
Firm Firmware and Apps for the Internet of Things

Matthias Kovatsch
Institute for Pervasive Computing

ETH Zurich, Switzerland
kovatsch@inf.ethz.ch

ABSTRACT
Among the challenges for the Internet of Things, two stand
out: a scalable application layer with wide interoperability
and a common, reliable programming model. We propose to
strip all application logic from the firmware and only provide
a RESTful interface to the hardware functionality. Critical
parts such as the network stack remain in the immutable
firmware that is maintained by experts. Applications are de-
veloped atop the resource abstraction and run in the cloud.
Leaving the embedded domain, application development is
eased while sharing and customizing applications helps to
cope with the vast number of diversified device types.

Categories and Subject Descriptors
C.2.4 [Computer-Communications Networks]: Distri-
buted Systems; C.3 [Special-Purpose and Application-
Based Systems]: Real-time and embedded systems

General Terms
Design, Human Factors

Keywords
Internet of Things, WSNs, Programming model, CoAP

1. INTRODUCTION
The Internet as we know it today, with more than a million
of nodes in its core (servers, core routers, etc.) and about a
billion of nodes on its fringe (PCs, smart phones, etc.), will
soon be extended with a trillion of nodes at its edge. Provid-
ing sensing and actuation capabilities, these tiny nodes will
be embedded into everyday objects such as household ap-
pliances. This will facilitate the emergence of novel wireless
sensor network (WSN) applications: Ad hoc and personal
solutions will leverage sensors and actuators which are al-
ready deployed such as the light sensor of a television set,
the temperature sensor of a dryer, or air quality and traffic
sensors throughout a city infrastructure.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SESENA ’11, May 22, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0583-9/11/05 ...$10.00.

Two of the biggest challenges for this Internet of Things
will be a scalable application layer for interoperability and
a common programming model for application developers
with very different backgrounds. Both are hard to achieve
because the nodes will be heterogeneous and part of the
resource-constrained, low-level embedded domain. Tradi-
tionally, WSN applications are optimized for this domain
and mostly introduce custom protocols. Application code
is directly nested into the embedded operating system and
thus requires deep knowledge of the latter. This approach
promotes isolated systems and error-prone software due to
the lack of abstractions. As an alternative, a new initia-
tive, the ‘Web of Things’, tries to leverage HTTP and a
resource-orientated architecture for interoperability, and to
adopt common Web principles. However, the synchronous,
one-to-one communication model of HTTP requires heavy-
weight workarounds to satisfy typical WSN applications.

In this paper, we argue for a combination of the two
approaches to address the stated challenges. The ongo-
ing standardization of WSN research results allows for ef-
ficient protocols as well as interoperable interfaces that can
be reused across different applications. The firmware can
provide RESTful resources to abstract and export hardware
functionalities, with the Constrained Application Protocol
(CoAP) playing a key role. Applications can then be devel-
oped outside the embedded domain and run in the cloud.
For instance, a smart heating application could be devel-
oped in any language, a CoAP library provided, and would
simply subscribe to sensor resources and control actuators
in a RESTful manner (e.g., coap://sensor1/temperature

and coap://heater1/power, resp.). Ideally, the application
is deployed (e.g., via POST to coap://appserver/install)
and configured in the same way (e.g., coap://appserver/

apps/smart-heating/config/comfortTemperature).

2. STATE OF THE ART AND ISSUES
The field of WSNs is taking a bottom-up approach to the
Internet of Things. It was shown that RFC-compliant IP
stacks are feasible for 8-bit microcontrollers [7]. Since 2007,
IPv6 solutions for tiny embedded devices have been devel-
oped, which led to the IETF standardization of 6LoWPAN.
Currently, many work groups are drafting complementary
Request for Comments (RFCs) which build upon research
results from the WSN community. With this basis, large-
scale WSNs are deployed that perform well in terms of re-
liability and throughput, e.g. ACme [2]. However, such de-
ployments typically use custom protocols based on UDP that
require matching application-level gateways. On top, pow-

erful middleware such as SenseWeb or GSN then allows for
easy access. Lately, the convergence of systems gains focus.
sMAP [6] introduces a common REST layer for 6LoWPAN
resources, building automation systems, and cloud services.
A preset resource hierarchy and JSON objects for interac-
tion are, however, too restrictive for a generic application
layer for the Internet of Things. To cope with this prob-
lem, an IETF working group is currently standardizing the
Constrained Application Protocol (CoAP) [5]. It enables
building an open, Web-oriented application layer with native
push notification and multicast support. Still, developing a
distributed WSN application remains very complex. A way
to address this challenge is to program the entire network
behavior instead of single nodes, the so-called macropro-
gramming [4]. Often, this forces programmers into design
patterns that are uncommon, however, intuitive for domain
experts who utilize dedicated WSN deployments.

A top-down approach to a more user-friendly Internet of
Things is taken by ‘Web of Things’ projects [1]. They ad-
vocate full Web integration over HTTP and enable users
to create physical mashups in the style of Web 2.0 applica-
tions. Patterns commonly used on the Web, such as book-
marking, linking, and crawling, allow users to cope with the
vast number of devices. While also XML-based Web ser-
vices were ported to resource-constrained devices through
DPWS [3], RESTful services were shown to be more effi-
cient [8]. A fundamental problem, however, is the one-to-
one interaction model of HTTP over TCP. Monitoring and
automation applications will be central for the Internet of
Things and rely on push notifications and group communi-
cation. In the Web world, many workarounds had to be in-
troduced, e.g., long poll for eventing or PubSubHubBub for
publish/subscribe. These are, however, inefficient and thus
unfavorable for inexpensive embedded devices, i.e. ‘things’.

3. POSITION AND WORK IN PROGRESS
Once deployed, the hardware of wireless sensor nodes does
not change and applications always come down to sampling
input ports or switching output ports. Hence, the firmware
can remain immutable (i.e., ‘firm’) for every kind of applica-
tion as long as all hardware functionality is accessible. The
stable firmware is maintained by system experts and only
hosts the device drivers, network stack, and a server process
providing an all-purpose interface: RESTful resources ab-
stract whole functional units with all their parameters (e.g.,
coap://dev/sensors/temperature and coap://dev/conf/

temperature/samplingInterval, resp.) or, for instance for
rapid prototyping, offer raw hardware features (e.g., coap://
dev/hw/uart0, coap://dev/conf/uart0/baudrate, etc.).

The application code composes these resources and runs in
the cloud, keeping devices simple and low-cost. In-network
processing should also be avoided on sensor and actuator
nodes for simplicity reasons. More powerful local devices,
however, could also run applications or modules such as data
collection. This is similar to the concept of cluster heads,
thereby enabling a form of in-network processing.

Extracting the application code from the firmware signif-
icantly eases development. Programmers are not required
to be familiar with embedded design, can focus on the func-
tional requirements, and can resort to the programming en-
vironment of their choice. Application modules or ‘apps’,
such as the mentioned data collection or the automation of
a specific device, can be reused for many deployments. More

complex and specific objectives can be achieved by combin-
ing and tweaking the modules. With scripting support, even
tech-savvy end-users can be empowered to customize appli-
cations or port them to their devices that offer comparable
functionality. This tackles the problem of device heterogene-
ity with a crowdsourcing approach. Thus, the community
would benefit from the concept of an app store or market
place known from smart phones where ‘IoT apps’ can be
shared or offered by service providers and vendors.

To evaluate the strength and applicability of our program-
ming model, we are working on a case study of smart ap-
pliances. The scenario is complex, providing a plethora of
device types, performance requirements for user interaction,
as well as security and privacy aspects.

4. CONCLUSIONS
Devices of the Internet of Things must be interoperable to
gain a real advantage over the current situation where net-
worked embedded systems are isolated islands. We cannot,
however, specify every ‘thing’ in a globally supported stan-
dard due to the vast number of slightly different devices
provided by many different manufacturers. Thus, to cope
with the heterogeneity, we need an open architecture that
allows developers with very different skills—including tech-
savvy end-users—to create and customize applications. Sep-
arating the application code from the firmware moves the
application development out of the embedded domain and
thus significantly eases the process. The required interface
can be provided by CoAP, which combines the efficiency of
WSN protocols and the openness of the Web. Becoming a
long-lived IETF standard, the protocol would allow for in-
teroperability and would facilitate a common programming
model for the Internet of Things.

5. REFERENCES
[1] D. Guinard, V. Trifa, and E. Wilde. A Resource

Oriented Architecture for the Web of Things. In Proc.
IoT, Tokyo, Japan, 2010.

[2] X. Jiang, S. Dawson-Haggerty, P. Dutta, and D. Culler.
Design and Implementation of a High-Fidelity AC
Metering Network. In Proc. IPSN, Washington, DC,
USA, 2009.

[3] G. Moritz, E. Zeeb, S. Pruter, F. Golatowski,
D. Timmermann, and R. Stoll. Devices Profile for Web
Services in Wireless Sensor Networks: Adaptations and
Enhancements. In Proc. ETFA, Mallorca, Spain, 2009.

[4] L. Mottola and G. Picco. Programming Wireless Sensor
Networks: Fundamental Concepts and State of the Art.
ACM Computing Surveys, 43(4), 2011.

[5] Z. Shelby, K. Hartke, C. Bormann, and B. Frank.
Constrained Application Protocol (CoAP).
draft-ietf-core-coap-04, 2011.

[6] D. C. Stephen Dawson-Haggerty, Xiaofan Jiang,
Gilman Tolle, Jorge Ortiz. sMAP: A Simple Measure-
ment and Actuation Profile for Physical Information. In
Proc. SenSys, Zurich, Switzerland, 2010.

[7] J.-P. Vasseur and A. Dunkels. Interconnecting Smart
Objects with IP: The Next Internet. Morgan Kaufmann,
2010.

[8] D. Yazar and A. Dunkels. Efficient Application
Integration in IP-Based Sensor Networks. In Proc.
BuildSys, Berkeley, CA, USA, 2009.

