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Abstract
A raw object is partially initialized, with only some of its fields
set to legal values. A raw object may violate its object invariants,
such as that a given field is non-null. Programs often need to
manipulate partially-initialized objects, but they must do so with
care. Furthermore, analyses must be aware of rawness. For in-
stance, software verification cannot depend on object invariants for
raw objects.

We present a static analysis that infers a safe over-approximation
of the program variables, fields, or array elements that, at run-
time, might hold non-fully initialized objects. Our formalization
is flow-sensitive and considers the exception flow in the analyzed
programs. We have proved the analysis to be sound.

We have also implemented our analysis, in a tool called JULIA
that computes both nullness and rawness information. We have
evaluated JULIA on over 50K lines of code. We have compared its
output to manually-written nullness and rawness information, and
to an independently-written type-checking tool that checks nullness
and rawness. JULIA’s output is accurate and, we believe, useful
both to programmers and to static analyses.

1. Introduction
Object-oriented programming languages, such as Java, allow the

definition of instance variables or fields, that hold the state of the
objects. Those fields are normally (but not necessarily) initialized
inside the constructors defined in their class. Before that initializa-
tion, in Java, they hold the default value for their static type. For
fields of reference type, the default value is null.

Many type-checking systems and static verification tools aim to
prove that some object invariant, inv, holds for the objects of a
given class. This means that inv must be true immediately after
the object construction and must remain true every time a (public)
method is entered or exited. A typical object invariant states that
some field f is non-null. This means that all constructors must ini-
tialize f to a non-null value and that f will never be reset to null
later. This is an important piece of information, since it guarantees
that no dereference of f will ever throw a NullPointerException.
This conclusion is not true inside the constructors. Before f is ini-
tialized, it still holds the default value null. Our work focuses
on initialization properties, rather than all ways any invariant can
be violated, such as by setting a value to a non-null value that is
inconsistent with its formal specification.

Since, in general, object invariants do not hold for partially-
initialized (“raw” [9]) objects, it is important to identify those sites
— program fields, parameters, return values, or array elements —
that might hold a raw object at run-time. These sites are not just the
this variable inside the constructors: that variable can be passed
to methods and stored in fields or arrays. Moreover, a raw variable

... // many non-null fields defined here

public OptionsDialog(Frame owner) {
super(owner, "Options");
// initializes a non-null field
this.owner = owner;
// initializes the remaining non-null fields
setup();
// ’this’ is non-raw here
pack();
...

}
Figure 1: A snippet of code from the JFlex program.

loses its rawness as soon as all its fields have been initialized (or
some relevant subset of its fields, see Section 5.4). Hence this
might be non-raw inside a constructor, from a given program point
onwards.

Figure 1 contains a snippet of code from class OptionsDialog
of the JFlex scanner generator, one of the applications that we ana-
lyze in Section 6. Method setup() is called by the constructor of
class OptionsDialog to help it build the object: this helper method
initializes most of the fields of the object.

The JULIA tool performs our rawness analysis and infers that
the receiver of setup() is raw, and all other references are non-
raw, such as the receiver of pack(). Furthermore, JULIA infers
that many fields are non-null. Without an inference of object ini-
tialization, a tool would either be unsound, or would be forced to
conclude that all fields are possibly null. JULIA warns about any
possibly-erroneous dereference; these include possibly-null fields
wherever used in the program (unless the field can be proved to be
non-null at that point), and non-null fields when used before the
object is adequately initialized.

In principle, it would be correct to annotate all receivers, fields,
parameters, and return values as @Raw: that would be a sound over-
approximation of the set of raw sites. However, this would not
be useful, and would hobble follow-on analyses [20] and human
understanding. We aim for a precise analysis that infers as few
rawness annotations as possible, only where needed.

We have extended the JULIA tool [16], which already contains
a highly precise nullness analysis [22], to implement our rawness
analysis. JULIA infers precise nullness and rawness annotations
for non-trivial software, automatically, in a few minutes. We have
also integrated JULIA with toolsets for working with annotations
and pluggable type systems [2, 4]. This enables us to compare
our rawness analysis with pluggable type-checking for a nullness
and rawness type system. The type system is weaker, but compo-
sitional and with easier-to-understand results. JULIA’s results are
correct by construction (the analyses in the JULIA tool are formally
correct), but the type-checker still issues some warnings while type-
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checking them, because of the different perspective of the two tools.
JULIA is based on flow and context-sensitive static analyses and
abstract interpretation, while the checker framework is based on
type-checking, augmented by flow-sensitivity and some other en-
hancements [20]. Nevertheless, we have achieved a good degree of
integration of the two tools and Section 6 discusses the remaining
differences and evaluates the quality of the automatic annotation
w.r.t. that of a previous manual annotation that has been verified by
type-checking.

Our work is relevant beyond the scope of nullness analysis. Our
rawness analysis is not coupled to nullness analysis and is com-
puted independently. It can be used in other contexts, whenever
it is necessary to prove that some fields are definitely initialized
at some program points. Moreover, the constraint-based analysis
of Java bytecode in Section 5, and the structure of the correctness
proof in Appendix A, can be used for other properties than rawness.
Namely, JULIA embeds a constraint-based analysis, following the
same scheme, that determines when arrays and collection classes
are full, that is, contain non-null elements only (see Section 3).

This paper makes the following contributions:

• It defines and proves correct a rawness analysis for Java byte-
code that is completely independent from any other analysis
(such as nullness).
• It provides definitions and proofs that explicitly consider the

exceptional flows in the program.
• We have implemented our rawness analysis, demonstrating its

practicality. We have also integrated it with other nullness and
rawness tools, permitting comparisons and increasing confi-
dence in both toolsets.
• Experiments with our implementation demonstrate its preci-

sion. The experiments also yield insight into the algorithm’s
strengths and weaknesses and the properties of real code.

To the best of our knowledge, the first two points above are novel.
For example, NIT’s rawness inference is coupled to nullness and
its theory does not consider exceptional flows [15]. Being inde-
pendent from nullness analysis simplifies the formalization and the
proof of correctness, and permits applicability to other problem do-
mains. The last point above has never been investigated before. For
example, NIT does not dump the rawness information that it com-
putes, so its evaluation and its use for type-checking is impossible.
See Section 2 for more comparisons with related work.

The rest of the paper is organized as follows. Section 2 overviews
the most closely-related work. Section 3 reviews the nullness anal-
ysis implemented by the JULIA tool. Section 4 presents an opera-
tional semantics for Java bytecode, which is the concrete semantics
of our abstract interpretation for rawness. Section 5 defines this
constraint-based abstract interpretation. Section 6 reports on our
experiments: we compared JULIA’s output to manual annotations
and to an independently-implemented type-checker. The proof of
correctness is found in Appendix A. The JULIA tool is available for
use through its web interface: http://julia.scienze.univr.
it.
2. Related work

Fähndrich and Leino [9] check object initialization using a type
qualifier (called “raw”) that indicates how many fields are initial-
ized. On exiting a constructor, the type is non-raw for that class
and all of its superclasses, but still raw for any subtypes whose con-
structor has not yet been exited. In a raw type, all fields declared
in that type are assumed to be possibly null, and the type checker
enforces that these not-yet-initialized fields are not used. The null-
ness and rawness type-checker that we used in our experiments is a
re-implementation of this algorithm, with enhancements. Delayed

types [10] specify when fields can be assumed to have been initial-
ized; by contrast, rawness specifies where fields can be assumed to
have been initialized.

The most closely related work is NIT and JASTADD. NIT [15]
is a nullness inference tool that, in parallel, also infers rawness.
Unlike our work, their formalization and proofs do not consider
exceptional flows. The NIT tool does not output any of the rawness
annotations that it infers. JASTADD [6] infers nullness along with a
coarser variant of rawness, in which each object is fully initialized
or fully uninitialized, without reference to how many constructors
have been exited. The rawness analysis of JASTADD is informally
presented and is not proved correct. Rawness increased the percent-
age of references that JASTADD reports as safe from 69% to 71%,
for three packages in the JDK. In our experiments, JULIA reported
over 98% of references to be safe. Like JULIA, NIT and JASTADD
can produce an annotation file that can be inserted into Java source
code or class files [2]. JACK [19] requires annotated method signa-
tures, then does a flow-sensitive, alias-sensitive flow analysis to de-
termine nullness and rawness types for local variables. It operates
on bytecode. Like JASTADD, it infers the coarse version of raw-
ness. Unlike JULIA, none of these tools’ rawness analysis seems to
have been evaluated and compared to manually-identified correct
annotations.

Several other nullness inference tools for Java exist, but unlike
JULIA they do not infer rawness annotations. DAIKON [8] runs the
program and soundly outputs @Nullable for variables that were
ever observed to be null. It would be unsound to report @NonNull
for values that were never observed to be null. DAIKON can pro-
duce an annotation file. HOUDINI [11] inserts @NonNull at every
possible location, then runs a static checker. Whenever the static
checker issues a warning, HOUDINI removes the relevant annota-
tion. HOUDINI iterates this process until it reaches a fixed point.
HOUDINI is neither sound nor complete. INAPA [7] is based on
similar principles to HOUDINI. FINDBUGS [14, 13] finds null
pointer dereferences by using an imprecise analysis that produces
many false warnings, but then prioritizing and filtering aggressively
so that few false warnings are reported to a user. It attempts to in-
fer programmer intent (w.r.t. nullness) based on code patterns. It is
neither sound nor complete.

Our rawness analysis is a constraint-based abstract interpreta-
tion [5] of a concrete operational semantics for Java bytecode, pre-
sented in Section 4. Other operational semantics for Java bytecode
are available, such as that of Freund and Mitchell [12]. Here we fol-
low our formalization in [21], which is also the basis of the JULIA
analyser [16], and hence we match theory with implementation.
Our formalization is indebted to [17], where Java and Java byte-
code are mathematically formalized and the compilation of Java
into bytecode and its type-safeness are machine-proved. Our for-
malization of the state of the JVM (Definition 2 in Section 4.2) is
similar to theirs, as well as our formalization of heap and objects.

3. Nullness Inference
The definition of our rawness analysis does not use any previous

nullness analysis. Nevertheless, we use it here after a nullness anal-
ysis is performed to project its results (sets of initialized fields) over
those fields that are deemed non-null by the nullness analysis, in
order to infer rawness annotations that are useful for nullness type-
checking (see Subsection 5.4). The exact nullness analysis which
is used is not important here. We briefly describe the one imple-
mented in the JULIA analysis tool.

In order to achieve a very high level of precision for nullness
analysis, JULIA uses a mix of different techniques: static analyses
based on denotational abstract interpretation and constraint-based
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abstract interpretation. Both come in different flavors, for inferring
properties of the local variables, fields, arrays of references, and
collections.

The kernel of the nullness analysis of JULIA is a denotational,
bottom-up abstract interpretation of the bytecode, which builds log-
ical formulas whose models over-approximate the nullness behav-
iors of the variables in scope in a piece of code. This analysis has
been proved correct [25]. Since the number of variables, at a given
program point, is necessarily finite, the Boolean formulas are finite
and relatively small, so they can be efficiently represented by bi-
nary decision diagrams [3]. The drawback of this approach is that
it infers nothing about the nullness of the fields of the objects. Its
precision is consequently unsatisfactory.

We now list three improvements, each of which increases pre-
cision but increases the computational cost. The overall system
achieves high precision (see our results, presented in Section 6).
A separate paper [22] presents all these techniques in detail and
compares them w.r.t. precision and cost of the resulting nullness
analyses.

(1) An optimistic approach [25] considers a field f , initialised
by all constructors, to hold a non-null value (globally non-null)
unless a counter-example is found, that is, an assignment of a pos-
sibly null value to f . The resulting precision is slightly better than
that of NIT [15], although it is in general slower.

(2) Local non-nullness [23] recognizes fields that are definitely
non-null at specific program points, because they have just been
assigned a non-null value or have been checked for non-nullness.
Local non-nullness achieves a form of flow-sensitivity. The analy-
sis is implemented as a denotational bottom-up abstract interpreta-
tion of the code.

(3) A constraint-based static analysis uses the same technique
that we describe in Section 5, to identify full arrays and collection
objects (hashsets, hashmaps, linked lists, etc.), whose elements are
all non-null at some program points.

The output of a nullness analysis indicates, for every variable and
every program point (where the variable is in scope), whether the
variable may be null or is definitely non-null. This output can be
used by a lint-like bug detection tool that informs the user of places
where the null value might be dereferenced. (Most of the warn-
ings will be false alarms, but a few might be actual bugs.) The tool
output can also be inserted in the program for documentation and
debugging, or can be exported to another tool to aid in further anal-
ysis. JULIA can produce null-dereference warnings directly, and
can output nullness annotations to program source or other tools by
using the Annotation File Utilities [2].

4. Operational Semantics
We describe here an operational semantics of the Java bytecode,

that we abstract into our rawness analysis in Section 5 and prove
correct in Appendix A.

4.1 Syntax
For simplicity of presentation, our formalism assumes int to be

the only primitive type and classes to be the only reference types;
we only allow instance fields and methods. Our implementation
handles full sequential Java bytecode and all Java types. In particu-
lar, multithreading is not handled and the analysis of multithreaded
applications might yield incorrect results, because JULIA assumes
that immediately after a field is checked, it still has the same value.

We assume the Java bytecode is preprocessed into a control flow
graph. This same representation is used in [21, 25, 24]; a similar
representation is also chosen in [1], although, there, Prolog clauses
encode the graph, while we work directly on the graph itself. A

load 0 JFlex.gui.OptionsDialog@p0

load 1 java.awt.Frame@p1

const "Options"@p2

call java.awt.Dialog.<init>(java.awt.Frame,java.lang.String):void@p3

catch@p4

throw java.lang.Throwable@p5

load 0 JFlex.gui.OptionsDialog@p6

load 1 java.awt.Frame@p7

putfield JFlex.gui.OptionsDialog.owner:java.awt.Frame@p8

load 0 JFlex.gui.OptionsDialog@p9

call JFlex.gui.OptionsDialog.setup():void@p10

load 0 JFlex.gui.OptionsDialog@p11

call java.awt.Window.pack():void@p12

.....

Figure 2: The blocks of code for the constructor in Figure 1.

control flow graph is a directed graph of basic blocks. All jumps
are from the end of one basic block, to the beginning of another
basic block. We graphically write

ins@p
rest

→
→

b1· · ·
bm

for a block of code starting with a bytecode instruction ins at
program point p, possibly followed by more bytecodes rest and
linked to m subsequent blocks b1, . . . ,bm. For instance, load 1
java.awt.Frame@p1 stands for an instance of the bytecode load 1
java.awt.Frame (which loads on the stack an object of class java.
awt.Frame) occurring at program point p1. In most cases, the pro-
gram point p is irrelevant, so we write just ins. Bytecodes have
explicit, inferred types.

Exception handlers start with a catch bytecode. A conditional
bytecode, a virtual method call, or the selection of an exception
handler, on the basis of the run-time type of the receiver or excep-
tion, is translated into a block linked to many subsequent blocks.
Each subsequent block starts with a filtering bytecode, such as
exception_is[_not] in the case of exceptional handlers, that spec-
ifies when that continuation is taken. They are not needed in Fig-
ure 1 since a default handler is used there: any kind of exception is
caught and thrown back to the caller.

4.2 Semantics
Our operational semantics keeps a state, providing values for the

variables of the program. An activation stack of states is used to
model the method call mechanism, exactly as in an actual imple-
mentation of the JVM.

Definition 1. (Classes) The set of classes K in program P is par-
tially ordered w.r.t.≤, which expresses the subclass relationship. A
type is an element of T = K∪{int}. A class κ ∈ K has instance
fields κ. f :t (field f of type t ∈ T defined in class κ), where κ and t
are often omitted, and instance methods κ.m(~τ) : t (method m with
arguments of type~τ⊆ T, returning a value of type t ∈ T∪{void},
defined in class κ), where κ,~τ, and t are often omitted. Constructors
are seen as methods named init and returning 〈void〉.

A state provides values to program variables.

Definition 2. (State) A value is an element of Z∪L∪{null},
where L is an infinite set of memory locations. A state is a triple
〈l ||s ||µ〉where l is an array of values (the local variables), s a stack
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of values (the operand stack) which grows leftwards, and µ a mem-
ory, or heap, which binds locations to objects. The empty stack is
written ε. An object o belongs to class o.κ ∈ K (is an instance of
o.κ) and maps identifiers (the fields f of class o.κ and of its super-
classes) into o. f , which can be a value or uninit. The set of states
is Ξ. We write Ξi, j when we want to fix the number i of local vari-
ables and j of stack elements. If v is a value or uninit, we say that
v has type t in a state 〈l ||s ||µ〉 if v ∈ Z∪{uninit} and t = int, or
v ∈ {null,uninit} and t ∈K, or v ∈ L, t ∈K and µ(v).κ≤ t.

Compared to [21], Definition 2 allows fields to hold uninit. As
will be clear from the formal semantics, this value is a special case
of null or 0 that allows us to distinguish a field holding null or 0
because it has not been initialized yet, from a field already initial-
ized, possibly to null or 0.

Example 1. A possible state at the beginning of the construc-
tor in Figure 2 is σ = 〈[`,`′] ||ε ||µ〉, where µ(`)(owner) = uninit.
Location ` contains the receiver µ(`) of the constructor, i.e., this,
whose fields are not initialized at the beginning of the construc-
tor. Location `′ contains an object of class java.awt.Frame, the
explicit argument of the constructor.

The JVM supports exceptions. Hence we distinguish normal
states Ξ arising during the normal execution of a piece of code,
from exceptional states Ξ arising just after a bytecode that throws
an exception. States in Ξ have always a stack of height 1 containing
a location (bound to the thrown exception object). We write them
underlined in order to distinguish them from the normal states.

Definition 3. (JVM State) The set of JVM states (from now on
just states) with i local variables and j stack elements is Σi, j =
Ξi, j ∪Ξi,1.

When we denote a state by σ, we do not specify if it is normal or
exceptional. If we want to stress that we deal with a normal or with
an exceptional state, then we write 〈l ||s ||µ〉 in the first case and
〈l ||s ||µ〉 in the second.

Example 2. A state σ at the beginning of the block in Figure 2
containing catch@p4 might be an exceptional state arising when
the call setup() aborts because of an OutOfMemoryError (the
code of that method contains many new statements). In that case,
we would have σ = 〈[`,`′] ||`′′ ||µ′〉, where ` and `′ are as in Exam-
ple 1, µ′(`)(owner) = `′′′ ∈L (field owner of this has been already
initialized at that point), µ(`′′).κ = OutOfMemoryError and µ(`′′)
has no uninit fields.

The semantics of a bytecode ins@p is a partial map ins : Σi1, j1→
Σi2, j2 from an initial to a final state. The indices i1, j1, i2, j2 depend
on p. The number and type of local variables and stack elements
at each p are statically known [18]. In the following we silently
assume that the bytecodes are run in a program point with i local
variables and j stack elements and that the semantics of the byte-
codes is undefined for input states of wrong sizes or types. These
assumptions are required by [18] and must hold for legal Java byte-
code.

4.3 Basic instructions
Bytecode const v pushes v∈Z∪L∪{null} on the stack. When

v ∈ L, location v must be already allocated in the memory and hold
an object of a very restricted set of classes, with all fields already
initialized [18]. Formally, the semantics of this bytecode is

const v = λ〈l ||s ||µ〉.


〈l ||v :: s ||µ〉 if v 6∈ L or

(µ(v) is defined and has
no uninit field)

undefined otherwise.

The λ-notation defines a partial map, because of the undefined case.
Namely, this bytecode is undefined when it tries to push a location
which is not already in memory or has an uninitialized field. Since,
above, 〈l ||s ||µ〉 (where s might be ε) is not underlined, the map is
also undefined on exceptional states, i.e., the bytecode is executed
when the JVM is not in an exceptional state. This is the case for all
bytecodes but catch, which starts the exceptional handlers from
an exceptional state.

Bytecode dup t duplicates the top of the stack, of type t:

dup t = λ〈l || top ::s ||µ〉.〈l || top :: top ::s ||µ〉.

Bytecode load i t pushes on the stack the value of local variable
number i, which must exist and have type t:

load i t = λ〈l ||s ||µ〉.〈l || l[i] ::s ||µ〉.

Conversely, bytecode store i t pops the top of the stack of type t
and writes it in local variable i:

store i t = λ〈l || top ::s ||µ〉.〈l[i 7→ top] ||s ||µ〉.

If l contains less than i+1 variables, the resulting set of local vari-
ables gets expanded. The semantics of a conditional bytecode is
undefined when its condition is false. For instance, if_ne t checks
if the top of the stack, which must have type t, is not 0 when t = int
or is not null otherwise:

if _ne t = λ〈l || top ::s ||µ〉.

{
〈l ||s ||µ〉 if top 6= 0 and top 6= null,
undefined otherwise.

The undefined case corresponds to the fact that the JVM does not
continue the execution of the code if the condition is false. Note
that, in our formalization, conditional bytecodes are used in com-
plementary pairs (for instance, if_ne and if_eq), at the beginning
of the two branches of a condition, so that only one of them is de-
fined for each given state.

4.4 Object-manipulating instructions
Some bytecodes create or access objects in memory. Bytecode

new κ pushes on the stack a reference to a new object o of class
κ, with reference fields initialized to uninit, that is, o(κ′. f ) =
uninit for every field κ′. f : t with t ∈K and κ≤ κ′. Its semantics,
new κ, is

λ〈l ||s ||µ〉.

{
〈l ||` :: s ||µ[` 7→ o]〉 if there is enough memory,
〈l ||` ||µ[` 7→ oome]〉 otherwise

with ` ∈ L fresh and oome new instance of OutOfMemoryError.
This is the first example of a bytecode that can throw an exception.
Note that the initial value of the fields is fixed to uninit rather than
to null or 0, as it would be in a standard semantics [21].

The semantics getfield κ. f : t of bytecode getfield κ. f : t reads
the field κ. f : t of a receiver object rec popped from the stack, of
type κ. It interprets uninit as null or 0 before pushing it on the
stack, since the value uninit is not allowed on the stack (Defini-
tion 2). Hence getfield κ. f : t is defined as

λ〈l ||rec ::s ||µ〉.



〈l ||µ(rec). f :: s ||µ〉 if rec 6= null, µ(rec). f 6= uninit

〈l ||null :: s ||µ〉 if rec 6= null, µ(rec). f = uninit

t ∈K
〈l ||0 :: s ||µ〉 if rec 6= null, µ(rec). f = uninit

t = int

〈l ||` ||µ[` 7→ npe]〉 otherwise

with `∈L fresh and npe a new instance of NullPointerException.
The bytecode putfield κ. f :t writes the top of the stack, of type t,
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inside field κ. f : t of the object pointed to by a value rec below the
top of the stack, of type κ (` and npe are as before). Its semantics
putfield κ. f : t is

λ〈l || top ::rec ::s ||µ〉.

{
〈l ||s ||µ[µ(rec). f 7→ top]〉 if rec 6= null,
〈l ||` ||µ[` 7→ npe]〉 otherwise.

Note that this bytecode might only remove uninit from the ap-
proximation of field f , since the value top on the stack is not al-
lowed to be uninit (Definition 2).

4.5 Exception-handling instructions
Bytecode throw κ throws, explicitly, the object pointed by the

top of the stack, of type κ≤Throwable (` and npe are as before):

throw κ = λ〈l || top ::s ||µ〉.

{
〈l || top ||µ〉 if top 6=null,
〈l ||` ||µ[` 7→ npe]〉 if top=null.

Bytecode catch starts an exception handler. It takes an exceptional
state and transforms it into a normal state, subsequently used by the
handler:

catch = λ〈l || top ||µ〉.〈l || top ||µ〉

where top ∈ L has type Throwable. Note that catch is undefined
on all normal states. After catch, bytecode exception_is K se-
lects the appropriate exception handler on the basis of the run-time
class of top. Namely, it filters those states whose top of the stack is
an instance of a class in K ⊆K. Its semantics exception_is K is

λ〈l || top ||µ〉.

{
〈l || top ||µ〉 if top ∈ L and µ(top).κ ∈ K,
undefined otherwise.

Bytecode exception_is_not K is just a shortcut for the bytecode
exception_is H, where H is the set of exception classes that are
not an instance of some class in K.

4.6 Method calls and return
When a caller transfers the control to a callee κ.m(~τ) : t, the

JVM performs an operation makescope κ.m(~τ) : t which copies the
topmost stack elements into the corresponding local variables and
clears the stack.

Definition 4. Let κ.m(~τ) : t be a method or constructor and π be
the number of stack elements needed to hold its actual parameters,
including the implicit parameter this. We define (makescope κ.m(~τ) :
t) : Σ→ Σ as

λ〈l ||vπ−1 :: · · · ::v1 ::rec ::s ||µ〉.〈[rec,v1, . . . ,vπ−1] ||ε ||µ〉

provided rec 6= null and the look-up of m(~τ) : t from the class
µ(rec).κ leads to κ.m(~τ) : t. We let it be undefined otherwise.

This formalizes the fact that the ith local variable of the callee is a
copy of the element located (π− 1)− i positions down the top of
the stack of the caller.

Bytecode return t terminates a method and clears its operand
stack. If t 6= void, the return value is the only element left on the
final stack:

return void = λ〈l ||s ||µ〉.〈l ||ε ||µ〉
return t = λ〈l || top ::s ||µ〉.〈l || top ||µ〉, where t 6= void.

ins is not a call, ins(σ) is defined

〈 ins
rest
→→

b1· · ·
bm
||σ〉 :: a⇒ 〈 rest →→

b1· · ·
bm
|| ins(σ)〉 :: a

(1)

π is the number of parameters of the target method, including this
σ = 〈l ||vπ−1 :: · · · ::v1 ::rec :: s ||µ〉, rec 6= null
1≤ i≤ n, σ′ = (makescope κi.m)(σ) is defined

f = first(κi.m)

〈 call κ1.m . . .κn.m
rest

→→
b1· · ·
bm
||σ〉 :: a⇒ 〈 f ||σ′〉 :: 〈 rest →→

b1· · ·
bm
||〈l ||s ||µ〉〉 :: a

(2)
π is the number of parameters of the target method, including this

σ = 〈l ||vπ−1 :: · · · ::v1 ::null :: s ||µ〉
` ∈ L is fresh and npe is a new instance of NullPointerException

〈 call κ1.m . . .κn.m
rest

→→
b1· · ·
bm
||σ〉 :: a⇒ 〈 rest →→

b1· · ·
bm
|| 〈l ||` ||µ[` 7→ npe]〉〉 :: a

(3)

〈 ||〈l || top ||µ〉〉 :: 〈b ||〈l′ ||s′ ||µ′〉〉 :: a⇒ 〈b ||〈l′ || top :: s′ ||µ〉〉 :: a
(4)

〈 || 〈l ||e ||µ〉〉 :: 〈b ||〈l′ ||s′ ||µ′〉〉 :: a⇒ 〈b || 〈l′ ||e ||µ〉〉 :: a
(5)

1≤ i≤ m

〈 →→
b1· · ·
bm
||σ〉 :: a⇒ 〈bi ||σ〉 :: a

(6)

Figure 3: The transition rules of our operational semantics for Java bytecode
(Section 4.7).

4.7 The transition rules
We can now define the operational semantics of our language.

Definition 5. A configuration is a pair 〈b ||σ〉 of a block b and a
state σ. It represents the fact that the JVM is going to execute b in
state σ. An activation stack is a stack c1 :: c2 :: · · · :: cn of configura-
tions, where c1 is the topmost, current or active configuration.

The operational semantics of a Java bytecode program is a rela-
tion between activation stacks. It models the transformation of the
activation stack induced by the execution of each single bytecode.

Definition 6. The (small step) operational semantics of a Java
bytecode program P is a relation a′ ⇒P a′′ (P is usually omitted)
providing the immediate successor activation stack a′′ of an activa-
tion stack a′. It is defined by the rules in Figure 3.

Rule 1 executes an instruction ins, different from call, by us-
ing its semantics ins. The JVM then moves forward to run the rest
of the instructions. Rule 2 calls a method on a non-null receiver.
It looks up the correct implementation κi.m(~τ) : t of the method, by
using the look-up procedures of the language, and finds the block b
where that implementation starts. It then builds its initial state σ′,
by using makescope, and creates a new current configuration con-
taining b and σ′. It pops the actual arguments from the old current
configuration and the call from the instructions still to be exe-
cuted at return time. Since a method call can actually call many
implementations, depending on the run-time class of the receiver,
this rule is apparently non-deterministic. However, only one thread
of execution will continue, since we assume that the method look-
up rules of the language are deterministic (as in Java bytecode).
Control returns to the caller by rule 4, which rehabilitates the con-
figuration of the caller but forces the memory to be that at the end
of the execution of the callee. The return value of the callee is
pushed on the stack of the caller. This rule is executed if the state
reached at the end of the caller is a normal state. If it is an excep-
tional state, rule 5 is executed instead, which propagates the excep-
tion back to the caller. If a method call occurs on a null receiver,
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〈
load 0 OD@p0

load 1 java.awt.Frame@p1
const ”Options”@p2

call java.awt.Dialog.〈init〉 . . .@p3

→→b4b6
||〈[`,`′] ||ε ||µ〉〉 ::a

(1)⇒〈
load 1 java.awt.Frame@p1

const ”Options”@p2
call java.awt.Dialog.〈init〉 . . .@p3

→→b4b6
||〈[`,`′] ||` ||µ〉〉 ::a

(1)⇒〈 const ”Options”@p2
call java.awt.Dialog.〈init〉 . . .@p3

→→b4b6
||〈[`,`′] ||`′ ::` ||µ〉〉 ::a

(1)⇒〈 call java.awt.Dialog.〈init〉 . . .@p3 →→b4b6
||〈[`,`′] ||`′′ ::`′ ::` ||µ〉〉 ::a

(2)⇒〈first ||〈[`,`′, `′′] ||ε ||µ〉〉 ::〈 →→b4b6
||〈[`,`′] ||ε ||µ〉〉 ::a

(...)⇒〈 ||〈[`,`′, `′′] ||ε ||µ′〉〉 ::〈 →→b4b6
||〈[`,`′] ||ε ||µ〉〉 ::a

(4)⇒〈 →→b4b6
||〈[`,`′] ||ε ||µ′〉〉 ::a

(6)⇒〈

load 0 OD@p6
load 1 java.awt.Frame@p7
putfield OD.owner . . .@p8

load 0 OD@p9
call OD.setup() : void@p10

→→ b4b11
||〈[`,`′] ||ε ||µ′〉〉 ::a

(1)⇒〈
load 1 java.awt.Frame@p7
putfield OD.owner . . .@p8

load 0 OD@p9
call OD.setup() : void@p10

→→ b4b11
||〈[`,`′] ||` ||µ′〉〉 ::a

(1)⇒〈
putfield OD.owner . . .@p8

load 0 OD@p9
call OD.setup() : void@p10

→→ b4b11
||〈[`,`′] ||`′ ::` ||µ′〉〉 ::a

(1)⇒〈 load 0 OD@p9
call OD.setup() : void@p10

→→ b4b11
||〈[`,`′] ||ε ||µ′[µ(`).owner 7→ `′]︸ ︷︷ ︸

µ′′

〉〉 ::a

(1)⇒〈 call OD.setup() : void@p10 →→ b4b11
||〈[`,`′] ||` ||µ′′〉〉 ::a

Figure 4: A partial execution according to the semantics of Fig-
ure 3. bx is the block in Figure 2 starting at px. OD stands for
JFlex.gui.OptionsDialog. Location `′′ points to the string "Options"
from the constant pool. first is the first block of the constructor of

java.awt.Dialog.
(...)⇒ is a complete execution of the latter and µ′ is the

memory at its end.

rule 3 creates a new state whose stack contains only a reference
to a NullPointerException. No actual call happens in this case.
Rule 6 applies when all instructions inside a block have been ex-
ecuted; it runs one of its immediate successors, if any. This rule
is normally deterministic, since if a block of our formalization of
the Java bytecode has two or more immediate successors then they
start with mutually exclusive conditional instructions and only one
thread of control is actually followed.

From now on, when we use the notation⇒, we often specify the
rule in Figure 3 which is used at each derivation step; for instance,

we write
(1)⇒ for a derivation step through rule (1).

Example 3. Consider the state 〈[`,`′] ||ε ||µ〉 from Example 1 at
p0 in Figure 2. The operational semantics can proceed from p0 as
in Figure 4.

5. Rawness Analysis
JULIA collects rawness information with a constraint-based raw-

ness analysis which is performed at the end and independently from
the nullness analysis. The rawness analysis builds a constraint: a

graph whose nodes contain sets of fields that have not been initial-
ized yet. There is a node for each local variable at a given program
point and for each method parameter and return value. There is
also a node for each field and another for the values stored into
arrays; differently from local variables, fields and arrays have flow-
insensitive approximations. Assignments and parameter passing
are modeled as directed arcs a→ b in the graph. They represent
the inclusion of the content of a in the content of b.

When an object is created by a new κ bytecode, all fields of κ

and of its superclasses are used as an approximation for the newly
created object, left on top of the stack, since its has no initialized
field at that point. Then arcs are built to link subsequent program
points. For instance, the arc l0@p0→ l0@p1 is built for the pro-
gram in Figure 1. But the arc l0@p0→ s0@p1 is also built, since
local variable 0 at p0 is loaded on the stack as its only element
s0 at p1. Arcs are built for all possible flows of control induced
by loops, conditionals and exceptions. For instance, in Figure 1,
both arcs l0@p3→ l0@p4 and l0@p3→ l0@p6 are built. Assign-
ments to fields give rise to arrows from the rightvalue to the node
for the field. For instance, the assignment at p8 induces the arc:
s1@p8→owner. In order to model the fact that field owner is now
initialized, a filtering arc is built also, for each definite alias of the
receiver. For instance, the same assignment at p8 introduces the
arc l0@p8

owner→ l0@p9 instead of l0@p8→ l0@p9. The former arc
states that all fields in l0@p8 are included in l0@p9, but owner.
The definite aliasing information needed here is the same used, for
instance, in our nullness analysis (see [25]), so we can recycle it.

When all arcs have been built for the whole program, the con-
straint is solved through a least fixpoint calculation. The approxi-
mation of each variable is an over-approximation of the set of its
fields that might not have been initialized yet. For instance, in
Figure 1, the approximation computed for l0@p0 is the set S =
{owner, . . .} of all fields of class OptionsDialog and of its super-
classes, and that for s0@p10 is S \ {owner}, since the non-null
field owner has been already initialized at p10. The approximation
computed for s0@p12 is /0, since all fields of class OptionsDialog
and of its superclasses have been already initialized at p12.

5.1 The abstraction map for rawness
In order to formalize our rawness analysis and prove its correct-

ness, we define now the abstraction map from states to rawness.

Definition 7. (Rawness Abstraction) Let σ=〈[v0 . . .vi−1]||w j−1 ::
· · · :: w0 ||µ〉 be a state (possibly underlined) with i local variables
and j stack elements. Its rawness abstraction α(σ) maps the sym-
bols {l0 . . . li−1 , s0 . . .s j−1, f1, . . . , fn}, where f1, . . . , fn are all the
fields in P, into sets of uninitialized fields, that is, fields that have
not been initialized yet for each local variable, stack element or
field:

α(σ)(lk) =

{
/0 if vk ∈ Z∪{null}
{ f | µ(vk). f = uninit} if vk ∈ L

α(σ)(sk) =

{
/0 if wk ∈ Z∪{null}
{ f | µ(wk). f = uninit} if wk ∈ L

α(σ)( fk) = { f | there exists ` ∈ L s.t. µ(µ(`). fk). f = uninit}.

By Definition 7, the rawness of a stack element or local variable is
the set of fields still bound to uninit in the object they hold. The
rawness of a field fk, instead, includes a field f if there is an object
µ(`) at ` with field fk bound to a location `′ = µ(`). fk that holds
an object µ(`′) whose field f is still uninit. Note that we silently
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assume that µ(µ(`). fk). f is well defined, i.e., that all its compo-
nents are defined. Instance fields are flattened by this abstraction,
i.e., they are treated as static fields and we cannot distinguish fields
with the same name but in different objects. This abstraction is
necessary to get a finite static analysis, since the number of objects
in memory is potentially unbound.

Example 4. Consider the state σ = 〈[`,`′] ||ε ||µ〉 from Exam-
ple 1. Its abstraction is such that owner∈ α(σ)(l0).

5.2 The abstract constraint
A program P induces a constraint, which is a graph whose nodes

contain a set of uninitialized fields. There are many kinds of nodes:

• lk@ p stands for the kth local variable (k≥ 0) at program point p
• sk@ p stands for the kth stack element (k≥ 0) at program point p
• f @ew stands for field f , at any program point
• return@m stands for the return value of method m
• exception@m stands for any exception thrown by method m
• lk@end of m stands for the kth local variable (k ≥ 0) at the

end of every normal execution of method m
• {κ1. f1, . . . ,κn. fn} stands for a node containing those uninitial-

ized fields

Arcs are directed: n1→ n2 states that all the fields in n1 are also in

n2. The filtering arc n1
f→ n2 states that all the fields in n1 except f

are also in n2. Arcs are built for each pair of subsequent bytecode
instructions:

Definition 8. Let insp@ p and insq@q be two bytecodes. Let
ip and jp be the number of local variables and stack elements at
the beginning of the execution of insp, respectively. Let Uip, jp =
{lk@ p→ lk@q | 0≤ k < ip}∪{sk@ p→ sk@q | 0≤ k < jp}. We
define the constraints con(insp@ p,insq@q) as follows. If insq
is not a catch then:

con(const v,insq) = con(catch,insq)
= con(exception_is[_not] K,insq) = Uip , jp

con(dup t,insq) = Uip , jp ∪{s jp−1@ p→ s jp @q}
con(load x t,insq) = Uip , jp ∪{lx@ p→ s jp @q}

con(store x t,insq) = {lk@ p→ lk@q | 0≤ k < ip,k 6= x}
∪{sk@ p→ sk@q | 0≤ k < jp−1}∪{s jp−1@ p→ lx@q}

con(if_ne t,insq) = Uip , jp−2

con(new κ,insq) = Uip , jp ∪{{κ′. f : t | t ∈K and κ≤ κ
′}→ s jp @q}

con(getfield f ,insq) = Uip , jp−1 ∪{ f @ew→ s jp−1@q}
con(putfield f ,insq) = {lk@ p→ lk@q | 0≤ k < ip,(lk,s jp−2) 6∈ aliasp}

∪{sk@ p→ sk@q | 0≤ k < jp−2,(sk,s jp−2) 6∈ aliasp}

∪{lk@ p
f→ lk@q | 0≤ k < ip,(lk,s jp−2) ∈ aliasp}

∪{sk@ p
f→ sk@q | 0≤ k < jp−2,(sk,s jp−2) ∈ aliasp}

∪{s jp−1@ p→ f @ew}

con(callm1 . . .mn,insq)=∪n
k=1∪

π−1
u=0 {s jp−u−1@ p→ lπ−u−1@first(mk)}

∪{return@mk → s jp−π@q | 1≤ k ≤ n}

∪

lk@ p→ lk@q

∣∣∣∣∣∣
1≤ k < ip and if (lk,s jp−u−1) ∈ aliasp
for some 0≤ u < π then at least an mh
contains a store lπ−u−1 t


∪

lπ−u−1@end of mw→ lk@q

∣∣∣∣∣∣∣
1≤ k < ip, 1≤ w≤ n,
(lk,s jp−u−1) ∈ aliasp
for some 0≤ u < π and no mh
contains a store lπ−u−1 t



∪

sk@ p→ sk@q

∣∣∣∣∣∣
1≤ k < jp−π and if (sk,s jp−u−1) ∈ aliasp
for some 0≤ u < π then at least an mh
contains a store lπ−u−1 t


∪

lπ−u−1@end of mw→ sk@q

∣∣∣∣∣∣∣
1≤ k < jp−π, 1≤ w≤ n,
(sk,s jp−u−1) ∈ aliasp
for some 0≤ u < π and no mh
contains a store lπ−u−1 t

 .

If, instead, insq is a catch, we define

con(throw κ,catch) = {lk@ p→ lk@q | 0≤ k < ip}
∪{s jp−1@ p→ s0@q}

con(call m1 . . .mn,catch) = ∪n
k=1 ∪

π−1
u=0 {s jp−u−1@ p→ lπ−u−1@first(mk)}

∪{exception@mk → s0@q | 1≤ k ≤ n}∪{lk@ p→ lk@q | 1≤ k < ip}
con(insp,catch) = Uip ,0, where insp is not a throw nor a call.

Moreover, if p is a program point inside method m, we define the
constraints

final_con(throw κ) = {s jp−1@ p→ exception@m}
final_con(return void) = {lk@ p→ lk@end of m | 0≤ k < ip}

final_con(return t) = {lk@ p→ lk@end of m | 0≤ k < ip}
∪{s jp−1@ p→ return@m}

where t 6= void.

Definition 8 has two cases. The first is when insq is not a catch.
This means that the normal output state of insp flows to the begin-
ning of insq. If insp is a const, the sets of uninitialized fields for
local variables and stack elements do not change. This is also the
case for catch, exception_is and exception_is_not. Hence
we build a constraint Uip, jp that states this fact. For dup, we also
build an arc saying that the set of uninitialized fields for the new top
of the stack (s jp @q) contains all the uninitialized fields of the old
top of the stack (s jp−1@ p). Similar constraints are built for load
and store: the latter keeps the approximation of the local variables
unchanged but for lx that gets the approximation of the old top of
the stack. If insp is an if_ne, two elements are removed from the
stack. If it is a new κ, the new top of the stack contains all fields
defined in κ or in a superclass κ′ of κ, since they are not yet initial-
ized. Bytecodes getfield and putfield create arcs from and to
the node f @ew for the accessed field f . The latter bytecode mod-
ifies the rawness of every definite alias of its receiver s jp−2, since
field f is being initialized. The constraints generated when insp
is a call are the most complex. They link the actual arguments
(the topmost stack elements of the caller) to the formal arguments
(the lowest local variables at the first bytecode first(mk) of the ini-
tial block of each callee mk). Moreover, the local variables lk of
the caller and its stack elements sk that are not actual arguments
might keep their approximation or can see it improved when they
are a definite alias of an actual argument s jp−u−1 and the corre-
sponding formal argument lπ−u−1 is not updated inside the callee.
If this is the case, then the final approximation for lπ−u−1 inside the
callee can be used as approximation for lk (respectively, sk) after the
call. This situation is important since it allows helper functions to
improve the rawness approximation for the variables of the caller.
This is the case, for instance, of setup() in Figure 1, whose code
initializes tens of fields of an OptionsDialog.

The second case of Definition 8 is when insq@q is a catch.
This means that insp is executed, it throws an exception e which
is caught by insq and stored as s0@q. In any case, the original
rawness approximation for the local variables remains correct. If
insp is not a call nor a throw, then e is an internal exception [18]
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without uninitialized fields, so we can use Uip,0. Otherwise, e might
be the top of the stack (s jp−1@ p) for throw or an exception thrown
by the called method(s) for call. If insp is a call, we also link
the actual arguments to the formal ones.

The function final_con generates constraints for the final byte-
code of a block with no successors. That bytecode can only be a
throw or a return inside some method m. In the first case the top
of the stack (s jp−1@ p) is linked to the exception thrown by m. In
the second case it is linked to the return value of the method, if any,
and the local variables are linked to the approximation of the local
variables at the end of m.

Example 5. Consider insp = load 1 java.awt.Frame@p1 and
insq = const ”Options”@p2 from Figure 1. At p1 we have ip =
2 local variables and jp=1 stack elements. Thus con(insp,insq)=
{l0@p1→ l0@p2, l1@p1→ l1@p2, l1@p1→ s1@p2,s0@p1→
s0@p2}.

Example 6. Let insp=call java.awt.Dialog.〈init〉 . . .@p3

and insq=load 0 JFlex.gui.OptionsDialog@p6 from Figure 1.
At p3 we have ip = 2 local variables and jp = 3 stack elements.
Our aliasing analysis computes aliasp3 = {(l0,s0),(l1,s1)}. This
call has n = 1 targets and π = 3 parameters (including the implicit
this parameter). Let first be the first bytecode in the initial block
of the constructor m of java.awt.Dialog, whose code does not
contain any store 0 nor any store 1. Hence con(insp,insq) =
{s0@p3 → l0@first,s1@p3 → l1@first,s2@p3 → l2@first,
l0@end of m→ l0@p6, l1@end of m→ l1@p6}.

We can define the constraints induced by the whole program.

Definition 9. Let
ins1
· · ·
insn

→
→

b1· · ·
bm

be a block. If m > 0, its induced

constraints are∪n−1
k=1con(insk,insk+1)∪∪m

h=1con(insn,first(bh)),
where first(bh) is the first instruction in bh. If m = 0, they are
∪n−1

k=1con(insk,insk+1) ∪ final_con(insn). Those induced by a
program P are the union of the constraints induced by each block
of P.

5.3 Correctness of the analysis
Once the constraints for P have been built, they can be solved,

i.e., a least solution can be found, satisfying the inclusions repre-
sented by their arcs. This is possible since arcs (normal and fil-
tering) stand for monotonic functions from the approximation of
their source to that of their sink. Hence a least solution exists, is
unique, and can be computed, for instance, with an iterated fixpoint
calculation from the empty approximation for each node.

Definition 10. The solution of a constraint G is the least as-
signment S of sets of fields to nodes, such that S({ f1, . . . , fn}) =
{ f1, . . . , fn} for every node { f1, . . . , fn} ∈G, S(n1)⊆ S(n2) for ev-

ery n1 → n2 ∈ G and S(n1) \ { f} ⊆ S(n2) for every n1
f→ n2 ∈

G.

Example 7. The solution of the constraints generated for the pro-
gram in Figure 1 is such that S(l0@p0) = {owner, . . .} contains
all the fields defined in OptionsDialog and in its superclasses.
Moreover, owner6∈ S(s0@p10) 6= /0 and S(s0@p12) = /0 (that is,
all fields of OptionsDialog and of its superclasses have been def-
initely assigned when calling pack()).

We can now provide the correctness result for our analysis. It
states that the abstraction of all the states generated during the exe-

cution of P according to our operational semantics is over-approx-
imated by the solution of the constraint generated for P. The hy-
pothesis of this proposition guarantees that the considered execu-
tion is feasible, i.e., it did not hang the Java Virtual Machine.

PROPOSITION 1. Let 〈bfirst(main)||ς〉⇒∗〈
ins@ p

rest
→
→

b1· · ·
bm
||σ〉::a

be any execution of our operational semantics, from method main
and an initial state ς whose objects in memory have no uninitial-
ized fields, with ins(σ) defined when ins is not a call, or with
σ ∈ Ξ with at least π stack elements when ins is a call with π

parameters. Let there be i local variables and j stack elements at
p. Then for every 0≤ k < i we have α(σ)(lk)⊆ S(lk@ p), for every
0 ≤ k < j we have α(σ)(sk) ⊆ S(sk@ p) and for every field fk we
have α(σ)( fk)⊆ S( fk@ew).

Note that, in Java bytecode, method main receives an array of strings
as parameter and those strings have no uninitialized fields. Hence
the hypothesis on ς is sensible.

Proposition 1 is proved in Appendix A.

5.4 Building the @Raw annotations
Our rawness analysis can be used whenever one wants to know

if some field of a given variable is definitely initialized at a given
program point. As we said in Section 3, this is the case for nullness
analysis, since existing type-checkers for nullness allow the spec-
ification of a set of non-null fields, which are always initialized
by all constructors of their defining class and are always assigned
a non-null value. Hence they do hold a non-null value, but only
after their first initialization. Where this is not yet the case, rawness
must be specified.

Given a set of non-null fields NN, our analysis infers a superset
of the variables v at a given program point p and a superset of the
fields f of the program that should be typed as @Raw. It is enough
to check if S(v@ p)∩NN 6= /0 or S( f @ew)∩NN 6= /0, respectively.
Similarly for the formal parameters of the methods and for their
return value. It is also possible to derive class-specific rawness,
that is, to determine if all non-null fields defined in a given class
κ have been initialized or not. Namely, a superset of the variables
v at a given program point p and a superset of the fields f of the
program that should be typed as @Raw(κ) can be determined by
checking if S(v@ p)∩{κ.g | κ.g ∈ NN} 6= /0 or S( f @ew)∩{κ.g |
κ.g ∈ NN} 6= /0, respectively.

6. Experimental results
We have implemented the analysis that is defined in Section 5

and proved correct in Appendix A. This section describes experi-
ments that assess the effectiveness of the analysis. The key question
is whether JULIA’s output is correct.

6.1 Subject programs and analysis output
We applied the inference tool, JULIA, to three programs. JFlex

1.4.3 is a scanner generator (http://jflex.de/). Plume is library
of utility programs and data structures (http://code.google.com/
p/plume-lib/, downloaded on Feb. 3, 2010). The Annotation File
Utilities (AFU) 3.0 are tools for reading/writing Java annotations [2].

Figure 5 lists the sizes of the programs, the analysis time, and
raw data about Julia’s output.

JULIA’s scalability depends on the size of the reachable code in
an application, rather than on the lines of source code. JULIA starts
its analysis at all entry points to the program, and then proceeds to
discover and analyze all reachable code in the program. It treats
as entry points: (1) any public static void main(String[])
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size reachable program & libraries analysis time (sec.) dereferences inferred annotations
program (lines) methods lines bytecodes nullness rawness safe / all (%) @NonNull @Raw

JFlex 14987 3885 39097 390315 282 3 8584 / 8751 (98.1) 572 / 741 (77.2) 6 / 1109 (0.5)
AFU 13892 4246 38415 412332 346 3 5054 / 5143 (98.3) 642 / 854 (75.2) 15 / 1124 (1.3)

plume 19652 5400 49921 511277 660 4 8481 / 8613 (98.5) 617 / 915 (67.4) 3 / 1118 (0.3)
plume progs 6167 5400 49921 511277 660 4 6048 / 6148 (98.4) 235 / 300 (78.4) 3 / 339 (0.9)

Figure 5: Experimental results. “Lines” is counted with the cloc program (http://cloc.sourceforge.net/). Size is computed separately for the application
as downloaded, and for the reachable, analyzed portion of the program, including any reachable libraries but not counting unreachable methods in the program
or the libraries. Analysis time and results are for the most precise nullness analysis currently available in JULIA. Dereferences are counted only in the the
reachable application code (which does not include libraries). Safe dereferences are those that JULIA can guarantee will never throw a null pointer exception
at run time. In the “Inferred annotation” columns, the denominator is the total number of sites at which the annotation could possibly be written, in fields and
method signatures of the reachable application code. The percentage of inferred annotations is also given. The last row reports the analysis of plume, as in the
previous line, but with statistics projected over the 10 classes that have a main() method; see Section 6.2.2.

method, and (2) any public static void test*() method in a
class that extends TestCase, to handle JUnit tests.

The rawness analysis is fast — just a few seconds. The nullness
analysis runs as long as 11 minutes on our subject programs. Most
of the nullness analysis runtime is due to the aliasing and shape
analysis that it calls as a subroutine.

Recall from Section 1 the two primary uses for a nullness/rawness
inference: to indicate locations where a null pointer exception may
be thrown, or to provide annotations for a human or a follow-on
analysis. The last two groups of columns in figure 5 address these
two uses.

A “dereference” is any location at which a variable must be non-
null to avoid throwing a null pointer exception. These include field
and method dereferences, array accesses, array length expressions,
throw statements, and synchronization operations. JULIA proves
that over 98% of the dereferences in each application program are
safe — that is, these locations can never throw a null pointer excep-
tion at run time. This fact can aid in optimization and reasoning.
For comparison, these numbers are around 80% in the case of NIT
(see [23] for a comparison).

Figure 5 indicates the number of annotations inferred, and the
maximum number of sites at which the annotation could possibly
be inferred. For @NonNull, the sites include fields, method formal
parameters, and method return types. A single type may have mul-
tiple sites; for example, up to three @NonNull annotations could
be placed on Map<String,Object>. Receivers and constructor re-
sults are not counted as sites, because they are trivially non-null.
Primitive and void types are never counted, because they cannot be
null. The sites for @Raw are the same as those for @NonNull, plus
receivers. Constructor results are trivially non-raw.

JULIA annotates a significant amount of the program, lessen-
ing the programmer burden. (Either @NonNull annotations, or a
smaller but still significant number of @Nullable annotations, are
automatically inserted into the program source code.) @Raw is in-
ferred for as much as 1.3% of all references in the program.

Our experiments count annotations on fields and in method sig-
natures. These are the places that annotations are most useful. It
would also be possible to infer types for local variables or for ex-
pressions within a method body, but our experiments ignore this
possibility, and JULIA does not perform such output.

Depending on the program, JULIA proves that 67–78% of all ref-
erences can be marked as @NonNull. Furthermore, only a very few
references are marked as @Raw.

Previous evaluations of nullness inference tools have generally
reported numbers like these, quantifying the tool’s output. A prob-
lem with such numbers is that they do not indicate whether the
tool’s output is correct or useful. Section 6.2 addresses the correct-
ness question by comparing JULIA’s output to manual annotations

of nullness and rawness. Section 6.3 addresses usefulness of both
the nullness and rawness annotations, for one particular use: prov-
ing a program is free of null pointer dereferences, or fixing any
such problems in the program.

6.2 Comparison to human-written annotations
This section compares JULIA’s annotations to a correct set of

annotations written by a human.
As part of a different project, plume was previously annotated

with nullness and rawness annotations.1 The manual annotations
use @NonNull as the default (except for local variables, which de-
fault to @Nullable), and so only write an annotation for @Nullable
references. This leads to fewer annotations overall. Plume has 508
nullness or rawness annotations on 312 distinct lines, plus another
36 warning suppression annotations.

The manual annotations were checked by a pluggable type-checker
built upon the Checker Framework [20]. The type-checker verified
both the correctness of the annotations, and that there are no in
plume. The outcome of this process is a guarantee that the annota-
tions are correct, and that plume has no null pointer dereferences.2

This gives perspective on the 132 (= 8613−8481) possibly-unsafe
dereferences that Julia reports in plume: they are probably all false
warnings.

To gain perspective on these false warnings and on JULIA’s strengths
and weaknesses, both of this paper’s authors examined differences
between the manual annotations and JULIA’s output. We examined
rawness annotations in all of plume, and nullness annotations in a
subset of plume.

6.2.1 Rawness comparison for all of plume
We examined all rawness differences, everywhere in plume. Plume

as downloaded contains 7 instances of @Raw, and JULIA’s output
contains 3 instances of @Raw. One @Raw annotation is in both sets,
so there are 8 differences to examine.

Three manual @Raw annotations, on method receivers, are not in-
ferred by JULIA and are extraneous — they are weaknesses in the
manual annotation. The program type-checks with these annota-
tions, but it also type-checks without them, so there is no need for
them. They were inserted at a time when the type-checker did need
them, because it was unable to infer that an object is initialized be-
fore its constructor exits. JULIA and the current type-checker can
make such inferences. These annotations have since been removed
from plume.

1Except for this section, all of our experiments use a version of plume from which all
nullness/rawness annotations have been removed.
2The guarantee is modulo the fact that when the programmer annotated the program,
the programmer also suppressed some type-checking warnings. The programmer only
did so when manual reasoning indicated the warning was a false warning, but the
programmer may have made mistakes during this manual reasoning.
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Inconse- T-C Unanalyzed Manual Julia
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Figure 6: Number of lines of differences between manual annotations and
JULIA output, classified according to Section 6.2.2. In general, each dif-
ference results in two lines of diff output. The table classifies the same
differences twice: once into coarser and once into finer-grained categories.

Three manual @Raw annotations on parameters of type Object
are not inferred by JULIA, because JULIA does more detailed anal-
ysis than the type-checker. In particular, JULIA recognizes that any
value passed to the given methods is initialized up to the @Object
constructor, even if it is not be fully initialized. The type-checker
requires these parameters to be marked @Raw because they are not
fully initialized.

Finally, two @Raw annotations inferred by JULIA are a result of
imprecision in JULIA’s analysis.

6.2.2 Full comparison for programs in plume
We examined all differences between the manual annotations

and JULIA’s output, for a subset of plume. For our subset, we chose
all the programs in plume: each class that contains a main method.
There are 10 such classes (out of 44), and they contain about 1/4 of
plume’s lines of code. Running the diff program on these classes
yields 206 lines of differences (compared to 1450 lines of differ-
ences for all of plume). The last line of Figure 5 provides more
measurements.

Usually, there are 2 lines of diff output per difference: one line
in the diff output shows the old code, and one shows the new code.
In some cases, such as import statements and warning suppression,
there are more or fewer. To permit counting without fear of ambi-
guity, we always use number of lines of diff output.

We classified each of the 206 lines of diff output according to the
following categories:

Inconsequential differences
IM (import statement) JULIA added an import statement that is

redundant with an existing one.
WS (whitespace) The difference is in whitespace or the order of

modifiers.
LA (@LazyNonNull) The manual annotation uses @LazyNonNull,

which means that the variable may start out as null, but once
set to a non-null value, it may continue to be reassigned but is
never again assigned to null. JULIA uses @Nullable, which
is equivalent from JULIA’s point of view.

Type-checker artifacts
SW (@SuppressWarnings) The difference is the removal of a @Sup-

pressWarnings annotation that was present in the original
program, in a method body. It was placed there to overcome a
limitation of the type-checker. JULIA may or may not have a
similar limitation; if it does, that will be reflected in a differ-
ence in some field or method signature.

BO (inside method body) The difference is an annotation within
a method body (other than @SuppressWarnings), which our
experiment ignores but the type-checker needs.

Unanalyzed code
DC (dead code) A method is never executed, so JULIA does not

bother to annotate it. For example, this applies to old code that
is no longer used, and to code used for debugging. As another
example that alone accounts for 25 of the 32 lines of diff, an
API required a Reader object, but did not use it, so plume

created a DummyReader class and passed that to the API.
UC (unreachable code) JULIA cannot find a path that executes a

given method, because no such path exists in plume, though a
path may exist in client code. The prime cause for this is the
fact that one of the selected classes, EntryReader, is really a
library, not a program. Its main method is just a simple usage
example that does not fully exercise the class.

UL (unanalyzed library) JULIA cannot find a path to a method be-
cause the path starts in a library that JULIA did not analyze. For
example, a class’s boolean start(RootDoc doc) method is
called reflectively when Javadoc executes, but JULIA does not
add Javadoc’s main method to the set of entry points for every
program.

Errors in manual annotations
SU (static initialization unchecked) The type checker verifies that

instance fields are properly initialized by the time the construc-
tor exits, but does not do a similar check for static fields, so a
static field marked as @NonNull may contain null. The plume
authors have subsequently verified these errors and corrected
them by changing the annotation to @Nullable.

ME (manual annotation error, other) A constructor argument was
improperly marked as @NonNull that should have been @Null-
able. This annotation has also now been fixed. Overall, JULIA
did not reveal any null pointer errors, only the 4 (= 8/2) incor-
rect annotations.

Weaknesses in manual annotations
UN (unannotated code) The developers did not consider this code

worth annotating: for example, the code is undocumented, is
used for testing, or is under development. JULIA’s inference
results would make the annotation task much easier.

MW (manual annotation weakness, other) The programmer wrote
@Nullable on a method return value that is actually always
non-null. The annotation type-checks, but the more precise
annotation is better.

Errors in Julia output
JE (errors in JULIA annotations) JULIA uses multiple annotations

for arrays of references and for generic classes of the standard
Java library — one annotation for the container and one for
the element type. However, JULIA does not yet do so for user-
defined generic classes such as Pair<S,T>.

Weaknesses in JULIA output
PR (property) Method System.getProperty() always returns non-

null for certain properties, such as "java.class.path" and
"line.separator" — unless the program does something
perverse like System.getProperties().remove("java.
class.path");, which is not the case here. But JULIA does
not infer this fact.

RE (regular expressions) A call to Matcher.group() returns non-
null if it is guarded by a call to Matcher.matches(), and the
string representation contains parentheses at the top level. This
is beyond JULIA’s reasoning capabilities.

SI (static initialization) A static field was initialized to non-null
at the beginning of main(), and the class was never used out-
side the dynamic scope of the main() method. JULIA cannot
guarantee that fact about its use, and so marked the field as
@Nullable. The field was not set in the static initializer be-
cause the initializer has no access to the arguments to main.

MA (map) A map was queried via get(), using a value that came
from an iterator that was indirectly related to the map. Thus,
get() returned a map value and not null, but JULIA did not
recognize this fact.

IT (iterator) In a class that implements java.util.Iterator, a
superclass constructor somewhere in a library uses a (differ-
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ent) iterator. JULIA was not able to establish that the two iter-
ators are not aliased.

JW (JULIA weaknesses, other) JULIA cannot establish that the re-
sult of TimeZone.getDisplayName() is non-null. (Nor can
we, but the Javadoc implies that it is.) As a more complicated
example, CalendarBuilder.build() sets a calendar value to
null, apparently to satisfy Java’s definite assignment check,
but then calls parser.parse() which is guaranteed (by the
structure of its input) to eventually either throw an exception
or make a callback that will set the variable that Calendar-
Builder.build() eventually returns.

Suppose that a programmer wants to use a type-checker to verify
that an unannotated version of the 10 plume programs has no null
pointer errors. Further suppose that the libraries those programs use
are already annotated. (The type-checker comes with an annotated
version of the JDK and some other libraries.) The programmer can
start with JULIA’s output, then edit approximately 75 (= (40+69+
2+48)/2) lines. This modest cost demonstrates that JULIA’s output
is accurate and can be useful to programmers.

6.3 Type-checking of inferred annotations
JULIA infers most of the necessary nullness and rawness annota-

tions, which is a great help to a programmer who would otherwise
be forced to write them all from scratch.

Section 6.2 compared JULIA’s annotations to a correct set of
annotations. Another comparison would be to count the number
of type-checking errors that occur when type-checking a program
with and without JULIA’s annotations. We used the Nullness Checker
that is distributed with the Checker Framework [20, 4]. This type-
checker requires the programmer to annotate the program, then
verifies the correctness of the annotations and the absence of null
pointer errors. It shares no code with the JULIA inference tool,
making it an effective cross-validation for the correctness of both
tools.

Unfortunately, the number of type-checking errors is not a good
metric of annotation quality. In general, adding a correct, necessary
annotation may increase or decrease the number of compiler warn-
ings, depending on how the variable is used and the correctness and
verifiability of the surrounding annotations. For instance, for all of
plume (not just the programs as evaluated in Section 6.2), here is
the number of type-checking warnings:

Warnings Annotations
365 no annotations
408 JULIA nullness annotations only
411 JULIA nullness & rawness annotations

As the annotations get more complete and closer to what a pro-
grammer needs in order to verify that the program has no null
pointer errors, the number of warnings increases! Therefore, we
do not believe this is a useful metric, for evaluating annotations or
suggesting fixes to them.

7. Conclusion
We have defined a new analysis for computing field initializa-

tion (“rawness”), proved it correct, and implemented it. Our exper-
iments compare it to human-provided and machine-checked cor-
rect annotations, and these experiments confirm the accuracy of the
analysis.
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A. Proofs
The following lemma states the correctness of the solution of

the constraints generated for a program P, w.r.t. the execution of
a single bytecode. It will be used in the proof of Proposition 1 in
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Section A.1.

LEMMA 1. Consider a block
ins1...
insn

→
→

b1· · ·
bm

in the program. Con-

sider the pairs of bytecodes 〈insk,insk+1〉 for k = 1, . . . ,n− 1
where insk is not a call; and the pairs 〈insn,first(bh)〉 for h =
1, . . . ,m where insn is not a call. Name those pairs, generically,
〈insp@ p,insq@q〉. Let σp be such that both σq = insp(σp)
and insq(σq) are defined. Let there be ip local variables and jp
stack elements at p and iq local variables and jq stack elements
at q. If α(σp)(lk) ⊆ S(lk@ p) for every 0 ≤ k < ip, α(σp)(sk) ⊆
S(sk@ p) for every 0≤ k < jp and α(σp)( fk)⊆ S( fk@ew) for all
fields fk, then we have α(σq)(lk) ⊆ S(lk@q) for every 0 ≤ k <
iq, α(σq)(sk) ⊆ S(sk@q) for every 0 ≤ k < jq and α(σq)( fk) ⊆
S( fk@ew) for all fields fk.

Proof. The pairs insp@ p and insq@q are exactly those consid-
ered in Definition 8. We consider the most significant cases, from
which the others can be derived similarly.

insp is a const v and insq is not a catch

(The case when insq is a catch does not exist, since const v
never throws any exception.) By Definition 8 there are arcs Uip, jp

in the constraints generated for program P. From the definition
of const v (Section 4), we have σp = 〈l ||s ||µ〉 and σq = 〈l ||v ::
s ||µ〉. Hence, by definition of solution (Definition 10), we have
α(σq)(lk) = α(σp)(lk) ⊆ S(lk@ p) ⊆ S(lk@q) for every 0 ≤ k <
ip = iq. Similarly, α(σq)(sk) = α(σp)(sk)⊆ S(sk@ p)⊆ S(sk@q)
for every 0 ≤ k < jp = jq− 1. Moreover, when v ∈ Z∪{null},
we have α(σq)(s jq−1) = /0 ⊆ S(s jq−1@q). The same is true when
v ∈ L since, in that case, µ(v) cannot have any uninit fields be-
cause const v is defined (Section 4). Since σp and σq have the same
memory µp, we also have α(σq)( fk) = α(σp)( fk)⊆ S( fk@ew) for
all fields fk.

insp is a catch v and insq is not a catch

(The case when insq is a catch does not exist, since catch never
throws any exception.) By Definition 8 there are arcs Uip, jp in
the constraints generated for program P. From the definition of
catch (Section 4), we have σp = 〈l || top ||µ〉 and σq = 〈l || top ||µ〉.
Hence, by definition of solution (Definition 10), we conclude that
α(σq)(lk) = α(σp)(lk) ⊆ S(lk@ p) ⊆ S(lk@q) for every 0 ≤ k <
ip = iq. Similarly, α(σq)(sk) = α(σp)(sk)⊆ S(sk@ p)⊆ S(sk@q)
for every 0≤ k < jp = jq. Since σp and σq have the same memory
µp, we also have α(σq)( fk) = α(σp)( fk)⊆ S( fk@ew) for all fields
fk.

insp is a store x t and insq is not a catch

(The case when insq is a catch does not exist, since store x t
never throws any exception.) From the definition of store x t (Sec-
tion 4), we have σp = 〈l || top :: s ||µ〉 and σq = 〈l[i 7→ top] ||s ||µ〉.
By Definition 8 the constraints generated for program P include
the arcs lk@ p→ lk@q for every 0 ≤ k < ip with k 6= x, and arcs
sk@ p→ sk@q for every 0≤ k < jp−1. Hence, by definition of so-
lution (Definition 10) we have α(σq)(lk)= α(σp)(lk)⊆ S(lk@ p)⊆
S(lk@q) for every 0 ≤ k < ip = iq, k 6= x. Similarly, α(σq)(sk) =
α(σp)(sk) ⊆ S(sk@ p) ⊆ S(sk@q) for every 0 ≤ k < jp−1 = jq.
Moreover, there is an arc s jp−1@ p→ lx@q, so that α(σq)(lx) =
α(σp)(s jp−1) ⊆ S(s jp−1@ p) ⊆ S(lx@q). Since σp and σq have
the same memory µp, also α(σq)( fk) = α(σp)( fk) ⊆ S( fk@ew)
for all fields fk.

insp is a new κ and insq is not a catch

By Definition 8 there are arcs Uip, jp in the constraints generated
for program P. From the definition of new κ (Section 4), we have
σp = 〈l ||s ||µ〉 and σq = 〈l ||` :: s ||µ[` 7→ o]〉 (the other case of the
definition of new κ cannot be used here since insq is not a catch

and hence it is only defined on non-exceptional states). We know
that o is an object of class κ whose reference fields are all bound to
uninit. Moreover, σp and σq have the same memory µp, but for a
fresh location ` (hence not yet reachable from the fields). Hence, by
definition of solution (Definition 10), we conclude that α(σq)(lk) =
α(σp)(lk)⊆ S(lk@ p)⊆ S(lk@q) for every 0≤ k < ip = iq. Simi-
larly, α(σq)(sk) = α(σp)(sk)⊆ S(sk@ p)⊆ S(sk@q) for every 0≤
k < jp = jq−1. By definition of o and since there is an arc {κ′. f :
t | t ∈K and κ≤ κ′} → s jq−1@q, we have α(σq)(s jq−1) = {κ′. f :
t | t ∈ K and κ ≤ κ′} ⊆ S(s jq−1@q). We also have α(σq)( fk) =
α(σp)( fk)⊆ S( fk@ew) for all fields fk.

insp is a new κ and insq is a catch

This case exemplifies the situation when insq is a catch. Sim-
ilar cases can be proved in the same way. By Definition 8 there
are arcs Uip,0 in the constraints generated for program P. From the
definition of new κ (Section 4), we have σp = 〈l ||s ||µ〉 and σq =
〈l ||` ||µ[` 7→ oome]〉 (the other case of the definition of new κ can-
not be used here since insq is a catch and hence it is only defined
on exceptional states). We know that oome is an object of class
OutOfMemoryError without uninit fields. Moreover, σp and σq
have the same memory µp, but for a fresh location ` (hence not yet
reachable from the fields). Hence, by definition of solution (Defi-
nition 10), we have α(σq)(lk) = α(σp)(lk)⊆ S(lk@ p)⊆ S(lk@q)
for every 0 ≤ k < ip = iq. Moreover, α(σq)(s0) = /0 ⊆ S(s0@q).
We also have α(σq)( fk) = α(σp)( fk)⊆ S( fk@ew) for all fields fk.

insp is a getfield f and insq is not a catch

By Definition 8 there are arcs Uip, jp−1 in the constraints gener-
ated for program P. From the definition of getfield f (Section 4),
we have σp = 〈l ||rec :: s ||µ〉 and σq = 〈l ||x :: s ||µ〉 with x ∈ Z∪
{null,µp(rec). f} (the last case of the definition of getfield f can-
not be used here since insq is not a catch and hence it is only
defined on non-exceptional states). Hence, by definition of solu-
tion (Definition 10), we have α(σq)(lk) = α(σp)(lk)⊆ S(lk@ p)⊆
S(lk@q) for every 0 ≤ k < ip = iq. Similarly we conclude that
α(σq)(sk) = α(σp)(sk)⊆ S(sk@ p)⊆ S(sk@q) for every 0≤ k <
jp−1 = jq−1. Moreover, we have α(σq)(s jq−1) = /0 when x∈Z∪
{null} and (Definition 7) α(σq)(s jq−1) = {g | µp(x).g = uninit}
when x = µp(rec). f ∈ L. In the latter case, α(σq)(s jq−1) ⊆ {g |
there exists ` ∈ L such that µp(µp(`). f ).g = uninit}= α(σq)( f ).
Since σp and σq have the same memory µp, we conclude that
α(σq)(s jq−1) ⊆ α(σq)( f ) = α(σp)( f ) ⊆ S( f @ew). By Defini-
tion 8, the constraints for program P include the arc f @ew →
s jp−1@q. Since jp = jq and by definition of solution (Defini-
tion 10), we have α(σq)(s jq−1)⊆ S( f @ew)⊆ S(s jq−1@q). Since
σp and σq have the same memory µp, we conclude that α(σq)( fk)=
α(σp)( fk)⊆ S( fk@ew) for all fields fk.

insp is a putfield f and insq is not a catch

From the definition of putfield f (Section 4), σp = 〈l || top :: rec ::
s ||µ〉 and

σq = 〈l ||s ||µ[µ(rec). f 7→ top]︸ ︷︷ ︸
µq

〉

(the last case of the definition of putfield f cannot be used here
since insq is not a catch and hence it is only defined on non-
exceptional states). By Definition 8 there are arcs lk@ p→ lk@q
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in the constraints generated for program P, for every 0≤ k < ip with

(lk,s jp−2) 6∈ aliasp, and arcs lk@ p
f→ lk@q for every 0 ≤ k < ip

with (lk,s jp−2) ∈ aliasp. In the former case, since the fields of
an object can only be initialized during the execution of this byte-
code, by Definition 10 we conclude that α(σq)(lk) ⊆ α(σp)(lk) ⊆
S(lk@ p) ⊆ S(lk@q). In the latter case, by Definition 7 we have
α(σq)(lk)= /0 if l[k] 6∈L, and α(σq)(lk)= {g | µq(l[k]).g = uninit}
if l[k] ∈ L. Since we are assuming that (lk,s jp−2) ∈ aliasp, we
know that l[k] = rec. Since µq(rec). f = top 6= uninit (the value
uninit is only allowed as the value of a field, never as a value
on the stack), we conclude that f 6∈ α(σq)(lk) = {g | µq(rec).g =
uninit}. Since the fields of an object can only be initialized dur-
ing the execution of this bytecode, by Definition 10 we conclude
that, in this case, α(σq)(lk)⊆ α(σp)(lk)\{ f} ⊆ S(lk@ p)\{ f} ⊆
S(lk@q). The same proof can be applied to the stack elements.
Given a field fk 6= f , we have that µp and µq agree on the val-
ues of field fk of their objects. Hence α(σq)( fk) = α(σp)( fk) ⊆
S( fk@ew). For field f , instead, we have (Definition 7) α(σq)( f ) =
{g | there exists ` ∈ L such that µq(µq(`). f ).g = uninit}. Since
µq(`). f ∈ {µp(`). f , top} and µq(`) = µp(`) for all locations ` where
µp(`) (or, equivalently, µq(`)) is defined, we have α(σq)( f )⊆ {g |
there exists ` ∈ L s.t. µq(µp(`). f ).g = uninit}∪{g | µp(top).g =
uninit} = {g | there exists ` ∈ L s.t. µp(µp(`). f ).g = uninit}∪
α(σp)(s jp−1) = α(σp)( f )∪ α(σp)(s jp−1). By Definition 8, we
know that there is an arc s jp−1@ p→ f @ew among the arcs built
for P. Thus α(σq)( f ) ⊆ α(σp)( f )∪α(σp)(s jp−1) ⊆ S( f @ew).

A.1 Proof of Proposition 1
Proposition 1, defined in Section 5.3, states that the analysis is

safe: it never reports as non-raw a reference that may not be fully
initialized. We now prove this proposition.

Proof of Proposition 1

We observe that the blocks in the configurations of an activation
stack, but the topmost, cannot be both empty and with no succes-
sors. This is because configurations are only stacked by rule (2) at
page 5 and if rest is empty there, then m≥ 1 or otherwise the code
ends with a call bytecode and no return, which is illegal in Java
bytecode [18].

We proceed by induction on the length n of the execution

〈bfirst(main) ||ς〉 ⇒∗ 〈
ins@ p

rest
→
→

b1· · ·
bm
||σ〉 ::a.

If n = 0, the execution is just 〈bfirst(main) ||ς〉 and σ = ς. Since
the objects in the memory of ς have no uninitialized fields, we have
α(σ)(lk) = /0 for every 0≤ k < i, α(σ)(sk) = /0 for every 0≤ k < j
and α(σ)( fk) = /0 for all fields fk, so that the thesis holds.

Assume now that the thesis holds for any such execution of length
n′ ≤ n. Consider an execution

〈bfirst(main) ||ς〉 ⇒n+1 〈 insq@q
restq︸ ︷︷ ︸
bq

→
→

b1· · ·
bm
||σq〉 ::aq (7)

with insq(σq) defined. This execution must have the form

〈bfirst(main) ||ς〉 ⇒np 〈 insp@ p
restp︸ ︷︷ ︸
bp

→
→

b′1· · ·
b′m′
||σp〉 ::ap

⇒n+1−np 〈bq ||σq〉 ::aq (8)

with 0 ≤ np ≤ n, that is, it must have a strict prefix of length np
whose final activation stack has a topmost configuration with a non-
empty block bp. This is because, for instance, bfirst(main) is a non-
empty block (the main method must contain at least a return). Let
hence such np be maximal, ip be the number of local variables at
p, jp the number of stack elements at p and similarly iq and jq at
q. By inductive hypothesis we know that

α(σp)(lk)⊆ S(lk@ p) for all 0≤ k < ip

α(σp)(sk)⊆ S(sk@ p) for all 0≤ k < jp

α(σp)( fk)⊆ S( fk@ew) for all fields fk.
(9)

We will prove that (9) holds for q instead of p also, which com-
pletes the proof by induction. We distinguish on the basis of the
rule of the operational semantics that is applied at the beginning of
the derivation⇒n+1−np in Equation (8).

Rule (1). Then insp(σp) is defined and insp is not a call.
case a: insp is not a return nor a throw

If restp is non-empty then, by the maximality of np, (8) must be

〈bfirst(main) ||ς〉 ⇒np 〈
insp@ p
insq@q

restq︸ ︷︷ ︸
bp

→
→

b1· · ·
bm
||σp〉 ::ap

(1)⇒ 〈 insq@q
restq︸ ︷︷ ︸
bq

→
→

b1· · ·
bm
|| insp(σp)︸ ︷︷ ︸

σq

〉 :: ap︸︷︷︸
aq

.

Otherwise m′≥ 1 (legal Java bytecode can only end with a return
or a throw) and, by the maximality of np, it must be bq = b′h for
a suitable 1≤ h≤ m′, so that (8) must have the form

〈bfirst(main) ||ς〉 ⇒np 〈 insp@ p︸ ︷︷ ︸
bp

→
→

b′1· · ·
b′m′
||σp〉 ::ap

(1)⇒ 〈 →→
b′1· · ·
b′m′
|| insp(σp)〉 ::ap

(6)⇒ 〈bq || insp(σp)︸ ︷︷ ︸
σq

〉 :: ap︸︷︷︸
aq

.

By the inductive hypothesis (9) for np and Lemma 1, we conclude
that (9) holds also with q instead of p.

case b: insp is a return t
We show the case when t 6= void, since the other is simpler (there
is no return value to consider). Then restp is empty and m′ =
0 (no code is executed after a return in legal Java bytecode,
but the method terminates) and since insp(σp) ∈ Ξ (definition of
return t), (8) must be in one of these two forms, depending on the
emptiness of block b in (4):

〈bfirst(main) ||ς〉

⇒np 〈 return t︸ ︷︷ ︸
bp

|| 〈lp || top ::sp ||µp〉︸ ︷︷ ︸
σp

〉 ::

call−time︷ ︸︸ ︷
〈bq ||〈lc ||sc ||µc〉〉 ::aq︸ ︷︷ ︸

ap

(1)⇒ 〈 ||〈lp || top ||µp〉〉 ::ap
(4)⇒ 〈bq || 〈lc || top ::sc ||µp〉︸ ︷︷ ︸

σq

〉 ::aq (10)

or

〈bfirst(main) ||ς〉
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⇒np 〈 return t︸ ︷︷ ︸
bp

|| 〈lp || top ::sp ||µp〉︸ ︷︷ ︸
σp

〉 ::

call−time︷ ︸︸ ︷
〈 →→

b′1· · ·
b′m′
||〈lc ||sc ||µc〉〉 ::aq︸ ︷︷ ︸

ap

(1)⇒ 〈 ||〈lp || top ||µp〉〉 ::ap
(4)⇒ 〈 →→

b′1· · ·
b′m′
||〈lc || top ::sc ||µp〉〉 ::aq

(6)⇒ 〈bq || 〈lc || top ::sc ||µp〉︸ ︷︷ ︸
σq

〉 ::aq

where, in the latter case, by maximality of np, we have bq = b′h
for a suitable 1 ≤ h ≤ m′. We only prove the case for (10), the
other being similar. Consider configuration call− time. Since
only rule (2) can stack configurations, it was on top when a call
was executed and (10) must have the form

〈bfirst(main) ||ς〉

⇒nc 〈
call κ1.m . . .κn.m@c

insq@q
restq

→
→

b′1· · ·
b′m′
|| 〈lc||vπ−1:: · · · ::v1::rec::sc ||µc〉︸ ︷︷ ︸

σc

〉::aq

(2)⇒ 〈first(κw.m) ||〈[rec ::v1 :: · · · ::vπ−1] ||ε ||µc〉〉 ::ap

⇒np−nc−1 〈bp ||σp〉::ap
(1)⇒〈 ||〈lp || top ||µp〉〉::ap

(4)⇒〈bq ||σq〉::aq

for a suitable 1≤ w≤ n, where the rules in the portion⇒np−nc−1

never make the stack lower than at the beginning of that portion.
By inductive hypothesis for np and nc, we know that (9) holds for
both p and c. Since it holds for p and the memory in σq is µp, we
conclude that

α(σq)( fk)⊆ S( fk@ew) for all fields fk.

Since it holds for c, since the fields of an object can only be ini-
tialized during the execution of the program (Section 4) and since
ic = iq, we conclude that

α(σq)(lk)⊆ α(σc)(lk)⊆ S(lk@c) for all 0≤ k < iq
α(σq)(sk)⊆ α(σc)(sk)⊆ S(sk@c) for all 0≤ k < jq−1.

By Definition 8, we have S(lk@c)⊆ S(lk@q) for all those lk for
which an arc lk@c→ lk@q is built (similarly for sk). For them we
have α(σq)(lk)⊆ S(lk@q) and α(σq)(sk)⊆ S(sk@q). For the lk
that, instead, at call-time, are definite alias of an actual parame-
ter s jc−u−1 of the call and such that the corresponding formal
parameter lπ−u−1 is never modified inside κw.m, by inductive hy-
pothesis for np we know that

α(σq)(lk) = α(σp)(lπ−u−1)⊆ S(lπ−u−1@ p)

(similarly for sk). By Definition 8, there is an arc of the form
lπ−u−1@end of κw.m→ lk@q among the constraints for program
P. Since insp is a return t, there is also an arc lπ−u−1@ p→
lπ−u−1@end of κw.m. Hence

α(σq)(lk)⊆S(lπ−u−1@ p)⊆S(lπ−u−1@end of κw.m)⊆S(lk@q)

and similarly for sk with 0 ≤ k < s jq−1. It remains to prove the
same result for s jq−1, that is, for the returned value. By induc-
tive hypothesis for np we know that α(σp)(s jp−1)⊆ S(s jp−1@ p).
By Definition 8, there are arcs s jp−1@ p → return@κw.m and
return@κw.m → s jc−π@q. Moreover, jc = jq − 1 + π so that
jc−π = jq−1. We conclude that

α(σq)(s jq−1) = α(σp)(s jp−1)⊆ S(s jp−1@ p)

⊆ S(return@κw.m)⊆ S(s jc−π@q) = S(s jq−1@q).

case c: insp is a throw κ

If restp is empty and m′ > 0, the execution (8) must have the form

〈bfirst(main) ||ς〉 ⇒np 〈 throw κ︸ ︷︷ ︸
bp

→
→

b′1· · ·
b′m′
|| 〈lp ||e ::sp ||µp〉︸ ︷︷ ︸

σp

〉 ::ap

(1)⇒ 〈 →→
b′1· · ·
b′m′
|| 〈lp ||e ||µp〉︸ ︷︷ ︸

σq

〉 ::ap
(6)⇒ 〈bq ||σq〉 :: ap︸︷︷︸

aq

where, by maximality of np, we have bq = b′h for a suitable 1 ≤
h ≤ m′. If restp is non-empty, the execution (8) must have the
form

〈bfirst(main) ||ς〉 ⇒np 〈
throw κ

catch
restq︸ ︷︷ ︸
bp

→
→

b1· · ·
bm
|| 〈lp ||e ::sp ||µp〉︸ ︷︷ ︸

σp

〉 ::ap

(1)⇒ 〈 catch
restq︸ ︷︷ ︸
bq

→
→

b1· · ·
bm
|| 〈lp ||e ||µp〉︸ ︷︷ ︸

σq

〉 :: ap︸︷︷︸
aq

since catch is the only bytecode whose semantics can be defined
on the exceptional state σq. In both these cases, by inductive hy-
pothesis for np and Lemma 1, we have the thesis.
If restp is empty and m′ = 0, the execution (8) must have one of
these two forms, depending on the emptiness of block b in (5):

〈bfirst(main) ||ς〉

⇒np 〈 throw κ︸ ︷︷ ︸
bp

|| 〈lp ||e ::sp ||µp〉︸ ︷︷ ︸
σp

〉 ::

call−time︷ ︸︸ ︷
〈bq ||〈lq ||sq ||µq〉〉 ::aq︸ ︷︷ ︸

ap

(1)⇒ 〈 ||〈lp ||e ||µp〉〉 ::ap
(5)⇒ 〈bq || 〈lq ||e ||µp〉︸ ︷︷ ︸

σq

〉 ::aq (11)

or

〈bfirst(main) ||ς〉

⇒np 〈 throw κ︸ ︷︷ ︸
bp

|| 〈lp ||e ::sp ||µp〉︸ ︷︷ ︸
σp

〉 ::

call−time︷ ︸︸ ︷
〈 →→

b′1· · ·
b′m′
||〈lq ||sq ||µq〉〉 ::aq︸ ︷︷ ︸

ap

(1)⇒ 〈 ||〈lp ||e ||µp〉〉 ::ap
(5)⇒ 〈 →→

b′1· · ·
b′m′
|| 〈lq ||e ||µp〉︸ ︷︷ ︸

σq

〉 ::aq

(6)⇒ 〈bq || 〈lq ||e ||µp〉︸ ︷︷ ︸
σq

〉 ::aq

where, by maximality of np, we have bq = b′h for a suitable 1 ≤
h ≤ m′. We only prove the case (11), the other being similar.
Consider configuration call− time. Since only rule (2) can stack
configurations, it was on top when a call was executed and (11)
must have the form

〈bfirst(main) ||ς〉

⇒nc〈
call κ1.m . . .κn.m@c

insq@q
restq

→
→

b′1· · ·
b′m′
||〈lq||vπ−1:: · · · ::v1::rec::sq||µq〉︸ ︷︷ ︸

σc

〉::aq
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(2)⇒ 〈first(κw.m) ||〈[rec::v1:: · · · ::vπ−1]||ε||µq〉〉::〈bq||〈lq||sq||µq〉〉::aq

⇒np−nc−1 〈bp ||σp〉::ap
(1)⇒〈 ||〈lp ||e ||µp〉〉::ap

(5)⇒〈bq ||σq〉::aq.

Since insq(σq) is defined and σq ∈ Ξ, the only possibility is that
insq is a catch (it is the only bytecode defined on exceptional
states). By Definition 8, the constraints for program P must in-
clude the arcs lk@c→ lk@q. By inductive hypothesis (9) for nc,
we know that α(σc)(lk) ⊆ S(lk@c) for 0 ≤ k < ic = iq. Since
the fields of an object can only be initialized during the execu-
tion of the program, by inductive hypothesis for nc we conclude
that α(σq)(lk) ⊆ α(σc)(lk) ⊆ S(lk@c) ⊆ S(lk@q) (because of
the arc lk@c→ lk@q). Consider now s0 = e, the only stack ele-
ment of σq. We have α(σq)(s0) = α(σp)(s jp−1) ⊆ S(s jp−1@ p)
(by inductive hypothesis for np). By Definition 8, there are arcs
s jp−1@ p→ exception@κw.m and exception@κw.m→ s0@q in
the constraints for program P. Then α(σq)(s0)⊆ S(s jp−1@ p)⊆
S(exception@κw.m) ⊆ S(s0@q). Finally, by inductive hypothe-
sis for np we know that α(σp)( fk) ⊆ S( fk@ew) for all fields fk.
Since the memory of σq is still µp, we conclude that α(σq)( fk)⊆
S( fk@ew) for all fields fk.

Rule (2). By definition of makescope, (8) must have the form

〈bfirst(main) ||ς〉 ⇒np

〈 call κ1.m . . .κn.m@ p
restp︸ ︷︷ ︸
bp

→
→

b′1· · ·
b′m′
|| 〈lp ||vπ−1 :: · · · ::v1 ::rec ::s ||µp〉︸ ︷︷ ︸

σp

〉::ap

(2)⇒ 〈first(κi.m)︸ ︷︷ ︸
bq

|| 〈[rec ::v1 :: · · · ::vπ−1] ||ε ||µp〉︸ ︷︷ ︸
σq

〉 ::aq.

Since σp and σq have the same memory µp, for the shape of
their stack and local variable array we have α(σq)(lπ−u−1) =
α(σp)(s jp−u−1) for every 0 ≤ u < π. By Definition 8, the con-
straints for program P include the arcs s jp−u−1@ p→ lπ−u−1@q,
since q is the program point at the beginning of block first(κi.m).
By inductive hypothesis for np we conclude that

α(σq)(lπ−u−1)=α(σp)(s jp−u−1)⊆S(s jp−u−1@p)⊆S(lπ−u−1@q)

for every 0≤ u < π. Since iq = π, we conclude that

α(σq)(lk)⊆ S(lk@q)

for every 0 ≤ k < iq. The same result for sk is vacuously true
since jq = 0. For the fields, we observe that σp and σq have the
same memory µp. From the inductive hypothesis (9) for np, we
conclude that α(σq)( fk) = α(σp)( fk) ⊆ S( fk@ew) for all fields
fk.

Rule (3). Then (8) must have the form

〈bfirst(main) ||ς〉 ⇒np

〈 call κ1.m . . .κn.m@ p
restp︸ ︷︷ ︸
bp

→
→

b′1· · ·
b′m′
|| 〈lp||vπ−1:: · · · ::v1 ::null::s||µp〉︸ ︷︷ ︸

σp

〉::ap

(3)⇒ 〈 restp
→
→

b′1· · ·
b′m′︸ ︷︷ ︸

bq

|| 〈lp ||` ||µp[` 7→ npe]〉︸ ︷︷ ︸
σq

〉 ::aq

when restp is non-empty, while otherwise it has the form

〈bfirst(main) ||ς〉 ⇒np

〈 call κ1.m . . .κn.m@ p︸ ︷︷ ︸
bp

→
→

b′1· · ·
b′m′
|| 〈lp||vπ−1:: · · · ::v1::null::s||µp〉︸ ︷︷ ︸

σp

〉::ap

(3)⇒ 〈 →→
b′1· · ·
b′m′
|| 〈lp ||` ||µp[` 7→ npe]〉︸ ︷︷ ︸

σq

〉 ::aq
(6)⇒ 〈bq ||σq〉 ::aq

where, by maximality of np, we have bq = b′h for a suitable 1 ≤
h ≤ m′. In both cases, we know that ` is fresh and npe is a
NullPointerException object with no uninitialized fields. More-
over, σq ∈ Ξ and hence insq must be a catch (it is the only byte-
code that is defined on an exceptional state). By Definition 8,
there are arcs lk@ p→ lk@q for 0 ≤ k < ip = iq. We also know
that σp and σq have the same memory µp. By inductive hypothe-
sis (9) for np, we have

α(σq)(lk@q) = α(σp)(lk@ p)⊆ S(lk@ p)⊆ S(lk@q).

The state σq has only one stack element `. Since npe has no unini-
tialized fields, we have α(σq)(s0) = /0⊆ S(s0@q). Since σp and
σq have the same memory µp and by inductive hypothesis for np,
we have α(σq)( fk) = α(σp)( fk)⊆ S( fk@ew) for all fields fk.

Rules (4), (5) and (6). They cannot be applied since bp is non-
empty.
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