
HAL Id: hal-00568897
https://hal.science/hal-00568897

Submitted on 23 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Virtual Knowledge Communities for Semantic Agents
Julien Subercaze, Pierre Maret

To cite this version:
Julien Subercaze, Pierre Maret. Virtual Knowledge Communities for Semantic Agents. Web Intelli-
gence, Mining and Semantics Conference, May 2011, Sogndal, Norway. pp. �hal-00568897�

https://hal.science/hal-00568897
https://hal.archives-ouvertes.fr

Virtual Knowledge Communities for Semantic Agents

Julien Subercaze
Laboratoire Hubert Curien

Université de Lyon
18 rue du professeur Benoit Lauras.

F-42000 Saint-Etienne
juLink.subercaze@univ-st-etienne.fr

Pierre Maret
Laboratoire Hubert Curien

Université de Lyon
18 rue du professeur Benoit Lauras.

F-42000 Saint-Etienne
pierre.maret@univ-st-etienne.fr

ABSTRACT
Virtual Knowledge Communities are a well suited paradigm
for decentralized knowldege exchanges and they have been
applied in several domains. In this paper we investigate the
implementation of virtual knowledge communities with se-
mantic agents. Using the SAM (Semantic Agent Modeling)
approach, we show that agents can exchange community re-
lated concepts (in OWL) and behavior (in SWRL). Agents
can then learn and adapt new community-related behavior,
which is usefull when changing the role or entering into a
new environment. For this purpose, we formalize Virtual
Knowledge Communities in a set-theoretic way and we im-
plement this formalization in an OWL ontology. Some ex-
amples of community representation using our formalization
are presented in this paper.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]; I.2.11 [Artificial
Intelligence]: Multiagent systems

General Terms
Semantic Agent, Virtual Knowledge Communities

Keywords
Semantic Agent, Virtual Knowledge Communities, Set-theoretic
formalization, Ontology, OWL, SWRL

1. INTRODUCTION
Agent mediated knowledge management (AMKM), a term

coined for the first AMKM workshop in 2003 [17] (followed
by two editions [18, 16]) is a specialized research domain
of distributed knowledge management. The main idea of
AMKM is to take into account the decentralized nature of
knowledge and its social aspects inside organizations. Nowa-
days, the rise of semantic technologies such as RDF,OWL
and SWRL have provided a powerful frame for knowledge

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WIMS ’11, May 25-27, 2011 Sogndal, Norway
Copyright 2011 ACM 978-1-4503-0148-0/11/05 ...$10.00.

representation and processing, due to the expressivity of
these formalisms and their underlying logic formalisms [5].
A first step in the integration of semantic technologies in
the domain of agent-mediated knowledge management has
been made in using the knowledge representation formalism.
Thus, semantic technologies have been introduced to replace
former knowledge representation in mainstream agent plat-
forms like JADE [1] and in agent programming languages
like the OWL extension for JASON [2]. A second step has
consisted in taking advantage of the logical power of the se-
mantic languages to replace the usual Prolog-like languages
used in agent programming. By doing so, agent knowledge
and agent programming can both be tackled within a unique
paradigm i.e. the semantic technologies. This is known as
introducing de facto the agent’s reflexive abilities: the ability
to change its behavior depending on its beliefs. Agents using
semantic technologies in both agent knowledge representa-
tion and internal programming have been called semantic
agents. Several architectures such as Nuin [6], S-APL [9],
JASDL [11] and SAM [12] have been proposed.

However, while the semantic models have been introduced
in these agent-oriented architectures, the duality between
agent knowledge and agent behavior remains. In Nuin and in
S-APL, the behaviour and the knowledge base are expressed
in differents languages or paradigms. Thus, knowledge (from
the knowledge base) has to be converted in order to be used
by the behaviour. In Nuin and in S-APL, the behaviour
and the knowledge base are expressed in different languages
or paradigms. Thus, knowledge (from the knowledge base)
has to be converted in order to be used by the behaviour.
For Nuin and S-APL, the conversion (from RDF or from
OWL) into the agent programming language implies a loss
of expressivity since the logics of knowledge bases are more
expressive than the ones used in the agent programming.

The aim of this paper is to propose an innovative approach
that implements the combination of knowledge and behavior
when considering exchanges between agents. Making agents
acquire knowledge is not an innovative effort. Our proposal
is to describe a model and to implement a system where
agents can learn and adapt new community-related behav-
ior (SWRL rules). This is useful when the agent changes
role in a community or enters into a new environment. We
will consider an existing model for agent exchanges (namely
VKC [10]) and will propose an ontology that describes and
operationalizes agent knowledge and behavior in this area.
This is implemented in the frame of the SAM (Semantic
Agent Model) architecture.

In the next section, we will present the model of VKC and

the SAM architecture. In section 3 an innovative formaliza-
tion of the VKC approach using a set-theoretic model will be
proposed. Based on this formalization, we will then define
the OWL-based ontology that describes and operationalizes
knowledge and behavior for semantic agent exchanges. Re-
lated works will be briefly described in section 4 and some
concluding remarks will be given in section 5.

2. BACKGROUND
Two main background concepts are concerned with the

present paper: Virtual Communities and the Semantic Agent
Model. They are here presented for a good understanding
of the proposed set-theoretic model and the OWL-based on-
tology.

2.1 Virtual Knowledge Communities
Research in the field of corporate knowledge management

lead by Calmet and Maret introduced a distributed approach
for corporate knowledge management based on the agent
paradigm. The concept of Virtual Knowledge Communities
(denoted VKC) was then introduced in 2004 [10]. Since
then, it has been used in several application domains.

Virtual Knowledge Communities are introduced as a means
of knowledge dissemination within a society of agents. Each
agent owns an internal goal to achieve which, directly or
indirectly, may lead it to distribute or to acquire knowl-
edge. Communities are the mechanism used by the agents
for these knowledge exchanges. Thus communities increase
the efficiency of knowledge dissemination within the society
of agents. Through the dynamic processes of VKCs, agents
can create, join, feed, use or leave communities, and so they
can acquire new knowledge from other agents and infer new
knowledge through their cognitive component.

A virtual knowledge community consists of a topic, com-
munity members and a policy for message exchanges. Mem-
bers exchange messages related to the topic of the com-
munity, following the community policy (rule-based policy).
Messages are exchanged through a shared board system that
allows to post new messages and to access previously posted
ones. This board system is called the community buffer.
In the implementation provided by Hammond [8], agent
knowledge is represented with ontologies (i.e. concepts, links
and instances). Pieces of knowledge that can be exchanged
within agents are subsets of one agent ontology. A commu-
nity discovery service called the ”community of communi-
ties” is also provided.

Among the functionalities related to community manage-
ment, one can cite the evolution of a community topic and
the dissolution of a community. Topic evolution is required
because communities are created dynamically and they evolve
during their lifetime (i.e. participants, messages and topics
can all change). The mechanism to change the community
topic is provided, it is controlled by the community owner
(a member with the appropriate policy) and it consists of
an internal updating and sending of a message addressed
to the community of communities for updating this kind of
yellow pages. Similarly, the dissolution of the community
can be made on the initiative of the community leader: a
message is sent to the community of communities to remove
the existing entry.

The ability of agents to interpret and exchange the ac-
quired knowledge is considered as intrinsic knowledge. This
ability can be different for each and every agent. We argue

that this design choice takes into account the decentralized
nature of knowledge and its consequences in agent-mediated
knowledge management.

Community regulation is a human social necessity that is
also required in virtual communities. Regulation consists
of rules that apply within the community regarding its use,
security and confidentiality. To handle this regulation, each
agent creates a community and specifies the policy which ap-
plies to it. The policy specifies, for instance, the way agents
join, leave, share messages and access messages. Also, poli-
cies are introduced to handle security issues that can be
encountered with malicious agents in an open agent soci-
ety. For instance, access control to the board system of the
community or encryption of messages can be specified.

The VKC paradigm has been succesfully applied to several
application domains, including context-aware applications
[14], mobile applications [15] and E-Health [7].

2.2 Semantic Agent Model
The Semantic Agent Model [12, 13] (noted SAM) is an ar-

chitecture of semantic agent that aims at representing both
static knowledge and agent behaviour using semantic mod-
els. The static knowledge is represented in SAM using on-
tologies expressed in OWL, which is today the most conve-
nient modelling technique. Regarding agent behavior, while
other existing semantic agent models do not support any
semantic programming language, the SAM includes a stan-
dardized semantic approach, i.e. the behavior is expressed
in terms of rules and it is based upon the SWRL (Semantic
Web Rule Language). Doing so, the static knowledge and
the behavior are expressed in a unique paradigm (semantic
modeling), and this makes them fully compatible and avoids
translations from one paradigm to another.

The behavior of an agent is implemented as sets of spe-
cialized SWRL rules. The antecedent of the rules consists of
some conditions concerning the environment and the inter-
nal state of the agent. The consequent of the rules contains
a sequence of actions that will cause the agent to act on its
environment and/or to modify its internal state. Actions are
of two types: SWRL built-ins and lower level actions. Lower
level actions emcompass actions that are required to support
an agent execution (message sending, file access), actions
for knowledge manipulation that cannot be expressed with
SWRL rules (such as knowledge removal), and agent frame-
work interactions. The execution of the behavior, as well as
the the maintainance of the knowledge base’s coherence and
the inference of new knowledge, is supported by a reasoner
(Pellet).

The added value of SAM is that it increases the semantic
interoperability of agents: given a limited number of low-
level actions that must be available on each agent, any be-
havior expressed in terms of SWRL rules can be exchanged
between agents. This means that agents can now acquire
a behavior, and that they can execute this new behavior
taking into account their own static knowledge.

As SWRL doesn’t support rule ordering, a slightly modi-
fied version of the Extended Finite State Machine (EFSM)
model [4] has been used. This version guarantees the ex-
ecution of only one rule at a time. In EFSM, transitions
between states are expressed using if statements, and they

are linked to some operations. A transition is fired if trig-
ger conditions are valid. Then, the state machine is brought
from the current state to the next state, and the set of spec-
ified operations is performed.

The following rule is an example of a SAM SWRL rule. It
states that if the current agent is in state A (lines 1 and 2 in
the rule) and the message received (3) has been sent by Bob

(4) and this message is an answer (5), then the next state of
the agent (8) will receive the value held by y (or sEnd which
is the final state), a stored list of actions ActionSequence

will be performed (9) till the end (10), and the content of
the message (hold by w) will be added in the knowledge base
(11, 12).

CurrentState(?x) (1)

∧ StateV alue(x,A) (2)

∧hasReceived(?z) (3)

∧hasSender(z,Bob) (4)

∧hasPerformative(z,Answer) (5)

∧NextState(?y) (6)

∧hasContent(z, ?w) (7)

⇒ StateV alue(y, sEnd) (8)

∧hasContent(ActionSequence,AddInstance) (9)

∧hasNext(ActionSequence, endOfList) (10)

∧hasParameterName(AddInstance, name) (11)

∧hasParameterV alue(name,w) (12)

The main benefit of the approach is that knowledge and
behaviour are represented using compatible semantic lan-
guages. Consequently, an agent’s behaviour is also a piece
of knowledge, operational knowledge, upon which the agent
can reason and which can be sent or received to/from other
agents.

Knowledge Base
OWL-DL

SWRL

JAVA
SW APIs

JADE

Engine

Low level actions – MAS Framework

Test if transition triggers
Actions sequences Received messages

Received messages Start actions

Figure 1: The SAM [12] architecture

3. FORMALIZATION OF VIRTUAL KNOWL-
EDGE COMMUNITIES

While Virtual Knowledge Communities have been imple-
mented in several application domains, no formalization of
the approach or the model has been given. Our aim is to
implement VKC in semantic agents. So, the design of a
VKC domain ontology is required. For this purpose, we will
follow a two-step formalization. In a first step we will for-
malize the VKC in a set-theoretic way, which is the common
abstraction paradigm. In a second step we will adapt this
formalization as an OWL ontology, to make it compatible
with SAM agents.

3.1 A set-theoretic formalization
We define several sets and relations to formalize VKCs.

The first set is M the set of agents that belong to the com-
munity. Communities bring together agents around topics
(one or several). The set of these elements is denoted S. As
previously presented, agents do not have identical roles in
communities: they can be a leader, a member or have some
other predefined role. We denote R the set of the roles avail-
able in the community. A leader can shut the community
down, whereas a member can only join or leave it. These
actions are grouped in the set of actions called A. To link
agents to roles and roles to actions, we define the relations
rr and rp.

The most significant set in this formalization is P , the
set of protocols. These protocols define the communication
rules and acts that define interactions between agents within
a community. Protocols can be designed in terms of SAM
semantic rules, which then make them into executable and
exchangeable knowledge for SAM agents. Doing so, agents
can acquire and execute VKC protocols and thus participate
in communities.

The underlying idea of this approach is to build an oper-
ational representation of VKC. In the end, agents should be
able to exchange knowledge of communities that can be ex-
ecuted by other agents. These protocols belong to the set P
that describes implementation of actions that are associated
to roles by the relations rp.

We propose the following formalization for VKC: a com-
munity c belongs to the set of communities C. A commu-
nity is a tuple: c ∈ C = {M,R,A, P, S, rr, ra, rp} where
M,R,A, P, S are sets and rr, ra, rp are relations between
these sets.

Sets.

• M is a set of agents belonging to a community. A
community owns at least one agent which is the creator
of the community. |M | ≥ 1.

• R is a set of possible roles within the community.

• A is a set of actions that are possible in the commu-
nity. Classical actions are join, leave, post, To be
meaningful, A must be non empty, otherwise no action
is possible and the creator is the only member.

• P is a set of protocols. A protocol describes the rules
for exchanges within the community. A protocol is re-
lated to an action. A community protocol is bound to
specify the orchestration of actions for a community.

For example, a protocol can dictate that an agent can-
not (or can) post a message without being a member of
the community. In this example, the community pro-
tocol requires a JOIN before a POST. The cardinality
of P is greater or equal to 1 (which is a consequence of
A being non empty).

• S is the set of topics of the community.

Relations.

• rr ⊆M ×R is a relation between the set of agents M
and the sets of roles R. This relation describes the dif-
ferent roles in a community an agent can be associated
to. Each agent has at least one role. However some
roles in a community can be unoccupied. Thus, rr is
left-total 1.

• ra ⊆ R×A is a relation between the role set R and the
action set A. Each role is associated with the sets of
actions permitted for this role in the community. As
each role has at least one action related, ra is left-total.

• rp ⊆ R × A × P is the relation that associates each
couple (role, action) to a protocol. For example the
action JOIN is different if the member is a user or
the host of the community. In the first case, the agent
will send the request, in the second one, the host will
process the request.

3.1.1 Zero community
The zero community c0 ∈ C is the minimal community in

which knowledge exchange can happen. The term minimal
is here to be understood in the sense of a minimal number of
actions and roles. One may intuitively think that the min-
imal community is made of the 3 actions join, sendMes-

sage, leave. However, it is possible to define a meaningful
zero community with only two actions sendMessage, leave.
This community is then similar to a mailing-list where the
action of sending a message automatically registers the agent
into the community. For the agent, leaving the community
consists of sending a leave message to the community leader
agent which removes it from the list of members. The fig-
ure 2 depicts this example. Bob is the creator and leader
of the community, Chuck and Dave are members. Alice
sends a message to Bob following the protocol specified by
sendMessage for agents willing to join the community. Bob
follows the protocol associated with sendMessage for the cre-
ator and thus broadcasts Alice’s message to the community
members. Finally, Alice is added to the list of members of
the community.

Using the previous formalization, the zero community can
be written as follows. Notice that ’+’ indicates an action
initiated by an agent, and ’-’ indicates an action where the
agent receives the action messsage.

• M = {Alice,Bob, Chuck,Dave}

• R = {leader,member}

• A = {sendMessage, leave}
1A relation R ⊆ X ×Y is left-total if and only if for all x in
X there is one y in Y such as (x, y) ∈ R.

Alice Bob

Chuck

Dave
New Member

Leader

Member

Member message

Figure 2: sendMessage execution in the community
c0

• P = {sendMessage+, leave+, sendMessage−, leave−}

• |S| ≥ 1, the topic

• Roles Agent associations:

– (Alice,member) ∈ rc

– (Bob, leader) ∈ rc

– (Chuck,member) ∈ rc

– (Dave,member) ∈ rc

• Roles Actions associations:

– (leader, leave) ∈ rc

– (leader, sendMessage) ∈ rc

– (member, leave) ∈ rc

– (member, sendMessage) ∈ rc

• Roles, actions and protocols:

– (leader, sendMessage, sendMessage−) ∈ rp

– (leader, leave, leave+) ∈ rp

– (leader, leave, leave−) ∈ rp

– (member, sendMessage, sendMessage+) ∈ rp

– (member, leave, leave+) ∈ rp

The association between the role leader and the leave ac-
tion leads to both + and - protocols. When the leader re-
ceives a leave request from an agent (i.e. leave-), it removes
the agent from the list. In the case where the leader wants
to leave the community (leave+), the community is deleted.

3.1.2 Protocols
Protocols specify communication rules between agents.

There is a protocol for each action in the community. The
communication rules described specify the content and the
order of exchanged messages.

3.1.3 View of a community
Depending on their function and history, agents may have

different information about a community they are members
of. This is what is called the view of a community, and it
is held by an agent. Continuing the zero-community sce-
nario, let us take another example: Alice has just joined a
community initiated by Bob. Agents Chuck and Dave al-
ready belong to this community. As Alice has just joined,
she doesn’t know anything about members of this commu-
nity, the previous content exchanged or the topic evolutions,
etc. However, Bob, who initiated the community, knows ev-
ery member and it has been able to hold the history of all

exchanged messages (or it has acquired the content of the
messages in its knowledge base).

Let us recall that the SAM architecture handles static
knowledge and behavior at the same level (and in the same
semantic paradigm). Thus, the agent’s view of a commmu-
nity also encompasses the protocols an agent is able to exe-
cute related to communities. Agents can then hold different
protocols relative to their respective roles in given commu-
nities. Such a mechanism is useful for security purposes to
limit one’s actions in a given environment. Also, since SAM
makes protocols exchangeable, an agent (when changing the
role) can acquire a new behavior for the related community,
which changes its executable view of this community.

3.1.4 VKC efficiency measurement
VKCs are a means of sharing knowledge between agents.

Since protocols can be exchanged, it is relevant to consider
and to compare the protocol’s efficiency for knowledge dis-
semination. We propose to measure this sharing efficiency
within communities and we introduce first some basic mea-
surement tools.

• Let At be the set of agents in the community at time
t.

• Let KT,i,t be the set of knowledge received by agent i
on the topic T at time t.

• Let fiK → [0, 1] be the function from the set of knowl-
edge K to the interval [0, 1]. This function represents
the interest of the agent i for a piece of knowledge.
Zero means no interest and 1 means a maximum of
interest.

• Let KgT,t be the set of knowledge exchanged on the
topic T at the time t.

We define the efficiency of the knowledge dissemination
with the formula (adapted from [3]):

EKDT (t) =

∑
i∈At

|f(KT,i,t|
|KgT,t|

|At|
(13)

By definition, EKD ranges into the interval [0, 1]. EKD
reaches its maximum (i.e. = 1) when all agents have re-
ceived only knowledge of interest. In the case where no
agent has received any knowledge worthy of interest, the
function is equal to zero. The EKD measure represents the
efficiency along the time. The normalized integral over time∫ t2
t1 EKDT (dt)

t2−t1
indicates the efficiency average between time

t1 and t2. The derivative dEDKT (t)
dt

gives the instantaneous
variation of the efficiency. These formulae give a frame for
community benchmarking. Some benchmark results are pro-
vided in a previous study [3].

3.2 Ontology
We have presented a set-theoretic formalization of virtual

knowledge communities. We have given a specific definition
of community protocols, based on rules that define agent
behaviour and applicable in the SAM architecture. Now,
our formalization will be made available for semantic agents
in defining an OWL-based ontology of virtual knowledge
communities that will be integrated into each SAM agent’s
knowledge base.

For the design of the ontology, we translate sets and re-
lations from the previous formalization into ontology con-
cepts, i.e. classes and relations in OWL. This translation
goes straight-forward, except for the ternary relation rp that
cannot be directly expressed in OWL. Indeed OWL only
supports binary relations, which then restricts our imple-
mentation. This restriction can be circumvented thanks to
one of the three design methods proposed by the W3C 2. We
decided to use the solution which introduces an intermedi-
ate class (denoted AP , for ActionProtocol). Figures 3 and
4 depicts this translation from a ternary relation into OWL
double relation.

Roles

Protocols

Actions

Figure 3: Ternary relation. Not native in OWL

Roles

Protocols

Actions

AP
hasAP

hasAction

hasProtocol

Figure 4: Introduction of the class AP to represent
the rp relation

Classes.
The classes of the ontology are mostly the same as the

ones defined in the set-theoretic formalization. Agent class
represents an agent. LeaderAgent is a subclass of Agent and
represents agents having the leader role in the community.
The class Role describes the different roles available in the
community. These roles are linked to actions through the
classes CommunityAction and protocol. The class AP (for
ActionProtocol) is the artefact used to describes the ternary
relation between a role, an action and a protocol. Finally
the class Topic describes the topic of the community. The
classes are listed in the table 1:

Relations.
The relations in the ontology can be deduced from the

ones which have been formally introduced. In OWL, rela-
tions have a name, a domain (the class of subject individual)
and a range (the class of the object individual). The relation
hasTopic associates a community to a topic. A community

2http://www.w3.org/TR/swbp-n-aryRelations/

Name Subclass Description

AP Thing Action/Protocol
Agent Thing Agent
Community Thing VKC
CommunityAction Thing Action of a community
LeaderAgent Agent Leader agent
LeaderRole Roles Leader role
Protocol Thing Communication protocol
Role Thing Roles
Topic Thing Topic

Table 1: List of the concepts of the ontology

is linked to its members through the inverse relations mem-

berOf and hasMember. Roles are linked to both communities
(available roles) and agents (roles in the community). The
relation between agent and roles is modeled by memberHas-

Role and between role and the community by the relation
hasRole and its inverse relation is roleOf. Roles are also
linked to actions and protocols through the relations hasAP,
hasAction and hasProtocol that represent the ternary re-
lation. Relations are summarized in the table 2.

3.2.1 View of communities
The community ontology describes the concepts and their

relations. The agent’s view (composed of static knowledge
and behavior) of a community is populated with instances
of those concepts. Returning to our example -the zero-
community-, agents Alice, Bob and Chuck have the following
views:

Alice • Topic: topic of the community

• Roles: member, leader

• Members: Alice,Bob

• MemberHasRole: Alice→ member
Bob→ leader

• Actions: sendMessage,leave

• Protocol: sendMessage+,leave+

Bob • Topic: topic of the community

• Roles: member, leader

• Members: Alice,Bob,Chuck,Dave,

• MemberHasRole: Bob→ leader
Alice→ member
Chuck → member
Dave→ member

• Actions: sendMessage,leave

• Protocol: sendMessage+,sendMessage-,leave+,leave-

Chuck • Topic: topic of the community

• Roles: member, leader

• Members: Alice,Bob,Chuck,Dave

• MemberHasRole: Alice→ membre
Bob→ createur
Chuck → member
Dave→ member

• Actions: sendMessage,leave

• Protocol: sendMessage+,leave+

It appears that the leader of the community is the only one
with a complete view of the community. This is a charac-
teristic of a centralized community like the zero-community.
Notice that one could implement several types of commu-
nities (decentralized, individualistic, social, etc.) and this
would influence the content of the view of the community of
agents. Also, a community leader owns the protocols related
to the community, but it may not necessarily know the com-
plete set of agent members of the community. This concept
of views of community appears as a keystone to maintain
the decentralized approach strongly claimed in the virtual
knowledge communities approach.

3.2.2 Application: Yahoo! Groups
In order to better illustrate our proposal, we will describe

it in the frame of a real-life example: the Yahoo! Groups 3.
Yahoo! Groups are discussion-based communities, created
in 1998. This service belongs to the top 5 Yahoo! services
in terms of frequency of use. Yahoo! Groups offers a com-
plete set of features to support community interactions. The
following features are provided to users:

• Messages: Send an email to the group (and the possi-
bility to delete a previous message)

• Photo album

• File storage

• Links directory: contains a link and a description for
each entry

• Polls

• Database: 10 tables allowed

• List of members

• Calendar

• Advertising: generates HTML code to promote the
group

Creators and managers of a group have access to a larger
range of features in order to administer the community:

• Invitation: invite new members

• Members management: validate and delete accounts

• Messages management: validation and deletion of mes-
sages

3http://fr.groups.yahoo.com

Name Domain Range Description

hasTopic Community Topic associate a community to a topic
hasAP Roles AP associates actions and protocol to a role
hasAction AP CommunityAction associates an AP to an action
hasProtocol AP Protocols associates an AP to a protocol
hasMember Community Agent defines members of the community
memberOf Agent Community inverse of hasMember
hasRole Community Role associates roles to community
roleOf Role Community inverse of hasRole
memberHasRole Agent Roles associates a role to an agent

Table 2: List of the relations of the ontology

• Options: change the welcome message. . . .

Our ontology can be used to represent Yahoo! Groups as
virtual knowledge communities. We first identify the differ-
ent roles: regular member, manager and creator. In addition
to these three roles, the role of Yahoo! must be added. It
serves as a service provider for community hosting and com-
munity searching. The number of community creators and
community hosts is limited to one by Yahoo! The number
of members and of managers is not limited.

The features previously described lead us to describe 29
actions for members, managers and creators:

• Messages: {SendMessage, DeleteMessage}

• Photo album: {CreateAlbum, DeleteAlbum, AddPic-
ture, RemovePicture}

• File Storage: {CreateFolder, DeleteFolder, AddFile,
DeleteFile}

• Links directory: {CreateFolderDirectory, DeleteFold-
erDirectory, AddLink, DeleteLink, EditerLink}

• Polls: {CreatePoll, DeletePoll, AddRéponse, FinVote}

• Databases: {CreateTable, DeleteTable, AddValue, Delete-
Value}

• Members management: {AfficherListe, ViewProfil}

• Calendar: {AddEvent, DeleteEvent, EditerEvent}

• Advertising: {CreateBôıte}

6 additionnal actions restricted to manager and creator:

• Invitation: {InviteMember}

• Members management: {ValidateMember, DeleteMem-
ber}

• Messages management: {ValidateMessage, DeleteMes-
sage}

• Options: {SetWelcomeMessage}

In addition, the action DeleteCommunity that definitely
shut the community down is restricted to the creator and
to the host. The Yahoo! Groups ontology contains 29+6+1
=36 actions. There are 101 relations roles/actions: 29 ×
|{Member,
creator,manager}|+ 6× |{manager, creator}|
+ 1 × |{creator, host}|. Each action has protocols for both

sender and receiver. In this case, the host (i.e. Yahoo!
Groups) is the only receiver of the actions.

This example has shown the use of VKC ontology in a
real-world situation for a well-known and widely used com-
munity network. The whole implementation of this ontol-
ogy in OWL+SWRL would take some time, however our
approach would then make it technically possible for SAM
agents to acquire some static knowledge as well as some be-
havior in order to participate in Yahoo! Groups, even if they
were not initially programmed for this purpose.

4. RELATED WORK
To our knowledge, the integration of Virtual Knowledge

Communities with Semantic Agents has not been addressed
until now. The presented ontology is specifically designed
for the Semantic Agent Model. The concept of protocol has
been introduced in the ontology to allow SAM agents to ex-
ecute VKCs. However the set-theoretic formalization of the
VKCs and the principal components of the VKC ontology
(except the specific design of protocols, dedicated to the Se-
mantic Agent Model) are well suited to be used with other
Semantic Agent architectures such as S-APL [9] or NUIN
[6]. The ability of agents to exchange community related
concepts and behavior decribed with semantic web models
(OWL+SWRL) is, to our knowledge, an original proposal.

The SIOC (Semantically-Interlinked Online Communities)
ontology is an attempt to link online community sites. Also
it uses Semantic Web technologies to describe the structural
and content information of communities, and to find related
information and new connections between content items and
other community items. SIOC is based around the use of
machine-readable information which is found on the online
community sites 4. Whereas our formalization addresses the
way a community works, SIOC provides mechanisms to in-
terlink static data provided by different communities. The
VKC formalization and the SIOC ontology can thus be seen
as complementary projects of semantic communities.

5. CONCLUSION
In this paper we have presented an operational ontol-

ogy for integrating Virtual Knowledge Communities into
the world of semantic agents. Using the specificity of the
SAM architecture that allows SWRL agent programming,
we have formalized Virtual Knowledge Communities as an
ontology that contains not only a description of VKCs, but
also their related actions to be executed. The link between

4http://rdfs.org/sioc/spec/

the descriptive part of the ontology and the implementation
is made through the concept of protocols. Protocols are
semantic executable code that SAM agents can execute.

In order to formalize VKCs, we first took an abstract ap-
proach using a set-theoretic formalization. The process of re-
fining the set-theoretic formalization into an OWL ontology
requires few modifications. Since both formalisms are closely
coupled (logical foundation of OWL), only the ternary re-
lation requires some modification to be implemented in the
OWL ontology. The specificity of OWL, such as inverse re-
lations and restrictions over relations allows to fully describe
our formal approach of VKC in an ontology that semantic
agents can handle. The decentralized aspect of the com-
munity is taken into account with the concept of views of
the community. Agents share the domain ontology of VKC,
but each agent owns a different view of a community. We
illustrated this concept through the example of the minimal
commmunity called zero-community. Finally, the Yahoo!
Groups helped us to illustrate the generic nature of the on-
tology. Indeed our ontology is not only designed for VKC
but can also be applied to real-world working examples.

Our research has shown that it is now possible for agents
to exchange community related concepts and behavior. For
that, we use semantic web models (OWL+SWRL). The full
convergence of these two models makes the agent more flex-
ible and powerful: it can reason and act with its knowledge
without any translation effort (synonym of expressivity loss)
and it can learn and adapt to new behavior, which is useful
when changing the role and the environment in a commu-
nity context. Further research will focus on the application
of the ontology to different types of communities as well as
community benchmarking using our efficiency measure.

6. REFERENCES
[1] F. Bellifemine, A. Poggi, and G. Rimassa. JADE–A

FIPA-compliant agent framework. In Proceedings of
PAAM, volume 99, pages 97–108. Citeseer, 1999.

[2] R. Bordini, J. H
”ubner, and R. Vieira. Jason and the Golden Fleece of
agent-oriented programming. Multi-Agent
Programming, pages 3–37, 2005.

[3] Jacques Calmet, Julien Subercaze, and Pierre Maret.
Simulation in virtual communities. In Proceeding of
the Social and Organizational Informatics and
Cybernetics (SOIC) conference 2006, Orlando,
Florida, USA, pages 238–242, 2006.

[4] K.T. Cheng and AS Krishnakumar. Automatic
functional test generation using the extended finite
state machine model. In Proceedings of the 30th
international conference on Design automation, pages
86–91. ACM New York, NY, USA, 1993.

[5] C.V. Damasio, A. Analyti, G. Antoniou, and
G. Wagner. Supporting open and closed world
reasoning on the web. Lecture notes in computer
science, 4187:149, 2006.

[6] I. Dickinson and M. Wooldridge. Towards practical
reasoning agents for the semantic web. In Proceedings
of the second international joint conference on
Autonomous agents and multiagent systems, pages
827–834. ACM New York, NY, USA, 2003.

[7] Christo El Morr, Julien Subercaze, Marcia Rioux, and
Mihaela Dinca-Panaitescu. Virtual Knowledge
Network for Human Rights Monitoring. In Workshop
on Web Intelligence and Virtual Enterprises
(WIVE’09), 10th IFIP Working Conference on
Virtual Entreprises (PRO-VE’09), October 2009.

[8] Mark Hammond. Virtual knowledge communities for
distributed knowledge management: A
multi-agent-based approach using jade. Master’s
thesis, University of Karlsruhe, 2004.

[9] A. Katasonov and V. Terziyan. Semantic agent
programming language (S-APL): A middleware
platform for the Semantic web. In Proc. 2nd IEEE
International Conference on Semantic Computing,
pages 504–511, 2008.

[10] Pierre Maret, Mark Hammond, and Jacques Calmet.
Virtual knowledge communities for corporate
knowledge issues. In Marie Pierre Gleizes, Andrea
Omicini, and Franco Zambonelli, editors, ESAW,
volume 3451 of Lecture Notes in Computer Science,
pages 33–44. Springer, 2004.

[11] Á. Moreira, R. Vieira, R. Bordini, and J. H
”ubner. Agent-oriented programming with underlying
ontological reasoning. Declarative Agent Languages
and Technologies III, pages 155–170, 2006.

[12] Julien Subercaze and Pierre Maret. SAM : Semantic
Agent Model for SWRL rule-based agents. In
ICAART 2010 - International Conference on Agents
and Artificial Intelligence, January 2010.

[13] Julien Subercaze and Pierre Maret. Semantic Agent
Systems - Foundations and Applications, chapter
Programming Semantic Agent for Distributed
Knowledge Management. Studies in Computational
Intelligence. Springer Verlag, November 2010.

[14] Julien Subercaze, Pierre Maret, Ngoc Minh Dang, and

Ken Sasaki. Context-aware applications using personal
sensors. In Social-Informatics ICST (Institute for
Computer Sciences and Telecommunications
Engineering), editors, BodyNets ’07: Proceedings of
the ICST 2nd international conference on Body area
networks, pages 1–5, July 2007.

[15] Julien Subercaze, Pravin Pawar, Pierre Maret, and
Jacques Calmet. A Service Oriented Framework for
Mobile Business Virtual Communities . In
Willy Picard Luis M. Camarinha-Matos, editor,
Virtual Enterprises and Collaborative Networks, pages
493–500. Springer, September 2008.

[16] Jurriaan van Diggelen, Virginia Dignum, Ludger van
Elst, and Andreas Abecker, editors. Proceedings of the
AAMAS 2005 Workshop on Agent-mediated
Knowledge Management (AMKM-2005), 2005.

[17] Ludger van Elst, Virginia Dignum, and Andreas
Abecker, editors. Agent Mediated Knowledge
Management, International Symposium AMKM 2003,
Stanford, CA, USA, March 24-26, 2003, Revised and
Invited Papers, volume 2926 of Lecture Notes in
Computer Science. Springer, 2004.

[18] Andreas Abecker Virginia Dignum, Ludger van Elst,
editor. Proceedings of the ECAI-2004 Workshop on
Agent-mediated Knowledge Management
(AMKM-2004, 2004.

