Identifying Program, Test, and Environmental Changes
That Affect Behaviour

Reid Holmes
School of Computer Science
University of Waterloo
Waterloo, ON N2L 3G1 CANADA
rtholmes@cs.uwaterloo.ca

ABSTRACT

Developers evolve a software system by changing the pro-
gram source code, by modifying its context by updating li-
braries or changing its configuration, and by improving its
test suite. Any of these changes can cause differences in pro-
gram behaviour. In general, program paths may appear or
disappear between executions of two subsequent versions of
a system. Some of these behavioural differences are expected
by a developer; for example, executing new program paths
is often precisely what is intended when adding a new test.
Other behavioural differences may or may not be expected
or benign. For example, changing an XML configuration file
may cause a previously-executed path to disappear, which
may or may not be expected and could be problematic. Fur-
thermore, the degree to which a behavioural change might
be problematic may only become apparent over time as the
new behaviour interacts with other changes.

We present an approach to identify specific program call
dependencies where the programmer’s changes to the pro-
gram source code, its tests, or its environment are not ap-
parent in the system’s behaviour, or vice versa. Using a
static and a dynamic call graph from each of two program
versions, we partition dependencies based on their presence
in each of the four graphs. Particular partitions contain de-
pendencies that help a programmer develop insights about
often subtle behavioural changes.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Tools and Techniques
D.2.6 [Software Engineering]: Programming Environments

General Terms

Measurement

Keywords

Static analysis, dynamic impact analysis, comparative anal-
yses, software behaviour

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE ’11, May 21-28, 2011, Honolulu, Hawaii, USA

Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

David Notkin
Computer Science & Engineering
University of Washington
Seattle, WA 98195-2350 USA
notkin@cs.washington.edu

1. INTRODUCTION

When developers make a change they focus on two pri-
mary questions: “Did I successfully implement the intended
change?” and “Did I break anything else?” Most variations
in behaviours between the original and modified executa-
bles provide evidence useful for answering these questions.
Confidence that a change performs as expected may, for ex-
ample, be increased when tests for the newly added feature
pass. Concern that a change may have inadvertently broken
something is raised, for example, when a regression test fails.

Some behavioural variations, however, may not be easily
isolated or identified as pertinent to either question. Such a
variation may be benign, may represent a subtle bug, or may
only manifest as benign or buggy over time as it interacts
with other behaviours. Our approach intends to help de-
velopers more easily identify specific variations of this kind,
allowing them to thoughtfully decide whether the variations
of immediate or long-term concern.

A developer can evolve a software system’s behaviour in
at least three ways: changing the program source code, mod-
ifying the test suite, and altering the environment. Given a
set of changes in one or more of these dimensions, we ex-
tract both a static and a dynamic call graph from each of
two program versions, and partition the calls based on their
presence in each of the four graphs. Some partitions contain
dependencies that are unlikely to concern the developer; for
example, if new tests are added alongside new methods in
the program source, these will be captured in the partition
that contains pairs that are not observed in the original ver-
sion but are observed both statically and dynamically in the
new version. Other partitions isolate pairs that likely deserve
more scrutiny; for example, a call that appears dynamically
without any corresponding change to the program source
may occur because of a change to a configuration file that is
not apparent in the source code.

Our contributions include:

e Defining and implementing a simple but novel mech-
anism for partitioning program changes in terms of
static and dynamic method calls.

e Identifying which of these partitions represent consis-
tent, inconsistent, unchanged, unlikely and unexecuted
changes to the program’s dependencies; the inconsis-
tent category represents those changes that likely de-
serve deeper developer attention. By focusing on a
developer’s current change, rather than the aggrega-
tion of all past changes, we are able to return a small
subset of pertinent dependencies for the developer to
examine.

e Evaluating our approach over 10 versions of three dif-

ferent open source systems, demonstrating various quan-

titative and qualitative properties of our approach. For
example, we show that fewer than 1% of the extracted
pairs are of likely interest to the programmer with re-
spect to behavioural changes.

e Applying our approach to an industrial code base for
one complete development sprint. The limited feed-
back we received suggests that the behavioural infor-
mation can provide a useful alternative view for track-
ing system evolution. Our industrial partner valued
the information that our approach provided enough
to request that it be incorporated into their existing
nightly build system.

Section 2 details our approach for defining these partitions
and categorizations; it also provides a concrete scenario to
illustrate our partitioning approach. Section 3 presents the
static and dynamic extraction tools we use, and how we rec-
oncile static and dynamic calls with one another. Section 4
reports on application of our approach to three open source
systems, describes our initial industrial application, and dis-
cusses threats to validity. Section 5 covers key related work,
and Section 6 concludes.

2. APPROACH

We model a program’s structure using call graphs denot-
ing a program’s methods and the calls between them. We
extract four dependence graphs: a static call graph from be-
fore and after a change (V1S and V2S) — each of these
caller/callee pairs is statically observed — and a dynamic
call graph from before and after the same change (V1D and
V2D) — each of these pairs is dynamically observed. This
classification depends on the specific analyses that are used;
our prototype uses the lightweight analysis tools described
in more detail in Section 3. Our exposition generally fo-
cuses on source code changes, but our approach does not
restrict the kinds of changes the developer can make: in ad-
dition to the source code, we also explicitly address changes
to test suites and the environment of the program. Like all
other approaches, our approach cannot provide guarantees
about how a source change will effect subsequent executable
behaviour. We believe it to provide a complementary per-
spective that developers can use to help determine if a static
change is likely to affect the program’s runtime execution in
unforeseen and perhaps troublesome ways.

We use static dependencies to approximate some dimen-
sions of programmer expectation. In particular, we con-
sider changes to the static call dependencies as expected
changes, because the programmer explicitly modifies the pro-
gram source. For example, if a programmer adds a method
call and a corresponding test to a program, we consider it
unsurprising that there are new corresponding static and
dynamic call dependencies in the modified program. Thus
we model the notion of unforeseen consequences of a source
change in terms of static and dynamic call dependences. We
hypothesize that variations in the dynamic dependences be-
tween two program versions suggest unforeseen behaviours
when related changes are not found in the static depen-
dences. That is, when a programmer makes a change, some
set of dynamic dependences may be expected to appear: if
those behaviours do not appear, or if other apparently unre-
lated behaviours appear or disappear, then the programmer
should consider those deviations in more depth.

V2D

Figure 1: Analysis partitions with descriptive labels
and coloured by their categorization.

From these four graphs, we compute all set intersections,
as shown in Figure 1 using a standard four-set Venn diagram.
The circle in the centre represents the statically observed
pairs from the first version (V'15), the barbell-shape repre-
sents the statically observed pairs from the second version
(V28S), the vertically-oriented rectangle on the right repre-
sents the dynamically observed pairs from the first version
(V1D), and the horizontally-oriented rectangle at the bot-
tom represents the dynamically observed pairs from the sec-
ond version (V2D).

Each partition containing at least one statically observed
pair is marked

e with an s if its members are statically observed in both
versions,

e with an s™ if its members are not statically observed
in the first version but are in the second, and

e with an s~ if its members are statically observed in the
first version but not in the second version.

Analogously, a partition containing at least one dynam-
ically observed pair is marked with d, d* or d~. By con-
vention, we mark the static property of the partition, if any
exist, followed by the dynamic property of the partition, if
any exist. The partition containing no pairs from any of the
four graphs is uninteresting and has no label.

For example, partition s~ includes only those pairs that
were statically observed in the initial version (V'15) but not
in the modified version (V'S2) and that were not dynamic
observed in either version (V1D and V2D). Similarly, parti-
tion std' contains only those pairs extracted statically and
dynamically in the second version but not extracted by ei-
ther analysis in the original version.

lllustrative scenario.

A developer adding caching functionality to an application
might structure code as shown in Figure 2(a), with the orig-
inal source code shown in orange and the new code shown
in green. The statically observed pairs, the dynamically ob-
served pairs, and the combination of those pairs are shown
in Figures 2(b), (c) and (d), respectively.

The three method calls the developer added appear in par-
tition sTd™; the developer would likely be more surprised at
their absence than at their presence, because the calls were
explicitly added to source code that was exercised by the test
suite. If, however, one of the new pairs was not observed dy-

private void genStore() { Abbreviations

int val = compute(); genStore() ==gs

cache(val); compute() ==co

cache(int) ==ca
LocalType(int) ==t

private void cache(int val) {
LocalType | = new LocalType(val);
_collection.add(l);

¥

Collection.add(int) == ad

a) Source code. Original code is orange, new code is green.

[gs = ca]
[ca = It]
[ca = ad]

b) Statically observed calls in the source code before and after the change.

d* d
[gs = ca]
[ca = It]
[ca= ad] [gs = co]

[ad = LocalType.equals(..)]

c) Dynamically observed calls in the executing system before and after the change.

[gs = ca]
[ca = It]

[ad = LocalType.equals(..)]

d) Combined partitions for the statically and dynamically observed calls.

Figure 2: Scenario partitions.

namically — for instance, an exception might interrupt the
computation — it would instead appear in partition s™.

Partition d* contains a dynamically observed callback from
Collections.add(...) toLocalType.equals(...); this pair
is executed when the system tries to add a LocalType object
to the cache that has been previously cached. This causes
a key collision since the cache is a HashSet, requiring Hash-
Set to check the equality of the two LocalType objects. By
looking at both versions of the source code, the developer
would likely not expect this method call to occur. A dy-
namic differencing approach would identify this element but
the developer would be responsible for discriminating the
one d* callback from pairs appearing in s*td*.

2.1 Categorizing Dependency Partitions

We categorize the above partitions based on two related
assumptions. First, we assume that a developer modifies
code with clear intention. For example, inserting a method
call carries with it the expectation that it will sometimes
be executed in the modified version. Second, a developer
generally focuses on the part of the program relevant to the
intended change, rather than trying to understand the pro-
gram in its entirety [4, 11, 23].

Based on these assumptions, we group the 15 partitions
into five categories: INCONSISTENT, CONSISTENT, NOT EX-
ECUTED, UNCHANGED and UNLIKELY. Figure 1 shows the
partition assignment, colouring the categories blue, green,
grey, orange and white, respectively. While this categoriza-
tion of the partitions make the most sense in terms of the
source code changing, it is also pertinent when the test suite
changes or the environment is altered.

Inconsistent.

Dependencies in the INCONSISTENT partitions (d*, d~,
sd™, and sd~) represent divergences between statically and
dynamically observed pairs. A method call appearing in d*
represents a pair that became dynamically observed after a
change was made, even though a corresponding call was not
statically observed in the code before or after the change.
Conversely, a method call found in d~ represents a call no
longer observed dynamically even though no corresponding
method call was statically removed from the source code. A
method call appearing in sd* represents a newly observed
invocation without a corresponding static change. This can
happen, for example, if a change in the program’s control
flow — or the addition of a test case — allows pre-existing
but previously unexecuted code to execute. Partition sd™
represents a statically observed pair that remains unchanged
across versions but where it is no longer dynamically ob-
served in the second version.

We posit that the partitions in this category are the most
likely to capture unforeseen behavioural changes. If the test
suite were changed sd™ and sd~ would represent previously-
existing method calls that the tests either newly exercise or
cease to exercise; while these elements may not be incon-
sistent in this case, the developer is still relieved from the
task of differentiating them from s™d™ and s~d~. Environ-
mental changes (e.g., changing a non-source resource) can
sometimes be detected through new relationships appearing
in the d* and d™~ partitions; in these cases, as the source code
itself is held constant, these partitions contain the dynamic
differences between two executions that are not statically
obvious.

Consistent.

Dependencies in the CONSISTENT partitions (sTd™ and
s7d™) represent changes that are coherent in their static
and dynamic representations. sTd" represents the static
addition of new method calls that dynamically execute in
the second version. Conversely, s~ d~ represents a method
call that was deleted and whose corresponding executions
disappeared after the change was made. These changes can
be made to either the program source or its test suite.

Not executed.

Dependencies that are NOT EXECUTED (sT and s~) repre-
sent method calls that were statically added or removed from
the source but were not observed dynamically in either ver-

sion. This might arise if, for instance, if a developer added a
new JUnit test case but forgot to add the @Test annotation
to it; in this case, the added calls would appear in s+, rather
than in (s7d"). Incongruities between the CONSISTENT and
NOT EXECUTED may help a developer who expects a static
change to be dynamically corroborated.

Unchanged.

Partitions s, d, and sd represent pairs that were UNCHANGED
between the two versions. Pairs observed consistently (stat-
ically, dynamically, or both statically and dynamically) be-
fore and after a change are likely to be unsurprising to a
developer. The overwhelming majority of the dependencies
in the system fall into these partitions (see Section 4).

Unchanged partitions can be viewed as aggregating past
changes across a sequence of versions. That is, once a pair
appears in an unchanged partition, it will remain there across
future changes unless that pair is modified again. For exam-
ple, a method call added and executed in the fifth version
of a program would appear in sTd", but an analysis of the
sixth version would find this same fact appearing in sd unless
that call was changed again.

Unlikely.

The UNLIKELY partitions (s~ d*, s~ d, s7d, and sTd ™) rep-
resent states that are highly unlikely (or not possible) given
our analysis tools (described immediately below) and thus
will likely never be populated. For example, it would be
bizarre to statically delete a call that is only dynamically
observed after the deletion (s~d'). We have not observed
these UNLIKELY partitions in practice.

2.2 Partitioning Non-Source Changes

Our approach can also be used to detect behavioural dif-
ferences brought about by modifications to libraries or non-
code resources. Developers can use our approach to hold
their source code constant and change their environment. In
these cases, the CONSISTENT and NOT EXECUTED partitions
would always be empty because the source would not have
changed. Elements in the INCONSISTENT partitions would
be especially interesting because they would represent be-
havioural changes in an environment the developer would
likely expect there to be none. For example, a developer
updating a third-party library expecting their system to be-
have the same would be surprised to find dependencies in
sdt or sd™; these dependencies would indicate that the con-
trol flow of their program has changed as a consequence of
the library update. (Section 4 shows a real example of this
when the system is run on two different JDKs.) As another
example, if the developer changes a configuration XML file,
they may find dependencies appearing in the d~ partitions
as some callbacks stopped executing as a consequence of the
metadata change.

2.3 Expressiveness

By differencing two dynamic and and two static analy-
ses our approach provides developers with an expressive set
of partitions, enabling them to interpret each partition as
appropriate for their task. Consider a pair in the d* par-
tition in a dynamic-only approach: all the developer would
know was that “there is a new method call executing.” In
contrast, in our approach the developer can differentiate be-
tween “there is a new method call being executed that I ex-
plicitly added” (sTd"), “a method call that was previously

written is now being executed” (sd™), and “an unexpected
method call that is now being executed” (d¥); this resolution
allows them to focus on only those elements that they are in-
terested in and easily ignore the rest. Each of our partitions
can be directly related to a developer’s day-to-day develop-
ment activities. Greater partitioning allows developers to
focus their attention on the partitions relevant to their task.

3. DEPENDENCY GRAPH GENERATION

Our implementation uses dependence graphs that contain
nodes that represent methods and edges that represent calls
between methods.

Static analysis.

We generate the static dependence graph using Robillard’s
Eclipse-based JayFX tool with the class-hierarchy analysis
option disabled.! JayFX reports static dependencies for a
given project but does not consider external library code. As
such, its results approximate what a developer might gener-
ate through a manual code inspection of their own project’s
code.

This static analysis is approximate: not all calls that can
arise at run-time are reported, and not all calls that are re-
ported can be executed at run-time. For realistic systems,
this notion of approximation is pervasive. Few if any static
analysis tools for widely-used programming languages report
all possible calls: common stumbling blocks include event-
based invocation, calls through the reflection interface, calls
made based on XML-descriptions that link middleware lay-
ers, calls that arise through external libraries that are hard
to analyze, etc.

Even if provided with a genuinely sound static analysis,
the categorization of pairs would remain stable. The sound-
ness of the analysis would ensure that partitions d, d™ and
d~ would be empty. Any pairs that another static analysis
would have missed would shift into the corresponding parti-
tions sd, sd™ and sd~, which appear in the same category
as d, d™ and d~, respectively.

Dynamic analysis.

Our prototype dynamic graph is generated using a custom
tracer written using AspectJ.? The tracer maintains a call
stack as the system executes and creates a method call rela-
tion at every call site as the program executes. The tracer
is not applied to any call within an external library; this
means that edges to a library (e.g., myMethod () —HashSet.
add(..)) are traced and this may result in another call edge
(e.g., HashSet.add(..) — LocalType.equals(..)), even
if add(..) does not call equals(..) directly; from the
developer’s point of view, these alternatives are equivalent.
The dynamic traces are generally collected by running a test
suite; the developer could use our approach to compare the
execution of a single test, the system’s entire test suite, or
any arbitrary execution of the system.

Reconciling analyses.

Matching elements between analyses is done by comparing
the signatures of the caller and the callee for each method
call. For like analyses this is straightforward; between static
and dynamic we perform some straightforward signature ma-

"http://www.cs.mcgill.ca/ swevo/jayfx/
http://eclipse.org/aspectj/

nipulations to ensure the signatures align correctly. Recon-
ciling the analyses and constructing the partitions is linear
in the size of the program being analyzed (consisting mainly
of simple set differencing).

Our current signature matching approach is brittle with
respect to type hierarchies. For example, JayFX might ex-
tract a call to new Vector(Collection), whereas dynami-
cally our dynamic tracer could detect this as new Vector(
ArrayList). While this misregistration would cause some
calls to appear in the wrong partitions (e.g., in this case one
call in s and one call in d, instead of one call in sd), we have
not yet fixed this problem because these three partitions are
still in the same UNCHANGED category.

4. EVALUATION

Our evaluation has two parts. First, we applied our ap-
proach to three existing open source software systems to see
how our approach partitioned behavioural changes. Second,
we ran our prototype tool on an industrial code base for
one complete development sprint as a basis for an industrial
perspective on our approach.

4.1 Retrospective Evaluation

We retrospectively applied our approach pairwise to ten
consecutive versions of three existing systems. The intent
of this evaluation was (1) to see if the partitions of interest
were small enough to allow developers to reasonably study
the actual dependencies, and (2) to qualitatively examine
the dependencies to see if they were useful and non-obvious.
In this study, we focused on a per-commit granularity. (In
the next section, we instead consider end-of-day versions.)

Each of the three systems we used had open repositories
and some form of a test suite. The open repository re-
quirement allowed us access to past versions at per-commit
granularity. The test suite requirement allowed us to ob-
serve dynamic calls without constructing (potentially biased)
tests of our own. The three systems we evaluated were the
Google Visualization Data Source Library, JodaTime, and
the Google RFC 2445 Library.> Table 1 provides basic in-
formation about the most recent version of each system we
analyzed.

Project KLOC # Tests Last Version
Visualization 17 365 30
JodaTime 76 2,525 1396
RFC 2445 7 171 22

Table 1: Evaluation systems, indicating their size,
number of tests, and the final version we used in our
analysis.

4.1.1 Methodology

We selected the 10 most recent change sets from each
project’s source repository that involved committing a modi-
fication to a source code file; a few changes to documentation-
only files were ignored. To analyze the effects of each com-
mit we compared all consecutive pairs of versions for each of
the systems; that is, we considered 27 changes across three

3http://code.google.com/p/google-visualization-java/,
http://joda-time.sf.net, http://code.google.com/p/google-
rfc-2445/.

systems. Ten of these changes involved fixing a bug and up-
dating a test, three involved adding a feature and updating
a test, two involved fixing a bug without a test, three in-
volved adding a feature without a test, two changed source
code documentation, and the rest were simple refactorings
or code cleanups.

We extracted the static dependence graph from each ver-
sion and collected the dynamic dependence graph by running
each project’s entire test suite (using the tools described in
Section 3). The external environment — libraries and run-
time environment — for every version of the same system
was held constant. The UNLIKELY partitions were always
empty as expected (and thus we do not discuss them fur-
ther).

4.1.2 Quantitative Results

Key results for the pairwise evaluation are in Table 2,
which shows the number of dependencies in key partitions.*
The table has three horizontal sections, arranged by project:
the first column of each project’s section indicates the check-
in identifier for each associated commit.

For each of these projects, the table has five vertical sec-
tions; the first describes the number of edges in the graphs
captured by the four analyses. Each category described pre-
viously is displayed in the next four vertical sections. The
sections are ordered in terms of their potential interest to
the developer.

The INCONSISTENT partitions were non-empty for 16 of the
27 pairs of versions we investigated. In total, we identified
84 unexpected behavioural changes, an average of 3.1 un-
foreseen dependencies per program version for a developer
to investigate.

The CONSISTENT partitions were non-empty for 15 of the
27 pairs of versions. In total, 235 method calls were identi-
fied as being consistent between the static change and their
runtime behaviour. The NOT EXECUTED partitions were non-
empty for 15 of the 27 pairs of versions. In total, 153 method
calls were added or removed but not executed at runtime.

Even if the developer were to consider all of the elements
in the INCONSISTENT, CONSISTENT, and NOT EXPECTED par-
titions, they would only have to examine an average of 17
calls per commit. We do not expect that developers would
often, if ever, examine all of these dependencies in practice.

Small sets of dependencies.

By providing developers a means for focusing only on the
behavioural effects of their current change, we are able to
greatly reduce the number of elements they might otherwise
have to consider. For the 27 pairs of program versions we
analyzed, the UNCHANGED partitions, representing those ele-
ments not affected by the current change, aggregated a total
of 751,539 dependencies whereas the INCONSISTENT, CON-
SISTENT, and NOT EXECUTED partitions contained only 472
dependencies (84, 235, and 153 respectively), a 99.94% re-
duction. The distribution of these aggregated totals is shown
in Figure 3. The minimum reduction for any individual pro-
gram run we analyzed was 97.2% and the average reduction
was 99.5%. From the programmers’ point of view, this means
that the number of dependencies that our approach suggests
they look at is manageable in practice.

4For simplicity, we only include counts of edges — dependen-
cies between pairs of program elements — and omit counts
of the program elements themselves.

Edges Inconsistent

V1S V2s viD V2D d+ d-
Visualizer
1719 7,555 7,583 6,597 6,612 2
19020 7,583 7,585 6,612 6,614
20—21 7,585 7,585 6,614 6,614
2122 7585 7,585 6,614 6,614
2223 7,585 7,596 6,614 6,621 1
23—+24 759 7,596 6,621 6,622 1
24-28 7596 7,597 6,622 6,623
28—+29 7,597 7,615 6,623 6,641 3 3
2930 7,615 7,617 6,641 6,642 1
RFC-2445
9—-12 2,019 2,021 1,840 1,841 1
12—-13 2,021 2,021 1,841 1,840 1
13—15 2,021 2,021 1,840 1,841 1
15—-16 2,021 2,060 1,841 1,874 13
16—17 2,060 2,060 1,874 1,874
17-18 2,060 2,086 1,874 1,900 7 2
18—+20 2,086 2,088 1,900 1,902 7 6
20—21 2,088 2,099 1,902 1,909 6 2
2122 2,099 2,134 1,909 1,932 10
JodaTime

1366—1367 66,343 66,357 30,565 30,581 3
1367—1374 66,357 66,362 30,581 30,587 1
1374—1378 66,362 66,363 30,587 30,587
1378—1379 66,363 66,363 30,587 30,587
1379—-1380 66,363 66,371 30,587 30,597 2
1380—1381 66,371 66,374 30,597 30,599
13811388 66,374 66,374 30,599 30,599
1388—1389 66,374 66,374 30,599 30,599
1389—1396 66,374 66,374 30,599 30,599

Consistent Not Executed Unchanged

sd+ sd- s+d+ s-d- s+ s- s d sd
9 19 2,430 1,476 5,121
2 2,449 1,478 5,134

2,449 1,478 5,136
2,449 1,478 5,136

8 3 2,449 1,477 5,136
2,452 1,477 5,144

1 2,452 1,478 5,144
16 2 2,450 1,475 5,145
2 2,452 1,478 5,163

6 4 742 567 1,273

1 1 747 567 1,273

1 1 748 567 1,272

22 2 21 2 746 568 1,271

767 581 1,293
29 12 14 5 758 579 1,281
11 10 15 14 758 580 1,304
26 23 10 2 771 585 1,292
16 4 23 780 591 1,314

41,230 5,452 25,113
5 41,231 5,455 25,126

3 2 41,229 5,456 25,131

41,232 5,456 25,131

13 5 41,232 5,456 25,126
4 2 1 41,232 5,458 25,137
41,233 5,458 25,141

1 1 41,232 5,458 25,141

41,233 5,458 25,141

Table 2: Quantitative results demonstrating the sizes of each of the partitions for the 27 pairs of program

versions we analyzed.

Compared to a static- or dynamic-only approach.

To provide a quantitative sense of the difference between
our approach with a purely static or purely dynamic ap-
proach we performed a comparison using the data from Ta-
ble 2. The static call graphs resulted in 388 pairs (298 in s
and 90 in s~) while our approach only returned 153 pairs for
these partitions (122 in st and 31 in s7), a 61% reduction.
The dynamic call graphs resulted in 319 pairs (245 in d+
and 74 in d7); in contrast, our approach only returned 73
pairs for these partitions (58 in d* and 15 in d™), a 77% re-
duction in the number of elements the developer would have
to consider. The majority of the reduction comes from ele-
ments being split between d* and s*dt (and the splitting
of s~ and s~d™) by our approach.

4.1.3 Qualitative Results

The quantitative analysis argues that our approach effec-
tively identifies small sets of incongruous dependencies in
practice; however, the numbers tell only one part of the story.
Our approach attempts to provide pertinent information to
the developer about the source-behaviour relation as they
make changes to their source code. By identifying specific

dependencies in each partition, locating the source code asso-
ciated with each dependence is straightforward, enabling the
developer to quickly determine if an element is indeed inter-
esting. The kinds of insight a developer would consider inter-
esting depends on their role and the nature of their change.
In this section, we examine key partitions from our experi-
ment describing pertinent examples from these systems.

Inconsistent partitions.

Partitions d* and d~ represent a kind of information that
is both difficult to identify through static code inspections
and problematic while debugging a system. In Visualizer
v22 — v23, a call from an external library Ordering.-
givenOrder (List) into the developer’s code (Aggregation-
Column.equals(Object)) disappeared. Through static in-
spection, the developer cannot tell that the call from the
external givenOrder(..) to their equals(..) method isn’t
happening anymore. Additionally, as givenOrder(..) and
the developer’s equals(..) method are not obviously re-
lated, it is more likely that they could inadvertently make a
change that would cause this edge to disappear (for instance

V1D,

a@% B
W,

Figure 3: Aggregate totals for each partition from
the 27 pairs of program versions in our analysis.

by removing the equals(..) method because it does not
seem to be needed).

Edges appear in d* for the opposite reasons of d~, that is,
when statically opaque calls are added to the system. One
common cause of these edges is when a new test is added
to the system; for example, in JodaTime v1366 — v1367
three new test methods are added to an existing class; JU-
nit uses reflection to identify these methods and executes
them at runtime; while these edges are not statically ob-
vious, they clearly effect the system’s behaviour. In an-
other JodaTime change (v1379 — v1380) an unexpected
call from LocalDate.plusDays(int) to PreciseDuration-
Field.add(long, int) is reported. Looking at the code,
PreciseDurationField is one of 19 subtypes of Duration-
Field and is two levels down the type hierarchy. By high-
lighting this previously non-existent and statically opaque
element, the developer can decide if this call was intentional.

Consistent and not-executed partitions.

From a test manager’s point of view, s™ represents ad-
ditions not exercised by the test suite. Using V2D to dif-
ferentiate s from sTd" enables the developer to quickly
ensure that the dependencies they added to their system
are exercised as they intended. For example, in JodaTime
v1366 — v1367, the programmer added a new feature and
corresponding test cases; the 13 sTd™ edges are unlikely to
be surprising, as the programmer would expect the new code
to execute, but the one s edge, a call to Assert.fail(),
could be unexpected. This dependency appears in s* be-
cause one of the tests throws an exception that causes the
program exit before reaching the expected method call. In
general, we do not expect developers will consider the results
contained in the consistent partitions, except when they are
numerically anomalous compared to other partitions they
are investigating.

In summary, each inconsistent behaviour surfaced by our
approach was non-obvious by manual inspection of the source
code alone. While each of them could have been identified
by inspecting the program with a debugger at exactly the
right statement in the program, they would not have been
easily otherwise isolated.

+

4.1.4 Non-Code and Environmental Changes

Changes to dependencies such as external libraries can

cause subtle changes in the behaviour of a system; as a con-
sequence, systems often ship with outdated versions of li-
braries as a way to reduce risk. Our approach can be used in
situations where the developer wishes to compare how their
system behaves with non-code changes applied. To test this
idea, we executed JodaTime v1367 on JDK 5 and JDK 6.
Our tool reported interesting and related dependencies in
partitions sd™ and sd~. Specifically. in JDK 5 an excep-
tion is thrown via reflection when JodaTime tries to call a
method that does not exist; the sd™ represents the reflective
method working in JDK 6 while the sd™ captures the alter-
nate call JodaTime made to compensate for the reflective
method’s absence in JDK 5.

4.2 Industrial Code Base Study

We also applied our tool to an industrial code base com-
prising of approximately 120 KNCSL® that provide a widely-
used online marketing platform. This code base is under ac-
tive development using an agile methodology that delivers
milestone builds after every three-week development sprint.
Our objective was to gain insight into how an industrial de-
veloper would consider applying the information provided by
our approach.

We applied our approach to one sprint lasting July 1 to
July 22, 2010; during this time 241 change sets were com-
mitted to the repository. We computed the behavioural dif-
ferences at the end of each day to correspond to execution
of their nightly test suite. The code base involves dozens
of external libraries and employs many different develop-
ment techniques including mock objects, aspects, and a large
amount of parallelization; we had to make some improve-
ments to our tools (Section 3) to efficiently accommodate
some of these techniques.

Table 3 shows the scale of the partitions over this time
period (less-interesting columns have been elided). As with
the the open source systems in Section 4.1, more than 99%
of elements are in partitions s, d, and sd; since our indus-
trial developer was only investigating the impact of a spe-
cific change he never sought out the information from these
partitions. Table 3 also shows that the consistent and not
ezecuted partitions are the most heavily populated while the
inconsistent partitions remain at a manageable scale.

Our participant is a development manager with more than
15 years of industrial development experience. While he fre-
quently commits changes to the system, his primary role is
to oversee the project and development team. To present the
data to him we created a web page for each of the analyzed
revisions; each page consisted of a tabular overview of the
partitions and a specific listing of the changes. When inves-
tigating change 15579 — 15608 (Table 3 row 8) he noted,
“Oh, that’s interesting, we have been creating a new imple-
mentation of this code but it’s all in the s+ partitions. If we
wanted to do this right and have confidence in the new code
we should be creating tests here.” While considering how
the approach could provide data to his team in the future
he said that “right now upgrading our libraries is an ad hoc
operation where we just try things out and hope they work;
[this approach] could give us one more data point to help us
consider whether a new component behaves as the old one
did.” And in terms of code reviews, he said, “I think that the
partitioned information would be helpful [for assessing im-
pact] especially in the context of a single known change and

Sthousands of non-comment source lines

Inconsistent Consistent Not Executed

d+ d- sd+ sd- s+d+ s-d- S+ s-
15477->15485 1 63 1
15485->15488
15488->15497
15497->15519 33 42 18 19 4
15519->15548 2 5 1 7
15548->15575 18 41 3
15575->15578 24
15579->15608 4 4 59
15608->15624 3 4 21 6 22 21
15624->15633 14 12 8 2
15633->15672 4 2 2
15672->15689 6
15689->15690 2 7 35 32
15690->15697 1 6 28 10 20 11
15697->15703
15703->15718 6 49 38

Table 3: Study results over 3-week code sprint.

a code review.” An encouraging outcome of this study was
that the development manager felt there was enough value
to the data we generated that they requested we integrate
our approach with their nightly build routine, so his team
can continue to use this data in the future.

4.3 Threats to Validity

The main threat to the external validity of our findings is
our use of a small set of systems over a limited sequence of
versions. One commonality of the four systems we evaluated
was their investment in unit testing; it is unclear how our
approach would fare without a reliable way of executing the
target system. A conspicuous risk to the construct validity
of our qualitative evaluation is our reliance on our own ex-
perience and judgment as programmers and researchers to
interpret the whether an INCONSISTENT dependency could
be easily identified statically.

The projects we investigated retrospectively were at dif-
ferent points in their development lifecycle. JodaTime is a
mature project, as can be seen by the very few code dele-
tions (s~ and s~ d™) as well as comparatively more elements
in the CONSISTENT partitions than the NOT EXECUTED parti-
tions (due to its high level of testing). Conversely, RFC-2445
is a project undergoing active development with many ad-
ditions and deletions. The Visualizer is also fairly stable as
evidenced by their lack of code churn. These distinctions
may be material in ways our evaluation did not identify.

A less serious threat to the construct validity of our eval-
uation is the use of the two analyzers, JayFX and our own
AspectJ tracer, to produce dependence graphs. Our tracer is
straightforward, unconcerned at present with performance,
and we doubt that another dynamic tracer would give sig-
nificantly different results. It is clear that a different static
analyzer would surely reshape our partitions to some degree.
For instance, a more precise static analysis approach would
decrease the size of d™, d~, and d — indeed, removing un-
executable dependencies is the core objective of increasing
the precision of static analyses. Similarly, a less conserva-
tive analysis could decrease the size of s. We speculate,
but have not confirmed, that these differences in precision
would change the partition, but not the category, in which

each dependency is placed. The reason for this speculation is
that the more precise static analysis would likely capture the
same dependencies in both versions, and most of these would
be “cancelled” out by the differencing approach. In any case,
our tool does not require a specific static or dynamic analysis
to generate the four call graphs. Further research is needed
to determine the degree to which the analysis matters in
practice.

S. RELATED WORK

Software changes. Literature arguing that changes to
behaviours are especially daunting includes: Brooks’ obser-
vation that defects tend to arise from changes that have non-
obvious system-wide ramifications [7, p. 123]; Ko et al.’s
evidence that feedback about the fidelity of their changes
proved to be the developers’ most-sought piece of informa-
tion [9]; and Sillito et al.’s study documenting that develop-
ers are keenly interested in the impact of their changes [20].
By providing developers feedback as they modify their sys-
tem, we aim to help them identify dependencies that are
otherwise difficult to isolate and that are likely to help build
confidence in their understanding of these questions.

Unintended consequences of changes to programs are widely
documented. Since 1985, the Risks Digest has documented
thousands of computer-related risks to the public;® many of
these, with effects from trivial to catastrophic, have been
traced to unintended consequences of changes to programs.
The observation that fixing errors is itself an erroneous pro-
cess — often called imperfect debugging — has been mod-
elled as part of software reliability engineering since the mid-
1970’s [12].

Belady and Lehman [10] have argued empirically that pro-
gram change is inevitable (in part) because the needs of users
evolve. Their Law of Increasing Complexity asserts that as
programs change they become increasingly less structured
(unless such entropy is consciously counteracted). Repeated
behavioural changes alongside structural degradation natu-
rally lead to a progressively opaque relationship between the
static and the dynamic structures.

Exceptions in logical structural differencing [8] identify
static changes that may have not been made consistently
and completely. A study of refactoring argues that in prac-
tice some flurries of refactorings lead to an increase in bugs,
while other flurries do not [24].

Not all program changes cause problems. Purushothaman
& Perry [14], based on an extensive study of a major com-
mercial system, have shown that about 10% of changes al-
tered a single line of code and of these about 4% resulted in
additional faults. They also showed that approximately 40%
of all changes resulted in additional faults. Although rarely
observed in the literature, these data mean that (at least in
this study) roughly 60% of all changes and 96% of one-line
changes improve, or at least do not harm to, the program.

Nonetheless, few, if any, would argue that programmers
make changes with absolute certainty about their possible
consequences when the program is executed. Our approach,
like all other approaches, does not and never will lead to a
situation in which programmers can attain such certainty.
Rather, our approach is meant to provide one way among
many in which programmers can increase their confidence
that a change improves a program in intended ways.

Shttp://catless.ncl.ac.uk/Risks/

Impact analysis. Another very broad area of related
work is impact analysis, which is generally concerned with
identifying possible consequences of program changes [2]. A
number of impact analysis approaches can be contrasted to
our approach based on our partitions.

One common approach to impact analysis for regression
testing relies on comparing two static dependence graphs:
“most techniques select tests based on information about the
code of the program and the modified version” [18, p. 529]. A
classic example is safe regression test algorithms that elimi-
nate all tests from an original program’s test suite that can-
not (under specified conditions) expose a fault in the mod-
ified program; Rothermel & Harrold have analyzed many
variants [18], and a meta-analysis of empirical results is avail-
able as well [6]. Another example is test prioritization, which
orders a test suite to increase the likelihood that newly in-
troduced paths in the modified program are tested before
unchanged paths. An example is Echelon [21], which ex-
ploits binary differencing of versions to identify paths and
tests to exercise. We believe that our technique augments
existing regression testing approaches by recording more be-
havioural data that can be further analyzed in the future,
regardless of whether an explicit assertion in a regression
test failed.

Person et al. apply differential symbolic execution to char-
acterize the behavioural aspects of a code change more pre-
cisely than traditional diff-based mechanisms [13]. While the
focus of their work is proving whether a change affected the
behaviour of a system our approach focuses on partitioning
and implicitly ranking behavioural changes, albeit with less
precision, in a lightweight way that developers can easily
reason about.

Any analysis based on comparing static dependence graphs
across two versions can distinguish precisely three combina-
tions of partitions: those with a label including s — that is,
s, sd, sd™ and sd~ — as well as those with a label including
sT and those including s~. Regardless of the kind of static
dependence graphs that are extracted and regardless of the
algorithm used to compare the two static call graphs, other
distinctions cannot be made: for example, a dynamic de-
pendence that appears or disappears cannot be determined
using this approach.

Another collection of impact analysis approaches execute
two distinct test suites across a single program. Software
reconnaissance uses this approach to identify parts of a pro-
gram that implement a particular feature: the feature is ex-
ercised by the first test suite, but not the second [25]. Eisen-
berg and de Volder have extended this approach to relax the
explicit requirement of exhibiting and non-exhibiting test
suites [5]. Reps et al. [17] used a similar approach to iden-
tify programs that might be susceptible to problems such
as Y2K. The Tripoli system [19] can be used to compare
two arbitrary executions of a system and determine their
coverage differences, assuming that the source code remains
unchanged. This class of approaches, based on two dynamic
graphs and one static graph, can exploit up to eight parti-
tions. Some distinctions available in our approach, however,
cannot be made using these partitions. As an example, s
cannot be distinguished from s~, as only one static depen-
dence graph is present. The degree to which this matters
is empirical: if distinctions like this one arise in practice
and represent useful information for the programmer, then
our approach can provide additional information over these

approaches. In addition, while traditional coverage metrics
would report the same coverage percentage if one statement
was removed and another added to the same method, our
approach would capture both of these changes for the devel-
oper to consider.

Ren, Chesley, and Ryder present an approach to help per-
form root cause analysis (RCA) to identify the change that
caused a test case to fail [16]. The AVA technique [3] fur-
ther extends RCA to include rationale that can differentiate
between successful and passing tests to differentiate passing
behaviour from failing behaviour. Our approach aims to de-
tect behavioural changes whether the test suite succeeds or
fails but does not try to determine the root cause of any
behavioural change. Raghavan et al.’s Dex tool extracts a
variety of metrics about C patches using syntactic and se-
mantic differencing; in contrast to our approach, Dex enables
defect classification to enhance test prioritization [15].

One form of impact analysis that is incomparable using
our partitioning is that based on historical information [27,
22]. These approaches generally look for patterns in source
code repositories that likely represent co-dependences among,
for instance, checked-in files; a programmer could be alerted
upon attempting to commit a set of files that omit a re-
source that has usually been edited and checked-in alongside
those files. These approaches are complementary, exploit-
ing historical information not directly related to the source-
behaviour relation.

Several previous approaches have used mixed analysis, us-
ing both static and dynamic dependence analysis in concert.
They generally, and very reasonably, apply static and dy-
namic dependences to distinct parts of the problem, exploit-
ing the strengths and weaknesses of each style of analysis.
For example, Chen et al. [26] perform selective retesting of a
system by using static analysis to determine which parts of
a system changed and then comparing this to dynamically-
derived coverage data. Rohatgi et al. [1] perform a software
reconnaissance-like approach to extract features by compar-
ing dynamic traces, following up by ordering the returned
components based on their static relationships to one an-
other. In contrast, our approach treats and manipulates
the static and dynamic dependence graphs as peers, instead
leveraging them by labelling specific partitions in terms of
the underlying program source and its behaviour.

6. CONCLUSION

Software derives enormous power from its malleability.
Experience shows that this power is often harder to harness
in practice than in theory. One particular way in which this
flexibility is often compromised arises when the behaviours of
the executable program are hard to understand from the pro-
gram’s source. Even when this association is clear in a pro-
gram’s initial design and implementation, this relationship
tends to becoming increasingly opaque as successive changes
are made to the system.

We have presented an approach intended to concisely iden-
tify specific dependencies that suggest to programmers when
a program change and the subsequent program behaviours
may be less consistent than they may have intended. The
approach relies on existing techniques and tools to extract
static and dynamic dependence graphs from pairs of ver-
sions, along with set-based manipulations that partition these
dependencies based on their absence or presence in the four
graphs. We have argued, theoretically, that this partitioning

provides an opportunity for finer-grained and more concise
results than classes of existing approaches; and we have ar-
gued empirically that the partitioning identifies a small set
of apparently useful dependencies that can be difficult to
succinctly identify using current analysis approaches.

Acknowledgments

We wish to thank our industrial partner for providing ac-
cess to their source code and build environment and Rylan
Cottrell, Brad Cossette, and Yuriy Brun for their insightful
comments. This work was supported by the Natural Sciences
and Engineering Research Council and by the National Sci-
ence Foundation under award NSF-CCF-1016490.

7.
1]

[10]

[11]

[12]

[13]

REFERENCES
A. H.-L. Abhishek Rohatgi and J. Rilling. An

approach for mapping features to code based on static
and dynamic analysis. In Proceedings of the
International Conference on Program Comprehension
(ICPC), pages 236-241, 2008.

R. S. Arnold and S. A. Bohner. Impact analysis -
towards a framework for comparison. In Proceedings of
International the Conference on Software Maintenance
(ICSM), pages 292-301, 1993.

A. Babenko, L. Mariani, and F. Pastore. Ava:
Automated interpretation of dynamically detected
anomalies. In Proceedings of the International
Symposium on Software Testing and Analysis
(ISSTA), pages 237-248, 2009.

T. A. Corbi. Program understanding: Challenge for
the 1990’s. IBM Systems Journal, 28(2):294-306, 1989.
A. D. Eisenberg and K. D. Volder. Dynamic feature
traces: Finding features in unfamiliar code. In
Proceedings of the International Conference on
Software Maintenance (ICSM), pages 337-346, 2005.
E. Engstrom, M. Skoglund, and P. Runeson. Empirical
evaluations of regression test selection techniques: A
systematic review. In Proceedings of the International
Sympostum on Empirical Software Engineering and
Measurement (ESEM), pages 22-31, 2008.

F. P. B. Jr. The Mythical Man-Month (Anniversary
Edition). Addison-Wesley Longman Publishing Co.,
Boston, MA, USA, 1995.

M. Kim and D. Notkin. Discovering and representing
systematic code changes. In Proceedings of the
International Conference on Software Engineering
(ICSE), pages 309-319, 2009.

A. J. Ko, R. DeLine, and G. Venolia. Information
needs in collocated software development teams. In
Proceedings of the International Conference on
Software Engineering (ICSE), pages 344-353, 2007.
M. M. Lehman and L. A. Belady, editors. Program
Evolution: Processes of Software Change. Academic
Press Professional, 1985.

D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway.
Mental models and software maintenance. Journal of
Systems and Software, 7(4):341 — 355, 1987.

I. Miyamoto. Software reliability in online real time
environments. In Proceedings of the International
Conference on Reliable Software (ICRS), pages
194-203, 1975.

S. Person, M. B. Dwyer, S. Elbaum, and C. S.
Pasareanu. Differential symbolic execution. In

(14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

[26]

27]

Proceedings of the International Symposium on
Foundations of Software Engineering (FSE), pages
226-237, 2008.

R. Purushothaman and D. E. Perry. Toward
understanding the rhetoric of small source code
changes. IEEE Transactions of Software Engineering,
31(6):511-526, 2005.

S. Raghavan, R. Rohana, D. Leon, A. Podgurski, and
V. Augustine. Dex: A semantic-graph differencing tool
for studying changes in large code bases. In
Proceedings of the International Conference on
Software Maintenance (ICSM), pages 188-197, 2004.
X. Ren, O. C. Chesley, and B. G. Ryder. Identifying
failure causes in Java programs: An application of
change impact analysis. IEEE Transactions of
Software Engineering, 32(9):718-732, 2006.

T. Reps, T. Ball, M. Das, and J. Larus. The use of
program profiling for software maintenance with
applications to the year 2000 problem. In Proceedings
of the European Software Engineering Conference held
jointly with the Symposium on Foundations of Software
Engineering (ESEC/FSE), pages 432-449, 1997.

G. Rothermel and M. J. Harrold. Analyzing regression
test selection techniques. IEEE Transactions on
Software Engineering, 22(8):529-551, 1996.

K. D. Sherwood and G. C. Murphy. Reducing code
navigation effort with differential code coverage.
Technical report, University of British Columbia,
September 2008.

J. Sillito, G. C. Murphy, and K. D. Volder. Questions
programmers ask during software evolution tasks. In
Proceedings of the International Symposium on the
Foundations of Software Engineering (FSE), pages
23-34, 2006.

A. Srivastava and J. Thiagarajan. Effectively
prioritizing tests in development environment. In
Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), pages 97-106,
2002.

S. D. Thomas Zimmermann, Peter Weisgerber and
A. Zeller. Mining version histories to guide software
changes. In Proceedings of the International
Conference on Software Engineering (ICSE), pages
563-572, 2004.

A. von Mayrhauser and A. M. Vans. Program
comprehension during software maintenance and
evolution. Computer, 28:44-55, 1995.

P. Weifigerber and S. Diehl. Are refactorings less
error-prone than other changes? In Proceedings of the
International Workshop on Mining Software
Repositories (MSR), pages 112-118, 2006.

N. Wilde and M. C. Scully. Software Reconnaissance:
Mapping program features to code. Journal of
Software Maintenance, 7(1):49-62, 1995.

D. S. R. Yih-Farn Chen and K.-P. Vo. Testtube: A
system for selective regression testing. In Proceedings
of the International Conference on Software
Engineering (ICSE), pages 211-220, 1994.

A. T. T. Ying, G. C. Murphy, R. Ng, and M. C.
Chu-Carroll. Predicting source code changes by mining
change history. IEEE Transactions on Software
Engineering, 30(9):574-586, 2004.

	Introduction
	Approach
	Categorizing Dependency Partitions
	Partitioning Non-Source Changes
	Expressiveness

	Dependency Graph Generation
	Evaluation
	Retrospective Evaluation
	Methodology
	Quantitative Results
	Qualitative Results
	Non-Code and Environmental Changes

	Industrial Code Base Study
	Threats to Validity

	Related Work
	Conclusion
	References

