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ABSTRACT

With the advent of cloud computing, it becomes desirable to utilize
cloud computing to efficiently process complex operations in large
graphs without compromising their sensitive information. This pa-
per studies shortest distance computing in the cloud, which aims
at the following goals: i) preventing outsourced graphs from neigh-
borhood attack, ii) preserving shortest distances in outsourced graphs,
iii) minimizing overhead on the client side.

The basic idea of this paper is to transform an original graph G
into a link graph G, kept locally and a set of outsourced graphs
Go. Each outsourced graph should meet the requirement of a new
security model called 1-neighborhood-d-radius. In addition, the
shortest distance query can be equivalently answered using GG; and
Go. Our objective is to minimize the space cost on the client side
when both security and utility requirements are satisfied. We devise
a greedy method to produce G; and G,, which can exactly answer
the shortest distance queries. We also develop an efficient transfor-
mation method to support approximate shortest distance answering
under a given additive error bound. The final experimental results
illustrate the effectiveness and efficiency of our method.

Categories and Subject Descriptors

H.2.8 [Database management]: Database Applications

General Terms
Algorithms
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1. INTRODUCTION

Graph structured data are used in numerous applications, e.g., web
graphs, social networks, ontology graphs, biological and chemical
pathways, transportation networks. High efficiency is essential for
frequent and basic graph operations. However, even basic opera-
tions on a graph can be very time-consuming due to the complexity
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of structural connectivities and graph size [4]. Moreover, real graph
datasets are growing rapidly in size, making the attainment of high
efficiency even harder.

The paradigm shift of cloud computing offers a new approach
for storage- and compute- intensive tasks [5, 10, 26, 20], allowing
users to migrate their burden (e.g., data maintenance and comput-
ing utilities) to an outsourced server (or cloud server). The out-
sourced server typically has sufficient resources to maintain very
large datasets and provides quick response to users’ requests with
its powerful distributed and parallel architecture.

Thus, it becomes desirable (and even inevitable) to employ cloud
computing to manage large graphs and particularly to efficiently
process complex graph operations. The biggest problem with this
approach is that client companies may be unwilling to outsource
their valuable datasets. Take the outsourcing of a social network
as an example. Even if its owner removes the identifier of each
vertex before sending the network to the cloud server, the structural
relationships can still possibly be recovered [14, 19], which will
surely devalue the outsourcing.

Given this, the fundamental challenge is: How can we utilize
cloud computing to efficiently process complex operations in large
graphs without compromising their sensitive information? In this
paper, we focus on computing the shortest distance between two
arbitrary vertices in a large edge-weighted graph. This operation
is one of the most important and widely-used graph operations
[22, 7, 25, 21], yet its direct online computation is expensive on
large graphs [4]. The straightforward way to process shortest dis-
tance queries using cloud computing requires outsourcing the entire
graph. Thus, the solution to this problem (by avoiding outsourc-
ing sensitive information but still utilizing the high computational
power of the cloud) will not only directly benefit graph distance
computation and other related operations [16], but more impor-
tantly shed light on the principles and fundamental techniques for
preserving privacy in cloud computing.

1.1 Related Work

In the following, we review the current state-of-the-art techniques
and point out why they cannot fully address the “privacy-in-cloud”
challenge.

Privacy-Preserving Graph Publishing: Privacy protection for graph
publishing has been studied recently. Most of the existing work
on graph publishing focuses on certain structural anonymizations,
such as 1-neighborhood [2], k-degree [13], k-automorphism [17],
k-isomorphism [11], cluster based vertex anonymity [9, 8], as well
as many others. These techniques typically focus on using the least
amount of modifications of the original graph (minimal informa-
tion loss) to make it satisfy the targeted security requirement. Un-
fortunately, the anonymized graphs produced from these privacy



protection techniques generally do not necessarily maintain the sta-
tistical and graph theoretical characteristics of the original [2, 13,
17, 11]. In particular, for any pair of vertices, there is no guarantee
of the degree of similarity or preservation of shortest distances be-
tween the anonymized graph and the original graph. For example,
k-isomorphism is proposed recently to partition a graph into k dis-
joint, isomorphic subgraphs, which unfortunately cannot be used to
compute shortest distances in the original graph [11]. In addition,
most of the exiting works deal with privacy on unweighted graphs,
and do not consider the impact of edge weights.

A few recent works [27, 15, 24, 18] notice the importance of pre-
serving graph theoretical characteristics during graph publishing.
Ying and Wu propose to preserve the eigenvalue of a graph, which
relates to average shortest distance and other topological features,
during graph transformation [27]. Liu er al. study edge weight
perturbation by Guassian random or heuristic rules [15]. Das et
al. propose a linear programming (LP) method to change edge
weights while preserving shortest paths [24]. In both [15] and
[24], the topological structure of the anonymized graph remains
unchanged. Thus, even with the minimal topological knowledge,
such as the vertex degree [13], some sensitive information can be
re-identified. Furthermore, the greedy perturbation [15] relies on
an expensive matrix operation, and the LP approach can be eas-
ily overwhelmed by the number of inequality rules (shortest path
preservation conditions) [24]. For example, for a connected graph
with only one thousand vertices, there are one million rules for LP,
which is clearly too expensive.

Recently, differential privacy [6] has emerged as a powerful model
to protect against unknown adversaries with guaranteed probabilis-
tic accuracy. Hay, Li et al. performed some of the first studies to
support differential privacy in analyzing networks [18, 3]. Specif-
ically, they design an efficient method for releasing a provably pri-
vate estimate of the degree distribution of a network. However, it is
still an open problem on how to publish a graph with respect to the
differential privacy [18], and thus it is also not clear whether the
techniques developed in [18] can be applied to more complicated
queries, such as the shortest-path distance query.

Security Issues in Outsourced Server: Sensitive data protection
and verification of query results in the outsourced server have at-
tracted much attention recently [10, 26]. A work closely related to
this paper studies the verification issue in outsourcing graphs for
shortest path discovery [20]. In their solution, the original graph
data are outsourced along with verification objects, and the client
side will validate the correctness of the results with the verification
objects. However, they do not consider how to protect the sensitive
information of the original graph.

Shortest Path Discovery: Shortest path discovery is one funda-
mental problem in graph theory. Dijkstra’s algorithm[4] is a well-
known approach to find the single-source shortest path. There is
also some work to exploit pre-computed indices to speed up the
running time of shortest path discovery. HEPV [23] and HiTi [25]
can be viewed as multiple-level indices. The combination of the A*
algorithm with the landmark index is studied in [1]. 2-HOP index
[7] assigns each vertex with two vertex label sets (Loy+ and Liy),
and finds the shortest distance between two nodes with an intersec-
tion of their label sets. In addition, the indices with different error
bounds and various construction methods for approximate distance
answering have also been studied in [22, 12, 21]. However, we can-
not simply outsource such indices as they will also disclose sensi-
tive information of the graph. For instance, in the 2-hop index, each
vertex is very likely to record its distance to its immediate neigh-
bors. Such information often needs to be protected [2].
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Figure 1: An Overview

1.2 Overview

Given this, our goal is to search for a computational scheme
which can compute shortest distances while also protecting private
information in the original graph. The key issues underlying this
problem are i) what information should be protected and what can
be exposed, and ii) how can we employ cloud computing while
minimizing client side overhead and satisfying privacy constraints?
In addition, recall that the goal in graph publishing is to generate
an anonymized graph which should be similar to the original one in
order to minimize information loss [2, 13, 17, 11]. Here, the infor-
mation which we send to the cloud server is for computing shortest
distances. Thus, it does not have to be a graph or even a subgraph;
it can be any format as long as it does not disclose the private infor-
mation of the original graph. This goes back to the core problem:
what information should we protect? Indeed, most graph publish-
ing techniques are designed to protect specific types of private in-
formation. The most common type of attack is a neighborhood
attack [2]. For example, outsiders to a social network can easily
collect some users’ neighborhood information. However, it gener-
ally becomes increasingly difficult for attackers to learn knowledge
beyond the direct neighborhood [2]. Thus, in this paper, we focus
on protecting private information against neighborhood attacks.

The overall framework of our approach is illustrated in Fig. 1.
Given an original edge-weighted graph GG, we represent it in two
parts for both privacy protection and shortest distance computa-
tion: i) an outsourced graph(s) G, is a high level abstraction of
the original graph, which records the key information for online
shortest distance answering, but does not contain sensitive neigh-
borhood information; ii) a link graph, G;, which includes the lo-
cal private information and the relationships between vertices in
G and vertices in an outsourced graph(s) GG, for shortest distance
computation. The graph(s) G, is on the cloud server and the link
graph (G} is on the client side. Note that this graph representation
bears a certain similarity to the 2-level index for shortest paths [23,
25]. However, the existing multiple indices such as HEPV and HiTi
mainly target planar graphs, since discovering good graph separa-
tors in indexing is difficult on non-planar graphs. More importantly,
the present work has a different focus: to construct an outsourced
graph which eliminates the private local neighborhood knowledge
and makes full use of the cloud server.

The main contributions are summarized below.

e We formulate a new graph transformation problem as min-
imizing the size of the link graph G on the client side on
the condition that the privacy of outsourced graphs G, is pro-
tected and shortest distances can be answered using G, and
G. We propose a new security model, named 1-neighborhood-
d-radius, which hides local details in direct edges or a d-
radius for each vertex to counter neighborhood attacks.

e We propose a greedy approach to generate outsourced graphs
and a link graph for exact shortest distance answering with
protected neighborhood privacy.

e We study how to answer approximate shortest distances in
the same context with an average additive distance error bound.
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Figure 2: Sample Graph

By allowing approximate shortest distance to be answered,
we show that G, can be constructed efficiently. We also dis-
cuss the heuristic rules used in G, construction.

e We conduct extensive experiments on both real and synthetic
datasets. The results show that the client side achieves signif-
icant cost saving in shortest distance computing with the aid
of outsourced graphs compared to before. We confirm that
our method scales well when it is used to answer approxi-
mate shortest distances within a specified error bound.

The remainder of this paper is organized as follows. In section
2, we formulate the transformation problem taking both security
and utility into account. Section 3 and section 4 present methods to
transform graphs with the exact and approximate distance answer-
ing respectively. Section 5 reports experimental results. Section 6
concludes the paper and discusses future works.

2. PROBLEM STATEMENT

In this section, we first define our graph-related notation and
then discuss security issues for outsourced graphs and their utiliza-
tion in shortest distance answering. Finally, we formulate our opti-
mization problem.

2.1 Notation

Let G = (V, E) be an edge-weighted undirected graph, where V'
and F are its vertex set and edge set, respectively. Each e € E takes
the form of e = (u,v), u,v € V, and is associated with a weight
denoted as w(e) or w(u,v) (All weights are assumed to be non-
negative integers in a finite range). When the edge (u, v) does not
exist, we can assume w(u,v) = co. A path is a sequence of edges
(uo, u1)(u1,u2) ... (ug—1,ug), where u; € V (0 < ¢ < x). The
cost of a path p is the sum of edge weights in p, denoted as len(p).
A shortest distance query in graph G computes the minimal cost
0¢ (u,v) of any path from u to v in G. Figure 2(a) shows a sample
graph, which will be used as the running example in this paper. The
character inside the circle represents the vertex’s identifier, and the
number annotated on the edge is its weight. The symbols used
throughout the paper are listed in Table 1.

A graph pattern query can be used in re-identification over the
transformed graph [14, 2, 19, 17, 11]. If an attacker has some
knowledge about a fragment of the original graph, he can compose
a graph pattern query to find exact matches over the transformed
graph, and use the query results to infer other information. We
illustrate a weighted graph pattern query in Fig. 2(c). Its result is
the induced subgraph with the vertex set {7, {, v, p} in G, since we
can build a vertex mapping from the query pattern to this subgraph,
under which the weight of each edge is the same as that of the
mapped edge. Note, the result of the unweighted graph pattern in
Fig. 2(b) contains 32 subgraphs.

G(V,E) The original graph

Gi(Vi, Ey) The link graph

Go(Vo, Eo) An outsourced graph

Go Outsourced graphs

nim The number of vertices/edges in G
No The number of vertices in G,

ny The number of vertices in cluster

Table 1: Symbols

2.2 Protecting Neighborhood Privacy

In this work, we target at protecting the sensitive local neigh-
borhood information. Basically, the information of how an indi-
vidual vertex links to its neighbors and what are the edge weights
for these links are deemed sensitive and need to be protected. In
particular, we focus on 1-neighborhood attacks since it tends to be
more difficult to collect information beyond that [2]. In addition,
when two vertices are very close to each other (within a threshold
d), even without a direct link, their relationship can also be con-
sidered important. Formally, the outsourced graph should meet the
requirement of the 1-neighborhood-d-radius graph.

DEFINITION 1. 1-Neighborhood-d-Radius Graph. Let G =
(V, E) be an original graph and G, = (Vo, E,) an outsourced
graph, V, C V. For a vertex u € V, its appearance in 'V, can be
denoted as u. G, is a 1-neighborhood-d-radius graph of G, if G,
meets the following conditions:

1. forany vertex pairuandv € V,, (u,v) ¢ E. (1-neighborhood);

2. for any vertex pair @ and v € V,, dc(u,v) > d. (d-radius).
For brevity, we shorten the name to d-radius graph.

Simply speaking, we do not allow any two vertices, which are
adjacent or with their distance smaller than d, to appear in the same
d-radius graph. Figure 3(a) shows a 2-radius graph, Go(V,, E,),
for G(V, E) in Fig. 2(a). As shown in the figure, the vertex w
in V, is an appearance of a vertex » in V. Of the 16 vertices in
G, 6 appear in G,. For any two vertices w and v in V,, u and
v are not adjacent in the original graph, and the shortest distance
dc(u,v) > 2. We cannot add other vertices into G,. For example,
we cannot add @ since de(a,b) = 1 is less than d = 2. Notice
that the edges in G, show the connections between vertices in a
global manner, and the weight associated with an edge (@, v) is the
shortest distance d¢ (u, v) in the underlying original graph G.

We show differences between our method and that used in a
data publishing scenario. Figure 3(b) shows a 4-isomorphism re-
sult from a recent study [11]. It builds 4 disjoint, isomorphic sub-
graphs with graph splitting and structural anonymization. Given a
graph pattern query as in Fig. 2(b), it can get results from the trans-
formed graph in Fig. 3(b), but the number of matched subgraphs
is 4. Our work supports edge weights. In addition, the vertices in
a d-radius graph are a proper subset of those in the original graph,
and no original edges are allowed in a d-radius graph. Therefore,
the direct evaluation of any pattern query cannot find meaningful
results, and a subsequent node re-identification is prevented. Most
importantly, the operations to achieve structural anonymization in
existing works [2, 13, 17, 11], including arbitrary addition/removal
of edges and graph splitting, make the shortest distance computing
over the transformed graph difficult or even impossible.

An interesting and important question is whether enforcing the
d-radius property on each outsourced graph is too strict. For in-
stance, can we simply remove all edges in the original graph and



(a) 2-radius

(b) 4-isomorphism (c) non 2-radius

Figure 3: Transformed Graph for Outsourcing and Publishing

then only connect those pairs of vertices whose shortest distance
is no smaller than d? The answer is negative. We demonstrate a
successful attack on such as graph. Suppose an outsourced graph
G, is constructed by the removal of all direct edges and addition
of edges from vertex u to v if g (u,v) > 2. We show the edges
related with vertices € and k in G, in Fig.3(c). This graph is a non-
2-radius graph since two adjacent vertices e and k in the original
graph co-exist in the same d-radius outsourced graph, which vio-
lates the first condition of a d-radius graph. Attackers can observe
that the graph is strongly connected, thus, they can know that there
is a direct edge (with any weight) or a path with cost no larger than
2 between e and k in the original graph. Based on the triangle in-
equality over GG,, attackers even infer that the edge weight is no
smaller than 4!

2.3 Shortest Distance Computation using d-
Radius Graph

We transform an original edge-weighted graph G into a set of
outsourced d-radius graphs G, = {G(l,, e Glog"‘} which will be
deployed on the cloud server, together with a link graph G; on the
client side. An edge in G takes the form of (u, 7), which maintains
the relationship between vertices in G to an appearance of v in
an outsourced graph. The edge can be also expressed in the form
of (u, G,.7) to specify that the appearance 7 is in the outsourced
graph G,. The weight of an edge (u,v), w(u, ), in G; is equal to
dc (u,v). In particular, w(u,w) = 0. We may use u, u and Go.u
interchangeably in the following.

Now, we give an important property to characterize the outsourced
graphs G, and the link graph G;.

DEFINITION 2. (> d)-Shortest Distance Equivalent Graph.
Let G = (V,E) and G' = (V', E’) be two graphs, V. C V'. G’
is a (> d)-shortest distance equivalent graph of G if c(u,v) =
dc (u, v) for any vertex pair (u,v) with ¢ (u,v) > d, u,v € V.

In order to use outsourced graphs G, and the link graph G; =
(Vi, E}) to compute shortest distances, we require the union of G,
and G; to be a (> d)-shortest distance equivalent graph of the
original graph G. For graphs Go = (Vo, Eo) and G1 = (V1, E1),
their union resultis G = (Vo U Vo, Eo U E1).

Given two vertices u and v in G, the outsourced graph G, and the
link graph G; = (V1, E;), the shortest distance can be computed as
follows:

len = min w(u,T) + da, (T, Y Y,
TG € Vo,Go=(Vo,E0)€0 () + b6, (&3) +w(Fv)
(@), (vy) € By
dc(u,v) = min{len, w}, where w is w(u, v) in G; (1)

Notice that we only utilize the outsourced graphs and the link
graph to compute the shortest distance from u to v with 6 (u, v) >
d. For the shortest distance less than d, we can compute it in the

original graph G. Thus, the complete shortest distance comput-
ing can be described as follows: given two vertices u and v, Dijk-
stra’s algorithm runs on the original graph to find whether u can
reach v within d. If no path can be found, we begin to rewrite the
distance query from u to v into multiple distance queries against
the outsourced graphs G,. We locate u.Edges for u’s edges and
v.Edges for v’s edges in the link graph G,. For each pair of edges
ew = (u,T) € u.Fdges and e, = (v,y) € v.Edges, if T and
Y are in the same outsourced graph G, € G,, a distance query
from T to 7y is issued in G,. We then combine the returned results
from the outsourced server with the distance information (w(u, T),
w(y,v)) in G; to yield len in Equation (1). Due to the security
reason or the optimization purpose, for two vertices with distance
no less than d, the link graph G| may materialize their relationship
by directly linking them with an edge. Thus, the shortest distance
is computed by choosing the minimum between len and w(u,v) in
G| (if exists), as illustrated in Equation (1).

2.4 Optimization Problem
To sum up, given a graph G = (V, E) and d, the graph transfor-

mation produces outsourced graphs G, = {G1, ..., G‘OQO‘} and a
local link graph G; which achieve the following objectives:

1. Each outsourced graph G, € G, is a d-radius graph;

2. The union of G, and G is a (> d)-shortest distance equiva-
lent graph of G}

3. The space cost of G; and the cost of the shortest distance
computation on the client side are minimized.

In the following sections, we study how to solve this problem
efficiently.

3. GRAPH TRANSFORMATION WITH EX-
ACT DISTANCE ANSWERING

In this section, we first give a naive approach to show the prob-
lem complexity, then we give a greedy algorithm to transform a
graph for exact shortest distance answering. Finally we analyze
our method.

3.1 A Naive Approach

We observe that the two optimization targets (in Objective 3)
are along the same line with one another and not in conflict. For
instance, if we minimize the space cost G, the computational cost
over G; tends to be minimized. In the following, we will focus on
minimizing the space cost of ;. In addition, as discussed above,
for any pair of vertices (u, v) with distance less than d, its distance
can be discovered on the original graph. Thus, only those vertex
pairs whose distances are no less than d need to be considered in the
transformation. Formally, our graph transformation can be reduced
to a problem on minimizing G, as follows:

DEFINITION 3. Minimizing G,. Given a graph G = (V, E)
and d, we seek a set of d-radius graphs G, from G and a link graph
G such that for each pair of vertices (u,v) in graph G = (V, E)
with ¢ (u,v) > d,

1. there exists an outsourced graph G, € Go, (u,Go.T) €
E; and (Go.y,v) € Ej, where ég(u,v) = da(u,z) +
ba(z,y) + 0c(y,v);

2. or there exists an edge (u,v) € Ey in G.

Our objective is to minimize Gy, or the number of edges in G|.



In order to solve this problem (minimizing G;), we may consider
a straightforward brute-force approach. Basically, we can try to
enumerate all candidate configurations, where each candidate con-
figuration consists of a set of outsourced graphs and a link graph,
and can answer any distance query from u to v with g (u,v) > d
(Equation (1)); then we compute the space cost of G; in each candi-
date configuration. Finally, the optimal solution is the configuration
(a set of outsourced graphs with a link graph) with the minimal G;.

Now, let us look at the number of candidate configurations in the
brute-force approach. We note that the vertices in an outsourced
graph are actually the sub-set of the vertices in the original graph.
Although not all sub-sets of vertices of original graph can pro-
duce valid d-radius graphs, the total number of different outsourced
graphs (d-radius graphs) can still be O(2") in the worst case. In ad-
dition, the maximal vertices in the shortest path from u to v will be
O(n) in the worst case, which indicates that each outsourced graph
from the total O(2") ones has the potential to be used in the dis-
tance preserving for (u, v). Based on these factors, we can observe
the total number of different configurations is exponential in terms
of the number of vertices in the original graph. This clearly makes
the brute-force approach too expensive to be feasible.

We can also observe the relationship between the minimizing G
problem and the set cover problem [?]. The set cover problem is
described as: given a ground set U, and a candidate family S con-
sisting of the subsets of U, the goal is to find the minimal number
of candidate sets, denoted as C C S, whose union is U. We can
transform an outsourced graph GG, into a candidate set S in S and
transform a vertex pair p into an element e in the ground set U.
Specifically, the candidate set S consists of all vertex pairs whose
distance can be answered via G,. Given this, we may be inclined
to adopt a set-cover approach [?] to solve our problem. However,
the difficulty is that in our problem, the outsourced graphs and con-
sequently the candidate sets are not given in advance. And the ver-
tices in an outsourced graph must satisfy the d-radius constraint.
Moreover, the optimization target in our problem is to minimize
the space cost of G;, which is hard to be coded as the goal in the
set cover problem.

3.2 Fast Greedy Method

The naive solution above reveals the massive search space in
the optimal solution to our graph transformation problem. In this
part, we design a fast greedy method to produce a reasonable graph
transformation plan.

Basic Idea. The main problem with the naive approach lies in the
fact that we have to enumerate all possible outsourced graphs. To
avoid producing all outsourced graphs, we wish to construct only
the needed ones. Intuitively, the outsourced graph which can an-
swer more distance queries will be constructed first, since in such
a case, the edges in the link graph have higher chances to be reused
and thus the space cost of the link graph can be reduced. This idea
is similar to the greedy idea used in the set cover problem, which
selects the sub-set with the maximal number of elements first.

We then make a heuristic restriction on edges in G; in order to
reduce the search space for the outsourced graphs. Recalling Equa-
tion (1), the shortest distance from u to v can be computed via a
sub-path from Z to ¥ in an outsourced d-radius graph. Taking the
sub-path from w to T as an example, we require either the distance
from u to = to be less than a threshold or u to be adjacent to x
in the original graph. This restriction can rule out the cases where
edges in the link graph have large weights. Note that the restric-
tion does not contradict our above intuitions. A sub-path from w to
x which can be used in more distance queries always has a lower
weight. For simplicity, the threshold on the maximal edge weight
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Figure 4: Outsourced Graph Generation

in the local graph has the same setting as d in d-radius graph in the
following.

Under the restriction, we give the following notation on the can-
didate outsourced vertex pairs. The first condition is the same as
Equation (1), which means the shortest distance from « to v can
be answered via x and y. The second condition is the restriction
on edges in the link graph. The third condition corresponds to the
requirements of d-radius.

DEFINITION 4. Candidate Outsourced Vertex Pair. Given a
pair of vertices (u,v) in graph G = (V, E) with 6 (u,v) > d and
(u,v) ¢ E, if there exists another pair of vertices (z,y):

1. éa(u,v) = da(u,x) + da(z,y) + da(y,v);
2. da(u,z) < dor(u,z) € E, 6g(y,v) < dor(y,v) € E;
3. da(z,y) > dand (z,y) ¢ E.

then (x,y) is the candidate outsourced vertex pair for pair (u,v).

We illustrate candidate outsourced vertex pairs for the shortest
paths in Fig.4(a). Take the shortest path between node a and node
g as an example. For d=2, the candidate outsourced vertex pairs
include (a, f), (a,g), (b, f), and (b, g). We also note that some
vertex pairs, such as (b, f) in Fig.4(b), lie on the shortest paths be-
tween multiple vertex pairs and thus can be used to answer multi-
ple distance queries. In order to make the outsourced graph answer
more distance queries, we prefer to select such vertex pairs for the
outsourced graph. Also, note that (¢,v) cannot be put in the d-
radius graph which already contains (b, f), since dg (b, c) < 2. In
such a case, we have to put them into different outsourced graphs.

Another problem with the naive approach is the large intermedi-
ate space required. We need to preserve the distance for O(n?) ver-
tex pairs in the graph transformation. On a relatively large graph,
the representation of these vertex pairs alone will easily exceed the
memory limit. Thus, we need to extend the greedy framework to
use a pipeline approach to generate the outsourced graphs and their
link graph. That is, we iteratively enumerate vertex pairs until the
number of vertex pairs reaches a threshold, and then use these par-
tial vertex pairs to guide the construction of one outsourced graph.
Once the outsourced graph is constructed, the vertex pairs which
have been preserved will be removed from memory. Then we load
a new set of vertex pairs for the next outsourced graph, until all
distances between vertex pairs have been preserved.

Greedy Graph Transformation. We present our algorithm in Al-
gorithm 1. We initialize the shortest path set, outsourced graphs
and the link graph in line 1. Then we attempt to preserve the dis-
tances of these shortest paths with newly constructed outsourced
graphs. In the iteration from line 2 to line 11, when the total paths
in memory exceed MPMem in line 5, we build a vertex sequence L
with a benefit function and invoke Algorithm 2 to generate an out-
sourced graph according to L in line 7. MPMem is used to control
the maximal space cost used in the graph transformation. The paths
which have been preserved are removed from P in line 10.



Algorithm 1: Greedy Graph Transformation

Input: graph G = (V, E), d, MPMem for threshold on
maximal paths in memory
Output: outsourced graphs G, and link graph G.
1 Initialize an empty shortest path set P, G,, and G;;
2 while there remains shortest paths not handled do

3 Locate a remaining shortest path p with len(p) > d, add p
into P;

4 Enumerate all candidate outsourced vertex pairs for p;

5 if sizeof(P) > MPMem then

6 Build a vertex sequence L with the pair based benefit

function;

7 Go < OutGraph(G,d, L),

8 Go +— Go UGo;

9 Build edges in (G from vertices in G to these in Go;
10 Remove the paths from P exactly answered by Go;
1 Re-enumerate candidate vertex pairs in P;

12 removed «— oo;

13 while removed > |G,| do

14 Generate GG, as line 6 to line 11;

15 removed «— the number of removed paths by G,;

16 For each p € P, build an edge e with ending vertices of p, and
add e into G;
17 return G, and Gj.

Now we discuss the benefit function used in the greedy method.
For each shortest path, we enumerate all possible candidate out-
sourced vertex pairs. We have two kinds of benefit functions. The
first function is based on the vertex frequency. That is, we simply
count the occurrences of z and y for each candidate outsourced ver-
tex pair (z,y) separately. The second one is based on vertex pair
frequency. We record the frequency of all possible vertex pairs,
and sort vertex pairs in terms of their frequency. Note that L may
contain duplicate vertices in such a case. Since two vertices = and
y having high frequencies does not imply that (x,y) can be used
to compute more shortest distance queries, Algorithm 1 applies the
vertex pair based benefit function in line 6. Our experimental re-
sults show that the latter function works better than the former.

As for the termination condition of the greedy method, we can

continue generating new outsourced graphs and pruning path set
P until P is empty. The algorithm will stop since each outsourced
graph can be used to preserve at least one remaining distance. How-
ever, when the iteration from line 2 to line 11 stops, those ver-
tex pairs whose distances can be “easily” answered by outsourced
graphs have been removed. In order to reduce the transformation
cost, we can terminate the construction of outsourced graphs when
the number of nodes in a newly generated outsourced graph G, is
larger than the number of remaining vertex pairs whose distances
can be answered via G,. Since the remaining paths are recorded
in G; in line 16, the union of G and G; is still a (> d)-shortest
distance equivalent graph of the original graph.
Discovering Single Outsourced Graph. The next key problem
is how to use the heuristic information collected from the greedy
method to guide the construction of a outsourced graph. We now
show that each d-radius graph can be easily constructed from a
distance aware cluster cover.

DEFINITION 5. Distance Aware Cluster Cover. Let G = (V, E)
be an original graph. A cluster cover C is a set of clusters, each
cluster Cq(z) € C having a center x € V. A distance aware
cluster cover meets the following requirements:

Outsourced
graph

Link Graph

Original
graph

Figure 5: Link Graph and One Outsourced Graph

1. For any vertex w € V, u belongs to at least one cluster
Ca(x) where w is directly connected to x or dc(u, x) < d;

2. For any two clusters Cq(x) and Cy4(y), 6c(z,y) > d and
(z,y) ¢ E.

Intuitively, the centers of clusters can be used as the outsourced
vertices in a d-radius graph. For example, the vertices in Fig.3(a)
are the cluster centers in a cluster cover. For a vertex u in a cluster
C4(z), we build an edge from w to its cluster center x, and such
an edge is actually in the link graph G;. Given a graph G, d, and
a vertex sequence L which encodes the heuristic knowledge, an
outsourced graph can be constructed efficiently with Algorithm 2.

Algorithm 2: OutGraph(G,d, L)
Input: graph G = (V, E), d, a vertex sequence L.
Output: Outsourced Graph G, = (V,, E,).
1 Initialize empty G, = (Vs, Es);
2 while there exists uncovered vertex in L do

3 Pick the top uncovered vertex x from L as a cluster center,
and V, — V, U {z};
4 Create a cluster Cy () containing 1-neighbor of = and

vertex u with d¢(u, z) < d with Dijkstra’s search, and
mark them covered,
5 For any two cluster centers x and y, build the necessary edge
between them;
6 Return G,.

In Algorithm 2, we select the first uncovered vertex from L as the
cluster center and build its cluster, since L is sorted in terms of node
benefit and the vertices closer to the head of L have higher benefits.
The cluster centers will be the vertices in the outsourced graph G,.
The other vertices in a cluster can be discovered with Dijkstra’s
algorithm and are labeled as covered so they will not be selected
as cluster centers . Notice that this strategy also ensures that the
minimal distance between cluster centers is no smaller than d. In
line 5, we build edges between any two vertices in the outsourced
graph. The edge weight equals their shortest distance in the original
graph discovered by Dijkstra’s algorithm. Given three vertices x,
y, and z, if 0g(z,y) + da(y, z) =dc(z, z), the edge from z and z
need not be constructed.

Figure 5 shows one outsourced graph and its link graph produced
by Algorithm 1 on the graph (Fig.2(a)). The outsourced graph is the
same as Fig.3(a). It can be constructed by Algorithm 2. Lines with
red color are the edges in the link graph (. In order to make the
figure clear, we omit the weight of these edges.

3.3 Analysis of Graph Transformation



In this part, we analyze the time cost and correctness of the graph
transformation algorithm, the impact of d, and the overhead distri-
bution between the cloud server and client side. We use the follow-
ing symbols. The meanings of n,, n;, n, m are given in Table 1.
is the total number of outsourced graphs, which is related to d and
the graph’s features. b is the maximal number of a vertex’s edges
to an outsourced graph.

The time cost of graph transformation in Algorithm 1 includes
the enumeration of all shortest paths, the sorting of candidate out-
sourced vertex pairs, and the generation of all outsourced graphs.
The enumeration of all shortest paths requires O(n(m + nlogn)).
Since we need to sort at most O(n?) candidate outsourced vertex
pairs in the benefit computation before the construction of each of x
outsourced graphs, the total sorting cost is O(zn? logn). The sin-
gle outsourced graph generation in Algorithm 2 includes the vertex
selection cost and edge building cost. The vertex selection requires
O(non}), since there are O(n,) clusters and each requires O(n})
for local shortest path discovery. In the edge building for an out-
sourced graph, we need O(n,) times shortest distance discovery
in the original graph in the worst case. Thus, a single outsourced
graph construction takes O (n,(m +nlogn) +noni)=0(no(m +
nlogn)). With all factors considered, the total time cost of graph
transformation in Algorithm 1 is O(n(m+nlogn) +zn?logn +
zno(m + nlogn)). A minor extension to Algorithm 1 is to cache
the computed shortest distances which can be used in the edge
building in outsourced graphs. In this way, the time complexity
can be reduced to O(n(m + nlogn) + zn?logn).

Now, we show that Equation (1) can yield correct shortest dis-
tances over the union of G, and GG; produced by Algorithm 1. Al-
gorithm 1 has enumerated all shortest paths P with their distances
no smaller than d. From the construction rules, we know that a
shortest path p € P can be removed from P only when p can be
exactly answered by one outsourced graph in G, or p is stored in the
link graph ;. Therefore, the union of G, and G; from Algorithm 1
is a (> d)-shortest distance equivalent graph of the original graph.
At the same time, Equation (1) enumerates all possible paths from
u to v using G, and G,. Therefore, Equation (1) can produce the
correct results.

From the above discussion, we can notice that d is a key factor
to adjust the security strength and overhead on the client side. A
larger d leads to fewer outsourced vertices, which indicates more
information is hidden in a “coarser” outsourced graph. At the same
time, a larger d results in more vertices in one cluster in the cluster
cover, which shows that the client side requires more space cost to
store the link graph and more time cost in the local path search-
ing. In addition, since a single “coarser” outsourced graph pre-
serves fewer shortest distances than a “finer” one, it needs more
outsourced graphs along with the link graph to meet the require-
ment of (> d)-shortest distance equivalent graph, which also re-
sults in a higher graph transformation time cost.

| | Client Side | Cloud Server |
Space O(m + zneny) O(xn?)
Query Time | O(n} + zb*) O(xb’n2)

Table 2: Overhead Distribution with Graph Outsourcing

Now we discuss the overhead distribution after graphs are out-
sourced in Table 2. As for the space cost, the client side needs
O(m+ xnony) to store the original graph and the link graph, while

the cloud server requires O (zn?2) space to store all outsourced graphs.

As for the time cost of shortest distance query answering, the client

side needs time O(n7) for the local search and time O(zb?) for re-
sult merging with Equation (1). The cloud server takes O(zb*n?)
time to compute the rewritten queries. Note that the cloud server
can build indices [21, 1, 7] and perform parallel processing over
x graphs to lower the query evaluation cost significantly. Com-
pared with O(m + nlogn) time cost without graph outsourcing,
the client side saves much time cost with the aid of the cloud server.
The final experimental results also show the effectiveness of graph
outsourcing.

4. GRAPH TRANSFORMATION WITH AP-
PROXIMATE DISTANCE ANSWERING

In this section, we relax the 2-nd objective on (> d) equivalent
shortest distance graph to handle large graphs. We first propose a
method to transform graph with approximate distance answering,
and then discuss heuristic methods in the outsourced graph con-
struction.

4.1 Average Additive Error Guided Graph Trans-

formation

Although the graph transformation method discussed above can
answer shortest distances exactly, the transformation requires enu-
merating all shortest paths and computing the edges inside out-
sourced graphs, which makes the method unsuitable for large graphs.

Graph transformation with approximate distance answering on
large graphs thus becomes an important research problem, since
approximate shortest distances are good enough in many applica-
tions [22, 12, 21]. This then raises the issue of how many out-
sourced graphs are needed to achieve good distance values, if we
use random vertex sequences for Algorithm 2.

The quality of the approximate distance from u to v can be mea-
sured by adg (u,v) + B [22], where « is the multiplicative error,
and [ is the additive error. There are many studies on approximate
distance answering. A pre-computed data structure is proposed to
achieve « in [1, 2k — 1], where k can adjust the space and time cost
in pre-computation [22]. Kleinberg et al. achieve @ = 1 + ¢ and
B = 0, given enough random beacons and the triangle inequality
rule [12].

In this part, we attempt to achieve o = 1 and a given average
additive error (3 for all shortest distance queries. For any distance

query ¢ € Q from u and v, a path pg is discovered for ¢ using

G, and G,. Average additive error 3 can be defined as #,

where 34 = len(pg) — da(u,v). The rationale of averaged ad-
dition error is to get acceptable results with a limited number of
outsourced graphs. The average additive error can be useful when
a large number of shortest distance queries are evaluated in graph
analysis. In addition, since our outsourced graph is generated ran-
domly, the worst case of additive error can be lowered along with
the average one simultaneously with a high possibility.

We present our graph transformation method in Algorithm 3 to
achieve the given additive error 3. The basic idea is to repeatedly
construct randomized outsourced graphs until the estimated addi-
tive error avg is less than 3. The estimated additive error avg is
initialized in line 2 and is adjusted after a new outsourced graph is
constructed in the iteration from line 3 to line 10.

In line 4, we build an outsourced graph with Algorithm 2. Since
the exact edge weight computation between outsourced vertices
takes O(n,) times Dijkstra’s search, where n, is the number of
vertices in an outsourced graph, we relax the exact edge building
as follows. We select [ vertices from n, total outsourced vertices,
and we build the full shortest path trees for these [ vertices in the
original graph with Dijkstra’s algorithm. The shortest path tree can



Algorithm 3: Average Additive Error Guided Outsourced
Graph Construction

Input: Graph G, d, additive error threshold 3, s for the
number of sampling queries, ! for the number of full
shortest path trees.

Output: Outsourced Graphs G,.

1 Initialize three empty query lists Qo, Q1 and Q2 with length s;
2 avg «— o0;

3 while avg > § do

4 Go «— OutGraph(G,d, L) with modified edge building
based on [ full shortest path trees;

5 Go — Go U {Go};

6 Collect the average number n, of vertices in GG, and the
average number n; of vertices in cluster;

7 Remove queries from Qo and Q1 which do not meet the
requirement of Qo and Q1;

8 Add new queries into Qo and Q1 with total s queries;

9 Evaluate queries over G with Dijkstra’s algorithm and

Equation (1) to obtain lo, {1 and l2;
10 | avg « pct(Qo)lo+pct(Q1)l1+pct(Q2)la;
11 Return G,,.

ensure that the path in the tree is also the shortest path in the origi-
nal graph. Then, we build edges for any two outsourced vertices
and y when 7 is the lowest ancestor of ¥ in the shortest path tree.
‘We observe that our relaxed edge building method is similar to that
of the landmark index [21]. However, the landmark index only
records relationships from vertices to the root of the shortest path
tree. Hence, the outsourced graph with this relaxed edge building
strategy can yield results more precisely than the landmark index
when using the same number of shortest path trees.

When outsourced graphs G, are generated randomly and the re-
laxed edge building strategy is used, the result of Equation (1) may
be not the shortest distance. Given two vertices u and v, the ad-
ditive error of distance computed by Equation (1) comes from the
error in the shortest distance between cluster centers in the out-
sourced graph (due to relaxed edge building strategy) and the devi-
ation of their cluster centers from their shortest path.

The next key problem is how to estimate the average additive er-
ror avg from existing outsourced graphs. In order to compute avg
more precisely, we put a shortest distance query from w to v into
one of 4 categories, namely Q;, Qo, @1, and 2, according to the
relationships from w and v to current outsourced graphs G,. Then
avg can be calculated with the proportion and average additive er-
ror of each category. Specifically, if the shortest distance d¢ (u, v)
is smaller than d, ¢ belongs to ;. ¢ can be answered exactly with
local Dijkstra’s search in the original graph. If neither v or v has
been outsourced into any G, € Go, g is in Qo, as illustrated in
Fig.6(a). Even if the outsourced graph returns the correct distance
between x and y, where x is the cluster center for v and y is the
cluster center for v, the maximal additive error for a query in Qo
is 4d.,, where d, = maz(d, Wmas ), and Wimaey is the maximal
edge weight. If either u or v has been selected into an outsourced
Go € Go, q belongs to QQ1, as illustrated in Fig.6(b). Suppose that
the outsourced graph returns the correct distance, the maximal ad-
ditive error for a query in Q1 is 2d,,. If both u and v are selected
in one G, € G,, q is in Y2, as illustrated in Fig.6(c). The additive
error of ¢ now comes from the error in the distance computation in
outsourced graphs. From the above discussion, we know that the
additive error for a query in @Q; is 0, and the average additive er-

--- -

(a) Qo Query

(b) Q1 Query

(c) Q2 Query

Figure 6: Query Categories

ror for queries in Qo is larger than that for queries in @1, which is
larger than that for queries in Q2.

The proportion of each query category can be computed with
two statistics. The average number of vertices in a cluster, ny,
and the average number of vertices in an outsourced graph, 7,
are collected in line 6 in Algorithm 3. Suppose that the total num-
ber of outsourced graphs is z. The proportion pct(Q;) for @, is

]

v The increase of x does not affect pct(Q;). The propor-
tion pct(Qo) for Qo is (1 — |”—V‘")2z(1 — "17") A vertex is not
selected as the cluster center for outsourcing under the probabil-
ity (1 — %) pct(Qo) reveals the probability that neither of two
vertices is selected after = times. As the number of outsourced
graphs increases, pct(Qo) decreases dramatically. The proportion
pet(Q2) for Qz is (1—(1— ‘"70‘2)”3)(1 — ‘"7“), where (1 — R/—OlQ) is
the probability that two vertices are not selected as cluster centers
simultaneously. pct(Q2) increases with the increase of the num-
ber of outsourced graphs. With three of the four proportions de-
fined, the proportion for @ is simply the remainder: pct(Q1)=1-
pet(Qu)-pet(Qo)-pet(Q2).

Now, we compute lo, l1, and [, which are the average additive
errors for queries in Qo, (1, and Q2 respectively. It is not a trivial
task, since these values are related to the local structure inside the
cluster and the global structure between clusters. We can know that
these additive distance errors decrease monotonically with the in-
crease of outsourced graphs. In this paper, we employ a sampling
method to estimate these additive distance errors. That is, we ran-
domly build three query lists for query categories Qo, @1, and Q.
These query lists are initialized in line 1, and the queries in the list
for Qo and ()1 may be adjusted after a new outsourced graph is
generated in line 7 and line 8. lo, {1, l> are then computed as the
average difference between the exact shortest distances from Dijk-
stra’s algorithm and the distance with Equation (1) for all queries
in corresponding query categories.

Finally, the average additive error can be computed in line 10
with

pct(Qo)lo + pet(Q1)l + pet(Q2)lz, 2)

where lo, [1, and I are averaged additive errors for queries in Qo,
Q1, and Q)2 respectively. We do not mention the query category Q;
since the additive error for the query in @); is 0. One may wonder
why we cannot produce the average additive error directly from
the sampling queries. This is due to the fact that the proportions
of query categories are changed with more outsourced graphs. In
addition, l2 < I, l1 < lp. Thus, Equation (2) can estimate the
additive error more precisely.

The time cost of the client side in Algorithm 3 mainly consists
of the evaluation cost of sampling queries and the generation cost
of outsourced graphs. Let n, m, n;, n, have the meanings illus-
trated in Table 1. [ is the number of full shortest path trees con-
structed for each outsourced graph. z is the number of outsourced
graphs, which is related with d, the additive error bound B, and
the graph’s features. s is the number of sampling queries. The
evaluation of sampling queries takes O(zs(m + nlogn)) time
cost in the worst case, and the outsourced graph generation takes



O(z(I(m+nlogn)+nen?)) time cost, where O(I(m+nlogn))
is the cost for ! times Dijkstra’s algorithm in edge building, and
O(non?) is the cost in outsourced vertex selection. Then the time
complexity in Algorithm 3 is O(z(t(m+nlogn)+noni)), where
t = max(s,l).

4.2 Heuristic Construction Rules

Algorithm 3 achieves the desired additive error with outsourced
graphs constructed randomly. Another extension is to introduce
heuristic rules in the outsourced graph construction. From Equation
(1), it is feasible for outsourced graphs to produce more precise
results when they contain more shared shortest sub-paths. Existing
work on landmark indices also shows that the heuristic rules work
better than the random ones [21].

The basic idea behind heuristic construction is to make it more
probable for a vertex to be selected as a cluster center if it is lo-
cated on more shortest paths. Thus more shortest distance queries
can be answered via outsourced graphs generally. In our paper,
we design two heuristic rules. The degree based outsourced graph
construction attempts to select vertices with the higher degree as
the cluster centers; the cluster based method selects the vertex =
with the largest number of vertices in cluster Cy(z) each time. In
order to make the outsourced graph construction in Algorithm 2 be
aware of these heuristic values, we sort the vertices in sequence L
with the heuristic values, since the vertices nearer to the top of L
have more chances to be outsourced in Algorithm 2.

The duplication of vertices in different outsourced graphs is an-
other important concern in the heuristic construction method. The
same vertex sequence will produce the same outsourced graph us-
ing Algorithm 2. In order to avoid constructing duplicate graphs,
we make an extension to the outsourced graph construction method
in Algorithm 2 with an introduction of a percentage k(0 < k < 1)
and a function f(z), where z is the number of outsourced graphs,
f(1) =kand f(i) < f(¢ + 1). In the first outsourced graph con-
struction, rather than always choosing the vertex with the maximal
benefit value among the uncovered ones in vertex sequence L, we
select a vertex randomly from uncovered vertices with top-k bene-
fit values. In the following z-th outsourced graph generation, k is
enlarged by f(x) such as f(z + 1) = 2f(z) until £ > 1. Thus af-
ter multiple rounds of outsourced graph construction, the heuristic
values have been extensively exploited, and the outsourced graph
construction retreats to the random method, which focuses on the
distribution of the outsourced vertices in outsourced graphs.

S. EXPERIMENTAL RESULTS

In this section, we implement the graph transformation with the
exact and approximate distance answering, and conduct extensive
experiments on both real and synthetic datasets.

5.1 Experimental Setup

Measures. We focus on the following measures related to the graph
transformation: the transformation time cost, the space cost of the
link graph |G| (the number of edges in G;), and the average ad-
ditive error achieved by outsourced graphs. In addition, in order
to show the effectiveness of graph outsourcing in shortest distance
computing, we define a local overhead ratio r; = t;/tf, where ¢, is
the time cost to discover the shortest distance with Equation (1) on
the client side, and ¢ is the time cost used by Dijkstra’s algorithm
on the client side.

Implementation Details and Competitors. We implement our
methods in Java with JDK 1.6. The maximal runtime memory of
JVM is set to 1.55GB. All experiments are carried out on 1.8 GHz

AMD processor running Windows Server 2003. The shortest dis-
tance computation in the outsourced server is simulated in the same
machine. When one outsourced graph is constructed, we store it
into a relational database so we can support multiple outsourced
graphs. The time cost in accessing the relational database is not
included in the time reported.

In addition, we implement the edge anonymization method with
all-pair shortest path preserving (denoted as LP) in the technical
report version for [24]. As discussed above, LP only anonymizes
edge weights, and then the transformed graph cannot counter the
structural attack. Here, we want to compare their work in terms
of the graph transformation time cost, the space cost and the local
overhead ratio. Just as in [24], we also use LPsolver 5.5 ! to solve
the rules generated.

Datasets. We use five graph datasets to test our methods, including
three real graphs named Gnut08, DBLP and Bay, and two synthetic
graphs named Random and Power.

Gnut08” is a directed gnutella P2P network. DBLP is extracted
from a recent snapshot of DBLP dataset’. We select the records
after 2004. Bay dataset* describes the road network in the San
Francisco Bay Area. The edge weights in Gnut08 and DBLP graph
are assigned randomly in the range [1,100]. Each edge weight in
Bay is divided by 30 so that the average edge weight 54 in Bay is
similar to that of the other graphs.

Dataset # of Vertices | # of Edges
Gnut08 6,301 20,777
DBLP5k 5,000 20,663
DBLP200k 200,000 847,433
Bay 321,270 400,086
RandomxzkNyd | 1k-100k yk-100yk
PowerrkNyd 50k-200k 50yk-200yk

Table 3: Statistics of Graph Datasets

The Random dataset of graphs are generated as follows. Let n
and m be the number of vertices and edges respectively, we ran-
domly select the source and target vertex for m times among n
vertices. The Power graph set is generated using Barabasi Graph
Generator vI.4°. Tt can create graphs in which the distribution of
outdegrees obeys a power law. The weights of edges in Random
and Power graph are assigned randomly in [1,100].

Some statistics about these graphs are summarized in Table 3.
Our synthetic graphs have the suffix zNyd, where x is the num-
ber of vertices and y is the average degree. For example, Ran-
dom100kN3d represents a Random graph with 100k vertices and
an average degree of 3.

5.2 Graph Transformation with Exact Answer

In this section, we study the impact of different factors on the
measures of graph transformation with exact shortest distance an-
swering. Specifically, we are interested in: i) What is the impact
of d on the transformation overhead, the size of the link graph
and local overhead ratio? ii) We have discussed two benefit func-
tions. Can the vertex-pair based function ByPair reduce the over-
head compared to the vertex based function By Vertex? iii) Does

"http://lpsolve.sourceforge.net/.5/
Zhttp://snap.stanford.edu/data/p2p-Gnutella08.html
3http://dblp.uni-trier.de/xml/
*http://www.dis.uniromal.it/ challenge9/data/
Shttp://www.cs.ucr.edu/ ddreier/barabasi.html
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Figure 7: Experimental Results on Graph Transformation with Exact Answers

the threshold MPMem on maximal paths in memory in Algorithm
1 impact on the effectiveness of the greedy method?

Transformation Time Cost. Figure 7(a) and Figure 7(b) show the
transformation time cost with respect to d on Random graphs and
real data respectively. The graph data used in Fig.7(a) is RandomxkN3d,
where z is the number of vertices in X -axis. We observe that the
time cost of graph transformation also increases with the increase
of d. The main reason lies in the fact that when d is larger, there
are fewer vertices in each d-radius outsourced graph, and thus more
outsourced graphs are required to achieve (> d)-shortest distance
equivalent graph. We also find LP method does not scale well. LP
produces O(dn?) rules for a graph to achieve all-pairs shortest path
preservation, where d is the average degree, and 7 is the number of
vertices. For example, a Random graph with only 600 vertices and
average degree 3 generates 1,071,608 rules. LPSolver cannot han-
dle this many rules and terminates. On smaller graphs with the
number of vertices less than 500, we also notice that the time used
by LPrises rapidly.

Figure 7(c) studies the impact of the threshold MPMem (maxi-
mal paths in memory) on the transformation time cost over two real
graphs. Our algorithm introduces MPMem to control the total in-
termediate space used in the greedy method. Intuitively, the greedy
method can produce more reasonable outsourced graphs based on
more shortest paths with a larger MPMem. In addition, when the
number of shortest paths exceeds MPMem, another new outsourced
graph has to be generated inevitably. Thus, the increase of MPMem
will reduce the graph transformation time cost in general. We also
notice that when MPMem is large enough, its increase is not effec-
tive any more, since all computed shortest paths can be put into the
memory in such a case.

Figure 7(d) compares the effects of the two benefit functions,
By Vertex and ByPair, on the transformation time cost on Random
graphs. As discussed before, the case that two vertices = and y have
a higher frequency does not indicate that the vertex pair (z, y) can
answer more shortest distances. Thus, ByPair method is a more
reasonable function which can produce fewer outsourced graphs
and then lower the transformation time cost, as shown in Fig.7(d).
We also notice that the reduction of transformation time with the
ByPair function is not significant. This is because we need to enu-

merate all shortest paths in two cases, which dominates the entire
time cost.

Size of Link Graph. Figure 7(e) summarizes the space cost of the
link graph on Random graphs, for various graph sizes. Obviously,
a larger original graph results in a larger link graph. We also ob-
tain the size of the link graph generated by LP. Actually, the LP
method needs to record the anonymized edge weight for each edge
in space cost O(m), where m is number of edges. Although LP
consumes less space cost than our method, the main drawback of
LP lies in its scalability. We cannot run it on a large graph. Figure
7(f) presents the impact of different benefit functions on the space
cost of the link graph across real graphs, Power graphs (P) and
Random graphs (R). All datasets clearly show the effectiveness of
the ByPair function. The space cost of link graphs with ByPair is
nearly 1/3 to 1/2 that of link graph using By Vertex. As explained
above, ByPair is a more effective benefit function than By Vertex
to produce fewer outsourced graphs. Figure 7(g) shows the space
cost of link graph on Power graphs varying MPMem from 1.5M
(M is for million) to 3M. It also verifies our earlier claim. When
MPMem is sufficient to store shortest paths, such as in graphs with
fewer than 6k vertices, the adjustment of MPMem is not effective.
When the graph is larger and only a smaller proportion of all paths
can be loaded into memory, MPMem is more useful in reducing the
space cost of the link graph.

Local Overhead Ratio. Figure 7(h) illustrates the local overhead
ratio for various d values on the Random graph set. We randomly
generate 100 shortest distance queries, and compute the average lo-
cal overhead ratio. As shown in the figure, the local overhead ratio
is lower than 0.06 in all test cases. In other words, the outsourced
server carries out the bulk of the computational work for shortest
distance discovery. The client side handles the local shortest dis-
tance search for distances smaller than d and the merging of results
in Equation (1). Therefore, the decrease of d can further reduce the
time cost on the client side. We believe the curve in the figure is
due to the randomization in the time recording, since all local time
cost is nearly zero. As for the LP method, it takes O(l) time cost
to recover the shortest distance, where [ is the total edges in the
shortest path. The time cost of LP over small graphs is also nearly
Zero.
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5.3 Graph Transformation with Approximate
Answer

In this section, we study the impact of different factors on the
measures of graph transformation with approximate shortest dis-
tance answering. Specifically, we are interested in: i) What is the
impact of d on the transformation overhead and local overhead ra-
tio? ii) Can the given additive error bound be achieved with our
method? iii) What is the impact of different heuristic construction
rules on the additive error? In all experiments, the number of full
shortest path trees in each outsourced graph is set to 50, and the
number of sampling queries for each category is 20.

Transformation Time Cost. Figure 8(a) illustrates the transforma-
tion time cost across the Power graph set, varying d from 10 to 20,
when the average additive error 3 is set to 12. Outsourced graphs
are generated in a random way (denoted by Random). A larger
d indicates each outsourced graph preservers fewer shortest paths.
In order to meet the requirement of the given additive error, more
outsourced graphs are needed, which leads to more transformation
time.

Figure 8(b) presents the impact of different additive errors on the
transformation time cost across two real datasets. We still use the
random method to construct outsourced graphs. From Fig.8(b), we
can see that a larger additive error leads to less transformation time
cost, since in such a case, fewer outsourced graphs are needed.

Size of Link Graph. Figure 8(c) summarizes the size of the link
graph for various d on the Power graphs with the given average ad-
ditive error 12. It is no surprise that the size of the link graph goes
up with the increase of d. As we have explained in the transforma-
tion time cost, a larger d corresponds to more outsourced graphs
and then more edges in the link graph to outsourced graphs. Fig-
ure 8(d) illustrates the space cost on the real datasets with different
additive errors. It clearly shows that the increase of additive error
results in a decrease in the size of the link graph. The reason is
similar to the explanation we gave along with Fig.8(b). A larger
additive error reduces the number of the outsourced graphs used,
indicating fewer edges in the link graph.

Additive Error. Figure 8(e) studies whether we can achieve the ad-

ditive error as expected. After we generate the outsourced graphs
with Algorithm 3, we evaluate 100 shortest path queries with Equa-
tion (1) and Dijkstra’s algorithm, and test whether their average
additive error is the same as that specified. We observe that the
two values (in X and Y axis) are very close. In other words, our
graph transformation method can achieve the specified additive er-
ror quite well, which also illustrates the effectiveness of the average
additive error estimation strategy in Algorithm 3.

Figure 8(f) compares the average additive errors on the same
number of outsourced graphs constructed with different heuristic
rules over Random graphs. We implement the degree based (de-
noted by DegreeBased ) and the cluster based (denoted by Clus-
terBased ) method for constructing outsourced graphs. The av-
erage additive errors are obtained with 100 queries on outsourced
graphs. The results in Fig.8(f) show that among all heuristic con-
struction rules, the cluster based method can produce outsourced
graphs with lowest additive error when the number of outsourced
graphs is relatively small, for example, less than 4. When more out-
sourced graphs are generated, three construction methods produce
the similar answers, since the distribution of outsourced vertices is
more important in such a case.

Local Overhead Ratio. Figure 8(g) and Figure 8(h) illustrate the
local overhead ratio on the real datasets and Power graphs. We
obtain the local overhead ratio as that in Fig.7(h). In all cases,
the local time cost used in shortest distance answering is nearly
zero. By combining the results in Fig.7(h), we can know that the
local overhead ratio scales very well in terms of the graph size.
As shown in Table 2, the client side requires O(n} + zb?) time
cost for shortest distance computation, while n;, = and b are nearly
constant with respect to the graph size. At the same time, the graph
size has a significant impact on Dijkstra’s algorithm in the distance
discovery. Therefore, the local overhead ratio declines sharply with
the increase of graph size.

5.4 Summary

To sum up, from the experimental results, we can draw the fol-
lowing conclusions: i) The increase of d, although strengthening
security of outsourced graphs, drives up the transformation time
cost, the space cost of the link graph and overhead of the query



answering on the client side; ii) Our graph transformation with ex-
act distance answering scales much better than the existing method.

Our graph transformation with approximate distance answering achieves

the given additive error quite well and can handle large graphs. iii)
In all test cases, the local overhead ratio is very low and even goes
down with the increase of graph size. Such results illustrate the
effectiveness of graph outsourcing.

6. CONCLUSION AND FUTURE WORKS

In this paper, we study how to utilize cloud computing to ef-
ficiently compute shortest distance in large graphs without com-
promising their sensitive information. We define a new security
model called 1-neighborhood-d-radius. Our purpose is to reduce
the space cost and shortest distance evaluation cost on the client
side while satisfying both security and utility requirements. We
devise a greedy method to transform graphs with exact shortest
distance answering, and develop a fast transformation method to
support approximate distance answering within the given average
additive error bound.

This work can be extended in several interesting directions. First,
we will study how other graph queries such as reachability query
can be computed in the cloud within our framework. In general,
our framework can be useful for graph operations whose evaluation
cost mainly comes from a “global search”, yet local information
can be easily merged into the results. Second, we will investigate
stronger security standards over outsourced graphs. For instance,
we can add noise on the edge weight or node degree on the con-
dition that the shortest paths can be preserved in the outsourced
graph. Third, incremental graph outsourcing is desirable for dy-
namic graphs. At the same time, incremental outsourcing should
not lead to information leakage in outsourced graphs.
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