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ABSTRACT

Dynamic specification mining involves discovering software
behavior from traces for the purpose of program comprehen-
sion and bug detection. However, mining program behavior
from execution traces is difficult for concurrent/distributed
programs. Specifically, the inherent partial order relation-
ships among events occurring across processes pose a big
challenge to specification mining. In this paper, we pro-
pose a framework for mining partial orders so as to under-
stand concurrent program behavior. Our miner takes in a
set of concurrent program traces, and produces a message
sequence graph (MSG) to represent the concurrent program
behavior. An MSG represents a graph where the nodes of
the graph are partial orders, represented as Message Se-
quence Charts. Mining an MSG allows us to understand
concurrent program behaviors since the nodes of the MSG
depict important“phases”or“interaction snippets” involving
several concurrently executing processes. To demonstrate
the power of this technique, we conducted experiments on
mining behaviors of several fairly complex distributed sys-
tems. We show that our miner can produce the correspond-
ing MSGs with both high precision and recall.

Categories and Subject Descriptors

D2.1 [Software Engineering]: Requirements / Specifica-
tions—Methodologies

General Terms

Algorithms, Design, Experimentation
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Specification Mining, Distributed Systems

1. INTRODUCTION
Software is developed to cater to a specific set of require-

ments that are dictated by real life problems or business
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needs. However, a formal documentation of the software
specification (the intended behaviors that the software is
supposed to capture) is often missing, even though it is es-
sential to the design, implementation and testing phases of
software development. Moreover, formal software specifica-
tions are crucial for the maintenance of legacy software. As
any software project team would agree, the cost for soft-
ware maintenance is usually much higher than the initial
software development cost. The cost of maintaining soft-
ware and managing its evolution is said to account for more
than 90% of the total cost of a software project, prompting
certain authors to call it a “legacy crisis” [39].

The absence of any semi-formal and abstract representa-
tion in many development processes makes it difficult for
users of the system to understand and appreciate its ac-
curate behavior. In addition, several systems that follow
recommended requirements gathering and design practises
during early stages deviate from their early specifications as
development and maintenance progresses. This deviation is
a result of both errors in the implementation and changes in
the requirements themselves. As a result, even if a software
specification is available — it may not reflect the behaviors
of the latest version of the program.

Dynamic specification mining [11] is a dynamic program
analysis method to automatically infer the specification of
a program from its execution traces. The mining of various
specification formats such as automata [11, 23, 28], and tem-
poral rules [43, 25] has been studied. In general, specification
mining techniques employ data mining or machine learn-
ing techniques on execution traces to generate models that
are useful in program verification. However, these specifi-
cation mining techniques have primarily been designed with
sequential programs in mind. In order to apply such tech-
niques on distributed systems the execution of each compo-
nent has to be analyzed in isolation from rest of the system.
In reality, the components of a distributed system do not
function in isolation, but rather communicate and collabo-
rate at several points of their execution. Very often, spec-
ifying how components interact becomes a crucial part of
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Figure 1: Stages in the proposed mining framework.



(a) Sample execution traces (inputs to our MSGMiner) (b) Mined MSG (output from our MSGMiner)

Figure 2: Banking System Example

the design of distributed system. In order to express such
behavior, specification languages such as UML Sequence Di-
agrams or Message Sequence Charts (MSCs) are commonly
used (e.g., see [14] for an early work on mining Sequence Di-
agrams). However, Sequence Diagrams only represent one
scenario in the execution of a concurrent/distributed soft-
ware — it does not capture the complete specification of the
program’s behavior. In this paper, we study this problem.

We propose MSGMiner - a framework to discover specifi-
cations of distributed systems as Message Sequence Graphs
(MSGs). An MSG is a directed graph having an MSC at
each of its vertices. These MSCs (referred to as basic MSCs
) only describe an interaction snippet in the system’s exe-
cution. Figure 1 describes the transformations performed
by MSGMiner to construct an MSG. We convert each ex-
ecution trace to a partial order (or dependency graph) by
(i) considering the individual control flows across different
processes and (ii) marking the dependencies between a send
event and its corresponding receive. We then analyze these
dependency graphs to find largest frequently recurring por-
tions — which then appear as the basic MSCs in our mined
model. The basic MSCs constitute the nodes of our mined
MSG model. These nodes are then connected up using au-
tomata learning techniques. Our approach thus involves a
combination of automata learning and mining of partial or-
ders.

Consider a hypothetical distributed banking system in
which a user client interacts with a distant portal that in
turn relies on a database at a separate location. Figure 2(a)
shows three sample traces collected from executions of such a
system. Figure 2(b) shows what an MSG mined from traces
would appear like. The mined MSG is not an exact repre-
sentation of the set of traces but instead a generalized model
of the system suggesting many more possible scenarios.

The main contribution of this paper is our framework
for mining inter-process or inter-component concurrent sys-
tem specifications in the form of a Message Sequence Graph
(MSG). Conventional mining methods have focused on ei-
ther intra-process specifications (where the control flow in-
side each process is mined as an automaton) or rule-based
specifications (where system behavior is summarized as tem-
poral properties either in textual form or in visual form such
as Live Sequence Charts). It is worthwhile to emphasize
that our focus on mining for MSGs involves a fundamen-
tal conceptual shift from mining of Live Sequence Charts
(LSCs). This is because LSCs visually describe properties
which must hold every system execution, whereas MSGs
are a complete description of the global system behavior.
Through the mined MSG model we emphasize the inter-
action snippets or commonly executed protocols across the
processes and these get captured as the nodes or the basic
MSCs in our mined MSG model. By understanding these

Figure 3: A schematic MSC and its partial order.

frequently occurring interaction snippets, a programmer can
understand the common concurrent interactions and in what
sequence they occur — thereby getting a clear first-cut un-
derstanding of the behaviors of a concurrent program. We
evaluated our MSG mining framework via case studies on
real-life distributed software. It was found that the min-
ing framework discovers MSG specifications that are easy
to comprehend. Moreover, the mined MSG models com-
pare favorably (in terms of precision/recall) w.r.t. manually
constructed models.

2. BACKGROUND
Message Sequence Charts (MSCs), a recommendation from

ITU [4], have traditionally played an important role in soft-
ware development and been incorporated into modelling lan-
guages such as ROOM [13], SDL [8] and UML [41]. The ba-
sic MSC syntax consists of a set of vertical lines-each denot-
ing a process or a system component, internal events repre-
senting intraprocess execution and annotated uni-directional
arrows denoting inter processes communication. Figure 3
shows a simple MSC with two processes; m1 and m2 are
messages sent from p to q.

Semantically, an MSC denotes a set of events (message
send, message receive and internal events corresponding to
computation) and prescribes a partial order over these events.
This partial order is the transitive closure of (a) the total
order of the events in each process1 and (b) the ordering
imposed by the send-receive of each message.2 . It is also
understood that arrows depicting the inter process commu-
nication is either a horizontal line or one that is slanting
downwards. The events are described using the following
notation. A send of message m from process p to process q

is denoted as 〈p!q,m〉. The receipt by process q of a message
m sent by process p is denoted as 〈q?p,m〉.

Consider the chart in Figure 3. The total order for process
p is 〈p!q,m1〉 ≤ 〈p!q,m2〉 where e1 ≤ e2 denotes that event
e1 “happens-before”event e2. Similarly for process q we have
〈q?p,m1〉 ≤ 〈q?p,m2〉. For the messages we have 〈p!q,m1〉 ≤
〈q?p,m1〉 and 〈p!q,m2〉 ≤ 〈q?p,m2〉. The transitive closure
of these four ordering relations defines the partial order of
the chart. Note that it is not a total order since from the

1Time flows from top to bottom in each process.
2The send event of a message must happen before its receive
event.



transitive closure we cannot infer that 〈p!q,m2〉 ≤ 〈q?p,m1〉
or 〈q?p,m1〉 ≤ 〈p!q,m2〉. Thus, in this example chart, the
send of m2 and the receive of m1 can occur in any order.
The partial order suggested by the MSC in this example is
also shown in Figure 3.

The vertical lines representing the independent processes
or threads whose interactions we capture are also referred
to as lifelines. MSCs can be formally defined as follows.

Definition 2.1 (MSC). An MSC M can be viewed as
a partially ordered set of events M = (L, {El}l∈L,≤, γ,Σ),
where L is the set of lifelines in m, El is the set of events
in which lifeline l takes part in M . Σ is the alphabet of send
and receive event labels and γ : {El}l∈L → Σ is a function
assigning each send or receive event a label. ≤ is the partial
order over the occurrences of events in {El}l∈L such that

• ≤l is the linear ordering of events in El, which are
ordered top-down along the lifeline l,

• ≤sm is an ordering on message send/receive events
in {El}l∈L. If γ(es) = 〈p!q,m〉 and the correspond-
ing receive event is er, withγ(er) = 〈q?p,m〉, we have
es ≤sm er.

• ≤ is the transitive closure of ≤L=
⋃

l∈L ≤l and ≤sm,
that is, ≤= (≤L

⋃

≤sm)⋆

Concatenation of MSGs can be defined in two different
manners. For a concatenation of two MSCs say M1 ◦ M2,
all events in M1 must happen before any event in M2. In
other words, it is as if the participating processes synchro-
nise or hand-shake at the end of an MSC. In MSC literature,
it is popularly known as synchronous concatenation. On the
other hand, asynchronous concatenation performs the con-
catenation at the level of lifelines (or processes). Thus, for a
concatenation of two MSCs, say M1 ◦M2, any participating
process (say Interface) must finish all its events in M1 prior
to executing any event in M2. For the rest of this paper we
remain faithful to the latter definition of concatenation.

An MSC of our definition is suited to specify a single exe-
cution scenario. A complete specification of a system would
therefore require multiple MSCs. A large number of MSCs
will be required to describe most non-trivial systems. For
this reason, MSC standards include High Level Message Se-
quence Charts (HMSCs) that make it easy to define and
visualize large collections of MSCs. HMSCs are hierarchi-
cal graphs that have as nodes either a basic MSC or a lower
level HMSC chart. We limit our mining exercises to the sim-
pler yet semantically equivalent representation of Message
Sequence Graphs [21]. Formally an MSC-graph or MSG is
a directed graph (V,E, Vs, Vf , λ), in which V is the set of
vertices, E a set of edges, Vs a set of entry vertices, Vf a
set of accepting vertices and λ a labelling function that as-
signs an MSC to every vertex. From any path in an MSG
of the form (v1, v2 . . . vn), where v1 ∈ Vs ∧ vn ∈ Vf , we
can derive one MSC by the concatenation of basic MSCs
λ(v1) ◦ λ(v2) . . . λ(vn).

3. MINING ALGORITHM
MSGMiner takes in a collection of execution traces of a

system implementation, and produces an MSG describing
the system’s behavior. The main challenge in this process
lies in the ability to discover occurrences of concurrency be-
havior from traces and specifying them using MSCs. We rep-
resent MSCs using data structures called dependency graphs

Figure 4: Dependency graphs for MSCs in Figure 2

that fully capture the partial order relationship among events
in the MSC. Furthermore, we introduce a novel idea of max-
imal connected dependency graph (MCD) for a given trace
set to capture basic MSCs that can be used as the build-
ing blocks for constructing an MSG. The entire mining pro-
cess is thus divided into three stages, which are elaborated
in the rest of the section: (1) Trace processing : Collection
of traces and the transformation of each trace into a de-
pendency graph. (2) MSC mining : Identifying basic MSCs
(in MCD representation) from the dependency graphs, and
transforming each dependency graph into a chain of MSCs.
(3) MSG construction: Merging of chains of MSCs into an
MSG.

3.1 Trace Processing andDependency Graphs
Traces are collected by instrumenting and executing a sys-

tem implementation with various inputs. In a distributed
system the trace points are chosen to be at program lo-
cations where processes send or receive messages. A trace
event is either a send or receive message of the form 〈p ! q,m〉
or 〈q ? p,m〉 respectively, where m is the message being ex-
changed between a sender named p and a receiver named
q. Furthermore every event must contain a time stamp to
determine the ordering of events.

For presentation clarity, we assume that traces are strings
of events, which are drawn from a trace alphabet Σ. The
collected traces record some linear temporal order in which
events occur during the execution of the system. Our first
task is to eliminate temporal ordering of events from differ-
ent lifelines, when they are not explicitly imposed through
messages. With these eliminations, we will have converted
the total ordering of events implied by the traces into a par-
tial ordering that captures concurrent behavior.

Recall from 2.1 that an MSC M = (L, {El}l∈L,≤, γ,Σ)
prescribes the partial ordering ≤ among a set of events. ≤
was defined to be a transitive closure of the union of an
ordering relationship between events within each lifeline(≤l)
and the ordering of send and receive events of a message
(≤sm). We observe that only the ordering imposed by ≤l

and ≤sm are sufficient to specify the inherent behavior of
the system, and define a dependency graph to capture these
behaviors. Specifically, a dependency graph is a graph data
structure g = (L, {Vl}l∈L, R, γ′,Σ) where:

• each vi ∈ Vl corresponds to an event ei ∈ El,

• there is a directed edge v1Rv2 iff for their correspond-
ing events e1 and e2, (e1, e2) ∈ (∪l∈L ≤l)∪ ≤sm

• γ′(vi) = γ(ei) for every event ei and its corresponding
vertex vi in the dependency graph.



We will use (V,R, γ) as a shorter representation for depen-
dency graphs whenever the lifelines and event alphabet is
not relevant to the analysis. Note that dependency graphs
are a graphical representation equivalent to ‘traces’ in trace
theory [17]. Figure 4 shows the corresponding dependency
graphs g1,g2,g3 and g4, for basic MSCs M1, M2, M3 and M4

respectively.
Some of the properties of dependency graphs used by the

mining algorithm are as follows.

Definition 3.1 (Equivalence ≡). For dependency
graphs g1 = (V1, R1, γ1) and g2 = (V2, R2, γ2), g1 ≡ g2 iff
there exists a bijection f : V1 → V2 such that,

∀v1 ∈ V1(γ1(v1) = γ2(f(v1))) and
∀v1, v2 ∈ V1(v1R1v2 ⇔ f(v1)R2f(v2)).

Definition 3.2 (Concatenation ◦). For two graphs,
g1 = (L1, {V1l}l∈L1

, R1, γ1,Σ) and g2 = (L2, {V2l}l∈L2
, R2,

γ2,Σ) the concatenation g1 ◦ g2 = (L, {Vl}l∈L, R, γ,Σ) such
that

L = L1 ∪ L2

Vl =







V1l ∪ V2l if l ∈ L1 ∩ L2

V1l if l ∈ L1 − L2

V2l if l ∈ L2 − L1

γ = γ1 ∪ γ2

R = R1 ∪R2 ∪RL ∪Rsr

The concatenated graph contains the following new sets of
edges:

1. RL: This enforces the ordering that for a lifeline l,
the events in V1l occur before those in V2l. Let func-
tion f irst(Vil) return vertex v ∈ Vil such that ∀v′ ∈
Vil, vRiv

′. Similarly let last(Vil) return the last event
in lifeline l.

RL = {(last(V1l),first(V2l))|∀l ∈ L1 ∩ L2}

2. Rsr: This pairs an unmatched send event in g1 with an
unmatched receive event in g2. Since a graph may con-
tain repetitions of the same send/receive event, we re-
solve ambiguity by defining a function ϕl : Vl → N0 to
differentiate between identical events within the same
lifeline. For a vertex v ∈ Vl,

ϕl(v) = |{v′|v′ ∈ Vl ∧ (v′, v) ∈ (RL ∪ R1 ∪ R2)
+ ∧

γ(v′) = γ(v)}|.

Rsr = {(vp, vq)|vp ∈ V1p ∧ vq ∈ V2q ∧ ∃ 〈p!q,m〉,
〈q?p,m〉 ∈ Σ : γ(vp) = 〈p!q,m〉 ∧ γ(vq) = 〈q?p,m〉 ∧
ϕp(vp) = ϕq(vq)}

Figure 5 shows the result of concatenation of dependency
graphs g1, g3 and g2 of Figure 4. The dotted lines show
newly added edges.

Definition 3.3 (Sub-Graph). A sub-graph relation-
ship among dependency graphs is as follows: g′ ⊆ g if and
only if there exist graphs x and y such that g ≡ (x ◦ g′) ◦ y.

Definition 3.4 (Prefix and Suffix). A sub-graph
g′ ⊆ g is a prefix of g iff for some graph y, g ≡ g′ ◦ y.
Similarly g′ is a suffix iff for some graph x, g ≡ x ◦ g′.

Our definition of sub-graph for dependency graphs is strict-
er than and not to be confused with the definition commonly

used in graph theory. In Figure 5, gx, gy and gz are sub-
graphs of the concatenated dependency graph. The sub-
graph gx is a prefix and gz a suffix.

Definition 3.5 (Frequency). The frequency of sub-
graph g′ in dependency graph g is n, if there exist dependency
graphs g0, g1, . . . gn such that g ≡ ((((g0◦g

′)◦g1)◦g
′) . . .)◦gn

and g′ * g0, g1 . . . gn. Note that g0, g1 . . . gn may be empty.

Informally, the frequency of a sub-graph g′ in g is the
number of distinct occurrences of the g′ in g. Figure 5 also
shows the frequency of gx, gy and gz in (g1 ◦ g3) ◦ g2.

Figure 5: Concatenated graph (g1 ◦g3)◦g2, and some
of its sub-graphs

We define a function dgraph(t) that accepts a trace t as
parameter and constructs a dependency graph. The depen-
dency graph is constructed by first creating a unique vertex
for each occurrence of an event. After this, edges are added
to link up events within a lifeline into a chain. Subsequently,
the send and receive events are linked up in a backward fash-
ion starting from the bottom of the trace. For example the
last occurrence of event 〈q?p,m〉 is linked to the last occur-
rence of event 〈p!q,m〉 and so on. This manner of construct-
ing a dependency graph gives function dgraph the property
that given a trace t, for any of its suffixes ts, dgraph(ts) is a
suffix of dgraph(t). We have made two assumptions about
the system during the construction:

1. No messages are lost in the message channels.
2. The message are sent over FIFO channels.

The concatenated graph in Figure 5 is equivalent to dgraph
(t1) constructed from trace t1 in Figure 2(a). The algorithm
for function dgraph is detailed in a technical report [22].

3.2 MSC Mining
Using the function dgraph, we convert the available trace

set T = {t1, t2, . . . tn} to a set of dependency graphs G =
{g1, g2, . . . gn}, where each dependency graph gi ∈ G corre-
sponds to a scenario of system execution. Our next step is
to identify basic sections within these graphs, that recur at
several places within the same graph or across the graphs
in G. These fundamental blocks are likely to capture the
basic MSCs in an MSG describing the system. There are
many possible ways to break down a graph into fundamen-
tal blocks. Our method aims to discover MSCs which are as
big as possible and yet recurring frequently enough in the



input execution traces (or their corresponding dependency
graphs). Therefore, we introduce the notion of Maximal
Connected Dependency Graphs (MCDs) to signify MSCs.
Formally,

Definition 3.6 (MCD). For a given trace set T = {t1,
t2, . . . tn}, gmcd = (V,R, γ) is an MCD iff

1. There is a trace t ∈ T such that gmcd ⊆ dgraph(t).

2. ∀g ⊂ gmcd : f req(gmcd) = f req(g) 3

3. For every distinct v1, v2 ∈ V , (v1, v2) ∈ (R ∪R−1)∗ .

4. There is no graph g′ that satisfies conditions 1-3 such
that gmcd ⊂ g′.

Criterion 2 guarantees that no part of an MCD (and thus
its corresponding MSC) appears in some context in which
the rest of the MCD does not also appear. Criterion 4 en-
forces the maximality of MSCs. Criterion 3 requires that
events in MCDs be connected with each other. This addi-
tional constraint is introduced to simplify the mining task.

An exhaustive search for graph structures that meet the
conditions specified above could turn out to be expensive.
Instead, we identify a graph structure termed event tail for
each event, and then successively merge them to arrive at
dependency graphs that will satisfy the frequency, connect-
edness and maximality criteria of MCDs. We describe event
tails and the method of merging graphs in the following sub-
sections.

3.2.1 Event Tail

For an event e ∈ Σ, when given a trace set T ⊆ Σ∗, its
tail, tail[e], is the largest dependency graph that contains a
single minimal vertex (which is a vertex in the graph with-
out any associated incident edges) labelled e and satisfies
conditions 1-3 of definition 3.6. Apart from the minimal
vertex, it also contains all events that immediately follows
every occurrence of e in a consistent partial order.

Algorithm 1 outputs an associative array - tail, that maps
every event in Σ to its tail. For an event e and trace set
T , Te is the set of trace suffixes that start with e. Te can
be easily derived from a suffix tree[40] constructed from the
trace set. From Te we obtain a collection of suffix graphs, by
identifying dgraph(ts) for every ts ∈ Te. In such a graph,
let ve be the vertex corresponding to the first occurrence of
event e. All vertices v in the graph for which (ve, v) 6∈ R∗

are removed as they do not belong to the tail. After this, the
function getCommonPrefix is invoked to identify the largest
prefix common to all suffix graphs in the collection for event
e. This common prefix is the desired event tail tail[e].

Operationally, function getCommonPrefix identifies the
largest common prefix in a pair of dependency graphs g1
and g2 through a simultaneous breadth-first traversal over
these two graphs. During the traversal, vertices and edges
are gradually added to the largest common prefix g. A ver-
tex v with label e is added to g if and only if 1) there are
vertices v1 in g1 and v2 in g2 having a common label e, and 2)
v1 and v2 have identical incident edges and all vertices from
which there are edges incident to v1, v2 have already been
added to g. In addition, getCommonPrefix ensures that all
events added to the common graph have identical frequen-
cies. All these operations ensure that conditions 1,2 and 3 of

3Given a trace set T = {t1, t2, . . . tn}, freq(g) is the sum of
the frequency of g in dgraph(t1), dgraph(t2), .. dgraph(tn).

Algorithm 1 Find Event Tails
Input: T - The trace set, Σ - set of events appearing in T .
Output: tail[e] that maps every event e ∈ Σ to its tail.
1: for all e ∈ Σ do
2: Find Te: the set of all suffixes(of traces in T ) starting with e
3: let Te = {ts1 , ts2 , . . . tsne

}

4: tail[e] ← ∅
5: for i = 1 . . . ne do
6: (V,R, γ)← dgraph(tsi )

7: let ve be the vertex corresponding to the first event e
8: for all v ∈ V s.t. (ve, v) /∈ R∗ do
9: V ← V − {v}
10: end for
11: if tail[e] = ∅ then
12: tail[e] ← (V,R, γ)
13: else
14: tail[e] ← getCommonPrefix(tail[e] , (V,R, γ))
15: end if
16: end for
17: end for

definition 3.6 are satisfied. Moreover, since the event tail is
the maximal graph common to all suffixes with ve as its min-
imal vertex, we have ensured that 1) tail[e] contains atleast
one vertex ve, and 2) tail[e] cannot be extended without vi-
olating conditions 1,2 or 3. Details of getCommonPrefix is
presented in [22]. Figure 6(a) shows some of the event tails
derived from traces of the banking system in Figure 2.

3.2.2 Combining Event Tails

Algorithm 2 uses the mapping from events to tails (tail[e])
to derive a mapping from events to MCDs - MCD[e]. The
algorithm starts with g1 = tail[e]. We know that tail e can-
not be extended at the end as it is already maximal. Hence
we attempt to grow g1 by prefixing it with other graphs. For
every event e′ we verify if tail[e′] can be merged into g1. Let
tail[e′] be the graph g2. Without loss of generality we can
express the two tails as,

g1 ≡ g
pref
1 ◦ gcomm and

g2 ≡ (gpref2 ◦ gcomm) ◦ gsuff2

where gcomm is the largest possible such graph. If gcomm

is empty, we do not perform any merging. If gcomm is not
empty, we obtain g

pref
2 ◦ g1 as the merged graph. To sat-

isfy the frequency criterion, we chose to accept the merged
graph only when freq(gpref2 ◦g1) = freq(g1). When more than

one prefix of g2 satisfy the conditions on g
pref
2 , we select the

largest one. The dependency graph g1 is an MCD if no more
event tails can be merged into it. [22] provides a proof for
the claim that for each event e1, MCD[e1] determined by
Algorithm 2 is an MCD.

Figure 6(b) shows the set of MCDs that are obtained by
merging event tails obtained from traces in Figure 6(a).

3.2.3 Converting Trace to Sequence of MSCs

Algorithm 2 associates each event with an MCD. Utilizing
this association, we transform every trace from the given
trace set into a sequence of dependency graphs. To achieve
this, we group events in a trace based on their associated
MCDs. For a trace t, we represent each group of events by
a dependency graph gi and derive a sequence of the form
(g1, g2, . . . gi . . . gm) such that dgraph(t) ≡ ((g1 ◦ g2) . . .) ◦
gm. The order of dependency graphs in the sequence is
constrained by the dependency relationship between events
in dgraph(t).

In most cases, we can expect gi to be one of the MCDs we
identified. Certain cases warrant special handling. Firstly,



(a) (b)

Figure 6: (a)Event tails and (b)MCDs for events in the traces of the banking system

Algorithm 2 Combine Event Tails

Input: tail[e] for all events e ∈ Σ
Output: MCD[e] for all events e ∈ Σ
1: for all e1 ∈ Σ do
2: W ← Σ− {e1}
3: g1 ← tail[e1]
4: while ∃e2 ∈ W s.t. merge(g1, tail[e2]) 6= ǫ do
5: g1 ← merge(g1, tail[e2])
6: W ← W − {e2}
7: end while
8: MCD[e1] ← g1
9: end for

merge(g1, g2)

Input: g1, g2 - The candidates for merging
Output: The merged graph. (ǫ if merge is not possible).
1: Let gcomm be the largest suffix of g1 that is a sub-graph of g2.
2: if (gcomm is empty) then
3: return ǫ
4: else
5: Find largest gpref

2 that satisfies:

g2 ≡ (gpref
2 ◦ gcomm) ◦ gsuff

2 ∧ freq(gpref
2 ◦ g1) = freq(g1)

6: if no such gpref
2 is found then

7: return ǫ
8: else
9: return gpref

2 ◦ g1
10: end if
11: end if

we may have derived two MCDs that share a common sub
graph. For example, we may have MCD[e1] ≡ gx ◦ g and
MCD[e2] ≡ g ◦ gy. Since MCDs are maximal, we know that
the merged graph (gx ◦ g) ◦ gy must have a lower frequency
that its sub graphs. In such scenarios, we will drop the
common sub graph g from one of the MCDs. Secondly,
two MCDs may not co-exist as they constrain each other
in certain traces. To resolve such cases, we automatically
split one of the MCDs into smaller parts whenever necessary.
This scenario is explained with an example in [22].

While we have defined MCDs as dependency graphs, we
do not require them to correspond to ‘complete MSCs’; ie.,
there may exist a send event in an MCD which does not
contain the matching receive event and vice versa. In order
to guarantee that all vertices of an MSG denote complete
MSCs, we concatenate successive partial graphs in a post-
processing step to ensure that each dependency graph in the
final sequence of MSCs will represent a complete MSC. Al-
gorithm 3 performs this transformation. It takes a sequence
of dependency graph gList and creates outputList - a list of
dependency graphs without any unmatched send or receive
events.

At the end of this stage we have defined an alphabet of
basic MSCs and produced strings from this alphabet for the
construction of MSGs.

Algorithm 3 Convert to full MSCs
Input: gList - A sequence of dependency graphs
Output: outputList - Sequence of dependency graphs, each repre-

senting a valid MSC
1: outputList ← [ ]
2: temp ← gList[0]
3: for i← 1 . . . gList.size() do
4: if temp has an unmatched send event then
5: temp ← temp ◦ gList[i]
6: else
7: outputList.add(temp)
8: temp ← gList[i]
9: end if
10: end for
11: return outputList

3.3 Constructing Message Sequence Graphs
There exists a choice of algorithms to learn a finite state

machine (FSM) from a training set of strings [12, 15]. For
our experiments we implement a variant of the sk-strings al-
gorithm as described in [35]. A shared prefix tree is initially
constructed from the set of MSC strings. The algorithm then
identifies a set of nodes that are equivalent. Two nodes are
considered equivalent if their k-futures match. The k-future
of a node is simply the set of all valid paths of length k

or less (if the end node is reached) starting from that node.
Several possible heuristics have been suggested to match two
sets of k-futures. For better precision one could insist on the
match being exact. Other methods involve matching two
sets of strings if they meet a certain probabilistic thresh-
old. Equivalent nodes are merged to get a more general and
compact model. During the merging process loops are in-
troduced to the model. For a prefix tree with n nodes, since
every pair of nodes are compared, the algorithm has a worse
case execution time of O(n2mk), where m is the size of the
trace alphabet. For an operation comparing the k-futures of
any two nodes, the maximum number of nodes to be com-
pared is never greater than the total number of nodes in the
tree. As a result, the algorithm has an execution time not
worse than O(n3) for any value k. Note that n is shorter
than the number of events in the initial traces as we have
transformed them to MSC strings.

Once an MSG has been mined from traces using the FSM
learner, it is refined through a series of state reduction steps.
An FSM learner usually produces a Mealy model state ma-
chine which in our setting has to be transformed into a min-
imal Moore model. In the latter state machine each state
corresponds to a basic MSC. The final MSG is a structure-
preserving homeomorphic embedding of the Moore model
state machine. The general rule for reduction is that if any



state s is reachable from one and only one state s’ and s is
the only state reachable from state s’, then the MSC in state
s can be concatenated to the MSC in state s’. This concate-
nation yields new basic MSCs. The reduced directed graph
of basic MSCs is our final output. The MSG can be exported
as image files for visualization.

3.4 Extensions
Our work on MSG Mining has relied on a simple def-

inition of MSCs which was sufficient to represent partial
order arising from asynchronous message exchanges. This
constraints us from representing more complicated behav-
ior within MSCs. For example, in some systems, a process
may broadcast messages to multiple processes and await re-
sponses from its audience. We refer to such instances as
“message broadcasts”. In such scenarios, the order in which
the messages are sent or the responses received is usually in-
consequential. Furthermore, the actual order of events seen
in traces may be different for each realization of such broad-
casts. Without knowledge of “message broadcasts”, the min-
ing process presented thus far may fail to produce a succinct
and comprehensible MSG.

MSG semantics [4] provide features such as coregions or
par inline expressions to capture situations where there may
be no specific logical ordering between some events within a
lifeline. The par expression allow us to list a group of MSCs
and imply that they are to be executed in parallel.

To handle such scenarios using these features, we extend
the existing framework to accept additional input that de-
clares specific behaviour, such as the presence of broadcast
messages. We term this additional input an oracle. Our ex-
tended system when informed by the oracle, will construct
customized dependency graphs and identify MCDs that cap-
ture such scenarios; the MSGs produced by the extended
system become less cluttered and much more comprehensi-
ble. The technical report [22] details the use of such oracles
to extend the system.

4. CASE STUDIES
Through case studies, we attempt to evaluate the practi-

cality of employing MSGMiner on real distributed systems.
In each case, we have also scored the accuracy of mining
by comparing the MSGs mined from traces to hand derived
specifications. We consider the following distributed sys-
tems: (a) “Center TRACON Automation System” [31] an
air traffic control system from NASA, (b) a system of server
and VOiP clients communicating based on the Session Initi-
ation Protocol (SIP) and (c) a system of Server and Clients
that follow the XMPP Instant messaging and Chat proto-
col. In each of these systems, multiple processes perform
asynchronous communication over TCP socket connections.
Timestamped traces were collected by inserting instrumen-
tation code at points were messages are written to or read
from a socket. The traces were filtered and the message
names abstracted with the help of text processing scripts.

4.1 Evaluation
We propose an evaluation technique to validate the mined

model against a known correct model. The correct model is
used only for evaluation and never part of the mining pro-
cess. Given correct and mined models, we derive a precision
and recall score by performing language comparison. Preci-
sion and recall are popular metrics in Information Retrieval

and have also been used to quantify the accuracy of mined
state based models [23, 29]. Recall that concatenating basic
MSCs along any path from a starting vertex to an accept-
ing vertex in the MSG produces an MSC that represents
a valid execution scenario. We say that such an MSC is
‘generated’ by the MSG. Precision is defined as the number
of MSCs generated by the mined model that are accepted
by the correct model divided by the total number of MSCs
generated by the mined model. Similarly recall is the ratio
of the number of MSCs from the correct model that are ac-
cepted by the mined model to the total number of MSCs
generated by the correct model. All possible MSGs can not
be enumerated as infinitely many MSCs can be generated
from an MSG. Instead we use only a finite sample from the
MSG’s language for evaluation. Our sample consists of all
accepting paths in the MSG with a finite bound on loops.
This bound is enforced my limiting the number of times any
vertex is revisited in a path. For the dependency graph g

corresponding to each MSC from the generating MSG, we
verify if there is a path in the accepting MSG that forms a
dependency graph identical to g. This is done by an efficient
depth first search in the accepting graph.

As our case studies consider reactive systems that con-
tain concurrently executing processes, existing automaton
learning methods can not be applied to their traces. Such
methods can instead be used to infer a state machine for each
process if the original traces are separated into traces local to
each of the constituent processes. We compare the accuracy
of our proposed approach with the accuracy of mining this
alternative model of local automata from the same collec-
tion of traces. To do this, we derive a similar precision and
recall score of the learnt automata with respect to the same
correct MSG specification that was used to score the mined
MSG. The algorithm used to learn automata is identical to
the method used in the automaton learning phase of MSG
mining (Section 3.3). Precision and recall for automata is
measured as the ratio of the number of traces(rather than
MSCs) generated from one model that is accepted by the
other model to the total number of traces generated. We
generate random sample of traces from the collection of au-
tomata. The parallel composition of the automata may con-
tain accepting paths that create invalid traces(eg: Receive
event may appear before the message is sent). To generate
only ‘correct’ traces we simulate the FIFO message channels
between processes. While exploring a path in the composed
automaton, if an edge outputting a send event 〈p!q,m〉 is
chosen, the message m placed in the buffer corresponding
to the channel [p → q]. An edge outputting a receive event
〈q?p,m〉 can be explored only if message m can be removed
from the front of buffer [p → q]. A path explored in the
composed automaton signifies a valid trace only when an
accepting state is reached and all the message buffers are
empty. We impose a bound on the number of loops as be-
fore.

Table 1 tabulates the results from the case studies. It
shows the precision, recall and F1 measure(harmonic mean
of precision and recall) of the mined models obtained from
the two alternatives (automaton learning and MSG Mining)
for each case study. The mining was performed on a JVM
running on an Intel duo core CPU with 1GB of available
memory. The results from the systems considered for case
study suggest that the proposed MSG mining method pro-
vides better mining accuracy.



System
No of
events

Mined Automata Mined MSG
Prec Rec F1 Score Time(s) Prec Rec F1 Score Time(s)

SIP 1870 0.50 1 0.67 1.0 0.78 0.87 0.82 3.14
XMPP-Core 3212 0.72 0.44 0.55 8.3 1 0.71 0.83 10.2
XMPP-MUC 5736 1 1 1 22.0 1 1 1 28.7
CTAS 6418 0.95 1 0.97 48.1 1 1 1 45.8

Table 1: Table comparing accuracy of mining for MSG and Automata specifications

4.2 CTAS
CTAS is an Air Traffic Control system from NASA. The

CTAS weather control logic specification [32] was one of the
case studies recommended by the 3rd International Work-
shop on Scenarios and State Machines (SCESM04). CTAS
is a distributed system having a central Communications
Manager (CM) process to which client processes connect.
The weather control specification details how clients should
connect to CM and how a graphical user interface referred to
as the weather control panel (WCP) ought to communicate
with CM to update weather status. As access to the CTAS
system is limited, we procure execution traces by implement-
ing and executing a simulation of this system in Java. Our
implementation is based on a formal specification of the sys-
tem in Promela and high level HMSC that was developed
by a fellow researcher. The MSG mined from the collected
traces is shown in Figure 7.

Our mining on the CTAS system succeeds in identifying
the states of the system that are mentioned in the informal
requirements documents. The narrative in sub-sections of
the document matches neatly with the visual representation
provided by the basic MSCs.

4.3 Session Initiation Protocol
SIP is a signalling protocol used to establish, manage and

terminate VoIP calls and multimedia sessions in general [7].
SIP clients interact with servers that perform the neces-
sary call routing and function as gateways to the Public
Switched Telephone Network(PSTN). We attempt to spec-
ify how clients should interact with their proxy server to
achieve some of the basic call features. For this, we set up a
system having three SIP clients connected to a single server.
We use instrumented versions of KPhone [3] - a SIP client
implementation and the Opensips server [5] both of which
are available with source code under a GPL license. We ex-
ecute a set of test cases involving features such as basic call
setup, call screening and call forwarding. A set of test cases
for each feature are identified and a trace set is prepared
by executing them on the system. The test cases involve
three clients or SIP user agents labelled as Alice, Bob and
Carol whose roles were restricted in the following way. In
all test cases, Alice initiates calls and Bob is the intended
recipient. Features such as call screening or forwarding are
enabled at the client Bob. Carol is the recipient of diverted
calls. Specification mining was performed from the trace
set. A specification(that reflects allotted client names and
roles) was manually derived by the authors for quantitative
analysis and comparison.

4.4 XMPP
Extensible Message and Presence Protocol is an open In-

stant Messaging standard originally developed by the Jabber
open source community. The core functionality of the proto-
col is specified in rfcs 3920 and 3921. XMPP is the protocol
for exchange of instant chat messages and presence informa-
tion between various entities in a network that are addressed

by unique jabber ID. The clients communicate to the server
through structured XML messages. The protocol defines
how XML nodes known as stanzas are to be exchanged be-
tween various entities. A client connecting to a server is
authenticated through TLS or SASL through special XML
stanzas. We attempt to discover the client server interaction
protocol from a system having two jabber clients that are
brokered by a single server. In the specification, the server
and client processes are the lifelines and the message arrows
represent the XML stanzas. The Openfire XMPP server [2]
and Jeti [1]/Pidgin [6] client implementations were instru-
mented and executed for trace collection. For discovering
the core specification as an MSG, we only record stanzas
used for authentication or those having a message or pres-
ence tag and ignore rest of the message exchanges.

In addition to the core specification, XMPP Standards
Foundation (XSF) has standardised several additional chat
features. We attempt to mine behavioral specification for
the Multi User Chat(MUC) functionality [9]. For this we use
a separate set of test cases involving features such as service
discovery, multi-party chat and creation and administration
chat rooms. In all test cases user1 creates the chat room
thereby acquiring the role of the room owner. Only messages
sent from or addressed to the MUC conference service are
recorded.

5. RELATED WORK
Research in specification mining has attempted to dis-

cover common specification formats like frequent patterns
& rules [24, 38, 10, 43, 25], finite state machines [11, 23, 28,
30, 16, 42, 34, 20, 10] and Boolean expressions [19].

Approaches that mine frequent patterns highlight statis-
tically significant patterns in the execution of the system
which can be interpreted as temporal rules. While the mined
set of rules and properties are valuable to processes like
model checking, they provide a limited understanding of the
system as a whole. We mine for MCDs based on a frequency
criterion and use them along with automaton learning meth-
ods to provide a complete sepcification of the system.

Most methods that mine finite state machines are built
upon the k-tails learner [12]. In mined state machines, the
transition edges between program states are usually labelled
with method calls. Ammons et al. propose the use of
automaton mining on execution traces to infer state ma-
chine specifications for Application Programming Interfaces
(API) [11]. The precision and recall of automaton min-
ing is improved by a trace filtering and clustering method
proposed by Lo and Khoo [23]. Lorenzoli et al. further
combines the work of Daikon[19] with mining finite state
models [28]. Boolean invariants are attached to transitions
among the nodes in the finite state machines to express
guards. Our approach uses a similar automaton mining algo-
rithm, but performs additional steps so as to mine state ma-
chines having MSCs at each node. It is possible to apply the
techniques proposed in the past work on top of our method
to improve the mining accuracy (e.g., by performing trace



Figure 7: The Mined MSG for CTAS (left) and the learnt automata for individual processes

filtering and clustering) and enhance the expressiveness of
the mined model (e.g., by the addition of guards).

In [10], Archaya et al. extract relevent API interaction
scenarios out of static traces generated from program code.
The scenarios are then summarized as compacted partial or-
ders. A collection of work that attempts to infer frequent
partial order from string databases is discussed in [18]. The
generic partial order representation that is identified can be
used to explain multiple sequences occuring in the database.
Lou et al. in [29] construct workflow models from traces of
concurrent systems by identifying dependency relationships
between pairs of events in interleaved traces. Different from
the above studies, we express partial orders in the seman-
tics of Message Sequence Charts (MSCs). MSC is a popular
specification language and formally specifies the partial or-
der constraints among messages sent between lifelines. Also,
we compose many partial orders into a message sequence
graph (MSG).

The work of [27, 26] mine Live Sequence Charts (LSC)
that represent rules of the format “If the execution described
by the pre-chart occurs, the execution prescribed by the
main chart must eventually follow”. We emphasize that
our focus on mining for MSGs (a global system model) in-
volves a fundamental conceptual shift from mining of LSCs
(a collection of temporal properties). This is because LSCs
are simply a visual description of temporal properties which
must hold in every system execution. In contrast, MSGs
are a complete description of the global system behavior.
Through the mined MSG model we highlight the interac-
tion snippets or commonly executed protocols across the
processes and these get captured as the nodes or the ba-
sic MSCs in our mined MSG model.

Efforts have been made in program visualization by con-
structing UML sequence diagrams from dynamic executions
[14, 33]. Such work constructs a sequence diagram from
dynamic traces traces but does not produce graph-based
models like MSG that include loops and branches. Rountev
et. al. [36], perform a static inter-procedural analysis to
reverse engineer UML Sequence Diagrams from programs.
Such an analysis requires the program source code, whereas
our analysis, being dynamic, only needs execution traces.
We also present a framework that supports mining with syn-
chronous/asynchronous message passing(within MSCs) and

synchronous/asynchronous concatenation(across MSCs) —
making it a fully general framework for mining MSC-based
system models.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented a dynamic specification

mining framework to mine Message Sequence Graphs from
execution traces of concurrent/distributed programs. Our
focus on Message Sequence Graphs is driven by the view
that the mined specification will be used for program com-
prehension. Thus, our mining framework exploits the ease-
of-use of MSCs/MSGs for understanding interactions in a
concurrent/distributed software. As demonstrated by our
experiments, an MSG being a global graph of interaction
snippets — provides a higher-level view of the system be-
havior (and its interactions), as compared to mining the be-
havior of individual processes of a concurrent program as
state machines.

In future, we plan to pursue several avenues to extend
the work. One particular issue relates to the succinctness
of mined MSGs. We observe that many large scale con-
current/distributed programs are essentially parameterized
systems containing several processes which are behaviorally
“similar”. For instance, multiple clients in the chat sys-
tem perform many similar actions such as login and sign
out. This can result in several redundant basic MSCs in
the MSG, that try to explain the same behavior. One way
to manage such complexity would be to automatically iden-
tify such similar basic MSCs during the mining process, and
group them together. This requires us to develop a formal
notion of “roles” and attach distinct roles to the participat-
ing processes in an MSC (e.g. see [37] for ideas along these
lines). Mining MSC-based system models for large-scale pa-
rameterized distributed software in such a fashion remains
an important direction of our future research. In a broader
perspective, our work can be seen as a precursor of a multi-
view mining framework, in which multiple views of a system
model are mined from the execution traces. In particular,
we envision a mining framework which mines state-based
intra-process style specifications as well as MSC-based inter-
process style specifications from the traces of a concurrent
/ distributed system.
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[30] L. Mariani and M. Pezzè. Behavior capture and test:
Automated analysis for component integration. In
ICECCS, 2005.

[31] NASA. Center TRACON Automation System
(CTAS). //www.aviationsystemsdivision.arc.nasa.gov/
research/foundations/sw overview.shtml.

[32] NASA. CTAS Weather Control Requirements.
//scesm04.upb.de/case-study-2/requirements.pdf.

[33] R. Oechsle and T. Schmitt. Javavis: Automatic
program visualization with object and sequence
diagrams using the java debug interface (jdi). In
Revised Lectures on Software Visualization,
International Seminar, pages 176–190, 2002.

[34] M. Pradel and T. R. Gross. Automatic generation of
object usage specifications from large method traces.
In ASE, 2009.

[35] A. V. Raman and J. D. Patrick. The sk-strings
method for inferring PFSA. In Proc. of the workshop
on automata induction, grammatical inference and
language acquisition, 1997.

[36] A. Rountev and B. Connell. Object naming analysis
for reverse-engineered sequence diagrams. In ICSE,
2005.

[37] A. Roychoudhury, A. Goel, and B. Sengupta. Symbolic
message sequence charts. In ESEC-FSE, 2007.

[38] H. Safyallah and K. Sartipi. Dynamic Analysis of
Software Systems using Execution Pattern Mining. In
ICPC, 2006.

[39] R. Seacord, D. Plakosh, and G. Lewis. Modernizing
Legacy Systems: Software Technologies, Engineering
Processes, and Business Practices. Addison-Wesley,
2003.

[40] E. Ukkonen. On-line construction of suffix-trees.
Algorithmica 14, pages 249–260, 1995.

[41] UML. The Unified Modeling Language. Available from
//www.omg.org.

[42] N. Walkinshaw, K. Bogdanov, M. Holcombe, and
S. Salahuddin. Reverse engineering state machines by
interactive grammar inference. In WCRE, 2007.

[43] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M.Das.
Perracotta: Mining temporal API rules from imperfect
traces. In ICSE, 2006.


