
Description Logic reasoning for Semantic web ontologies

– Extended abstract

Anni-Yasmin Turhan
Institute for Theoretical Computer Science

Technische Universität Dresden
Dresden, Germany

turhan@tcs.inf.tu-dresden.de

1. INTRODUCTION
The ontology language for the semantic web OWLprovides means

to describe entities of an application domain in an ontology in a
well-structured way. The underlying formalism for OWL are De-
scription Logics (DLs) [6], which are a family of knowledge rep-
resentation formalisms that have formal semantics. This family of
logics is tailored towards representing terminological knowledge of
an application domain in a structured and formally well-understood
way.

Description logics allow users to define important notions, such
as classes or relations of their application domain in terms of con-
cepts and roles. These concepts (unary predicates) and roles (bi-
nary predicates) then restrict the way these classes and relations
are interpreted. Based on these definitions, implicitly captured
knowledge can be inferred from the given descriptions of concepts
and roles. These inferences are defined based on the formal se-
mantics of DLs. A great range of these inferences has been de-
fined and investigated for a variety of DLs with differing expres-
sivity, where the expressivity of a DL is determined by the means
it allows to describe concepts and roles. The inferences devised
for DLs are, for instance, sub-class or instance relationships. The
investigation of algorithms for reasoning services and their com-
plexity is the main focus of the DL research community. Mainly
during the nineties reasoning procedures for more and more ex-
pressive DLs have been investigated. Naturally, the gain in ex-
pressiveness came at the cost of higher complexity for the rea-
soning procedures—reasoning for the DLs investigated is PSpace-
complete or even ExpTime-complete [33, 28, 49] (for an overview
see [9, 16]).

Despite the high complexity, highly optimized DL reasoning sys-
tems were implemented based on the tableau method—most promi-
nently the FACT system [24] and RACER [21]. These systems em-
ployed optimization methods developed for DL reasoning based on
tableaux [7, 23, 32, 22] and demonstrated that the high worst case
complexities would hardly be encountered in practice [24, 32, 20,
25] In fact, it turned out that these highly optimized implemen-
tations of the reasoning methods do perform surprisingly well on
DL knowledge bases from practical applications. Encouraged by
these findings and driven by application needs researchers investi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WIMS’11 May 25-27, 2011 Sogndal, Norway
Copyright 2011 ACM Copyright c©2011 ACM 978-1-4503-0148-0/11/05
...$10.00.

gated tableau algorithms for even more expressive DLs [29, 30, 26,
31] in the last decade, which were implemented in tableau-based
reasoners for very expressive DL such as PELLET [45], FACT++
[50, 51] and RACERPRO [44] More recently, new reasoning meth-
ods for expressive DLs were investigated and implemented such as
resolution [37, 39] in KAON2 and hyper-tableau [40, 41, 19] in
HERMIT.
Another line of research is dedicated to the design of so-called

light-weight DLs, which are DLs with relatively limited expressiv-
ity, but good computational properties for specific reasoning tasks
[8]. Reasoning even for very large ontologies written in these DLs
can be done efficiently, since the respective reasoning methods are
tractable. There are two “families” of lightweight DLs: the EL
family [12, 4, 5], for which the subsumption and the instance prob-
lem are polynomial, and the DL Lite family [13, 15], for which the
instance problem and query answering are polynomial. A mem-
ber of each of these families is the DL corresponding to one of the
profiles of the OWL2 standard.

DLs have been employed in various domains, such as databases,
biomedical or context-aware applications [3, 48]. Their most no-
table success so far is probably the adoption of the DL-based lan-
guage OWL as standard ontology language for the Semantic Web
[27].

In the following we give pointers to the relevant literature for the
topics that that were covered in the tutorial.

2. DL PRELIMINARIES
Historically, DLs stem from knowledge representation systems

such as semantic networks [43, 46] or frame systems [36]. These
early knowledge representation systems were motivated by linguis-
tic applications and offer methods to compute inheritance relations
between the specified notions from the domain of discourse. These
early knowledge representation systems have operational seman-
tics, i.e., the semantics of reasoning is given by its implementation.
As a consequence, the result of the reasoning process depends on
the implementation of the reasoner [47]. To remedy this, DLs and
their reasoning services are based on formal semantics. The infor-
mation about the application domain is represented in a declarative
and unambiguous way. More importantly, the formal semantics of
the reasoning services ensure behavior of the DL reasoning systems
independent of their implementation. For comprehensive introduc-
tions on DLs we refer the reader to [6, 2, 52]

The central notion for DLs are concept descriptions, which can
be built from concept names and so-called concept constructors.
For instance, one can describe a tutorial as an event given by a
lecturer in the following way by a concept description:

Event ⊓ ∃ given-by.Lecturer⊓ ∃ has-topic.⊤

Table 1: OWL syntax, DL syntax and semantics of concept descriptions.
constructor name OWL syntax DL syntax semantics

conjunction intersectionOf C ⊓D CI ∩DI

existential restriction someValuesFrom ∃r.C {x ∈ ∆ | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

value restriction allValuesFrom ∀r.C {x ∈ ∆ | ∀y : (x, y) ∈ rI → y ∈ CI}

negation complementOf ¬C ∆ \ CI

disjunction unionOf C ⊔D CI ∪DI

qualified number restrictions qualified cardinality restrictions (≤ n r C) {x ∈ ∆I | #{y : (x, y) ∈ rI ∧ y ∈ CI} ≤ n}
(≥ n r C) {x ∈ ∆I | #{y : (x, y) ∈ rI ∧ y ∈ CI} ≥ n}

This concept description is a conjunction (⊓) of the concept Event,
the existential restriction ∃ given-by.Lecturer and the existential
restriction ∃ has-topic.⊤. The first existential restriction consists
of the role name given-by and concept Lecturer, which relates the
Lecturer to the tutorial. The latter existential restriction states that
there is a topic (which is not specified).

In general, concept descriptions are built from the set of concept
names NC and the set of role names NR using concept construc-
tors. Every DL offers a different set of concept constructors. The
DL EL allows only for the concept constructors that were used in
the example concept description above. We call concept descrip-
tions of the form ∃r.C existential restrictions and concept descrip-
tions of the formC⊓D conjunctions. The semantics of DL concept
descriptions is given by means of interpretations.

Let C and D be EL-concept descriptions and r a role name. An
interpretation is a pair I = (∆I , ·I) where the domain ∆I is a
non-empty set and ·I is a function that assigns to every concept
name A a set AI ⊆ ∆I and to every role name r a binary relation
rI ⊆ ∆I ×∆I . This function is extended to complex EL-concept
descriptions as follows:

• (C ⊓D)I = CI ∩DI ;

• (∃r.C)I = {x ∈ ∆I | there is a y ∈ ∆I with (x, y) ∈ rI

and y ∈ CI}; and

Most DLs also offer the top-concept ⊤, which is always inter-
preted as the whole domain ∆I . Now, with the EL-concept con-
structors at hand, one can, for instance, characterize a graduate CS
student by the following concept description:

∃ studies. CS ⊓ (Master-Student ⊓ has-degree. Bachelor)

Concept description like these are the main building blocks to model
terminological knowledge. The DL defined above is called EL and
is the core DL of the EL-family.

Depending on the set of concept constructors on can define more
expressive DLs. The concept constructors given in Table 1 form
the DL ALCQ.

For expressive DLs, roles can have declared properties or can
be related to other roles. A role r can be declared to be a transi-

tive role in the TBox. The semantics is straight-forward. An in-
terpretation I satisfies a transitive role declaration transitive(r) if
{(a, b), (b, c)} ⊆ rI implies (a, c) ∈ rI . The declaration of an
inverse role applies to a role name r and yields its inverse r−1,
where the semantics is the obvious one, i.e., (r−1)I := {(e, d) |
(d, e) ∈ rI}. Furthermore, it can be specified that a role is a super-
role of another role by a role inclusion axiom. The set of all role
inclusions form the role hierarchy. An interpretation I satisfies a
role inclusion axiom r ⊑ s if rI ⊆ sI . The DL that offers all
the concept constructors and role declarations introduced is the DL
SHIQ. This DL is the logic underlying OWL DL.

DL knowledge bases are typically divided two parts. The

Terminological part , which captures the characterization of the
basic categories from an application, and the

Assertional part , which captures the facts from the application.

We introduce these components of DL knowledge bases now.

2.1 Terminological Knowledge
A name can be assigned to a concept description by a concept

definition. For instance, we can write Tutorial≡ Event ⊓ ∃ given-
by.Lecturer⊓ ∃ has-topic.⊤ to supply a concept definition for the
concept Tutorial. LetA be a concept name and C,D be (possibly)
complex concept description.

• A concept definition is a statement of the form A ≡ C.

• A general concept inclusion (GCI for short) is a statement of
the form C ⊑ D.

It is easy to see that every concept definition A ≡ C can be ex-
pressed by two GCIs: A ⊑ C and C ⊑ A. The terminological
information expressed by GCIs is collected in the so-called TBox,
which is simply a finite set of GCIs. An interpretation is a model of
a TBox T , if it satisfies all GCIs, i.e., if CI ⊆ DI for all C ⊑ D

in T .
If all concept descriptions in a TBox T are from a description

logic L, then we call T a L-TBox.
If a concept definition A ≡ C in a TBox uses a concept name

B directly, i.e., B appears in C, or if B is used indirectly by the
definitions of the names appearing in C, we say that the TBox is
cyclic. Otherwise a TBox is acyclic.

2.2 Assertional Knowledge
Individual facts from the application domain can be stated by as-

sertions. There are two basic kinds of assertions for DL systems—
one expresses that an individual belongs to a concept and the other
one specifies that two individuals are related via a role. The set
NI is the set of all individual names. LetC be a (possibly complex)
concept description, r ∈ NR a role name and i, j ({i, j} ⊆ NI)
be two individual names, then

• C(i) is called a concept assertion and

• r(i, j) is called a role assertion.

An ABox A is a finite set of concept assertions and role assertions.
For instance, we can express that Dresden is a city located at the

river Elbe by the following ABox:

{ City(Dresden), River(Elbe), located-at(Dresden,Elbe) }

If all concept descriptions in an ABox A are from a Description
Logic L, then we callA a L-ABox.

In order to capture ABoxes, the interpretation function is now
extended to individual names. Each individual name is mapped by
the interpretation function to an element of the domain ∆I .

Let C be a concept description, r a role name and i, j two indi-
vidual names, then an interpretation I satisfies

• the concept assertion C(i) if iI ∈ CI and

• the role assertion r(i, j) if (iI , jI) ∈ rI .

An interpretation I is a model of an ABox A, if I satisfies every
assertion in A. A DL knowledge base K consists of an ABox A
and a TBox T . We write K = (T , A). We now discuss standard
reasoning services for DLs, which are implemented in most DL
systems.

2.3 Reasoning services
One of the basic reasoning services in DL systems is to test for

the satisfiability of a concept or a TBox, i.e., to test whether the
information specified in it contains logical contradictions or not. In
case the TBox contains a contradiction, any consequence can fol-
low logically from the TBox. Moreover, if a TBox is not satisfiable,
the specified information can hardly capture the intended meaning
from an application domain. To test for satisfiability is often a first
step for a user to check whether a TBox models something “mean-
ingful”.

Let C be a concept description and T a TBox. The concept
description C is satisfiable iff it has a model, i.e., iff there exists an
interpretation I such that CI 6= ∅. A TBox T is satisfiable iff it
has a model, i.e., an interpretation that satisfies all GCIs in T .

If a concept or a TBox is not satisfiable, it is called unsatisfiable.
Other typical reasoning services offered in DL systems test for

equivalence or inclusion relations between concepts. In the latter
case, if one concept of the TBox models a more general category
than another one, we say that this concept subsumes the other one.

Let C,D be two concept descriptions and T a (possibly empty)
TBox. The concept description C is subsumed by the concept de-
scriptionD w.r.t. T (C ⊑T D), iffCI ⊆ DI holds in every model
I of T . Two concepts C,D are equivalent w.r.t. T (C ≡T D), iff
CI = DI holds for every model I of T .

A test for the equivalence of concept descriptions can be carried
out by two subsumption tests, since the following holds: (C ≡T

D), iff C ⊑T D and D ⊑T C.
The computation of the subsumption relations for all named con-

cepts mentioned in the TBox T is called classification of the TBox
T and yields the concept hierarchy of the TBox T .

Similarly as for concept descriptions and TBoxes, we can test for
the absence of contradictions in ABoxes. An ABoxA is consistent
w.r.t. a TBox T , iff it has a model that is also a model for T . The
individual i is an instance of the concept description C w.r.t. an
ABox A and a TBox T (we write A |=T C(i)), iff iI ∈ CI for
all models I of T and A. The reasoning service ABox realization
computes for each individual i of an ABoxA and a TBox T the set
of all named concepts A appearing inA and T that (1) have i as an
instance (A |=T A(i)) and (2) that is least w.r.t. ⊑T .

With the help of the instance service, one can also compute an-
swers to instance queries, i.e., all individuals occurring in the ABox
that are instances of the query concept C. In order to state more
general search criteria, one can use so-called conjunctive queries,
i.e., conjunctions of assertions that may also contain variables, of
which some can be existentially quantified. For example, the con-
junctive query

∃x, y.City(x) ∧ River(y) ∧ located-at(x,y)

asks for all Cities that located at a river. With respect to the ABox
we have introduced earlier, this conjunctive query has the pair of
individuals: Dresden, Elbe as an answer.

2.4 Reasoning Techniques

There are three main reasoning approaches for the DLs that un-
derlie OWL. For the expressive DLs, which offer all Boolean con-
cept constructors, most reasoning services can be reduced to con-
sistence of an ABox w.r.t. a TBox in polynomial time. In presence
of full negation we can devise the following polynomial time re-
ductions.

• Equivalence can be be reduced to subsumption:
C ≡T D iff C ⊑T D and D ⊑T C.

• Subsumption can be be reduced to (un)satisfiability:
C ⊑T D iff C ⊓ ¬D is unsatisfiable w.r.t. T .

• Satisfiability can be be reduced to consistency:
C is satisfiable w.r.t. T iff the ABox {C(a)} is consistent
w.r.t. T .

• The instance problem can be reduced to (in)consistency:
A |=T C(a) iff A∪ {¬C(a)} is inconsistent w.r.t. T .

As a consequence, only one reasoning procedure needs to be inves-
tigated and implemented in systems in order to use all reasoning
services in practice. In fact, all reasoning systems for expressive
DLs use this approach and implement the tableaux method for the
consistency test. For a more detailed discussion see [2, 52]. Even
query answering can be implemented by the tableau method [18,
34, 42, 17]. However, the reduction-based approach requires the
presence of negation in the DL.

For light-weight DLs this constructor is not available. Thus dif-
ferent methods for reasoning have been devised. In case of the
EL-family, the completion method [12, 4, 5] actually classifies the
given TBox T , i.e., it simultaneously computes all subsumption
relationships between the concept names occurring in T . This al-
gorithm proceeds in four steps:

1. Normalize the TBox.

2. Translate the normalized TBox into a graph.

3. Complete the graph using completion rules.

4. Read off the subsumption relationships from the normalized
graph.

By the completion method a TBox can be classified in polynomial
time. This method is implemented in the EL-reasoner jCEL [35].

The other lightweight family of DLs is the DL-Lite family, which
is tailored to perform query answering efficiently [14, 15]. Here the
approach is to translate the initial query such that it also captures
the relevant information from the TBox and then use a relational
query engine to answer the translated query. For a comprehensive
description of the method see [8]. This method for query answering
is implemented in the system QuOnto [1].

3. THE STANDARDONTOLOGYLANGUAGE

OWL
The first version of the OWL standard [27, 10] covered three di-

alects of increasing expressivity. While the most expressive dialect
OWL full is beyond the expressivity of DLs and reasoning in it is
undecidable, the other two dialects correspond to DLs for which
sound and complete reasoning procedures exist. OWL DL can ex-
press ontologies written in the DL SHOIQ and the less expressive
OWL lite can express ontologies written in the DL SHIN .

The close relation of DLs and these two OWL dialects raised the
interest of new user groups in DL reasoning and DL systems on the

one hand and it helped to develop reasoning tools for broader user
communities on the other hand.

OWLDL, the standard ontology language for the Semantic Web,
is based on an expressive DL for which reasoning is highly in-
tractable. Its sublanguage OWL Lite was intended to provide a
tractable version of OWL, but turned out to be only of a slightly
lower worst-case complexity than OWL DL itself. This has led to
the development of two new families of light-weight DLs, EL and
DL-Lite, which have been proposed as profiles of OWL2 [53, 38],
the new version of the OWL standard. The OWL2 El profile yields
the DL EL++, for which polynomial subsumption algorithms are
known [12, 4, 5]. The OWL2 QL profile corresponds to DL-LiteR,
which belongs to the DL-Lite family of DLs. These DLs are tai-
lored towards applications in which huge amounts of data (repre-
sented as an ABox) are queried w.r.t. fairly light-weight ontologies.
Conjunctive queries can be answered even in LogSpace regarding
data complexity [14], i.e. the size of the ABox.

4. REFERENCES

[1] A. Acciarri, D. Calvanese, G. D. Giacomo, D. Lembo,
M. Lenzerini, M. Palmieri, and R. Rosati. QuOnto: Querying
ontologies. In M. M. Veloso and S. Kambhampati, editors,
Proc. of the 20th Nat. Conf. on Artificial Intelligence

(AAAI’05), pages 1670–1671, 2005. QuOnto download page
http:

//www.dis.uniroma1.it/~quonto/index.htm.

[2] F. Baader. Description logics. In Proceedings of Reasoning
Web: Semantic Technologies for Information Systems,
volume 5689 of Lecture Notes in Computer Science, pages
1–39, 2009.

[3] F. Baader, A. Bauer, P. Baumgartner, A. Cregan,
A. Gabaldon, K. Ji, K. Lee, D. Rajaratnam, and R. Schwitter.
A novel architecture for situation awareness systems. In
M. Giese and A. Waaler, editors, Proceedings of the 18th
International Conference on Automated Reasoning with

Analytic Tableaux and Related Methods (Tableaux 2009),
volume 5607 of Lecture Notes in Computer Science, pages
77–92. Springer-Verlag, 2009.

[4] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope.
In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence

(IJCAI-05), Edinburgh, UK, 2005. Morgan-Kaufmann
Publishers.

[5] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope
further. In K. Clark and P. F. Patel-Schneider, editors, In
Proc. of the OWLED Workshop, 2008.

[6] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and
P. Patel-Schneider, editors. The Description Logic
Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

[7] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J.
Profitlich. An empirical analysis of optimization techniques
for terminological representation systems or: Making KRIS
get a move on. Applied Artificial Intelligence. Special Issue
on Knowledge Base Management, 4:109–132, 1994.

[8] F. Baader, C. Lutz, and A.-Y. Turhan. Small is again
Beautiful in Description Logics. KI – Künstliche Intelligenz,
24(1):25–33, April 2010.

[9] F. Baader and U. Sattler. An overview of tableau algorithms
for description logics. Studia Logica, 69:5–40, 2001.

[10] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL
web ontology language reference. W3C Recommendation,

February 2004. http://www.w3.org/TR/owl-ref/.

[11] R. J. Brachman and H. J. Levesque. Readings in Knowledge
Representation. Morgan Kaufmann, Los Altos, 1985.

[12] S. Brandt. Polynomial time reasoning in a description logic
with existential restrictions, GCI axioms, and—what else? In
R. L. de Mantáras and L. Saitta, editors, Proc. of the 16th
European Conf. on Artificial Intelligence (ECAI-04), pages
298–302. IOS Press, 2004.

[13] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati. DL-Lite: Tractable description logics for
ontologies. In M. M. Veloso and S. Kambhampati, editors,
Proc. of the 20th Nat. Conf. on Artificial Intelligence

(AAAI’05), pages 602–607. AAAI Press/The MIT Press,
2005.

[14] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati. Data complexity of query answering in description
logics. In Proc. of the 10th Int. Conf. on the Principles of

Knowledge Representation and Reasoning (KR 2006), pages
260–270, 2006.

[15] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati. Tractable reasoning and efficient query answering
in description logics: The DL-Lite family. Journal of
Automated Reasoning, 39(3):385–429, 2007.

[16] D. Calvanese and G. D. Giacomo. Expressive description
logics. In [6], pages 178–218. Cambridge University Press,
2003.

[17] T. Eiter, C. Lutz, M. Ortiz, and M. Simkus. Query answering
in description logics with transitive roles. In Proceedings of
the 21st International Joint Conference on Artificial

Intelligence IJCAI09. AAAI Press, 2009.

[18] B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive
query answering for the description logic SHIQ. In M. M.
Veloso, editor, Proc. of the 20th Int. Joint Conf. on Artificial

Intelligence (IJCAI-07), pages 399–404, Hyderabad, India,
2007.

[19] B. Glimm, I. Horrocks, and B. Motik. Optimized Description
Logic Reasoning via Core Blocking. In J. Giesl and
R. Hähnle, editors, Proc. of the 5th Int. Joint Conf. on
Automated Reasoning (IJCAR-10), volume 6173 of Lecture
Notes in Computer Science, pages 457–471, Edinburgh, UK,
2010. Springer.

[20] V. Haarslev and R. Möller. High performance reasoning with
very large knowledge bases: A practical case study. In
B. Nebel, editor, Proc. of the 17th Int. Joint Conf. on
Artificial Intelligence (IJCAI-01), pages 161–166, 2001.

[21] V. Haarslev and R. Möller. RACER system description. In
R. Goré, A. Leitsch, and T. Nipkov, editors, Proc. of the Int.
Joint Conf. on Automated Reasoning (IJCAR-01), Lecture
Notes in Computer Science. Springer, 2001.

[22] V. Haarslev, R. Möller, and A.-Y. Turhan. Exploiting pseudo
models for TBox and ABox reasoning in expressive
description logics. In R. Goré, A. Leitsch, and T. Nipkov,
editors, Proceedings of the International Joint Conference on
Automated Reasoning IJCAR’01, LNAI. Springer Verlag,
2001.

[23] I. Horrocks. Optimising Tableaux Decision Procedures for

Description Logics. PhD thesis, University of Manchester,
1997.

[24] I. Horrocks. Using an expressive description logic: FaCT or
fiction? In A. Cohn, L. Schubert, and S. Shapiro, editors,
Proc. of the 6th Int. Conf. on the Principles of Knowledge

Representation and Reasoning (KR-98), pages 636–647,

1998.

[25] I. Horrocks. Reasoning with expressive description logics:
Theory and practice. In A. Voronkov, editor, Proc. of the
19th Conf. on Automated Deduction (CADE-19), number
2392 in Lecture Notes In Artificial Intelligence, pages 1–15.
Springer, 2002.

[26] I. Horrocks, O. Kutz, and U. Sattler. The even more
irresistible SROIQ. In P. Doherty, J. Mylopoulos, and
C. Welty, editors, Proc. of the 10th Int. Conf. on the

Principles of Knowledge Representation and Reasoning

(KR-06), pages 57–67. AAAI Press, 2006.

[27] I. Horrocks, P. Patel-Schneider, and F. van Harmelen. From
SHIQ and RDF to OWL: The making of a web ontology
language. Journal of Web Semantics, 1(1):7–26, 2003.

[28] I. Horrocks and U. Sattler. A description logic with transitive
and inverse roles and role hierarchies. Journal of Logic and
Computation, 9(3):385–410, 1999.

[29] I. Horrocks and U. Sattler. Optimised reasoning for SHIQ.
In Proc. of the 15th European Conference on Artificial

Intelligence, 2002.

[30] I. Horrocks and U. Sattler. A tableaux decision procedure for
SHOIQ. In Proc. of the 19th Int. Joint Conf. on Artificial

Intelligence (IJCAI-05). Morgan Kaufmann, Jan. 2005.

[31] I. Horrocks and U. Sattler. A tableau decision procedure for
SHOIQ. J. of Automated Reasoning, 39(3):249–276, 2007.

[32] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for
very expressive description logics. J. of the Interest Group in
Pure and Applied Logic, 8(3):239–264, 2000.

[33] C. Lutz. Complexity of terminological reasoning revisited. In
Proc. of the 6th Int. Conf. on Logic for Programming and

Automated Reasoning (LPAR’99), Lecture Notes in
Computer Science, pages 181–200. Springer, 1999.

[34] C. Lutz. The complexity of conjunctive query answering in
expressive description logics. In A. Armando,
P. Baumgartner, and G. Dowek, editors, Proceedings of the
4th International Joint Conference on Automated Reasoning

(IJCAR2008), number 5195 in LNAI, pages 179–193.
Springer, 2008.

[35] J. Mendez and B. Suntisrivaraporn. Reintroducing CEL as an
OWL 2 EL reasoner. In B. Cuenca Grau, I. Horrocks,
B. Motik, and U. Sattler, editors, Proc. of the 2008
Description Logic Workshop (DL 2009), volume 477 of
CEUR-WS, 2009.

[36] M. Minsky. A framework for representing knowledge.
Technical report, MIT-AI Laboratory, Cambridge, MA,
USA, 1974.

[37] B. Motik. Reasoning in Description Logics using Resolution

and Deductive Databases. PhD thesis, Universität Karlsruhe,
2006.

[38] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue,
and C. Lutz. OWL 2 web ontology language profiles. W3C
Recommendation, 27 October 2009. http://www.w3.
org/TR/2009/REC-owl2-profiles-20091027/.

[39] B. Motik and U. Sattler. A Comparison of Techniques for
Querying Large Description Logic ABoxes. In M. Hermann
and A. Voronkov, editors, Proc. of the 13th Int. Conf. on
Logic for Programming Artificial Intelligence and Reasoning

(LPAR’06), LNCS, Phnom Penh, Cambodia, November
13–17 2006. Springer. KAON2 download page:
http://kaon2.semanticweb.org/.

[40] B. Motik, R. Shearer, and I. Horrocks. A hypertableau

calculus for SHIQ. In D. Calvanese, E. Franconi,
V. Haarslev, D. Lembo, B. Motik, S. Tessaris, and A.-Y.
Turhan, editors, Proc. of the 2007 Description Logic

Workshop (DL 2007), June 2007.

[41] B. Motik, R. Shearer, and I. Horrocks. Optimized Reasoning
in Description Logics using Hypertableaux. In F. Pfennig,
editor, Proc. of the 23th Conf. on Automated Deduction
(CADE-23), LNAI, pages 67–83, Bremen, Germany, July
17–20 2007. Springer.

[42] M. Ortiz, D. Calvanese, and T. Eiter. Data complexity of
query answering in expressive description logics via
tableaux. Journal of Automated Reasoning, 41(1):61–98,
2008.

[43] M. R. Quillian. Word concepts: A theory and simulation of
some basic capabilities. Behavioral Science, 12:410–430,
1967. Republished in [11].

[44] Racer Systems GmbH & Co. KG. RacerPro Reference
Manual Version 1.9, Dec. 2005. Available from:
http://www.racer-systems.com/products/

racerpro/reference-manual-1-9.pdf.

[45] E. Sirin and B. Parsia. Pellet system description. In B. Parsia,
U. Sattler, and D. Toman, editors, Description Logics,
volume 189 of CEUR Workshop Proceedings.
CEUR-WS.org, 2006.

[46] J. F. Sowa, editor. Principles of Semantic Networks. Morgan
Kaufmann, Los Altos, 1991.

[47] J. F. Sowa. Encyclopedia of Artificial Intelligence, chapter
Semantic Networks. John Wiley & Sons, New York, 1992.

[48] T. Springer and A.-Y. Turhan. Employing description logics
in ambient intelligence for modeling and reasoning about
complex situations. Journal of Ambient Intelligence and
Smart Environments, 1(3):235–259, 2009.

[49] S. Tobies. The complexity of reasoning with cardinality
restrictions and nominals in expressive description logics.
Journal of Artificial Intelligence Research, 12:199–217, May
2000.

[50] D. Tsarkov and I. Horrocks. FaCT++ description logic
reasoner: System description. In Proc. of the 3rd Int. Joint

Conf. on Automated Reasoning (IJCAR-06), 2006. FaCT++
download page:
http://owl.man.ac.uk/factplusplus/.

[51] D. Tsarkov, I. Horrocks, and P. F. Patel-Schneider.
Optimising terminological reasoning for expressive
description logics. Journal of Automated Reasoning, 2007.

[52] A.-Y. Turhan. Reasoning and explanation in EL and in
expressive description logics. In U. Aßmann, A. Bartho, and
C. Wende, editors, Reasoning Web, number 6325 in LNCS,
pages 1–27. Springer, 2010.

[53] W3C OWL Working Group. OWL 2 web ontology language
document overview. W3C Recommendation, 27th October
2009. http://www.w3.org/TR/2009/
REC-owl2-overview-20091027/.

