).

Let 〈S, c〉 be a static analysis result represented and certified over a sound verifica-
tion framework I. Let Ihyb be a sound hybrid semantics w.r.t. I. Let 〈Shyb , chyb 〉 be a
certified solution over the hybrid semantics Ihyb . In the rest of this section we show
that it is possible, provided there is a formal proof of the soundness of Ihyb w.r.t. I, to
build a certified solution 〈S� Shyb , c′′〉 over I.

The next lemma states that every hybrid solution can be turned into a solution.

LEMMA 6.8. Let A be an abstract domain, I = 〈�.�, f 〉 be an abstract semantics over
A, and let 〈�.�hyb , fhyb 〉 be a sound (w.r.t. I) hybrid abstract semantics. For every pro-
gram P, and hybrid solution 〈S, Shyb 〉 for P, if Shyb  S then Shyb is a solution for P
over I.

The following result extends the lemma above over certified hybrid solutions.

THEOREM 1. Let A be an abstract domain, I = 〈�.�, f 〉 be an abstract semantics
over A, and 〈S, c〉 be a certified solution of I. Let Ihyb = 〈�.�hyb , f 〉 be a hybrid abstract
semantics.

Assume that there is a certificate of the soundness of Ihyb w.r.t. I, that is:

— f = bwd and for every statement s and a,b ∈ A there is a certificate

cert : b � �s�hyb b a �s� a or

— f = fwd and for every statement s and a,b ∈ A there is a certificate

cert : �s� a b � �s�hyb b a.

Then, if 〈Shyb , c′〉 is a certified hybrid solution of Ihyb , and for every l ∈ N there is a
certificate cS : Shyb  S, then, there is a procedure to build a certificate c′′, such that
〈Shyb , c′′〉 is a certified solution over I.

PROOF. Consider the case f = bwd. Let (l, l′) be any edge in E . The following is a
derivation of a certificate for the goal Shyb (l)  �G(l, l′)� Shyb (l′):

p1:=intro�(cS, c′) : Shyb (l)  S(l) � �G(l, l′)�hyb S(l) Shyb (l′)
p2:=trans(cert((l, l′)), p1) : Shyb (l)  �G(l, l′)� Shyb (l′).

The case f = fwd is similar.

Consider again the example in Figure 27. Assume that we have a certificate for
the labeling S over the nonhybrid verification environment I, for instance, at node l3 a
certificate of

0 ≤ i< |a| ⇒ 0 ≤ i< |a| ∧ 0 ≤ i + 1 ≤ |a|.
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Assume also that we have a certificate for the labeling Shyb over the verification envi-
ronment Ihyb , for instance, at node l3 a certificate of

x =
i−1∑
j=0

a[ j] ⇒ x + a[i] =
i+1−1∑

j=0

a[ j].

Therefore, from the theorem above one can generate a certificate for the specification
S� Shyb over the non-hybrid verification environment I, e.g., at node l3 a certificate of

0 ≤ i< |a| ∧ x =
i−1∑
j=0

a[ j] ⇒ 0 ≤ i< |a| ∧ 0 ≤ i + 1 ≤ |a|x + a[i] =
i+1−1∑

j=0

a[ j].

7. RELATED WORK

This section provides a brief overview of related work; see Barthe et al. [2009] for
additional material. We begin with a review of Proof Carrying Code in Section 7.1.
Section 7.2 discusses general methods for proving correctness of compilers and
program optimizations, whereas Section 7.3 is concerned with certifying compilation,
type-preserving compilation, and proof-preserving compilation. Section 7.4 focuses on
certified solutions; finally, Section 7.5 considers hybrid certificates.

7.1 Proof Carrying Code

Proof Carrying Code [Necula and Lee 1996; Necula 1998] is a general framework
to ensure security of mobile code through verifiable evidence. In its seminal form,
the consumer side of a Proof Carrying Code architecture relies upon three main el-
ements: logical assertions to express policies, a verification condition generator that
extracts proof obligations from annotated programs, and a proof checker that veri-
fies that the certificate establishes the desired proof obligations. Both the verification
condition generator and the certificate checker form part of the Trusted Computing
Base.

Foundational Proof Carrying Code [Appel 2001; Appel and Felten 2001; Wu et al.
2003] is an alternative approach that gives stronger semantic foundations to Proof
Carrying Code. In this approach, the code producer gives a direct proof in higher-order
logic that the code respects a given security policy. With this technique, the verifi-
cation condition generator is removed entirely, and the Trusted Computing Base is
minimalist. Reflective Proof Carrying Code [Barthe et al. 2008] is an alternative to
Foundational Proof Carrying Code, in which an executable verification condition gen-
erator is implemented in higher-order logic, and verified. Compared to Foundational
Proof Carrying Code, Reflective Proof Carrying Code yields more compact certificates.
An early instance of verified verification condition generator appears in Wildmoser and
Nipkow [2004, 2005].

While the original proposal for Proof Carrying Code relies on program logics as
enabling technology, the most successful instance and widely deployed application
of Proof Carrying Code technology to date, namely Java bytecode verification [Rose
2003], uses type systems as its enabling technology. In this setting, logical annota-
tions are substituted by typing information, verification condition generation is sub-
stituted by constraint-based type checking, and certificates establish the validity of
the constraints. Instances of type-based Proof Carrying Code include variants of light-
weight bytecode verification, for instance, the lightweight information flow checker
of Barthe et al. [2007]. As for Proof Carrying Code based on logic, some authors have
taken a more foundational approach; in particular, there have been several instances
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of certified static analyzers, in which the analyzer is implemented and verified in a
higher-order logic [Cachera et al. 2004].

7.2 Certified Compilation and Translation Validation

Certificate translation is a general method to relate properties of two programs that
are related by principled program transformations, for instance, optimization and
compilation. It complements existing methods such as certified compilation and
translation validation, and also subsumes other methods such as type-preserving
compilation. The purpose of this section is to provide a brief comparison with these
methods.

Certified compilation [Leroy 2006] is a general method to prove that the semantics
of programs is preserved by compilation. Thus, instead of showing that the compiler
preserves a specific property of a particular program, certified compilation establishes
that the compiler preserves all properties for all programs.1

An alternative to certified compilation is to build an infrastructure for providing
a rule-based description of program optimizations, and for proving the semantic cor-
rectness of these rules. This alternative, which has been explored, for instance, in
Rhodium [Lerner et al. 2005], allows additional flexibility w.r.t. a certified compiler,
especially in terms of the extensibility of correctness proofs.

Translation validation [Barrett et al. 2005; Pnueli et al. 1998; Zuck et al. 2002]
can be seen as a specialization of certified compilation where semantics preservation
is proved for individual programs, rather than for all programs. Translation valida-
tion establishes for specific programs that the compiler preserves all properties that
are compatible with the statement of semantics preservation. Therefore, a certified
compiler provides direct support for translation validation.

Translation validation can be used to yield the same guarantees as certificate trans-
lation. There are, however, some practical issues with achieving certificate translation
via certified compilation or translation validation. Specifically, the resulting certifi-
cates include the proof of compiler correctness—for all programs in the case of certi-
fied compilation and for one program in the case of translation validation—and hence
the definition of the compiler and the code of the source programs. Hence these meth-
ods are not appropriate when the size of the certificate is an issue or when the code
producer wants to withhold the source code.

As a final note, observe that if the language of properties is sufficiently expressive,
semantic preservation can be expressed by Hoare triples, and hence certifying compila-
tion and certificate translation provide direct support for translation validation [Leroy
2006].

7.3 Certifying Compilation and Analysis; Type- and Proof-Preserving Compilation

The goal of certified compilation and translation validation is to establish a relation-
ship between a source and target program. In contrast, certifying compilation [Necula
and Lee 1998] aims to generate certificates of program correctness for target programs.
Certifying compilation is the primary means to generate certificates in Proof Carrying
Code architectures; while its scope was originally confined to safety properties, such as

1Strictly speaking, the guarantees only hold for properties that are compatible with the statement of se-
mantics preservation. For example, if the statement of semantics preservation is based on an evaluation-
semantics that capture the input/output behavior of programs, then certified compilation will show that all
input/output properties of programs are preserved by compilation. An important topic in certified compila-
tion is to strengthen the statement of semantics preservation, so that it also accounts for execution traces,
or even more intensional properties of programs such as execution time or memory usage.
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type safety and memory safety, recent works have built certifying compilers for other
properties, including information flow [Beringer and Hofmann 2007].

Certifying analysis may be viewed as a variant of certifying compilation, where the
compilation function is the identity. Previous works on certifying, or proof-producing,
program analyses include [Chaieb 2006; Seo et al. 2003]. Seo et al. [2003] consider a
generic backwards abstract interpretation for a simple imperative language and pro-
vide an algorithm that automatically constructs safety proofs in Hoare logic from ab-
stract interpretation results. Chaieb [2006] considers a flow chart language equipped
with a weakest precondition calculus, and provides sufficient conditions of the exis-
tence of certificates for solutions of backwards abstract interpretations; the case of
Proposition 4.3 where f = bwd and f � = fwd recovers his result. Chaieb applies the
algorithm to generate automatically proofs of safety of programs.

One issue with the automatic generation of proofs is the amount of irrelevant infor-
mation they may contain: specifically, only a small fragment of the invariants inferred
by automatic mechanisms may be relevant for a particular purpose, and it is there-
fore of interest to trim the proof so that it justifies a weaker specification than the
one inferred automatically. In a follow up to Seo et al. [2003], Seo et al. [2007] de-
velop slicing methods to remove unused parts of the specification, simplifying the next
proof-producing phase.

While certifying compilation does not aim to provide an explicit relation between
source and target programs, it is of interest to establish that sufficiently many source
programs can be certified. Certificate translation provides a means of achieving this
guarantee, by showing that the compiler transforms certified source programs into pro-
grams that can be certified at target level. Proof-transforming compilation is a particu-
lar instance of certificate translation in which the verification frameworks are program
logics. It has been studied, for instance, in [Barthe et al. 2005; Saabas and Uustalu
2007] for core imperative languages, and in [Bannwart and Müller 2005; Barthe
et al. 2008; Müller and Nordio 2007] for sequential Java. While some works [Barthe
et al. 2005, 2008] study frameworks based on verification condition generators, other
works [Bannwart and Müller 2005; Müller and Nordio 2007; Saabas and Uustalu
2007] consider Hoare logics for source and bytecode programs, and provide an al-
gorithm to transform a Hoare proof of the original program to a Hoare proof of the
transformed program. Most of these results on proof-transforming compilation focus
on nonoptimizing compilers. In contrast, works like [Barthe et al. 2009; Saabas and
Uustalu 2008] explicitly consider program optimizations. The work of Saabas and
Uustalu is centered on casting program analyses and optimizations as type-systems;
proof-transformation then follows by a constructive verification of the type system
rules.

In order to address multiple policies, certifying compilation targets verification in-
frastructures based on program logics. An alternative is to target dedicated verifica-
tion frameworks based on type systems and static analysis. An example of this tech-
nique is Java lightweight bytecode verification [Rose 2003], in which programs come
equipped with partial type information that allows efficient type verification. Type-
preserving compilation is the counterpart of proof-transforming compilation for type
systems, see Chen et al. [2010] for a recent application to security, and for instance,
Grossman and Morrisett [2000], Morrisett et al. [1999a; 1999b], Tarditi et al. [1996]
for early works in type-directed compilation. In the setting of abstract interpretation,
Rival [2003, 2004] proposes a method to translate analysis results along program com-
pilation; result validation is restricted to post-fixpoint checking, that is, there is no no-
tion of certificate. In contrast to these positive results, Logozzo and Fähndrich [2008]
indicate that it may not be possible to preserve the results of an analysis, notably when
considering numerical domains.
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7.4 Certified Solutions

The definition of certified solution unifies ad hoc notions that have appeared in the
literature. For example, Besson et al. [2007] propose a program analysis framework
in which certificates are used to verify inclusions between elements of the abstract do-
main of polyhedra. The results of their analysis are instances of certified solutions.
Lightweight bytecode verification methods [Rose 2003; Barthe et al. 2007] provide an-
other instance of certified solutions.

Certified solutions are also closely related to Abstraction Carrying Code [Albert
et al. 2005], a variant of Proof Carrying Code where programs come with a partial
labeling that can be used by the code consumer to verify the program without having
to approximate a fixpoint. In this scenario, the code consumer just needs to check that
the partial labeling is a solution of the abstract interpretation and that it entails the
desired behavior. Certified solutions allow to extend the scope of Abstraction Carrying
Code to settings where the preorder relation is either undecidable, or too expensive for
the code consumer to compute. In particular, Proof Carrying Code based on verifica-
tion conditions can be seen as an instance of Abstraction Carrying Code with certified
solutions.

7.5 Hybrid Certificates

Hybrid verification is heavily used, both for type based analyses and functional ver-
ification, and many concrete instances of hybrid verification methods appear in the
literature and in verification tools. For example, many verification condition gener-
ators rely on a null pointer analysis to reduce the number of proof obligations; see,
for instance, Barnett et al. [2005], and also Grégoire and Sacchini [2008], in which
Grégoire and Sacchini prove the soundness of a hybrid verification condition genera-
tor that relies on a null pointer analysis, and Wildmoser et al. [2005], in which the
authors prove the soundness of a hybrid verification condition generator that relies on
an interval analysis.

Another example of hybrid method comes from information flow, in which prelimi-
nary analyses are fundamental for reducing the control flow of programs, and achiev-
ing better results; see, for instance, Myers [1999], and Barthe et al. [2007], where
prove the soundness of an information flow type system that relies on many prelimi-
nary analyses.

8. CONCLUSION

We have provided a crisp formalization of certificate translation in a mild extension of
abstract interpretation in which solutions carry a certificate of their correctness. Our
formalization allows us to give a rational reconstruction of our earlier work, and to
establish the scalability of certificate translation.

There are several additional benefits to our framework. It allows to derive the ex-
istence of certificate translators in settings that have not been considered before, for
instance, concurrency [Kunz 2010]. Moreover, it provides leverage to prove the exis-
tence of certificate translators in more general settings, for instance, when the program
analyses are justified by relational program logics. Finally, mild generalizations can
be used to justify hybrid certificates, that combine simultaneously several verification
methods.

Further work includes extending our results to relational program logics, and refine
the results on concurrent programs from Kunz [2010] to verification methods that mit-
igate the explosion of verification conditions. Such verification methods should be ex-
pressible in our framework, using program skeletons to cluster atomically executable
subsets of adjacent nodes into single nodes.
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