
Labeling Recursive Workflow Executions On-the-Fly

Zhuowei Bao
Department of Computer and

Information Science
University of Pennsylvania

Philadelphia, PA 19104, USA
zhuowei@cis.upenn.edu

Susan B. Davidson
Department of Computer and

Information Science
University of Pennsylvania

Philadelphia, PA 19104, USA
susan@cis.upenn.edu

Tova Milo
School of Computer Science

Tel Aviv University
Tel Aviv, Israel

milo@post.tau.ac.il

ABSTRACT
This paper presents a compact labeling scheme for answer-
ing reachability queries over workflow executions. In con-
trast to previous work, our scheme allows nodes (processes
and data) in the execution graph to be labeled on-the-fly,
i.e., in a dynamic fashion. In this way, reachability queries
can be answered as soon as the relevant data is produced.
We first show that, in general, for workflows that contain re-
cursion, dynamic labeling of executions requires long (linear-
size) labels. Fortunately, most real-life scientific workflows
are linear recursive, and for this natural class we show that
dynamic, yet compact (logarithmic-size) labeling is possi-
ble. Moreover, our scheme labels the executions in linear
time, and answers any reachability query in constant time.
We also show that linear recursive workflows are, in some
sense, the largest class of workflows that allow compact, dy-
namic labeling schemes. Interestingly, the empirical eval-
uation, performed over both real and synthetic workflows,
shows that our proposed dynamic scheme outperforms the
state-of-the-art static scheme for large executions, and cre-
ates labels that are shorter by a factor of almost 3.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
scientific databases

General Terms
Algorithms, Performance, Theory

1. INTRODUCTION
Scientific workflow systems are now becoming“provenance

aware” by automatically recording data and module depen-
dency during execution (e.g., Taverna [14], VisTrails [7] and
Kepler [5]). By using such information, provenance queries
such as “Was data item A (or Module M) used to pro-
duce data item B, either directly or indirectly?” are en-
abled. Answering such queries entails evaluating reachabil-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

ity queries over large, graph-structured data, which can be
expensive [8].

Reachability labels are an important tool for efficiently pro-
cessing reachability queries on large graphs. The main idea
is to assign each vertex a label such that, using only the
label of any two vertices, we can quickly decide if one can
reach the other. However, the effectiveness of this approach
crucially depends on the ability to develop compact and ef-
ficient labeling schemes that take small storage space and
allow fast query processing. More precisely, we say that a
labeling scheme is compact if it uses logarithmic-size labels
(O(logn) bits for any graph with n vertices), and efficient if
it answers any reachability query in constant time 1. This is
indeed the best one can hope for, as even assigning unique
ids for n vertices requires labels of logn bits.

An important observation in the context of workflow sys-
tems is that the execution graph (or run) from which prove-
nance information is obtained is not arbitrary, but is de-
rived from a workflow specification. Workflow specifications
are commonly modeled as directed graphs whose vertices
denote modules and whose edges denote data flow; further-
more, they are typically fairly small graphs (10s of vertices).
A specification can be executed many times, using different
data inputs or parameter settings, and generating multiple
runs. A run is modeled as a directed, acyclic graph (DAG) in
which vertices represent module executions and whose edges
carry the data output by the source and input by the sink.
Workflow runs can be much larger (1000s of vertices) and
structurally more complex than the specification due to re-
peated execution of sub-workflows, e.g., sequentially (loops),
in parallel (forked executions) or through recursion.

Much research has been devoted recently to develop com-
pact and efficient labeling schemes for workflow runs [6, 13]
and graphs in general [24, 16, 17, 15, 2, 9]. A significant
shortcoming, however, of the existing schemes is that they
all need to examine the entire graph before labeling is per-
formed. This may not be realistic in our setting since sci-
entific workflows can take a long time to execute and users
may want to ask provenance queries over partial executions.
Labeling must therefore be done on-the-fly. That is, we must
label modules as soon as they are executed and data as soon
as it is produced, and cannot modify the labels subsequently.

Our goal is thus to develop a dynamic labeling scheme for
workflow runs. Dynamic labeling has been previously con-
sidered in the context of XML trees [10, 20, 23], but workflow

1We follow the standard assumption that any operation on two
words (logn bits) can be done in constant time [6].

1

runs can have an arbitrarily more complex DAG structure 2.
Although there have been efficient dynamic algorithms [19,
11] for maintaining the transitive closure of DAGs, they all
produce a linear-size index per vertex, which is unacceptable
for large graphs. Nevertheless, we will show in this paper
that the knowledge of the specification can be exploited to
obtain a compact (logarithmic size) and efficient (constant
query time) dynamic labeling scheme for runs.

We next give a brief summary of prior work on reachability
labeling and highlight the contributions of this paper.

Prior Work. Reachability labeling has been studied for dif-
ferent classes of graphs in both static and dynamic settings.
The main goal is to bound the maximum length of labels.
Clearly, the more general the class of graphs is, the more
difficult it is to obtain compact labeling schemes; dynamic
labeling is also harder than static labeling. The maximum
label lengths for different classes of graphs are summarized
in Figure 1, and the main results of this paper are shaded.

DAGs

Trees (Bounded Depth)

Dynamic Θ(log n)

Static

Dynamic

Θ(log n)

Θ(n)

Trees

Static Θ(log n)

Runs (Non-Recursive)

Θ(log n)

Runs (Linear Recursive)

Θ(n)

Runs (Recursive)
Static

Dynamic

Θ(n)

n-1

Dynamic

Dynamic

Figure 1: A Comparison of Maximum Label Length

Static. (Trees) The earliest work for labeling static trees [22]
proposed an interval-based scheme that uses labels of 2 logn
bits, where n is the number of nodes in the tree. Consid-
erable effort [1, 4, 18, 12] was devoted to reduce the con-
stant factor (2). The best known scheme [4] uses labels
of logn + O(

√
logn) bits, which is still separated from the

known lower bound of logn+Ω(log logn) bits [3]. Motivated
by the fact that XML trees are not deep, recent work [12]
developed a scheme that uses labels of logn+ 2 log d+O(1)
bits, where d is the depth of the tree.

(Workflow Runs) Workflow runs are modeled as DAGs de-
rived from a given specification. [6] proposed a compact
static scheme for labeling runs that uses labels of 3 logn +
O(1) bits. However, it can only be applied to non-recursive
workflows (with only loops and forks). [13] also proposed
a static scheme for labeling runs by transforming the graph
into a tree and then applying the interval-based scheme.
Since the size of the new tree can be exponential in the size
of the original graph, it results in linear-size labels.

(General DAGs) In contrast to the above results, compact
labeling is impossible for general directed acyclic graphs
(DAGs), since a known lower bound on the maximum label
length is Ω(n) bits. This triggered several alternative ap-
proaches for efficiently answering reachability queries over
large DAGs: Chain Decomposition [15], Tree Cover [2] and
2-Hop [9]. Other recent work includes Path-Tree [17] and
3-Hop [16] that combine the previous three approaches, and
GRAIL [24] that is based on randomized interval labeling.

2In particular, they are more general than series-parallel graphs.

Dynamic. (Trees) The dynamic problem is harder than the
static case; it was shown in [10] that labeling dynamic trees
requires labels of Ω(n) bits. [10] also proposed a prefix-based
scheme, which provides a matching upper bound of O(n)
bits, and if the depth of the dynamic tree is bounded by a
constant, it produces labels of O(logn) bits. Other variant
prefix-based schemes with similar bounds were also studied.
e.g., ORDPATH [20], implemented in Microsoft SQL Server,
supports frequent inserts in XML documents, and DDE [23]
is tailored for both static and dynamic XML documents.

(Workflow Runs and General DAGs) To our knowledge,
the present work is the first to study dynamic labeling of
workflow runs (and more generally of DAGs). The main
contributions of this paper are summarized as follows.

• We propose a formal model, based on graph gram-
mars, that captures a rich class of workflows with re-
cursion, loops and forks. Based on this model we define
execution-based and derivation-based dynamic labeling
problems for workflow runs (Section 2).

• To get a handle on the difficulty of the two problems,
we first provide tight lower and upper bounds of Θ(n)
bits on the maximum label length. As a side effect,
we also give tight bounds of n− 1 bits for the general
problem of labeling dynamic DAGs (Section 3).

• Nevertheless, we identify a common class of workflows
with linear recursion, and show that dynamic, yet com-
pact (O(logn) bits) labeling is possible for linear recur-
sive workflows. Moreover, our scheme labels a dynamic
run in linear time, and answers any reachability query
in constant time (Sections 4 and 5).

• We also show that linear recursive workflows are, in
some sense, the largest class of workflows that allow
compact dynamic labeling schemes (Section 6).

• Finally, we empirically evaluate the proposed dynamic
labeling scheme over both real and synthetic work-
flows. Interestingly, our dynamic scheme creates even
shorter labels for large runs than the state-of-the-art
static scheme [6] by a factor of almost 3 (Section 7).

2. MODEL AND PROBLEM STATEMENT
We start with notations and basic definitions over graphs

in Section 2.1. An informal description of our workflow
model is given in Section 2.2, followed by a formalization
based on graph grammars in Section 2.3. Finally, Section 2.4
formulates the dynamic workflow labeling problems.

2.1 Preliminaries
Throughout the paper, the term graphs refers to directed

acyclic graphs with no self-loops or multi-edges. Every ver-
tex of a graph can be associated with two kinds of labels.
The one, given in the graph, denotes a module name, and
the other, created by our algorithm, is used for answering
reachability queries. To distinguish the two labels, we will
refer to the former as vertex name, and the latter as reach-
ability label or simply label. We denote by Name(v) the name
of a vertex v. Given two vertices v and v′ of a graph g, let
(v, v′) denote an edge from v to v′, and v ;g v

′ denote that
there is a path from v to v′ in g. A graph g is said to be a
two-terminal graph if it has a single source, denoted by s(g),

2

Ls0 t0
g0

Fs1 t1
h1

As2 t2
h2

Bs3 t3
h3

C s4 t4
h4

s5 t5
h5

As6 t6
h6

Figure 2: Workflow specification

(running example)

s4 t4

h4

s6 t6

h6

s3 t3

h3

s5 t5

h5

h2

…… …… ……

t2

s2 t2

s2

h2

s1 t1……t1s1

h1

s0

g0

t0

h1

v1 v2

v3 v4 v5 v6 v8 v9v7 v11 v12v10

v13 v14

v16 v17 v18v15

Figure 3: Workflow run (running example)

and a single target sink, denoted by t(g). Given a finite set
Σ of names, the set of all two-terminal graphs whose vertices
are labeled by names chosen from Σ is denoted by GΣ.

Next, we introduce four graph operations, namely series
composition, parallel composition, vertex insertion and ver-
tex replacement. The first two operations are used to for-
malize loop and fork executions in Section 2.3. The last
two operations are used to formalize execution-based and
derivation-based dynamic workflow runs in Section 2.4.

Definition 1. A series composition of two-terminal graphs
g1, g2, . . . , gn forms a new two-terminal graph, denoted as
S(g1, g2, . . . , gn), by taking the union of their vertex sets and
edges sets, and adding (t(gi), s(gi+1)) for all 1 ≤ i ≤ n− 1.

Definition 2. A parallel composition of two-terminal graphs
g1, g2, . . . , gn forms a new graph, denoted as P (g1, g2, . . . , gn),
by simply taking the union of their vertex sets and edge sets.

Definition 3. An insertion of a vertex v to a graph g, with
respect to a subset C of vertices of g, forms a new graph,
denoted as g+ (v, C), by adding v and (v′, v) for all v′ ∈ C.

Definition 4. A replacement of a vertex u of a graph g
with another graph h forms a new graph, denoted as g[u/h],
by deleting u and all edges incident to u, and adding h and
(v, s) for all predecessors v of u and all sources s of h and
(t, v) for all successors v of u and all sinks t of h.

2.2 Workflow Model
Our workflow model has two components: workflow spec-

ification and workflow run. A workflow specification de-
scribes the design of a workflow, and a workflow run de-
scribes a particular execution of the given specification.

Workflow Specification. A workflow specification defines
the control and data flow between a set of modules by means
of a DAG. In this graph, each vertex represents a module,
which takes a set of data items as input and produces a set
of data items as output, and is labeled with a module name.
Each directed edge represents the data flow between two
modules (i.e., data items that are produced by one module
and consumed by the other). We also assume that each
workflow has a single source (i.e., with no incoming edges),
which sends out all initial data and starts the execution, and
a single sink (i.e., with no outgoing edges), which collects
all final results and stops the execution.

The modules are either atomic or composite. Atomic mod-
ules are treated as “black boxes”, since their internal struc-
ture is hidden. In contrast, composite modules, treated as

“white boxes”, are known to be implemented by other sub-
workflows. Intuitively, we can open a white box by replacing
the composite module with the corresponding sub-workflow.
Some composite modules are allowed to be repeatedly exe-
cuted in series or in parallel. We call them loop and fork
modules respectively. Note that a composite module can be
implemented by a sub-workflow that contains other compos-
ite modules (including itself). This may lead to recursion.

Example 1. Our running example of a workflow specifica-
tion is shown in Figure 2, where the uppercase letters (i.e.,
L,F,A,B,C) are the names of composite modules, and the
lowercase letters (i.e., s0, . . . , s6, t0, . . . , t6) are the names of
atomic modules. In particular, L and F are the names of
loop and fork modules respectively; g0 is a start graph. The
thick arrows describe the possible implementations of each
composite module (e.g., A has two possible implementations
h3 and h4). Also observe that A and C form a recursion.

Workflow Run. A workflow specification is repeatedly exe-
cuted using different data input and parameter settings. A
valid workflow run begins with the start graph, and selects
one possible implementation to execute for each composite
module (“or” semantics). For a loop or fork module, the
selected implementation is repeatedly executed one or more
times in series or in parallel, respectively. Moreover, it must
execute all the modules in the start graph and the selected
implementation graphs (“and” semantics). Since all compos-
ite modules are expanded during the execution, the resulting
workflow run consists only of atomic modules.

Example 2. One possible run derived from the specifica-
tion in Figure 2 is shown in Figure 3, where v1, . . . , v18 are
unique identifiers for atomic modules. In this run, h1 (the
implementation of a loop module) is replicated twice in se-
ries. In the first copy of h1, h2 (the implementation of a fork
module) is replicated twice in parallel. For purposes of il-
lustration, we show only the detailed execution for one copy
of h2. Observe that, due to the recursion over A and C, h3

and h6 may be repeatedly executed until h4 is selected.

2.3 Workflow Grammar
We next present a formalization of our workflow model

based on graph grammars. A graph grammar is similar in
spirit to the well-known string grammars, such as context-
free grammars. It defines a set of graph-based productions
(i.e., rules), and uses them to generate a set of graphs as
its language. More precisely, we consider graph grammars

3

based on vertex replacement, that is, every production de-
fined by the grammar replaces a single vertex (i.e., the head
of the rule) with a graph (i.e., the body of the rule). Our
idea is to map every specification to a graph grammar in
such a way that the set of possible runs, derived from this
specification, corresponds to exactly its graph language. To
capture loop and fork executions, our grammar may have an
infinite (but controlled) number of productions.

Definition 5. A workflow specification is defined as a sys-
tem S = (Σ,∆,∆L,∆F , I, g0), where

• Σ is a finite nonempty set of names;

• ∆ is a nonempty subset of Σ, called the set of atomic
names, and Σ\∆ is called the set of composite names;

• ∆L and ∆F are two disjoint subsets of Σ \ ∆, called
the sets of loop names and fork names respectively;

• I is a finite set of pairs (A, h), where h ∈ GΣ is called
an implementation graph of A ∈ Σ \∆; and

• g0 ∈ GΣ is called a start graph.

A vertex labeled with an atomic name is said to be an
atomic vertex. Similarly, we can define composite vertex,
loop vertex and fork vertex. In the rest of this paper, we
loosely follow the convention that v, v′ and vi are used for
atomic vertices; and u, u′ and ui for composite vertices.

Example 3. The specification in Figure 2 is written as
(Σ,∆,∆L,∆F , I, g0), where Σ = {s0, . . . , s6, t0, . . . , t6, L, F,
A,B,C}, ∆ = {s0, . . . , s6, t0, . . . , t6}, ∆L = {L}, ∆F = {F}
and I = {(L, h1), (F, h2), (A, h3), (A, h4), (B, h5), (C, h6)}.

Definition 6. Given a workflow specification S = (Σ,∆,
∆L,∆F , I, g0), the workflow grammar of S is defined as a
system G = (Σ,∆, g0,P), where Σ, ∆ and g0 are as in S,
and P is the possibly infinite set of productions below.

P = {A := h | (A, h) ∈ I}
∪ {A := S(h, h, . . . , h︸ ︷︷ ︸

i’s h

) | (A, h) ∈ I, A ∈ ∆L, i > 1}

∪ {A := P (h, h, . . . , h︸ ︷︷ ︸
i’s h

) | (A, h) ∈ I, A ∈ ∆F , i > 1}

Ls0 t0
g0

L := Fs1 t1
h1

| Fs1 t1 Fs1 t1

S(h1,h1)

| …

F := As2 t2
h2

As2 t2
|

P(h2,h2)

As2 t2
| …

A := Bs3 t3
h3

C | s4 t4
h4

B := s5 t5
h5

C := As6 t6
h6

Figure 4: Workflow grammar (running example)

Example 4. The specification in Figure 2 is captured by
a workflow grammar (Σ,∆, g0,P), where Σ and ∆ are as in
Example 3, and g0 and P are shown in Figure 4.

Let G = (Σ,∆, g0,P) be a workflow grammar. We say
that a graph g2 is directly derived from a graph g1 (with
respect to G), denoted by g1 ⇒G g2, if there is a production
A := h ∈ P such that g2 = g1[u/h], where u is a composite
vertex of g1 with Name(u) = A. Let ⇒∗G be the reflexive
and transitive closure of ⇒G, then g2 is derived from g1

(with respect to G), if g1 ⇒∗G g2. The graph language of
G, denoted by L(G), is defined as the set of all two-terminal
graphs which can be derived from the start graph and consist
only of atomic vertices. Formally,

L(G) = { g ∈ G∆ | g0 ⇒∗G g }

Definition 7. Given a workflow specification S, the set of
workflow runs, with respect to S, is defined as L(G), where
G is the workflow grammar of S.

v1

Ls0 t0

v18u1

[u1/S(h1, h1)]

Fs1 t1 Fs1 t1

v1

s0 t0

v18v2 u2 u8v15 v16 v17

[u2/P(h2, h2)]

As2 t2

As2 t2

s1

v1

s0

v2

t1 Fs1 t1 t0

v18u8v16 v17

v3

v13

v12

v14

u3

u7

[u3/h3]
…

[u4/h5]
…

[u5/h6]
…

[u6/h7]
……

v15

Figure 5: Graph derivation (running example)

Example 5. The workflow run in Figure 3 can be derived
from the start graph using the workflow grammar in Fig-
ure 4. A graph derivation is sketched in Figure 5, where
u1, . . . , u8 are unique identifiers for composite vertices.

2.4 Dynamic Workflow Labeling Problems
The classical (static) graph reachability labeling problem

is defined as follows. Given a graph g, assign each vertex of
g a reachability label such that, using only the labels of any
two vertices of g, we can decide if one can reach the other.

This paper studies the problem of labeling dynamic work-
flow runs. It differs from the above problem in two aspects.
Firstly, the input graph is a workflow run derived from a
given specification. Formally, g ∈ L(G), where G is a given
workflow grammar. Secondly, rather than taking the entire
graph as input, we get a sequence of “updates” that leads
to a graph g ∈ L(G). We do not know the update sequence
in advance, but receive them online. We must label all new
vertices introduced by one update before the next update
is applied, and cannot modify their reachability labels sub-
sequently. Moreover, these labels can be used to determine
reachability in any intermediate graph.

Based on different models of updates, we introduce two
related dynamic workflow labeling problems. The first one
describes the real life setting where run steps are reported
and logged one by one, and the second one is used as an
auxiliary tool for exploring the structure of workflow runs.

Execution-Based Problem. The first problem defines the
update as a vertex insertion. Recall from Definition 3 that
every insertion creates a new vertex along with a set of di-
rected edges from existing vertices to this vertex. We begin
with an empty graph g∅, and get a sequence of insertions
that leads to a graph g ∈ L(G), called a graph execution.

4

Definition 8. An execution-based dynamic reachability la-
beling scheme for a workflow grammar G is a pair (φ, π),
where φ is a labeling function and π is a binary predicate.
The input is an execution of a graph g ∈ L(G), denoted by

g∅
+(v1,C1)

=⇒ g1
+(v2,C2)

=⇒ g2
(v3,C3)
=⇒ . . .

+(vn,Cn)
=⇒ gn = g

where g∅ is an empty graph and gi = gi−1 + (vi, Ci), for all
1 ≤ i ≤ n. In the ith step of the graph execution, φ assigns
a reachability label φ(vi) for the new vertex vi. Note that
by that time we can see only the first i insertions. φ and π
are such that for any execution of a graph g ∈ L(G), any
intermediate graph gi (1 ≤ i ≤ n) and any two vertices v
and v′ of gi, π(φ(v), φ(v′)) = true if and only if v ;gi v

′.

Derivation-Based Problem. The other problem defines the
update as a vertex replacement. Recall from Definition 4
that every replacement substitutes an existing vertex for a
new subgraph. We begin with the start graph g0 (defined
by the given workflow), and get a sequence of replacements
that leads to a graph g ∈ L(G), called a graph derivation.

Definition 9. A derivation-based dynamic reachability la-
beling scheme for a workflow grammar G is a pair (φ, π),
where φ is a labeling function and π is a binary predicate.
The input is a derivation of a graph g ∈ L(G), denoted by

g0
[u1/h1]
=⇒ g1

[u2/h2]
=⇒ g2

[u3/h3]
=⇒ . . .

[uk/hk]
=⇒ gk = g

where g0 is the start graph and gi = gi−1[ui/hi], for all
1 ≤ i ≤ k. Initially, φ assigns a reachability label φ(v) for
each vertex v of g0. In the ith step of the graph derivation,
φ assigns a reachability label φ(v) for each vertex v of hi.
Again, by that time we can see only the first i replacements.
φ and π are such that for any derivation of a graph g ∈ L(G),
any intermediate graph gi (0 ≤ i ≤ k) and any two vertices
v and v′ of gi, π(φ(v), φ(v′)) = true if and only if v ;gi v

′.

Remark 1. The derivation-based scheme labels not only
atomic vertices but also composite vertices that appear dur-
ing the graph derivation. However, to simplify the presenta-
tion, we will focus on the labels assigned to atomic vertices
that remain in the final graph. Moreover, both insertion and
replacement preserve the reachability between any pair of ex-
isting vertices. In fact, this is a necessary condition to allow
persistent reachability labels. So, to prove correctness for
both the execution-based and derivation-based schemes, we
only need to ensure that for any two vertices v and v′ of the
final graph g, π(φ(v), φ(v′)) = true if and only if v ;g v

′.

At a first glance, the above two problems differ signifi-
cantly from each other. The former receives and labels ver-
tices one by one, while the latter by group. On the one
hand, the execution-based model is more realistic, since it
captures how runs advance; atomic modules of a workflow
are executed in some topological ordering, due to data de-
pendencies. On the other hand, the derivation-based model
is more informative, since each step of a graph derivation
describes exactly how a composite module is executed (e.g.,
which sub-workflow is used or how many times a loop is re-
peated). However, our study in this paper reveals a tight
relation between the two problems. We will show in Sec-
tion 5.3 that a derivation-based scheme can be converted to
an execution-based scheme, which creates the same reach-
ability labels. A further study in Section 6 shows that in
general, the execution-based problem allows shorter labels.

3. COMPACTNESS RESULTS
The effectiveness of reachability labeling crucially depends

on the ability to design a compact labeling scheme that al-
lows fast query processing. As mentioned before, a labeling
scheme is said to be compact if it creates labels of O(logn)
bits for any input graph with n vertices. Clearly, a compact
labeling scheme creates the shortest possible labels up to a
constant factor. In Section 5, we present a compact dynamic
labeling scheme for a restricted class of workflows. Unfortu-
nately, it is impossible to design a compact one for arbitrary
workflows. In this section, we provide matching lower and
upper bounds of Θ(n) bits on the maximum label length for
both execution-based and derivation-based problems.

3.1 Lower Bounds
To establish the lower bounds, we first show in Theorem 1

that for some fixed workflow grammar, any possible dynamic
labeling scheme requires linear-size reachability labels.

Theorem 1. There is a workflow grammar G such that
for any execution-based (resp. derivation-based) dynamic
labeling scheme (φ, π) for G, there is an execution (resp.
derivation) of a graph g ∈ L(G) with n vertices such that φ
assigns a reachability label of Ω(n) bits for some vertex of g.

Proof. We first consider the execution-based problem.
Let G be the workflow grammar shown in Figure 6, where
A is a composite name and all the others are atomic names.
Given an execution-based dynamic labeling scheme D =
(φ, π) for G, for all k ≥ 0, we define Lk(G) to be the set
of all graphs g ∈ L(G) that are derived from g0 by applying
the production A := h1 k times; and S(D, k) to be the set
of all reachability labels φ(v) that are assigned to a vertex
v with Name(v) = a of a graph g ∈ Lk(G). Finally, N(k) is
the minimum of |S(D, k)| over all possible schemes D.

As0 t0
g0

A :=
A

s1 t1

h1

| s2 t2
h2

A

a

Figure 6: A workflow grammar that requires linear-size

reachability labels (proof of Theorem 1).

s0 s1

g1
……

t1 t0

……

g

v1 v2

a

g2

v3

Figure 7: A graph g ∈ Lk+1(G) that is derived from g0

by applying the production A := h1 k + 1 times.

We first prove that N(k + 1) ≥ 2N(k) + 1, for all k ≥ 0.
Given a dynamic labeling scheme D = (φ, π) for G, the in-
put is an execution of a graph g ∈ Lk+1(G). Suppose that
the first three vertices v1, v2, v3 are already inserted to g, as
shown in Figure 7. Consider the label domains that are re-
served for two upcoming subgraphs g1 and g2 independently.
We define S1 and S2 to be the sets of labels φ(v) that are re-
served for all upcoming vertices v with Name(v) = a of g1 and
g2 respectively. Let φ(v3) = l, then ∀l′ ∈ S1, π(l, l′) = true,
but ∀l′ ∈ S2, π(l, l′) = false. Thus, S1 ∩ S2 = ∅ and
l 6∈ S1 ∪S2. Since both g1 and g2 can be an arbitrary graph

5

that is derived from A by applying the production A := h1 k
times, |S(D, k+1)| ≥ |S1|+ |S2|+1 ≥ 2N(k)+1. This holds
for all possible schemes D, hence N(k + 1) ≥ 2N(k) + 1.

Since N(0) = 0 and N(1) = 1, we can prove by induction

that N(k) > 2k/2 for all k ≥ 2. Therefore, we must assign
a reachability label of at least k/2 bits for some vertex of
a graph g ∈ Lk(G). Finally, observe that g is derived from
g0 by applying the production A := h1 k times and the
other production A := h2 k+ 1 times. Let n be the number
of vertices of g, then n = 3 + 4k + (k + 1) = 5k + 4. So
k/2 = (n− 4)/10 = Ω(n). The theorem follows.

We can use a similar proof for the derivation-based prob-
lem. The only modification is that, rather than inserting
three vertices, we apply only one step of a graph derivation
to obtain the intermediate graph shown in Figure 7.

3.2 Matching Upper Bounds
To match the above lower bounds, we first present a simple

execution-based dynamic labeling scheme (φ, π), which uses
linear-size reachability labels. Given an execution of a graph
g with n vertices, let vi be the ith vertex to be inserted,
then φ(vi) is a binary string of i− 1 bits. It simply encodes
the reachability with respect to the previous i − 1 vertices
already inserted to the graph. Formally, for all 1 ≤ i ≤ n
and 1 ≤ j ≤ i− 1, let φ(vi)[j] be the jth bit of φ(vi), then

φ(vi)[j] =

{
1 if vj ;g vi

0 otherwise

To decide if v ;g v
′, we first compute the index of v and

v′ by the length of φ(v) and φ(v′). Let i = |φ(v)| + 1 and
i′ = |φ(v′)|+ 1. Then v ;g v

′ can be decided by

π(φ(v), φ(v′)) =

{
true if i < i′ and φ(v′)[i] = 1

false otherwise

The maximum length of labels used by this scheme is n−1
bits, which matches the lower bound of Ω(n) bits in Theo-
rem 1. In fact, this scheme can be used to label executions of
arbitrary DAGs. It was shown in [10] that even labeling dy-
namic trees with n nodes requires labels of n−1 bits. Hence,
we provide as a side benefit tight lower and upper bounds
of n − 1 bits on the maximum label length for the general
problem of labeling (execution-based) dynamic DAGs.

However, the above execution-based scheme does not work
for the derivation-based problem, because a graph deriva-
tion may not introduce new vertices in a topological order-
ing. In Section 5.2, we will present a compact derivation-
based dynamic labeling scheme, which creates logarithmic-
size reachability labels for a restricted class of workflows. If
we use that scheme to label arbitrary workflows, it guaran-
tees linear-size labels. Details are deferred to Section 6.

4. QUERYING DYNAMIC WORKFLOWS
WITH LINEAR RECURSION

Linear-size reachability labels do not scale to large graphs.
As demonstrated in the proof of Theorem 1, such large la-
bels are required when workflows have unrestricted recur-
sion. Luckily, workflows that one encounters in practice
typically have a more restricted, linear form of recursion (to
be formally defined below), which does allow for compact
dynamic labeling. Indeed, we will see in Section 6 that the

class of linear recursive workflows is the largest for which
compact derivation-based dynamic labeling is possible.

The rest of this section is organized as follows. Section 4.1
defines the class of linear recursive workflows. To develop
the labeling schemes, we first introduce a tree representation
for linear recursive workflows, called the explicit parse tree,
in Section 4.2, and then describe how to efficiently answer
reachability queries using explicit parse trees in Section 4.3.

4.1 Linear Recursive Workflows
Let G = (Σ,∆, g0,P) be a workflow grammar. We say

that a name A directly induces a name B (in G), denoted
by A 7→G B, if there is a production A := h ∈ P such that
h has a vertex v with Name(v) = B. Let 7→∗G be the reflexive
and transitive closure of 7→G. We say that A induces B (in
G), if A 7→∗G B. Given a production A := h ∈ P, a vertex u
of h is said to be recursive, if Name(u) induces A.

Example 6. Consider the workflow grammar in Figure 4.
A directly induces B and C, due to the presence of A := h3.
Moreover, in this production, the vertex labeled with C is
recursive, since C directly induces A by C := h6.

Definition 10. A workflow grammar is said to be linear
recursive, if any production has at most one recursive vertex.

Example 7. It can be verified that the workflow grammar
in Figure 4 is linear recursive. Observe that A := h3 has
only one recursive vertex (labeled with C). In contrast, the
workflow grammar in Figure 6 is not linear recursive, since
A := h1 has two recursive vertices (both labeled with A).

4.2 Explicit Parse Tree
We start by considering an arbitrary workflow grammar

G. The derivation of a graph g ∈ L(G) can be naturally
captured by a canonical parse tree t, whose nodes represent
nested subgraphs and edges represent composite vertices cre-
ated during the graph derivation. The root of t corresponds
to the start graph g0. A subgraph h1 is the parent of a sub-
graph h2 if the graph derivation replaces a composite vertex
v of h1 with h2, and the edge from h1 to h2 represents v.

Example 8. The canonical parse tree for the graph in Fig-
ure 3 is shown in Figure 8, whose nodes (denoted by dashed
boxes) and edges (denoted by bold lines) are annotated with
nested subgraphs and composite vertices that they repre-
sent. Note that x′0, . . . , x

′
8 are unique identifiers for nodes

of the tree; u1, . . . , u8 and v1, . . . , v18 are unique identifiers
for composite and atomic vertices of the graph respectively.
Consider the edge (x′0, x

′
1) annotated with u1. It implies

that the production L := S(h1, h1) is applied to replace the
loop vertex u1 of g0 with a series composition of two h1’s.

For linear recursive workflow grammars, we can convert
a canonical parse tree to an explicit parse tree by inserting
three kinds of special nodes: L (loop) nodes, F (fork) nodes
and R (recursive) nodes. The children of an L or an F
node represent one or more copies of the same loop or fork
subgraph, which are combined in series or in parallel respec-
tively; and the children of a R node represent a sequence of
nested subgraphs, which form a linear recursion.

Example 9. The explicit parse tree for the graph in Fig-
ure 3 is shown in Figure 9, where x0, . . . , x13 are unique

6

u1

u2 u8

u4

u6

……

……

x'0

x'1

x'2 x'8

x'7

x'5

x'3

x'4

x'6

Ls0 t0
g0

Fs1 t1 Fs1 t1
S(h1,h1)

As2 t2

P(h2,h2)

As2 t2

Bs3 t3
h3

C

s5 t5
h5

As6 t6
h6

s4 t4
h4

u3
u7

u5

v1 v18

v2 v15 v16 v17

v3 v12

v14v13

v4 v11

v5 v6 v7 v10

v8 v9

Figure 8: Canonical parse tree (running example)

u1

x0 Ls0 t0
g0

L

u2 u8

u4

x2

x4

x8

x6

x7

x9

Fs1 t1
h1

As2 t2
h2

Bs3 t3
h3

C

s5 t5
h5

As6 t6
h6

s4 t4
h4

u3
u7

x12Fs1 t1
h1

Fx3

x10As2 t2
h2

Rx5

u5 u6

…… x13

…… x11

x1

v1

v1 v18

v2 v15 v16 v17

v3 v12 v13 v14

v4 v11

v5 v6

v7 v10 v8 v9

Figure 9: Explicit parse tree (running example)

identifiers for nodes of the new tree. Comparing with the
canonical parse tree in Figure 8, we can see that x′1 is split
into two nodes x2 and x12 rooted at a special L node x1.
Moreover, x′3, x

′
5, x
′
6 are moved to be the children x6, x8, x9

of a special R node x5. Note that x6, x8, x9 are linked by
dashed edges annotated with recursive vertices u5 and u6.

It is important to note that the canonical parse tree for
graphs generated by a fixed grammar may have unbounded
depth due to recursion. However, in the explicit parse tree,
the sequence of nested subgraphs in a linear recursion are
flattened to be the children of a R node. Hence, for linear
recursive grammars, the depth of the explicit parse tree is
bounded by a constant that depends only on the grammar.

Lemma 4.1. Given a linear recursive workflow grammar
G = (Σ,∆, g0,P), let t be an explicit parse tree for a graph
g ∈ L(G) and d be the depth of t, then d ≤ 2|Σ \∆|.

Proof. Let r be the root of t. Consider a leaf node x
at the deepest level of t. Let k1 and k2 be the number
of special and non-special nodes on the path from r to x
respectively. Since the parent of a special node must be a
non-special node, and both r and x are non-special nodes,
we have k1 ≤ k2 − 1. Hence, d = k1 + k2 − 1 ≤ 2k2 − 2. On
the other hand, since each outgoing edge of a non-special
node is annotated with a composite vertex, there is totally
k2−1 vertices annotated on the path from r to x. Moreover,
these vertices must have distinct composite names, since all
recursive vertices are annotated on dashed edges. Hence,
k2 − 1 ≤ |Σ \∆|. It follows that d ≤ 2k2 − 2 ≤ 2|Σ \∆|.

4.3 Answering Reachability Queries
Let t be an explicit parse tree for a graph g. To avoid

confusion, we use x and y to refer to nodes of t and u and
v to vertices of g. Note that in this section, we abuse the
notation slightly by using u and v to refer to both composite
and atomic vertices of g. Annt(x) denotes the subgraph an-
notated on a non-special node x, and Annt(x, y) denotes the

composite vertex annotated on an edge (x, y). Recall that
a graph g2 is said to be derived from a graph g1 if g2 can
be obtained from g1 by applying a sequence of productions.
We extend this notion to vertices as follows: A vertex v is
directly derived from a vertex u, denoted by u⇒ v, if a pro-
duction Name(u) := h is applied to replace u with a graph h,
and v is a vertex of h. Let⇒∗ be the reflexive and transitive
closure of ⇒, then v is derived from u, if u⇒∗ v.

To efficiently answer reachability queries using explicit
parse trees, we introduce the notions of context and origin.

Definition 11. A non-special node x of t is said to be the
context of a vertex v of g, if v is a vertex of Annt(x).

Definition 12. A vertex u of g is said to be the origin of
a vertex v of g with respect to a non-special node y of t, if v
is derived from u, and y is the context of u.

Note that the context and origin are always unique and
can be defined for both atomic and composite vertices.

Example 10. Consider the explicit parse tree in Figure 9.
The context of v5 (bottom left) is x7, since v5 is an atomic
vertex of Annt(x7). The origin of v5 with respect to x2 (top
left) is u2, since u2 is a composite vertex of Annt(x2) from
which v5 is derived. Similarly, the origin of v8 (bottom right)
with respect to x6 (bottom left) is u5 (on the dashed edge).

The main idea is as follows. To decide if v can reach v′ in
g, we find the least common ancestor of their context x and
x′ in t, denoted by LCA(x, x′). If LCA(x, x′) is a special L or
F node, we can immediately answer“yes”or“no”by showing
that v and v′ belong to two distinct copies of the same loop
(reachable) or fork (unreachable); otherwise (if LCA(x, x′)
is a special R node or a non-special node), we show that
the original query for v and v′ over g can be reduced to
a simple query for their origins u and u′ with respect to a
small subgraph h. The details are given in Lemma 4.2.

7

Lemma 4.2. Let t be an explicit parse tree for a graph g.
Given any two vertices v and v′ of g, let x (resp. x′) be the
context of v (resp. v′) in t, then

• if LCA(x, x′) is a special node, let y (resp. y′) be a
child of LCA(x, x′) who is an ancestor of x (resp. x′).
Assume w.l.o.g. that y is on the left of y′.

– if LCA(x, x′) is an L node, then v ;g v
′;

– if LCA(x, x′) is an F node, then v 6;g v
′, v′ 6;g v;

– if LCA(x, x′) is a R node, let u (resp. u′) be the
origin of v (resp. v′) with respect to y (note that
u′ = Annt(y, z), where z is the right sibling of y),
and h = Annt(y), then v ;g v

′ iff u;h u
′.

• if LCA(x, x′) is a non-special node, let u (resp. u′) be
the origin of v (resp. v′) with respect to LCA(x, x′), and
h = Annt(LCA(x, x′)), then v ;g v

′ iff u;h u
′.

Proof. First of all, we claim the following lemma, which
easily follows from Definition 4. The proof is omitted.

Lemma 4.3. Suppose that a graph g2 is derived from a
graph g1. Let v and v′ be two vertices of g2, and u and u′

be two vertices of g1, such that v (resp. v′) is derived from
u (resp. u′). Then v ;g2 v

′ if and only if u;g1 u
′.

We prove Lemma 4.2 by four cases. (1) If LCA(x, x′) is an L
node, let y1, y2, . . . , yk be all children of LCA(x, x′) (including
y and y′), and h = S(Annt(y1), Annt(y2), . . . , Annt(yk)). Let
u (resp. u′) be the origin of v (resp. v′) with respect to
y (resp. y′). Since y is on the left of y′, by Definition 1,
u ;h u

′. By Lemma 4.3, v ;g v
′; (2) If LCA(x, x′) is an F

node, the lemma can be proved similarly by Definition 2; (3)
If LCA(x, x′) is a R node, let u′ = Annt(y, z), where z is the
right sibling of y, and let w be the origin of v′ with respect
to y′. Since y is on the left of y′, w is derived from u′. Since
v′ is derived from w, v′ is also derived from u′. Hence, u′ is
the origin of v′ with respect to y. By Lemma 4.3, v ;g v

′

if and only if u ;h u
′; and (4) If LCA(x, x′) is a non-special

node, by Lemma 4.3, v ;g v
′ if and only if u;h u

′.

Example 11. We demonstrate the above four rules using
the running example. First, consider v5 and v16 (top right)
in Figure 9. The least common ancestor of their context x7

and x12 is an L node x1. By Lemma 4.2, v5 ;g v16, which
is confirmed by Figure 3. Similarly, consider v5 and v13

(middle right). The least common ancestor of their context
x7 and x10 is an F node x3. Hence, v5 6;g v13 and v13 6;g

v5. Next, consider v5 and v8. The least common ancestor of
their context x7 and x9 is a R node x5 (note that the dashed
edges are ignored). Moreover, u4 and u5 are the origin of
v5 and v8 with respect to x6 (note that u5 is annotated on
the dashed edge (x6, x8)). Since u4 ;h3 u5, by Lemma 4.2,
v5 ;g v8. Finally, consider v5 and v11 (bottom left). The
least common ancestor of their context x7 and x6 is a non-
special node x6. u4 and v11 are the origin of v5 and v11 with
respect to x6. Hence, u4 ;h3 v11 implies that v5 ;g v11.

5. LABELING DYNAMIC WORKFLOWS
WITH LINEAR RECURSION

Our dynamic schemes are built upon a skeleton-based la-
beling framework [6]. As a preprocessing step, we label the
workflow specification using any static reachability scheme,

and then extend the reachability labels on the specification,
called the skeleton labels, to label workflow runs on-the-fly.

We start by discussing how to label the specification in
Section 5.1. Section 5.2 presents a compact derivation-based
dynamic labeling scheme for linear recursive workflows; we
sketch how to adapt it to an execution-based scheme in Sec-
tion 5.3. Finally, Section 5.4 proves the correctness and
analyze the quality of our proposed dynamic schemes.

5.1 Labeling Workflow Specifications
Given a workflow specification S = (Σ,∆,∆L,∆F , I, g0),

we want to label the start graph and all implementation
graphs in S. Formally, the set of graphs to be labeled is

G(S) = {g0} ∪ {h | (A, h) ∈ I}

It is important to note that all graphs in G(S) are small
compared with runs derived from the specification. In prac-
tice, the largest real-life workflow that we have collected has
fewer than 30 vertices, while a realistic run may repeatedly
execute a loop or fork module (sub-workflow) hundreds of
times. Therefore, we claim that any static scheme is scalable
to label the specification. Our experiments in Section 7 show
that even linear-size skeleton labels, created by the scheme
described in Section 3.2, take negligible storage overhead.

5.2 Derivation-Based Dynamic Scheme
Given a labeled specification, we next explain the design of

reachability labels for its runs. Let G be a linear recursive
workflow grammar, and t be an explicit parse tree for a
graph g ∈ L(G). Recall from Lemma 4.2 that to decide
if v can reach v′ in g we only need to (1) find the least
common ancestor LCA(x, x′) of their context x and x′ in t;
and (2) (if LCA(x, x′) is a special R node or a non-special
node) answer an equivalent query for their origin u and u′

with respect to a small subgraph h. To encode Step (1), we
use a prefix-based scheme [18] 3 to label t. To encode Step
(2), we enrich a prefix-based label with skeleton labels as
well as other necessary information (e.g., node types).

The formal description of a reachability label is given be-
low. We use (φG, πG) to denote the static labeling scheme
for the specification, and (φg, πg) to denote our proposed
dynamic labeling scheme for runs. Recall that φG and φg

are labeling functions, and πG and πg are reachability pred-
icates. To label a vertex v of g, we consider a path in t

x0
u0−→ x1

u1−→ x2
u2−→ . . .

uk−1−→ xk

where x0 is the root of t, xk is the context of v, and for all
0 ≤ i ≤ k−1, xi is the parent of xi+1 and ui = Annt(xi, xi+1)
is the composite vertex annotated on the edge (xi, xi+1).
Note that ui = null if xi is a special node, otherwise, ui is
the origin of v with respect to xi. To unify the notation, let
uk = v. Then φg(v) consists of a list of entries

φg(v) = {Entry(x0, u0), Entry(x1, u1), . . . , Entry(xk, uk)}

where Entry(xi, ui) = (index, type, skl, rec1, rec2) is a tuple
obtained from a pair (xi, ui) by Algorithm 1.

The details of Algorithm 1 are explained as follows. The
index of x is a positive integer i if x is the ith child of its
parent (Line 1). Note that the index of the root of t is set

3In a prefixed-based scheme, every node of a tree is assigned an
index i, if it is the ith child of its parent. The prefix-based label
for a node consists of the indexes of all its ancestors.

8

Algorithm 1 Entry Construction

Input: (x, u) is a pair of a node of t and a vertex of g
(φG, πG) is a static scheme for labeling specification

Output: Entry(x, u) is an entry for (x, u)

1: index← the index of x
2: type← the type of x
3: skl, rec1, rec2 ← null

4: if x is a non-special node then
5: skl← φG(u)
6: if Annt(x) has one recursive vertex then
7: /* the parent of x must be a special R node */
8: w ← the recursive vertex of Annt(x)
9: rec1 ← πG(φG(u), φG(w))

10: rec2 ← πG(φG(w), φG(u))
11: end if
12: end if
13: return (index, type, skl, rec1, rec2)

to zero. The type of x is either L (loop) or F (fork) or R
(recursive) or N (non-special) (Line 2). If x is a non-special
node, then Annt(x) is already labeled by (φG, πG). So the
skeleton label assigned to u is given by φG(u) (Line 5) 4.
Finally, if Annt(x) has one recursive vertex (note that the
parent of x must be a special R node), then the recursion
flags for u are two booleans, indicating if u can reach the
recursive vertex w in Annt(x) or vice versa. Note that they
are computed by comparing the skeleton labels (Line 9 and
10). For other cases, skl, rec1 and rec2 are set to null.

Example 12. We label the running example using the ex-
plicit parse tree in Figure 9. For example,

φg(v5) ={Entry(x0, u1), Entry(x1, null), Entry(x2, u2),

Entry(x3, null), Entry(x4, u3), Entry(x5, null),

Entry(x6, u4), Entry(x7, v5)}

where

Entry(x0, u1) = (0,N , φG(u1), null, null)

Entry(x1, null) = (1,L, null, null, null)

......

Entry(x6, u4) = (1,N , φG(u4), true, false)

Entry(x7, v5) = (1,N , φG(v5), null, null)

Since u5 is the recursive vertex of h3, by Algorithm 1,

Entry(x6, u4).rec1 = πG(φG(u4), φG(u5)) = true

Entry(x6, u4).rec2 = πG(φG(u5), φG(u4)) = false

Similarly,

φg(v16) ={Entry(x0, u1), Entry(x1, null), Entry(x12, v16)}

where the first two entries are defined above, and

Entry(x12, v16) = (2,N , φG(v16), null, null)

The dynamic labeling algorithm φg can be divided into
two interleaved steps. First, we generate the explicit parse
tree in a top-down fashion by Algorithm 2. During this
process, we also label all new vertices introduced in each
step by Algorithm 3. Details are explained as follows.

4Since the skeleton labels are shared by multiple runs, skl is im-
plemented as a pointer to the label, rather than the label itself.

Algorithm 2 Dynamic Generation of Explicit Parse Tree

Input: g0
[u1/h1]
=⇒ g1

[u2/h2]
=⇒ g2

[u3/h3]
=⇒ . . .

[uk/hk]
=⇒ gk = g

is a derivation of a graph g ∈ L(G)
Output: t is an explicit parse tree for g

1: Create a node r annotated with g0

2: Insert r as the root of t
3: for all i := 1 to k do
4: y ← the context of ui in t
5: if ui is not recursive then
6: if Name(ui) is a loop or a fork name then
7: /* hi has no recursive vertices */
8: Let hi = S(h, h, . . . , h︸ ︷︷ ︸

l’s h

) or P (h, h, . . . , h︸ ︷︷ ︸
l’s h

)

9: Create a special L or F node x
10: for all j := 1 to l do
11: Create a node xj annotated with h
12: Insert xj as the jth child of x
13: end for
14: else
15: if hi has one recursive vertex then
16: Create a special R node x
17: Create a node x′ annotated with hi

18: Insert x′ as the single child of x
19: else
20: Create a node x annotated with hi

21: end if
22: end if
23: Insert x as the next child of y
24: Annotate the edge (y, x) with ui

25: else
26: Create a node x annotated with hi

27: /* the parent of y must be a special R node */
28: Insert x as the right sibling of y
29: Create a dashed edge (y, x) annotated with ui

30: end if
31: end for
32: return t

Algorithm 2: We begin with the start graph g0, and get as
input a derivation of a graph g ∈ L(G). Initially, we create
a node r annotated with g0 as the root of t (Line 1 to 2).
Let gi = gi−1[ui/hi] be the ith step of the graph derivation.
We update t in two steps. In Step (1), we create a subtree
rooted at a new node x that corresponds to hi. Consider
three disjoint cases. (1a) If Name(ui) is a loop or a fork
name (note that ui is not recursive and hi has no recursive
vertices), let hi be the series or parallel composition of l
copies of a loop or fork subgraph h, we create a special L or
F node x with l children annotated with h (Line 9 to 13);
(1b) If ui is not recursive but hi has one recursive vertex,
we create a special R node x with a single child annotated
with hi (Line 16 to 18); and (1c) otherwise, we simply create
a new node x annotated with hi (Line 20 and 26). In Step
(2), we insert x to t. Let y be an existing node of t whose
annotated graph contains ui (Line 4; y is defined to be the
context of ui in Section 4.3). Again, consider two cases. (2a)
If ui is not recursive, we insert x as the next child of y, and
annotate the edge (y, x) with ui (Line 23 to 24); and (2b)
otherwise (note that the parent of y must be a special R
node), we insert x as the right sibling of y, and create a
dashed edge (y, x) annotated with ui (Line 28 to 29).

9

The following lemma ensures that the three cases (1a),
(1b) and (1c) in Algorithm 2 are indeed disjoint.

Lemma 5.1. Let G = (Σ,∆, g0,P) be a linear recursive
workflow grammar. If a production A := h ∈ P has a recur-
sive vertex u in h, then (1) A is not a loop or a fork name;
and (2) Name(u) is not a loop or a fork name.

Proof. We first prove the part (1). Suppose A is a loop
or a fork name, by Definition 6, either A := S(h, h) ∈ P or
A := P (h, h) ∈ P. But both productions have at least two
recursive vertices, which contradicts Definition 10.

We next prove the part (2). Suppose Name(u) is a loop
or a fork name. Consider two cases. (a) If Name(u) = A,
then A is a loop or a fork name, which contradicts (1). (b)
If Name(u) 6= A, since u is recursive, Name(u) induces A. So
there is a production Name(u) := h′ ∈ P such that for some
vertex u′ of h′, Name(u′) induces A. Since A directly induces
Name(u), Name(u′) induces Name(u). Hence, Name(u) := h′

has a recursive vertex u′, which again contradicts (1).

Algorithm 3: During the dynamic generation of the explicit
parse tree (Algorithm 2), we also perform the following la-
beling. For a non-special node x, we create a label φg(v) for
each vertex v of Annt(x). For a special node x, we also create
a temporary label. By abusing the notation, we denote this
label by φg(x). Note that to obtain a new label for a node
x, we take an existing label from its parent y, and append
only one new entry built by Algorithm 1 (Line 13, 16, 21).

Algorithm 3 Labeling Function φg

Input: A derivation of a graph g ∈ L(G)
(φG, πG) is a static scheme for G

Output: t is an explicit parse tree for g
φg is a labeling function for g

1: Initially, create a root r of t (by Algorithm 2)
2: for each vertex v of Annt(r) do
3: φg(v)← {Entry(r, v)}
4: end for
5: for each derivation step do
6: Update t top-down (by Algorithm 2)
7: for each newly inserted node x do
8: y ← the parent of x
9: if y is a non-special node then

10: u← Annt(y, x)
11: if x is a non-special node then
12: for each vertex v of Annt(x) do
13: φg(v)← append Entry(x, v) to φg(u)
14: end for
15: else
16: φg(x)← append Entry(x, null) to φg(u)
17: end if
18: else
19: /* x must be a non-special node */
20: for each vertex v of Annt(x) do
21: φg(v)← append Entry(x, v) to φg(y)
22: end for
23: end if
24: end for
25: end for
26: return t, φg

Algorithm 4 Binary Predicate πg

Input: φg(v) is a reachability label for v
φg(v′) is a reachability label for v′

πG is a binary predicate for skeleton labels
Output: πg(φg(v), φg(v′)) = true iff v ;g v

′

1: i← min{j | φg(v)[j].index = φg(v′)[j].index
and φg(v)[j + 1].index 6= φg(v′)[j + 1].index}

2: if φg(v)[i].type = L then
3: return φg(v)[i+ 1].index < φg(v′)[i+ 1].index
4: else if φg(v)[i].type = F then
5: return false

6: else if φg(v)[i].type = R then
7: if φg(v)[i+ 1].index < φg(v′)[i+ 1].index then
8: return φg(v)[i+ 1].rec1
9: else

10: return φg(v′)[i+ 1].rec2
11: end if
12: else {φg(v)[i].type = N}
13: return πG(φg(v)[i].skl, φg(v′)[i].skl)
14: end if

To decide if v ;g v
′, we compare φg(v) and φg(v′) using

the binary predicate πg described in Algorithm 4, where
φg(v)[i] denotes the ith entry of φg(v).

Example 13. Returning to the running example, consider
v5 and v16 in Figure 9. Since φg(v5) and φg(v16), shown in
Example 12, share the first two common entries, moreover,

φg(v5)[2].type = L (1)

φg(v5)[3].index = 1 < φg(v16)[3].index = 2 (2)

by Algorithm 4, πg(φg(v5), φg(v16)) = true. Note that (1)
implies that the least common ancestor of their context x7

and x12 is a special L node, and (2) implies that x2 is on
the left of x12. By Lemma 4.2, v5 ;g v16. The other cases
((v5, v13), (v5, v8) and (v5, v11)) can be verified similarly.

5.3 Execution-Based Dynamic Scheme
The above derivation-based scheme can be converted to

an execution-based scheme, which creates exactly the same
reachability labels. The main challenge is how to dynami-
cally build the explicit parse tree and figure out the context
and origin of a newly inserted vertex, given only an execu-
tion of a graph. We first give a solution based on a natural
restriction on the workflow specification, and then discuss
how to remove the restriction by using execution logs.

Let G(S) be the set of the start graph and all implemen-
tation graphs of a workflow specification S, as defined in
Section 5.1. We assume that for all graphs h ∈ G(S),

1. All vertices of h have distinct names; and

2. s(h) and t(h) have unique atomic names, i.e., their
names do not occur in any other graph in G(S).

Recall that s(h) and t(h) denote the source and the sink of a
sub-workflow h that only distribute and collect the data. We
call them the dummy modules. In fact, any specification can
be modified to satisfy the above two conditions by renaming
module names and introducing new dummy modules.

The execution-based labeling algorithm is sketched as fol-
lows. For a newly inserted vertex, we can decide if it is a

10

terminal or a non-terminal, by checking its module name
(Condition 2). If it is a source, then we can infer one new
step of the graph derivation, and update the explicit parse
tree as before; otherwise, the context of this new vertex can
be determined by any of its immediate predecessors, and the
origin can be decided by again checking its module name
(Condition 1). If it is a sink, then we know that the current
step of the graph derivation is completed.

Example 14. Consider an execution of the graph in Fig-
ure 3, which inserts an atomic vertex vi in the ith step. We
start with an empty graph, and get the first vertex v1 in-
serted. Since Name(v1) = s0, by checking the specification
in Figure 2, we know that the start graph g0 is being exe-
cuted. So by Algorithm 2, we create the root of the explicit
parse tree in Figure 9 that corresponds to g0, and assign the
reachability label φg(v1) according to Algorithm 3. Next,
suppose v2 is inserted. Again, by checking Name(v2) = s1,
we know that the first copy of the loop subgraph h1 is being
executed. So we update the explicit parse tree in Figure 9
by inserting a special L node x1 along with its first child x2.
Note that although the original derivation-based scheme cre-
ates all the children of a special L or F node in a single step,
the labeling function φg given by Algorithm 3 can be done
on a node-by-node basis. Hence, we can assign the reach-
ability label φg(v2) without seeing other copies of h1. The
remaining vertices can be labeled in a similar manner.

During the above labeling process, when the first vertex of
a new subgraph is inserted, we can predict future insertions
for other atomic vertices of this subgraph. Moreover, their
reachability labels can be created at this point, though we do
not give out these labels until they are actually inserted. In
principle, we are allowed to modify these unassigned labels
based on the upcoming insertions. We will see in Section 6
that this relaxation provides execution-based schemes with
the potential to create shorter reachability labels.

To remove the restrictions, the only extra information we
need is a mapping from vertices of the run to vertices of
the specification. Note that in the above algorithm, this is
done by comparing module names. In reality, most scientific
workflow systems record this mapping in execution logs, by
assigning a unique id for each module in the specification.

5.4 Correctness and Quality Analysis

Theorem 2. (Correctness) Let (φg, πg) be our dynamic
labeling scheme for a linear recursive workflow grammar G.
For any graph g ∈ L(G) and any two vertices v and v′ of g,
πg(φg(v), φg(v′)) = true if and only if v ;g v

′.

Proof. Let t be an explicit parse tree for g. Let x (resp.
x′) be the context of v (resp. v′). Let LCA(x, x′) the least
common ancestor of x and x′. Let φg(v)[i] be the ith entry
of φg(v). Recall that φg(v)[i] = Entry(xi, ui) is obtained
from a pair (xi, ui) by Algorithm 1, where xi is the ancestor
of x at the ith level, and ui = null if xi is a special node,
otherwise, ui is the origin of v with respect to xi.

We prove the correctness of Algorithm 4. Line 1 computes
the maximum common prefix of entries with the same index,
say the first i entries. Then φg(v)[i] = Entry(LCA(x, x′),−)
and φg(v′)[i] = Entry(LCA(x, x′),−), where − is null if
LCA(x, x′) is a special node, otherwise, − is the origin of
v or v′ with respect to LCA(x, x′). Consider four cases. (1) If

LCA(x, x′) is a special L node (Line 2), then let φg(v)[i+1] =
Entry(y,−) and φg(v′)[i+1] = Entry(y′,−), where y and y′

are two distinct children of LCA(x, x′). Hence, by Lemma 4.2,
v ;g v′ if and only if y is on the left of y′. Note that
the ordering of y and y′ can be decided by their indexes
(Line 3); (2) If LCA(x, x′) is a special F node (Line 4), then
by Lemma 4.2, v 6;g v′; (3) If LCA(x, x′) is a special R
node (Line 6), then again let φg(v)[i + 1] = Entry(y,−)
and φg(v′)[i + 1] = Entry(y′,−), where y and y′ are two
distinct children of LCA(x, x′). We assume without loss of
generality that y is on the left of y′. The other case can
be handled in the same way. Let u (resp. u′) be the origin
of v (resp. v′) with respect to y. Note that φg(v)[i + 1] =
Entry(y, u). Moreover, u′ = Annt(y, z) is a recursive vertex
of h = Annt(y) annotated on the dashed edge (y, z), where
z is the right sibling of y. By Lemma 4.2, v ;g v

′ if and
only if u;h u

′. Hence, by Algorithm 1, v ;g v
′ if and only

if φg(v)[i + 1].rec1 = true; and (4) If LCA(x, x′) is a non-
special node (Line 12), then φg(v)[i] = Entry(LCA(x, x′), u)
and φg(v′)[i] = Entry(LCA(x, x′), u′), where u (resp. u′) is
the origin of v (reps. v′) with respect to LCA(x, x′). Let
h = Annt(LCA(x, x′)). By Lemma 4.2, v ;g v

′ if and only
if u ;h u

′. Hence, by Algorithm 1, v ;g v
′ if and only if

φG(φg(v)[i].skl, φg(v′)[i].skl) = true.

The quality of a labeling scheme (φ, π) is measured by
label length, construction time (i.e., the time to compute φ)
and query time (i.e., the time to evaluate π). Among them,
label length is the main factor. Since the derivation-based
and execution-based schemes create same labels, they differ
only in the construction time. All parameters for quality
analysis are listed in Table 1, where G is a linear recursive
grammar, t is an explicit parse tree for a graph g ∈ L(G)
and h is a subgraph of g. The size of a graph refers to the
number of vertices. Note that for a fixed G, nG and tG are
constants. By Lemma 4.1, dt is also bounded by a constant.

Table 1: Parameters for Quality Analysis

ng the size of g nh the size of h
nt the size of t dt the depth of t
θt the max outdegree of a node of t
nG the max size of a specification graph
tG the time to compare skeleton labels

Theorem 3. (Quality Analysis) Let G be a linear re-
cursive workflow grammar. For any graph g ∈ L(G), our
dynamic labeling scheme (φg, πg) guarantees

1. logarithmic label length: for any vertex v of g,

|φg(v)| = O(logng) bits

2. linear total construction time: computing φg(v) for
each vertex v of g takes a total of O(ng) time.

2a (execution-based) for any vertex insertion, gi =
gi−1 + (v, C), computing φg(v) takes O(1) time.

2b (derivation-based) for any vertex replacement, gi =
gi−1[u/h], computing φg(v) for each vertex v of h
takes a total of O(nh) time.

3. constant query time: for any two vertices v and v′ of
g, computing πg(φg(v), φg(v′)) takes O(1) time.

11

Proof. First, we prove the logarithmic label length. Let
φg(v)[i] be the ith entry of φg(v). By Algorithm 1,

|φg(v)[i]| ≤ log θt + 2 + lognG + 1 + 1 bits

Recall that we use only a pointer to each skeleton label,
rather than the label itself. So it takes only lognG bits. By
Algorithm 3, φg(v) has at most dt entries, and θt ≤ nt ≤ ng.

|φg(v)| ≤ dt ∗ (log θt + lognG + 4) = O(logng) bits

Next, we prove the linear total construction time. For the
derivation-based scheme, Algorithm 3 has two steps: (1) up-
date t by inserting a new subtree t′ that corresponds to h
using Algorithm 2. This step can be done in O(n′t) = O(nh)
time, where n′t is the number of nodes of t′ and n′t ≤ nh; and
(2) create φg(v) for each vertex v of h. By Algorithm 1, it
may involve comparing two skeleton labels, and thus takes
tG time. So the total construction time is O(nh ∗ tG) =
O(nh). For the execution-based scheme, the only extra com-
putation is to decide if the newly inserted vertex is a terminal
by comparing its module name, which can be done in O(1)
time. So the total construction time remains linear.

Finally, we prove the constant query time. Since φg(v)
and φg(v′) have at most dt entries, by Algorithm 4, finding
the maximum common prefix of entries with same index
(Line 1) takes O(dt) time. The rest of computation may
involve comparing two skeleton labels (Line 13), which takes
tG time. So the query time is O(dt) + tG = O(1).

6. LABELING DYNAMIC WORKFLOWS
WITH NONLINEAR RECURSION

Although our dynamic labeling scheme is for linear recur-
sive workflows, it can be adapted to label nonlinear recursive
workflows. The only modification is to create a simplified
explicit parse tree without special R nodes by treating all
vertices in a non-recursive way. A further optimization can
be achieved by compressing at most one recursive vertex us-
ing a special R node, while treating other recursive vertices
(if they exist) in a non-recursive way. However, the depth
of the modified explicit parse tree is no longer bounded by a
constant, but is proportional to the depth of recursion. This
dynamic scheme may therefore create linear-size reachability
labels, matching the lower bound in Theorem 1.

The remaining question is whether any nonlinear recur-
sive workflow allows compact dynamic labeling. Theorem 4
shows that the answer is “no” for the derivation-based prob-
lem. It gives a stronger result than Theorem 1, showing
that there is no compact derivation-based dynamic labeling
scheme for any given nonlinear recursive workflow. Com-
bining Theorems 3 and 4, we conclude that linear recursive
workflows are the largest class of workflows that allow com-
pact derivation-based dynamic labeling schemes.

Theorem 4. For any nonlinear recursive workflow gram-
mar G and any derivation-based dynamic labeling scheme
(φ, π) for G, there is a derivation of a graph g ∈ L(G) with
n vertices such that φ assigns a reachability label of Ω(n)
bits for some vertex of g.

Proof. Since G is nonlinear recursive, by Definition 10,
there is a production A := h with at least two recursive
vertices. By applying a sequence of productions, we can
obtain from A := h a new production A := h′ with two
recursive vertices u1 and u2 both named A.

A :=
A

s t

h’

A

A :=

h*
A

s t

h’

A
s t

A

u1

u2

u1’

u2

w

Figure 10: A new production A := h∗ constructed from

A := h′ with two parallel recursive vertices u1 and u2.

A := As t
h’

A

u1 u2

A :=

h*

s tA

u2

As t

h’

A

u1’ w

Figure 11: A new production A := h∗ constructed from

A := h′ with two series recursive vertices u1 and u2.

Next, we want to find a differential vertex w that reaches
exactly one of u1 and u2. Consider two cases. (1) If u1 and
u2 are not reachable from each other in h′ (see Figure 10),
then we replace u1 with a new copy of h′, and obtain a new
production A := h∗. Let u′1 be the new copy of u1, and w be
the source of the new copy of h′, then w reaches exactly one
of u′1 and u2; and (2) If one of u1 and u2 can reach the other
in h′ (let u1 ;h′ u2, see Figure 11), then again we replace u1

with a new copy of h′, and obtain a new production A := h∗.
Let u′1 be the new copy of u1, and w be the sink of the new
copy of h′, then w reaches exactly one of u′1 and u2.

Recall the production A := h1 in Figure 6, where the ver-
tex named a reaches exactly one of the two vertices named
A. Using the new production A := h∗, we can prove the
theorem using the technique of Theorem 1.

We next turn to the execution-based problem. To apply
the same proof, we need to ensure that the differential ver-
tex w precedes both recursive vertices u1 and u2 in the given
insertion sequence, so that φ(w) can divide all reachability
labels that will be later assigned to the subgraphs derived
from u1 and u2 into two disjoint sets. E.g., the proof of The-
orem 1 relies on the fact that the differential vertex (named
a) precedes two recursive vertices (named A) in the given
insertion sequence (see Figure 6). Unfortunately, Case (2)
in the proof of Theorem 4 (see Figure 11) violates the above
condition. The following example inspired by Case (2) shows
that some nonlinear recursive workflow indeed allows com-
pact execution-based dynamic labeling schemes.

As0 t0
g0

A := As1 t1
h1

| s2 t2
h2

A

Figure 12: A nonlinear recursive workflow grammar

that allows a compact execution-based dynamic scheme.

Example 15. Consider the workflow grammar G shown in
Figure 12. Since any graph g ∈ L(G) is a simple path, we
simply label the ith vertex by an index of i. This naive
dynamic scheme creates logarithmic-size reachability labels.

However, Case (1) (see Figure 10) respects the condition.
We thus get a similar result to Theorem 4 for a subclass of
nonlinear workflows, called the parallel recursive workflows.

Definition 13. A workflow grammar is said to be parallel
recursive, if there is a production with two recursive vertices
that are not reachable from each other (in parallel).

12

Theorem 5. For any parallel recursive workflow gram-
mar G and any execution-based dynamic labeling scheme
(φ, π) for G, there is an execution of a graph g ∈ L(G) with
n vertices such that φ assigns a reachability label of Ω(n)
bits for some vertex of g.

Proof. (Sketch) We follow the same proof as Theorem 4.
The correctness follows from Definition 13, which ensures
that the new production A := h∗ must fall into Case (1).

This paper leaves open the problem of whether non-parallel
recursive workflows (with only series recursive vertices) al-
low compact execution-based dynamic labeling schemes.

7. EXPERIMENTAL EVALUATION
We empirically evaluated the proposed dynamic labeling

scheme in terms of label length, construction time, query
time and preprocessing overhead. We performed three sets
of experiments: The first uses a collected, real-life scien-
tific workflow (Section 7.2). The second measures a variety
of synthetic workflows with different characteristics (Sec-
tion 7.3). The last compares our dynamic scheme against
the state-of-the-art static scheme [6] (Section 7.4).

7.1 Experimental Setup
All labeling schemes are implemented in Java 6. Our ex-

periments were performed on a local PC with Intel Pentium
2.80GHz CPU and 2GB memory running Windows XP.

Real-Life and Synthetic Datasets. The real-life workflow,
called BioAID, was taken from the myExperiment workflow
repository [21]. To focus on the specific factors that af-
fect the labeling performance, we also created a family of
synthetic workflows using the simple topology shown in Fig-
ure 13. Due to the lack of realistic workflow runs, we sim-
ulate the execution by repeating loops, forks and recursion
a random number of times. For each specification, we vary
the size of runs from 1K to 32K by a factor of 2, and ran-
domly select one derivation and one execution for each run
as dynamic inputs. All data are stored in XML files.

Labeling Methodology. We compare two schemes for la-
beling workflow runs: (1) the one presented in this pa-
per, which is denoted by DRL, for (D)ynamic scheme for
(R)ecursive workflows; and (2) the state-of-the-art static
scheme [6], which is also skeleton-based, and is denoted by
SKL, for (SK)eleton-based scheme. To obtain skeleton la-
bels (for both schemes), we apply two simple schemes for
labeling the specification: (1) TCL denotes the one given
in Section 3.2. It precomputes the (T)ransitive (C)losure
for all vertices, and can be used to label either a static
graph or an execution-based dynamic graph; and (2) BFS

does not perform any labeling, but answers a reachability
query by a (B)readth (F)irst (S)earch over the graph. Since
a skeleton-based scheme for labeling runs is parameterized
by the scheme for labeling the specification, we denote by
DRL(TCL) and DRL(BFS) (resp. SKL(TCL) and SKL(BFS)) the
corresponding combinations of the two.

Evaluation Methodology. The result for label length and
construction time is an average over 103 sample runs, and
the one for query time is an average over 105 sample queries.

7.2 Labeling Real-Life Workflows
In the first set of experiments, we evaluate DRL using

BioAID. It consists of 11 sub-workflows with an average

size of 10.5 and a nesting depth 5 of 2. There are 2 loop
modules, 4 fork modules and one linear recursion of length
2. Note that the derivation-based and execution-based dy-
namic schemes differ only in the construction time, and the
scheme used to label the specification affects only the query
time and the preprocessing overhead.

Figure 14 reports the maximum and average label length.
As expected, both increase logarithmically with the size of
the run (note that the x-axis is log scale). The average
length is always shorter than the maximum length by a small
constant (about 6 bits). More interestingly, both lines are
almost parallel to the asymptotic line f(n) = log(n) + 13.
Hence, they are bounded by c log(n) + O(1), where c is a
small constant factor close to 1.

Figure 15 reports the total construction time for both
derivation-based and execution-based schemes. Observe that
they increase linearly with the size of the run. On average,
we label a new vertex on the fly in less than 5 µs, which is
comparable to the time of updating the graph itself (about
6 µs). Moreover, the derivation-based scheme is faster than
the execution-based scheme. This is because the latter needs
to find the context and origin of the newly inserted vertex.

Figure 16 reports the query time for DRL(TCL) and DRL(BFS).
Recall that TCL allows constant query time, but uses linear-
size labels; in contrast, BFS does not use any labels, but has
linear query time. However, since the specification graphs
are small and fixed, DRL answers reachability queries in al-
most constant time, when combined with either (Figure 16).
But DRL(TCL) is slightly faster than DRL(BFS) by about 2 µs.
We also measured the preprocessing overhead for DRL(TCL),
and found that the overhead is negligible: the skeleton labels
take totally 650 bits and are built in less than 0.05 ms.

Conclusions: The experimental results confirm the theoret-
ical quality analysis of DRL in Theorem 3. Moreover, DRL is
scalable for large dynamic runs, even when combined with
simple skeleton schemes like TCL and BFS. Due to the small
size of the specification graphs, the benefit of using more
sophisticated schemes to label the specification is limited.

7.3 Labeling Synthetic Workflows
In the second set of experiments, we evaluate DRL for a

variety of synthetic workflows created from the specification
in Figure 13. It consists of a chain of nested sub-workflows
with one loop module L, one fork module F and one recur-
sive module R. Note that the recursive sub-workflow h′d may
in general contain several R modules. All sub-workflows are
random two-terminal graphs of some fixed size. The param-
eters are: (a) the size of sub-workflows; (b) the nesting depth
of sub-workflows; and (c) if the workflow is linear recursive
(i.e., if h′d has more than one R modules). Due to space
constraints, we report only the main factor, label length.

First, we generate a set of linear recursive workflows by
varying the size of sub-workflows from 10 to 160 by a factor
of 2, and fixing the nesting depth of sub-workflows to be
5. Figure 17 reports the maximum label length for dynamic
runs with 5K vertices. As we can see, the maximum label
length increases almost logarithmically with the size of sub-
workflows. To explain the result, recall that a tighter upper

5In a recursive workflow, the nesting depth of sub-workflows refers
to the length of the longest path of sub-workflows, starting from
the start graph, that implement distinct composite modules. E.g.,
the nesting depth of sub-workflows in Figure 13 is d.

13

g0

h1

… …

…

L
hd-3

… …

… …

F
hd-2

… …

R
hd-1

… …

R
h'dhd

…

Figure 13: Syn-

thetic Workflow

18

20

22

24

26

28

30

32

34

36

1 2 4 8 16 32

Average Length
Maximuml Length
f(n)=log(n)+13

La
b

el
Le

n
gt

h
 (

b
it

)

Run Size (# of Vertices in Thousands)

Figure 14: BioAID(Label Length)

0
20
40
60
80

100
120
140
160
180

0 5 10 15 20 25 30

Derivation-Based

Execution-Based

Run Size (# of Vertices in Thousands)

To
ta

l C
o

n
st

ru
ct

io
n

 T
im

e
(m

s)

Figure 15: BioAID(Constr. Time)

0
1
2
3
4
5
6
7
8
9

10

1 2 4 8 16 32

DRL(TCL) DRL(BFS)

Run Size (# of Vertices in Thousands)

Q
u

er
y

Ti
m

e
(μ

s)

Figure 16: BioAID(Query Time)

35

40

45

50

55

60

65

70

10 20 40 80 160M
ax

im
u

m
 L

ab
el

Le
n

gt
h

 (
b

it
)

Size of Sub-Workflows (# of Vertices)

Figure 17: Varying Size

20

40

60

80

100

120

140

160

180

5 10 15 20 25M
ax

im
u

m
 L

ab
el

Le
n

gt
h

 (
b

it
)

Nesting Depth of Sub-Workflows

Figure 18: Varying Depth

20

40

60

80

100

120

140

1 2 4 8 16 32

Nonlinear Recursion
Linear Recursion

Run Size (# of Vertices in Thousands)

M
ax

im
u

m
 L

ab
el

Le
n

gt
h

 (
b

it
)

Figure 19: Nonlinear Workflows

20

25

30

35

40

45

1 2 4 8 16 32

DRL SKL

Run Size (# of Vertices in Thousands)

M
ax

im
u

m
 L

ab
el

Le
n

gt
h

 (
b

it
)

Figure 20: DRL vs SKL(Label Length)

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30

DRL (Derivation-Based)

DRL (Execution-Based)

SKL

Run Size (# of Vertices in Thousands)

To
ta

l C
o

n
st

ru
ct

io
n

 T
im

e
(m

s)

Figure 21: DRL vs SKL(Constr. Time)

0

5

10

15

20

25

30

1 2 4 8 16 32

DRL(TCL) DRL(BFS)

SKL(TCL) SKL(BFS)

Run Size (# of Vertices in Thousands)
Q

u
er

y
Ti

m
e

(μ
s)

Figure 22: DRL vs SKL(Query Time)

bound of label length, given in the proof of Theorem 3, is

|φg(v)| ≤ dt ∗ (log θt + lognG + 4) (3)

where all parameters for quality analysis are defined in Ta-
ble 1. In this experiment, dt is fixed, and nG increases by
a factor of 2. We now estimate θt. Since nG ∗ nt is roughly
the size of the run (a fixed constant of 5K), nt decreases
by a factor of 2. Note that t is a balanced tree with fixed
depth. In general, θt decreases much more slowly than nt.
It follows that the increase of lognG dominates the decrease
of log θt in (3). This confirms the result in Figure 17.

Next, we generate a set of linear recursive workflows by
varying the nesting depth of sub-workflows from 5 to 25 by
a constant of 5, and fixing the size of sub-workflows to be
20. Figure 18 reports the maximum label length for dy-
namic runs with 5K vertices. Observe that the maximum
label length increases linearly with the nesting depth of sub-
workflows. This is again confirmed by (3), where nG and θt
are fixed, and dt is proportional to the nesting depth.

Finally, we generate a nonlinear recursive workflow with
two R modules in h′d (see Figure 13) and a linear recursive
one with only one R module in h′d. For both workflows, the
size of sub-workflows is 20, and the nesting depth is 5. Fig-
ure 19 reports the maximum label length. Not surprisingly,
the nonlinear recursive workflow produces longer labels than
the linear recursive one. Although DRL creates linear-size
labels for nonlinear recursive workflows in the worst case,

Figure 19 shows that it performs reasonably well in prac-
tice: the maximum label length for a run with 32K vertices
is less than 120 bits. Note that if we use TCL to label the
run dynamically, it gives a label of exactly 32K − 1 bits.

Conclusions: The main factor that affects the performance
of DRL is the nesting depth of sub-workflows. However, we
observe from our experience that most real-life workflows
are linear recursive, and have a nesting depth of less than 5.
DRL is also effective to label nonlinear recursive workflows.

7.4 DRL (Dynamic) vs SKL (Static)
In the last set of experiments, we compare DRL and SKL.

The limitations of SKL are: (1) SKL is a static scheme, which
takes the entire run graph as input; (2) SKL supports only
non-recursive workflows (with loops and forks); and (3) SKL
entails skeleton labels over a global specification graph, in
which all composite modules are replaced with correspond-
ing sub-workflows. We show only results for the real-life
workflow. To achieve a fair comparison, we remove the re-
cursion 6. The results for synthetic workflows are similar.

Figure 20 reports the maximum label length. Observe
that DRL creates shorter labels than SKL when the run size
is larger than 1.5K. This is because DRL uses a prefix-based
scheme [18] to label the explicit parse tree, while SKL uses an
interval-based scheme [22]. The former performs better on

6It turns out that the linear recursion in this workflow can be
converted to a loop which performs similar computations.

14

balanced trees with relatively high degrees and low depth.
This is exactly the case when the run becomes large. More
precisely, the upper bound of the label length for SKL is

|φg(v)| ≤ 3 ∗ lognt +O(lognG) (4)

where nt = O(ng) and nG = O(1). So the logarithmic label
length for SKL has a factor of 3. Recall from Figure 14 that
the factor for DRL is close to 1. Hence, for large runs, DRL
creates shorter labels than SKL by a factor of almost 3. This
is confirmed by the slopes of the two lines in Figure 20.

Figure 21 reports the total construction time. Since SKL

builds simpler (but larger) labels than DRL consisting only
of three indexes and one skeleton label, SKL is faster than
derivation-based and execution-based DRL by a factor of 2
and 4 respectively. However, unlike DRL, SKL cannot start
labeling until the entire run is completed.

Figure 22 reports the query time for all four combinations.
BFS performs a linear-time graph search over the specifica-
tion. Consequently, when combined with BFS, the cost of
comparing skeleton labels is the dominant factor. Note that
SKL searches over a global specification graph with 106 ver-
tices, while DRL searches over an individual sub-workflow
with only 10.5 vertices on average. Hence, SKL(BFS) is slower
than DRL(BFS) by one order of magnitude. In contrast, when
combined with TCL, the cost of comparing skeleton labels is
negligible. Given that SKL enables simple decoding which
compares only three indexes and one skeleton label, SKL(TCL)
is slightly faster than DRL(TCL). However, such efficiency is
traded by high preprocessing overhead reported in Table 2.

Table 2: Overhead of Labeling Specification

Total Space (bit) Construction Time (ms)
DRL(TCL) 650 0.04375
SKL(TCL) 5565 0.16328

Conclusions: DRL creates shorter labels than SKL, and is
more robust to the scheme for labeling the specification.

8. CONCLUSIONS
This paper studies derivation-based and execution-based

dynamic reachability labeling problems for recursive work-
flows with loops and forks. We provide tight lower and up-
per bounds of Θ(n) bits on the maximum label length, and
present a compact dynamic labeling scheme for linear recur-
sive workflows which uses labels of log(n) bits. The eval-
uation, performed over both real and synthetic workflows,
shows that our dynamic scheme creates shorter labels than
the start-of-the-art static scheme [6] by a factor of almost 3.

This paper also shows an interesting characterization: A
workflow allows a compact derivation-based dynamic scheme
if and only if it is linear recursive. However, finding an
execution-based characterization is still an open problem.

9. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful com-

ments. This work was supported in part by the US National
Science Foundation grants IIS-0803524 and IIS-0629846, by
the Israel Science Foundation, by the US-Israel Binational
Science Foundation, and by the EU grant MANCOOSI.

10. REFERENCES
[1] S. Abiteboul, H. Kaplan, and T. Milo. Compact

labeling schemes for ancestor queries. In SODA, pages
547–556, 2001.

[2] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient
management of transitive relationships in large data
and knowledge bases. In SIGMOD Conference, pages
253–262, 1989.

[3] S. Alstrup, P. Bille, and T. Rauhe. Labeling schemes
for small distances in trees. In SODA, pages 689–698,
2003.

[4] S. Alstrup and T. Rauhe. Improved labeling scheme
for ancestor queries. In SODA, pages 947–953, 2002.

[5] I. Altintas, C. Berkley, E. Jaeger, M. B. Jones,
B. Ludäscher, and S. Mock. Kepler: An extensible
system for design and execution of scientific
workflows. In SSDBM, pages 423–424, 2004.

[6] Z. Bao, S. B. Davidson, S. Khanna, and S. Roy. An
optimal labeling scheme for workflow provenance using
skeleton labels. In SIGMOD Conference, pages
711–722, 2010.

[7] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger,
C. T. Silva, and H. T. Vo. Vistrails: visualization
meets data management. In SIGMOD Conference,
pages 745–747, 2006.

[8] A. Chapman, H. V. Jagadish, and P. Ramanan.
Efficient provenance storage. In SIGMOD Conference,
pages 993–1006, 2008.

[9] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.
Reachability and distance queries via 2-hop labels. In
SODA, pages 937–946, 2002.

[10] E. Cohen, H. Kaplan, and T. Milo. Labeling dynamic
xml trees. In PODS, pages 271–281, 2002.

[11] C. Demetrescu and G. F. Italiano. Fully dynamic

transitive closure: Breaking through the o(n2) barrier.
In FOCS, pages 381–389, 2000.

[12] P. Fraigniaud and A. Korman. Compact ancestry
labeling schemes for xml trees. In SODA, pages
458–466, 2010.

[13] T. Heinis and G. Alonso. Efficient lineage tracking for
scientific workflows. In SIGMOD Conference, pages
1007–1018, 2008.

[14] D. Hull, K. Wolstencroft, R. Stevens, C. A. Goble,
M. R. Pocock, P. Li, and T. Oinn. Taverna: a tool for
building and running workflows of services. Nucleic
Acids Research, 34(Web-Server-Issue):729–732, 2006.

[15] H. V. Jagadish. A compression technique to
materialize transitive closure. ACM Trans. Database
Syst., 15(4):558–598, 1990.

[16] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a
high-compression indexing scheme for reachability
query. In SIGMOD Conference, pages 813–826, 2009.

[17] R. Jin, Y. Xiang, N. Ruan, and H. Wang. Efficiently
answering reachability queries on very large directed
graphs. In SIGMOD Conference, pages 595–608, 2008.

[18] H. Kaplan, T. Milo, and R. Shabo. A comparison of
labeling schemes for ancestor queries. In SODA, pages
954–963, 2002.

[19] V. King and G. Sagert. A fully dynamic algorithm for
maintaining the transitive closure. In STOC, pages
492–498, 1999.

15

[20] P. E. O’Neil, E. J. O’Neil, S. Pal, I. Cseri, G. Schaller,
and N. Westbury. Ordpaths: Insert-friendly xml node
labels. In SIGMOD Conference, pages 903–908, 2004.

[21] D. D. Roure, C. A. Goble, and R. Stevens. The design
and realisation of the myexperiment virtual research

environment for social sharing of workflows. Future
Generation Comp. Syst., 25(5):561–567, 2009.

[22] N. Santoro and R. Khatib. Labelling and implicit
routing in networks. Comput. J., 28(1):5–8, 1985.

[23] L. Xu, T. W. Ling, H. Wu, and Z. Bao. Dde: from
dewey to a fully dynamic xml labeling scheme. In
SIGMOD Conference, pages 719–730, 2009.

[24] H. Yildirim, V. Chaoji, and M. J. Zaki. Grail:
Scalable reachability index for large graphs. PVLDB,
3(1):276–284, 2010.

16

