
MaSM: Efficient Online Updates in Data Warehouses

Manos Athanassoulis† Shimin Chen⋆ Anastasia Ailamaki†

Phillip B. Gibbons⋆ Radu Stoica†

†École Polytechnique Fédérale de Lausanne ⋆Intel Labs
manos.athanassoulis|natassa|radu.stoica@epfl.ch shimin.chen|phillip.b.gibbons@intel.com

ABSTRACT
Data warehouses have been traditionally optimized for read-only
query performance, allowing only offline updates at night, essen-
tially trading off data freshness for performance. The needfor
24x7 operations in global markets and the rise of online and other
quickly-reacting businesses make concurrent online updates increas-
ingly desirable. Unfortunately, state-of-the-art approaches fall short
of supporting fast analysis queries over fresh data. The conven-
tional approach of performing updates in place can dramatically
slow down query performance, while prior proposals using differ-
ential updates either require large in-memory buffers or may incur
significant update migration cost.

This paper presents a novel approach for supporting online up-
dates in data warehouses that overcomes the limitations of prior
approaches, by making judicious use of available SSDs to cache
incoming updates. We model the problem of query processing with
differential updates as a type of outer join between the dataresid-
ing on disks and the updates residing on SSDs. We presentMaSM
algorithms for performing such joins and periodic migrations, with
small memory footprints, low query overhead, low SSD writes, ef-
ficient in-place migration of updates, and correct ACID support.
Our experiments show that MaSM incurs only up to 7% overhead
both on synthetic range scans (varying range size from 100GBto
4KB) and in a TPC-H query replay study, while also increasingthe
update throughput by orders of magnitude.

Categories and Subject Descriptors
H.2.4 [DATABASE MANAGEMENT]: Systems—Query Process-
ing; H.2.7 [DATABASE MANAGEMENT]: Database Adminis-
tration—Data Warehouse and Repository

General Terms
Algorithms, Design, Performance

Keywords
Materialized Sort Merge, Online Updates, Data Warehouses,SSDs

1. INTRODUCTION
Data warehouses (DW) are typically designed for efficient pro-

cessing ofread-onlyanalysis queries over large data. Historically,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11,June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

updates to the data were performed using bulk insert/updatefea-
tures that executed offline—mainly during extensive idle-times (e.g.,
at night). Two important trends lead to a need for a tighter inter-
leaving of analysis queries and updates. First, the globalization
of business enterprises means that analysis queries are executed
round-the-clock, eliminating any idle-time window that could be
dedicated to updates. Second, the rise of online and other quickly-
reacting businesses means that it is no longer acceptable todelay
updates for hours, as older systems did: the business value of the
answer often drops precipitously as the underlying data becomes
more out of date [12, 24]. In response to these trends, data ware-
houses must now support a much tighter interleaving of analysis
queries and updates, so that analysis queries can occur 24/7and
take into account very recent data updates [2]. Thus, Active(or
Real-Time) Data Warehousing has emerged as a business objec-
tive [16, 24] aiming to meet the increasing demands of applications
for the latest version of data. Unfortunately, state-of-the-art DW
management systemsfall short of the business goal of fast analysis
queries over fresh data. A key unsolved problem is how to effi-
ciently execute analysis queries in the presence ofonline updates
that are needed to preserve data freshness.

1.1 Efficient Online Updates: Limitations of
Prior Approaches

While updates can proceed concurrently with analysis queries
using concurrency control schemes such as snapshot isolation [3],
the main limiting factor is the physical interference between con-
current queries and updates. We consider the two known approaches
for supporting online updates, in-place updates and differential up-
dates, and discuss their limitations.

In-Place Updates Dramatically Increase Query Time. A tra-
ditional approach, used in OLTP systems, is to update in place.
However, as shown in Section 2.2, in-place updates can dramat-
ically slow down DW queries. Mixing random in-place updates
with TPC-H queries increases the execution time, on average, by
2.2X on a commercial row-store DW and by 2.6X on a commer-
cial column-store DW. In the worst case, the execution time is 4X
longer! Besides having to service a second workload (i.e., the up-
dates), the I/O sub-system suffers from theinterferencebetween
the two workloads: the disk-friendly sequential scan patterns of
the queries are disrupted by the online random updates. Thisfactor
alone accounts for 1.6X slowdown on average in the row-storeDW.

Differential Updates Limited by In-Memory Buffer. Recently,
differential updateshave been proposed as a means to enable effi-
cient online updates in column-store DW [22, 11]. The basic idea is
to (i) cache incoming updates in an in-memory buffer, (ii) take the
cached updates into account on-the-fly during query processing, so
that queries see fresh data, and (iii) migrate the cached updates to
the main data whenever the buffer is full. While these proposals
significantly improve query and update performance, their reliance

Figure 1: An analysis of migration overheads for differential
updates as a function of the memory buffer size. Overhead is
normalized to the prior state-of-the-art using 16GB memory.

on anin-memorybuffer for the cached updates poses a fundamen-
tal trade-off between migration overhead and memory footprint, as
illustrated by the “state-of-the-art” curve in Figure 1 (note: log-log
scale, the lower the better). In order to halve the migrationcosts,
one must double the in-memory buffer size so that migrationsoccur
(roughly) half as frequently. Each migration is expensive,incur-
ring the cost of scanning the entire DW, applying the updatesand
writing back the results [22, 11]. However, dedicating a significant
fraction of the system memory solely to buffering updates degrades
query operator performance as less memory is available for caching
frequently accessed data structures (e.g., indices) and storing inter-
mediary results (e.g., in sorting, hash-joins). Moreover,in case of a
crash, the large buffer of updates in memory will be lost, prolong-
ing crash recovery.

1.2 Our Solution: Cache Updates in SSDs
We exploit the recent trend towards including a small amountof

flash storage (SSDs) in mainly HDD-based computer systems [1].
Our approach follows the differential updates idea discussed above,
but instead of being limited to an in-memory buffer, makes judi-
cious use of available SSDs to cache incoming updates. Figure 2
presents the high-level framework. Updates are stored in anSSD-
based update cache, which is 1%–10% of the main data size. When
a query reads data, the relevant updates on SSDs are located,read,
and merged with the bulk of the data coming from disks. A small
in-memory buffer is used as a staging area for the efficient process-
ing of queries and incoming updates. The updates are migrated to
disks only when the system load is low or when updates reach a
certain threshold (e.g., 90%) of the SSD size.

Design Goals.We aim to achieve the following five design goals:
• Low query overhead with small memory footprint:This ad-

dresses the main limitations of prior approaches.
• No random SSD writes:While SSDs have excellent sequential

read/write and random read performance, random writes per-
form poorly because they often incur expensive erase and wear-
leveling operations [4]. Moreover, frequent random writescan
transition an SSD into sub-optimal states where even the well-
supported operations suffer from degraded performance [4,21].

• Low total SSD writes per update:A NAND flash cell can en-
dure only a limited number of writes (e.g.,105 writes for enter-
prise SSDs). Therefore, the SSDs’ lifetime is maximized if we
minimize the amount of SSD writes per incoming update.

• Efficient in-place migration:Migrations should occur infre-
quently while supporting high sustained update rate. Moreover,
prior approaches [11, 22] migrate updates to a new copy of the
DW and swap it in after migration completes, essentially dou-
bling the disk capacity requirement. We want to remove such
requirement by migrating to the main data in place.

• Correct ACID support:We must guarantee that traditional con-
currency control and crash recovery techniques still work.

Figure 2: Framework for SSD-based differential updates.

Prior differential update approaches [22, 11] maintain indexes on
the cached updates in memory, which we call Indexed Updates
(IU). We find that naively extending IU to SSDs incurs up to 3.8X
query slowdowns (Section 2.3 and 4.2). While employing log struc-
tured merge-trees (LSM) [15] can address many of IU’s perfor-
mance problems, LSM incurs a large number of writes per update,
significantly reducing the SSDs’ lifetime (Section 2.3).

At a high level, our framework is similar to the way Bigtable [7]
handles incoming updates by caching them in HDDs and merging
related updates into query responses. However, Bigtable’sdesign is
focused on neither low overhead for DW queries with small mem-
ory footprint, using SSDs and minimizing SSD writes, nor correct
ACID support for multi-row transactions. Using SSDs instead of
HDDs for the update cache is crucial to our design, as it reduces
range scan query overhead by orders of magnitude for small ranges.

Our Proposal: MaSM. We propose MaSM (materialized sort-
merge) algorithms that achieve the five design goals with the fol-
lowing techniques. First, we observe that the “Merge” component
in Figure 2 is essentially an outer join between the main dataon
disks and the updates cached on SSDs. Among various join algo-
rithms, we find that sort-merge joins fit the current context well:
cached updates are sorted according to the layout order of the main
data and then merged with the main data. We exploit external sort-
ing algorithms both to achievesmall memory footprintand toavoid
random writesto SSDs. To sort‖SSD‖ pages of cached updates
on SSD, two-pass external sorting requiresM =

p

‖SSD‖ pages
of memory. Compared with differential updates limited to anin-
memory update cache, our approach can effectively use a small
memory footprint, and exploits the larger on-SSD cache to greatly
reduce migration frequency, as shown in the “our approach” curve
in Figure 1.

Second, we optimize the two passes of the “Merge” operation:
generating sorted runs and merging sorted runs. For the former,
because a query should see all the updates that an earlier query has
seen, we materialize and reuse sorted runs, amortizing run genera-
tion costs across many queries. For the latter, we build simple read-
only indexes on materialized runs in order to reduce the SSD read
I/Os for a particular query. Combined with the excellent sequen-
tial/random read performance of SSDs, this technique successfully
achieveslow query overhead(at most only 7% slowdowns in our
experimental evaluation).

Third, we consider thetrade-off between memory footprint and
SSD writes. The problem is complicated because allocated memory
is used for processing both incoming updates and queries. Wefirst
present a MaSM-2M algorithm, which achieves the minimal SSD
writes per update, but allocatesM memory for incoming updates
andM memory for query processing. Then, we present a more
sophisticated MaSM-M algorithm that reduces memory footprint

to M but incurs extra SSD writes. We select optimal algorithm pa-
rameters to minimize SSD writes for MaSM-M. After that, we gen-
eralize the two algorithms into a MaSM-αM algorithm. By varying
α, we can obtain a spectrum of algorithms with different trade-offs
between memory footprint and SSD writes.

Fourth, in order to supportin-place migrationandACID proper-
ties, we propose to attach timestamps to updates, data pages, and
queries. Using timestamps, MaSM can determine whether or not a
particular update has been applied to a data page, thereby enabling
concurrent queries during in-place migration. Moreover, MaSM
guarantees serializability in the timestamp order among individ-
ual queries and updates. This can be easily extended to support
two-phase locking and snapshot isolation for general transactions
involving both queries and updates. Furthermore, crash recovery
can use the timestamps to determine and recover only the updates
in the memory buffer, but not those on (non-volatile) SSDs.

Finally, we minimize the impact of MaSM on the DBMS code
in order to reduce the development effort to adopt the solution.
Specifically, MaSM can be implemented in the storage manager
(with minor changes to the transaction manager if general transac-
tions are to be supported). It does not require modification to the
buffer manager, query processor or query optimizer.

1.3 Contributions
This paper makes the following contributions. First, to ourknowl-

edge, this is the first paper that exploits SSDs for efficient online
updates in DWs. We propose a high-level framework and iden-
tify five design goals for a good SSD-based solution. Second,we
propose MaSM algorithms that exploit a set of techniques to suc-
cessfully achieve the five design goals. Third, we study the trade-
off between memory footprint and SSD writes with MaSM-2M,
MaSM-M, and MaSM-αM. Fourth, we present a real-machine
experimental study. Our results show that MaSM incurs only up
to 7% overhead both on synthetic range scans (varying range size
from 100GB to 4KB) and in a TPC-H query replay study, while
also increasing the sustained update throughput by orders of mag-
nitude. Finally, we discuss considerations for various DW-related
aspects, including shared nothing architectures, Extract-Transform-
Load (ETL) processes, secondary indexes, and materializedviews.

Outline. Section 2 sets the stage for our study. Section 3 presents
MaSM design for achieving the five design goals. Section 4 presents
the experimental evaluation. Section 5 discusses related work and
considerations for various DW-related issues. Section 6 concludes.

2. EFFICIENT ONLINE UPDATES AND
RANGE SCANS IN DATA WAREHOUSES

In this section, we first describe the basic concepts and clarify the
focus of our study. As in most optimization problems, we would
like to achieve good performance for the frequent use cases,while
providing correct functional support in general. After that, we ana-
lyze limitations of prior approaches for handling online updates.

2.1 Basic Concepts and Focus of the Study
Data Warehouse.Our study is motivated by large analytical DWs
such as those characterized in the XLDB’07 report [2]. Thereis
typically a front-end operational (e.g., OLTP) system thatproduces
the updates for the back-end analytical DW. The DW can be very
large (e.g., petabytes), and does not fit in main memory.

Query Pattern. Large analytical DWs often observe “highly un-
predictable query loads”, as described in [2]. Most queriesinvolve
“summary or aggregative queries spanning large fractions of the
database”. As a result, table range scans are frequently used in the

0

1

2

3

4

5

q
1

q
2

q
3

q
4

q
5

q
6

q
7

q
8

q
9

q
1
0

q
1
1

q
1
2

q
1
3

q
1
4

q
1
5

q
1
6

q
1
8

q
1
9

q
2
1

q
2
2

e
x

e
c

u
ti

o
n

 t
im

e
 n

o
rm

a
li
z
e

d
to

 q
u

e
ry

 w
/o

 u
p

d
a

te
s no updates

query w/ updates

query only + update only

Figure 3: TPC-H queries with random updates on a row store.

2

3

4

5

m
e
 n

o
rm

a
li
z
e
d

w
/o

 u
p

d
a

te
s no updates

query w/ updates

0

1

2

3

4

5

q
1

q
3

q
4

q
5

q
6

q
7

q
8

q
9

q
1

1

q
1

2

q
1

3

q
1

4

q
1

6

q
1

8

q
1

9

q
2

0

q
2

2

e
x
e
c
u

ti
o

n
 t

im
e
 n

o
rm

a
li
z
e
d

to
 q

u
e

ry
 w

/o
 u

p
d

a
te

s no updates

query w/ updates

0

1

2

3

4

5

q
1

q
3

q
4

q
5

q
6

q
7

q
8

q
9

q
1

1

q
1

2

q
1

3

q
1

4

q
1

6

q
1

8

q
1

9

q
2

0

q
2

2

e
x
e
c
u

ti
o

n
 t

im
e
 n

o
rm

a
li
z
e
d

to
 q

u
e

ry
 w

/o
 u

p
d

a
te

s no updates

query w/ updates

Figure 4: TPC-H queries with emulated random updates on a
column store.

queries. Therefore, we will focus on table range scans as theopti-
mization target: preserving the nice sequential data access patterns
of table range scans in the face of online updates. The evaluation
will use the TPC-H benchmark, which is a decision support bench-
mark with emphasis on ad-hoc queries.

Record Order. In row stores, records are often stored in primary
key order (with clustered indices). In column stores (that support
online updates), the attributes of a record are aligned in separate
columns allowing retrieval using a position value (RID) [11].1 We
assume that range scans provide data in the order of primary keys
in row stores, and in the order of RIDs in column stores. When-
ever primary keys in row stores and RIDs in column stores can be
handled similarly, we use “key” to mean both.

Updates. Following prior work on differential updates [11], we
optimize for incoming updates of the following forms: (i) inserting
a record given its key; (ii) deleting a record given its key; or (iii)
modifying the field(s) of a record to specified new value(s) given
its key.2,3 We call these updateswell-formedupdates. Data in large
analytical DWs are often “write-once, read-many” [2], a special
case of well-formed updates. Note that well-formed updatesdo not
require reading existing DW data. In contrast, general transactions
can require an arbitrary number of reads and writes. This distinc-
tion is important because the reads in general transactionsmay in-
herently require I/O reads to the main data and thus interfere with
the sequential data access patterns in table range scans. For well-
formed updates, our goal is to preserve range scan performance as
if there were no online updates. For general transactions involv-
ing both reads and updates, we provide correct functionality, while
achieving comparable or better performance than conventional on-
line update handling, which we will discuss in Section 4.2.

2.2 Conventional Approach: In-Place Updates
In order to clarify the impact of online random updates in ana-

1Following prior work [11], we focus on a single sort order forthe columns
of a table. We discuss how to support multiple sort orders in Section 5.
2We follow prior work on column stores to assume that the RID ofan up-
date is provided [11]. For example, if updates contain sort keys, RIDs may
be obtained by searching the (in-memory) index on sort keys.
3A modification that changes the key is treated as a deletion given the old
key followed by an insertion given the new key.

Tracking Updates
Position Index

Memory

insert delete modify

Memory

SSD

Index on Cached Updates

insert delete modify C treeh
C tree1

C tree0
Memory

SSD propagate propagate

propagate

(a) In-memory IU (Positional Delta Tree [11]) (b) Directly extending IU to SSDs (c) Applying LSM [15] to IU

Figure 5: Extending prior proposals of Indexed Updates (IU)to SSDs.

lytic workloads, we execute TPC-H queries on both a commercial
row-storeDBMS Rand a commercial column-storeDBMS Cwhile
running online in-place updates.4 The TPC-H scale factor is 30.
We make sure that the database on disk is much larger than the al-
located memory buffer size. We were able to perform concurrent
updates and queries on the row store. However, the column store
supports only offline updates, i.e., without concurrent queries. We
recorded the I/O traces of offline updates, and when running queries
on the column store, we use a separate program to replay the I/O
traces outside of the DBMS to emulate online updates. Duringre-
play, we convert all I/O writes to I/O reads so that we can replay
the disk head movements without corrupting the database.

Figure 3 compares the performance of TPC-H queries with no
updates (first bar) and queries with online updates (second bar) on
DBMS R. The third bar shows the sum of the first bar and the time
for applying the same updates offline. Each cluster is normalized
to the execution time of the first bar. Disk traces show sequen-
tial disk scans in all queries. As shown in Figure 3, queries with
online updates see 1.5–4.1X slowdowns (2.2X on average), indi-
cating significant performance degradation because of the random
accesses of online updates. Moreover, the second bar is signifi-
cantly higher than the third bar in most queries (with an average
1.6X extra slowdown). This shows that the increase in query re-
sponse time is a result of not only having two workloads executing
concurrently, but also the interference between the two workloads.
Figure 4 shows a similar comparison for the column storeDBMS C.
Compared with queries with no updates, running in-place updates
online slows down the queries by 1.2–4.0X (2.6X on average).

2.3 Prior Proposals: Indexed Updates (IU)
Differential updates is the state-of-the-art technique for reduc-

ing the impact of online updates [11, 22]. While the basic idea
is straightforward (as described in Section 1), the effortsof prior
work and this paper are on the data structures and algorithmsfor
efficiently implementing differential updates.

In-Memory Indexed Updates.Prior proposals maintain the cache
for updates in main memory and build indexes on the cached up-
dates [11, 22], which we call Indexed Updates (IU). Figure 5(a)
shows the state-of-the-art IU proposal, Positional Delta Tree (PDT)
designed for column stores [11]. PDT caches updates in an in-
sert table, a delete table, and a modify table per database attribute.
It builds a positional index on the cached updates using RID as
the index key. Incoming updates are appended to the relevantin-
sert/delete/modify tables. During query processing, PDT looks up
the index with RIDs to retrieve relevant cached updates. Therefore,
the PDT tables will be accessed in a random fashion during a range
scan on the main data. Migration of the updates is handled by cre-
ating a separate copy of the main data, then making the new copy
available when migration completes. Note that this requires twice
as much data storage capacity as the main data size.

4We were able to run 20 TPC-H queries onDBMS Rand 17 TPC-H queries
on DBMS C. The rest of the queries either do not finish in 24 hours, or are
not supported by the DBMS.

Problems of Directly Extending IU to SSDs.As discussed in Sec-
tion 1, we aim to develop an SSD-based differential update solution
that achieves the five design goals. To start, we consider directly
extending IU to SSDs. As shown in Figure 5(b), the cached up-
dates in insert/delete/modify tables are on SSDs. In order to avoid
random SSD writes, incoming updates should be appended to these
tables. For the same reason, ideally, the index is placed in memory
because it sees a lot of random writes to accommodate incoming
updates. Note that the index may consume a large amount of main
memory, reducing the SSDs’ benefit of saving memory footprint.
We implemented this ideal-case IU following the above consid-
erations (ignoring any memory footprint requirement). However,
real-machine experiments show up to 3.8X query slowdowns even
for this ideal-case IU (Section 4.2). We find that the slowdown is
because the insert/delete/modify tables are randomly readduring
range scan operations. This is wasteful as an entire SSD pagehas
to be read and discarded for retrieving a single update entry.

Problems of Applying LSM to IU. The log-structured merge-tree
(LSM) is a disk-based index structure designed to support a high
rate of insertions [15]. An LSM consists of multiple levels of trees
of increasing sizes. PDT employs the idea of multiple levelsof trees
to support snapshot isolation in memory [11]. Here, we consider
the feasibility of combining LSM and IU as an SSD-based solution.

As shown in Figure 5(c), LSM keeps the smallestC0 tree in
memory, andC1, ..., Ch trees on SSDs, whereh ≥ 1. Incoming
updates are first inserted intoC0, then gradually propagate to the
SSD-resident trees. There are asynchronous rolling propagation
processes between every adjacent pair (Ci, Ci+1) that (repeatedly)
sequentially visit the leaf nodes ofCi andCi+1, and move entries
from Ci to Ci+1. This scheme avoids many of IU’s performance
problems. Random writes can be avoided by using large sequen-
tial I/Os during propagation. For a range scan query, it performs
corresponding index range scans on every level of LSM, thereby
avoiding wasteful random I/Os as in the above ideal-case IU.

Unfortunately,LSM incurs a large amount of writes per update
entry, violating the third design goal. The additional writes arise in
two cases: (i) An update entry is copiedh times fromC0 to Ch;
and (ii) the propagation process fromCi to Ci+1 rewrites the old
entries inCi+1 to SSDs once per round of propagation. According
to [15], in an optimal LSM, the sizes of the trees form a geometric
progression. That is,size(Ci+1)/size(Ci) = r, wherer is a con-
stant parameter. It can be shown that in LSM the above two cases
introduce aboutr + 1 writes per update for levels1, . . . , h− 1 and
(r + 1)/2 writes per update for levelh. As an example, with 4GB
flash space and 16MB memory (which is our experimental setting
in Section 4.1), we can compute that a 2-level (h = 1) LSM writes
every update entry≈ 128 times. The optimal LSM that minimizes
total writes hash = 4 and it writes every update entry≈ 17 times!
In other words, compared to a scheme that writes every updateen-
try once, applying LSM on an SSD reduces its lifetime17 fold
(e.g., from 3 years to 2 months).

3. MaSM DESIGN
In this section, we propose MaSM (materialized sort-merge) al-

gorithms for achieving the five design goals. We start by describing
the basic ideas in Section 3.1. Then we present two MaSM algo-
rithms: MaSM-2M in Section 3.2 and MaSM-M in Section 3.3.
MaSM-M halves the memory footprint of MaSM-2M but incurs
extra SSD writes. In Section 3.4, we generalize these two algo-
rithms into a MaSM-αM algorithm, allowing a range of trade-offs
between memory footprint and SSD writes by varyingα. After
that, we discuss a set of optimizations in Section 3.5, and describe
transaction support in Section 3.6. Finally, we analyze theMaSM
algorithms in terms of the five design goals in Section 3.7.

3.1 Basic Ideas
Consider the operation of merging a table range scan and the

cached updates. For every record retrieved by the scan, it finds and
applies any matching cached updates. Records without updates or
new insertions must be returned too. Essentially, this is anouter
join operation on the record key (primary key/RID).

Among various join algorithms, we choose to employ a sort-
based join that sorts the cached updates and merges the sorted up-
dates with the table range scan. This is because the most efficient
joins are typically sort-based or hash-based, but hash-based joins
have to perform costly I/O partitioning for the main data. The
sort-based join also preserves the record order in table range scans,
which allows hiding the implementation details of the merging op-
eration from the query optimizer and upper-level query operators.

To reduce memory footprint, we keep the cached updates on
SSDs and perform external sorting of the updates; two-pass ex-
ternal sorting requiresM =

p

‖SSD‖ pages in memory to sort
‖SSD‖ pages of cached updates on SSDs. However, external sort-
ing may incur significant overhead for generating sorted runs and
merging them. We exploit the following two ideas to reduce the
overhead. First, we observe that a query should see all the cached
updates that a previous query has seen. Thus, we materializesorted
runs of updates, deleting the generated runs only after update mi-
gration. This amortizes the cost of sorted run generation across
many queries. Second, we would like to prune as many irrelevant
updates to the current range scan query as possible. Becausemate-
rialized runs are read-only, we can create a simple, read-only index,
calleda run index, to record the smallest key (primary key/RID)
for every fixed number of SSD pages in a sorted run. Then we can
search the query’s key range in the run index to retrieve onlythose
SSD pages that fall in the range. We call the algorithm combining
the above ideas theMaterialized Sort-Merge (MaSM)algorithm.

The picture of the above design is significantly complicatedby
the interactions among incoming updates, range scans, and update
migrations. For example, sharing the memory buffer betweenup-
dates and queries makes it difficult to achieve a memory footprint of
M . In-place migrations may conflict with ongoing queries. Con-
currency control and crash recovery must be re-examined. Inthe
following, we first present a simple MaSM algorithm that requires
2M memory and a more sophisticated algorithm that reduces the
memory requirement toM , then generalize them into an algorithm
requiringαM memory. We propose a timestamp-based approach
to support in-place migrations and ACID properties.

3.2 MaSM-2M
Figure 6 illustrates MaSM-2M, which allocatesM pages to cache

recent updates in memory and (up to)M pages for supporting a ta-
ble range scan. Incoming (well-formed) updates are inserted into
the in-memory buffer. When the buffer is full, MaSM-2M flushes
the in-memory updates and creates a materialized sorted runof
sizeM on the SSD. There will be at mostM materialized sorted
runs since the capacity of the SSD isM2. For a table range scan,
MaSM-2M allocates one page in memory for scanning every ma-

R
un

_s
ca

n

R
un

_s
ca

n

R
un

_s
ca

n

Merge_updates

M
em

_s
ca

n

T
ab

le
_r

an
ge

_s
ca

n

pages
M

pages
MM

ai
n

m
em

or
y

Merge_data_updates

(main data)
Disks

updates
Incoming

SSD (updates)

ne
w

es
t

ol
de

st Materialized
sorted runs,
each with
run index

Figure 6: Illustrating the MaSM algorithm using 2M memory.

terialized sorted run—up toM pages. It builds a Volcano-style [9]
operator tree to merge main data and updates, replacing the original
Table_range_scan operator in query processing. We describe
the detailed algorithm in the following.

Timestamps. We associate every incoming update with a times-
tamp, which represents the commit time of the update. Every query
is also assigned a timestamp. We ensure that a query can only see
earlier updates with smaller timestamps. Moreover, we store in ev-
ery database page the timestamp of the last update applied tothe
page, for supporting in-place migration. To do this, we reuse the
Log Sequence Number (LSN) field in the database page. This field
is originally used in recovery processing to decide whetherto per-
form a logged redo operation on the page. However, in the caseof
MaSM, the LSN field is not necessary because recovery process-
ing does not access the main data, rather it recovers the in-memory
buffer for recent updates.

Update Record.For an incoming update, we construct a record of
the format(timestamp, key, type, content). As discussed
in Section 2.1, table range scans output records in key order, ei-
ther the primary key in a row store or the RID in a column store,
and well-formed updates contain the key information. Thetype
field is one ofinsert/delete/modify/replace; replace rep-
resents a deletion merged with a later insertion with the same key.
Thecontent field contains the rest of the update information: for
insert/replace, it contains the new record except for the key;
for delete, it is null; for modify, it specifies the attribute(s) to
modify and the new value(s). During query processing, agetnext
call on Merge_data_updates will incur getnext on operators
in the subtree.Run_scan andMem_scan scan the associated ma-
terialized sorted runs and the in-memory buffer, respectively. The
(begin key, end key) of the range scan is used to narrow down
the update records to scan.Merge_updatesmerges multiple streams
of sorted updates. For updates with the same key, it merges the
updates correctly. For example, thecontent fields of multiple
modifications are merged. A deletion followed by an insertion
will change thetype field to replace. Merge_data_updates
performs the desired outer-join like merging operation of the data
records and the update records.

Incoming Update. The steps to process an incoming update are:

1: if In-memory buffer is fullthen
2: Sort update records in the in-memory buffer in key order;
3: Build a run index recording(begin key, SSD page);
4: Create a new materialized sorted run with run index on SSD;
5: Reset the in-memory buffer;
6: end if
7: Append the incoming update record to the in-memory buffer;

Table Range Scan.MaSM-2M constructs a Volcano-style query
operator tree to replace theTable_range_scanoperator:

1: Instantiate aRun_scan operator per materialized sorted run
using the run index to narrow down the SSD pages to retrieve;

2: Sort the in-memory buffer for recent update records;
3: Instantiate aMem_scan operator on the in-memory buffer and

locate the begin and end update records for the range scan;
4: Instantiate aMerge_updates operator as the parent of all the

Run_scan operators and theMem_scan operator;
5: Instantiate aMerge_data_updates operator as the parent of

theTable_range_scan and theMerge_updates;
6: returnMerge_data_updates;

Online Updates and Range Scan.Usually, incoming updates are
appended to the end of the update buffer, and therefore do notinter-
fere with ongoingMem_scan. However, flushing the update buffer
must be handled specially. MaSM records a flush timestamp with
the update buffer thereforeMem_scan can discover the flushing.
When this happens,Mem_scan will instantiate aRun_scan opera-
tor for the new materialized sorted run and replaces itself with the
Run_scan in the operator tree. The update buffer must be protected
by latches (mutexes). To reduce latching overhead,Mem_scan re-
trieves multiple update records at a time.

Multiple Concurrent Range Scans. When multiple range scans
enter the system concurrently, each one builds its own queryoper-
ator tree with distinct operator instances, and separate read buffers
for the materialized sorted runs.Run_scan performs correctly be-
cause materialized sorted runs are read-only. On the other hand,
the in-memory update buffer is shared by allMem_scan opera-
tors, which sort the update buffer then read sequentially from it.
For reading the buffer sequentially, eachMem_scan tracks(key,
pointer) pairs for thenext position and theend_range po-
sition in the update buffer. To handle sorting, MaSM recordsa
sort timestamp with the update buffer whenever it is sorted.In
this way,Mem_scan can detect a recent sorting. Upon detection,
Mem_scan adjusts the pointers of thenext andend_range po-
sitions by searching for the corresponding keys. There may be
new update records that fall between the two pointers after sort-
ing. Mem_scan correctly filters out the new update records based
on the query timestamp.

In-Place Migration of Updates Back to Main Data. Migration
is implemented by performing a full table scan where the scanout-
put is written back to disks. Compared to a normal table range
scan, there are two main differences. First, the(begin key, end
key) is set to cover the entire range. Second,Table_range_scan
returns a sequence of data pages rather than a sequence of records.
Merge_data_updates applies the updates to the data pages in
the database buffer pool, then issues (large sequential) I/O writes
to write back the data pages. For compressed data chunks in a
column store, the data is uncompressed in memory, modified, re-
compressed, and written back to disks. The primary key indexor
the RID position index is updated along with every data page.Here,
by in-place migration, we mean two cases: (i) new data pages over-
write the old pages with the same key ranges; or (ii) after writing a
new chunk of data, the corresponding old data chunk is deleted so
that its space can be used for writing other new data chunks.

The migration operation is performed only when the system is
under low loads or when the size of cached updates is above a pre-
specified threshold. When one of the conditions is true, MaSM
logs the current timestampt and the IDs of the setR of current
materialized sorted runs in the redo log, and spawns a migration
thread. The thread waits until all ongoing queries earlier than t
complete, then migrates the setR of materialized runs. When mi-

R
un

_s
ca

n

R
un

_s
ca

n

R
un

_s
ca

n

R
un

_s
ca

n

Merge_updates

M
em

_s
ca

n

2−pass sorted runs 1−pass sorted runs

To Merge_data_updates
updates

Incoming

M
ai

n
m

em
or

y

SSD (updates)

Materialized

each with
run index

sorted runs,

pages
pages

S(update)
(query)
M−S

Figure 7: Illustrating MaSM algorithm using M memory.

gration completes, it logs a migration completion record inthe
redo log then deletes the setR of materialized runs. Note that
new queries arriving aftert are handled correctly. They must see
all the updates being migrated. A new range scan can compare
the timestamp of a data page and the timestamp of an update in
Merge_data_updates to determine whether the update has al-
ready been applied to the data page, thereby correctly handling both
the before-migration and the after-migration data pages.

3.3 MaSM-M
Figure 7 illustrates MaSM-M, the MaSM algorithm usingM

memory. There are two main differences between MaSM-M and
MaSM-2M. First, compared to MaSM-2M, MaSM-M manages
memory more carefully to reduce its memory footprint toM pages.
S of theM pages, called update pages, are dedicated to buffering
incoming updates in memory. The rest of the pages, called query
pages, are mainly used to support query processing. Second,ma-
terialized sorted runs have different sizes in MaSM-M. Since the
query pages can support up to onlyM−S materialized sorted runs,
the algorithm has to merge multiple smaller materialized sorted
runs into larger materialized sorted runs. We call the sorted runs
that are directly generated from the in-memory buffer1-passruns,
and those resulted from merging 1-pass runs2-passruns.

Figure 8 presents the pseudo code of MaSM-M. Algorithm pa-
rameters are summarized in Table 1. Incoming updates are cached
in the in-memory buffer until the buffer is full. At this moment,
the algorithm tries to steal query pages for caching updatesif they
are not in use (Lines 2–3). The purpose is to create1-passruns as
large as possible for reducing the need for merging multipleruns.
When query pages are all in use, the algorithm creates a 1-pass
materialized sorted run with run index on SSDs (Line 5).

The table range scan algorithm consists of three parts. First,
Lines 1–4 create a1-passrun if the in-memory buffer contains at
leastS pages of updates. Second, Lines 5–8 guarantee that the
number of materialized sorted runs is at mostM − S, by (repeat-
edly) merging theN earliest 1-pass sorted runs into a single 2-pass
sorted run untilK1 + K2 ≤ M − S. Note that theN earliest
1-pass runs are adjacent in time order, and thus merging themis
meaningful. Since the size of a 1-pass run is at leastS pages, the
size of a 2-pass sorted run is at leastNS pages. Finally, Lines 9–14
construct the query operator tree. This part is similar to MaSM-2M.

Like MaSM-2M, MaSM-M handles concurrent range scans, up-
dates, and in-place migration using the timestamp approach.

Minimizing SSD Writes for MaSM-M. We choose theS andN
parameters to minimize SSD writes for MaSM-M.

Lemma 3.1. The size of a 1-pass materialized sorted run is at
leastS. The size of a 2-pass materialized sorted run is at leastNS.

PROOF. These are clear from the algorithm in Figure 8.

Incoming Updates:

1: if In-memory buffer is fullthen
2: if At least one of the query pages is not usedthen
3: Steal a query page to extend the in-memory buffer;
4: else
5: Create a 1-pass materialized sorted run with run index

from the updates in the in-memory buffer;
6: Reset the in-memory buffer to haveS empty pages;
7: end if
8: end if
9: Append the incoming update record to the in-memory buffer;

Table Range Scan Setup:

1: if In-memory buffer contains at leastS pages of updatesthen
2: Create a 1-pass materialized sorted run with run index from

the updates in the in-memory buffer;
3: Reset the in-memory buffer to haveS empty update pages;
4: end if
5: while K1 + K2 > M − S do { merge 1-pass runs}
6: MergeN earliest adjacent 1-pass runs into a 2-pass run;
7: K1 = K1 − N ; K2++;
8: end while
9: Instantiate aRun_scan operator per materialized sorted run

using the run index to narrow down SSD pages to retrieve;
10: if In-memory buffer is not emptythen
11: Sort the in-memory buffer and create aMem_scan operator;
12: end if
13: Instantiate aMerge_updates operator as the parent of all the

Run_scan operators and theMem_scan operator;
14: Instantiate aMerge_data_updates operator as the parent of

theTable_range_scan and theMerge_updates;
15: returnMerge_data_updates;

Figure 8: MaSM-M algorithm

Theorem 3.2. The MaSM-M algorithm minimizes the number
of SSD writes in the worst case whenSopt = 0.5M andNopt =
0.375M + 1. The average number of times that MaSM-M writes
every update record to SSD is1.75 + 2

M
.

PROOF. Every update record is written at least once to a 1-pass
run. Extra SSD writes occur when 1-pass runs are merged into a
2-pass run. We chooseS andN to minimize the extra writes.

The worst case scenario happens when all the 1-pass sorted runs
are of the minimal sizeS. In this case, the pressure for generating
2-pass runs is the greatest. Suppose all the 1-pass runs havesize
S and all the 2-pass runs have sizeNS. We must make sure that
when the allocated SSD space is full, MaSM-M can still merge all
the sorted runs. Therefore:

K1S + K2NS = M2 and K1 + K2 ≤ M − S

ComputeK1 from the first equation and plug it into the inequality:

K2 ≥ 1

N − 1
(S − M +

M2

S
) (1)

When the SSD is full, the total extra writes is equal to the total size
of all the 2-pass sorted runs:

ExtraWrites = K2NS ≥ N

N − 1
(S2 − MS + M2) (2)

To minimizeExtraWrites, we would like to minimize the right
hand side and achieve the equality sign as closely as possible. The
right hand side achieves the minimum whenN takes the largest

Table 1: Parameters used in the MaSM-M algorithm.
‖SSD‖ SSD capacity (in pages),‖SSD‖ = M2

M memory size (in pages) allocated for MaSM-M
S memory buffer (in pages) allocated for incoming updates

K1 number of 1-pass sorted runs on SSDs
K2 number of 2-pass sorted runs on SSDs
N mergeN 1-pass runs into a 2-pass run,N ≤ M − S

possible value andSopt = 0.5M . Plug it into (1) and (2):

K2 ≥ 1.5M

N − 1
iff N ≥ 1.5M

K2

+ 1 (3)

ExtraWrites = 0.5MK2N ≥ 0.75M2 N

N − 1
(4)

Note that the equality signs in the above two inequalities are achieved
at the same time. Given a fixedK2, the smaller theN , the lower
theExtraWrites. Therefore,ExtraWrites is minimized when
the equality signs hold. We can rewritemin(ExtraWrites) as a
function ofK2:

min(ExtraWrites) = 0.75M2(1 +
K2

1.5M
) (5)

The global minimum is achieved with the smallest non-negative
integerK2. SinceN ≤ M − Sopt = 0.5M , we knowK2 > 3
according to (3).

Therefore,ExtraWrites achieves the minimum whenSopt =
0.5M , K2,opt = 4, andNopt = 0.375M + 1. We can compute
the minimumExtraWrites = 0.75M2 +2M . In this setting, the
average number of times that MaSM-M writes every update record
to SSD is1 + (0.75M2 + 2M)/M2 = 1.75 + 2

M
≃ 1.75.

3.4 MaSM-αM
We generalize the MaSM-M algorithm to a MaSM-αM algo-

rithm that usesαM memory, whereα ∈ [2
3
√

M
, 2]. The algo-

rithm is the same as MaSM-M except that the total allocated mem-
ory size isαM pages. The lower bound onα ensures that the
memory is sufficiently large to make 3-pass sorted runs unneces-
sary. MaSM-M is a special case of MaSM-αM whenα = 1, and
MaSM-2M is a special case of MaSM-αM whenα = 2. Similar to
the proof of Theorem 3.2, we can obtain the following theoremfor
minimizing SSD writes for MaSM-αM.

Theorem 3.3. The MaSM-αM algorithm minimizes the num-
ber of SSD writes in the worst case whenSopt = 0.5αM and
Nopt = 1

⌊ 4

α
2
⌋ (2

α
−0.5α)M +1. The average number of times that

MaSM-M writes every update record to SSD is roughly2−0.25α2 .

We can verify that MaSM-M incurs roughly2 − 0.25 ∗ 12 = 1.75
writes per update record, while MaSM-2M writes every update
record once (2 − 0.25 ∗ 22 = 1).

Theorem 3.3 shows the trade-off between memory footprint and
SSD writes for a spectrum of MaSM algorithms. At one end of the
spectrum, MaSM-2M achieves minimal SSD writes with 2M mem-
ory. At the other end of the spectrum, one can achieve a MaSM al-
gorithm with very small memory footprint (2

3
√

M2) while writing
every update record at most twice.

3.5 Further Optimizations
Granularity of Run Index. Because run indexes are read-only,
their granularity can be chosen flexibly. For example, suppose the
page size of the sorted runs on SSDs is 64KB. Then we can keep
the begin key for a coarser granularity, such as one key per 1MB, or
a finer granularity, such as one key per 4KB. The run index should
be cached in memory for efficient accesses (especially if there are a

lot of small range scans). Coarser granularity saves memoryspace,
while finer granularity makes range scans on the sorted run more
precise. The decision should be made based on the query work-
load. The former is a good choice if very large ranges are typical,
while the latter should be used if narrower ranges are frequent. For
indexing purpose, one can keep a 4-byte prefix of the actual key in
the run index. Therefore, the fine-grain indexes that keep 4 bytes
for every 4KB updates are‖SSD‖/1024 large. If keeping 4 bytes
for every 1MB updates, the total run index size is‖SSD‖/256K
large. In both cases the space overhead on SSD is very small.
Handling Skews in Incoming Updates.When updates are highly
skewed, there may be many duplicate updates (i.e., updates to the
same record). The MaSM algorithms naturally handle skews: When
generating a materialized sorted run, the duplicates can bemerged
in memory as long as the merged update records do not affect
the correctness of concurrent range scans. That is, if two update
records with timestampt1 and t2 are to be merged, there should
not be any concurrent range scans with timestampt, such thatt1 <
t ≤ t2. In order to further reduce duplicates, one can compute
statistics about duplicates at the range scan processing time. If the
benefits of removing duplicates outweigh the cost of SSD writes,
one can remove all duplicates by generating a single materialized
sorted run from all existing runs.

Improving Migration. There are several ways to improve the mi-
gration operation. First, similar to coordinated scans [8], we can
combine the migration with a table scan query in order to avoid the
cost of performing a table scan for migration purposes only.Sec-
ond, one can migrate a portion (e.g., every1/10 of table range) of
updates at a time to distribute the cost across multiple operations.
To do this, each materialized sorted run will record the ranges that
have already been migrated and the ranges that are still active.

3.6 Transaction Support
Serializability among Individual Queries and Updates. By us-
ing timestamps, MaSM algorithms guarantee that queries seeonly
earlier updates. In essence, the timestamp order defines a total
serial order, and thus MaSM algorithms guarantee serializability
among individual queries and updates.

Supporting Snapshot Isolation for General Transactions. In
snapshot isolation [3], a transaction works on the snapshotof data
as seen at the beginning of the transaction. If multiple transactions
modify the same data item, the first committer wins while the other
transactions abort and roll back. Note that snapshot isolation alone
does not solve the online updates problem in DWs. While snapshot
isolation removes the logical dependencies between updates and
queries so that they may proceed concurrently, the physicalinter-
ferences between updates and queries present major performance
problems. Such interferences are the target of MaSM algorithms.

Similar to prior work [11], MaSM can support snapshot isolation
by maintaining for every ongoing transaction a small private buffer
for the updates performed by the transaction. (Note that such pri-
vate buffers may already exist in the implementation of snapshot
isolation.) A query in the transaction will have the timestamp of
the transaction start time so that it sees only the snapshot of data
at the the beginning of the transaction. To incorporate the transac-
tion’s own updates, we can instantiate aMem_scan operator on the
private update buffer, and insert this operator in the queryoperator
tree in Figure 6 and 7. At commit time, if the transaction succeeds,
we assign the commit timestamp to the private updates and copy
them into the global in-memory update buffer.

Supporting Locking Schemes for General Transactions.Shared
(exclusive) locks are used to protect reads (writes) in manydatabase
systems. MaSM can support locking schemes as follows. First, for

an update, we ensure that it is globally visible only after the asso-
ciated exclusive lock is released. To do this, we allocate a small
private update buffer per transaction (similar to snapshotisolation),
and cache the update in the private buffer. Upon releasing the exclu-
sive lock that protects the update, we assign the current timestamp
to the update record and append it to MaSM’s global in-memory
update buffer. Second, we assign the normal start timestampto a
query so that it can see all the earlier updates.

For example, two phase locking is correctly supported. In two
phase locking, two conflicting transactionsA andB are serialized
by the locking scheme. SupposeA happens beforeB. Our scheme
makes sure thatA’s updates are made globally visible atA’s lock
releasing phase, andB correctly see these updates.

Crash Recovery. Typically, MaSM needs to recover only the in-
memory update buffer for crash recovery. This can be easily han-
dled by reading the database redo log for the update records.It
is easy to use update timestamps to distinguish updates in mem-
ory and updates on SSDs. In the rare case, the system crashes in
the middle of an update migration operation. To detect such cases,
MaSM records the start and the end of an update migration in the
log. Note that we do not log the changes to data pages in the redo
log during migration, because MaSM can simply redo the update
migration during recovery processing: By using the timestamps in
data pages, MaSM naturally determines whether updates should be
applied to the data pages. The primary key index or RID position
index is examined and updated accordingly.

3.7 Achieving The Five Design Goals
As described in Sections 3.2–3.6, it is clear that the MaSM algo-

rithms performno random SSD writesand providecorrect ACID
support. We analyze the other three design goals in the following.

Low Overhead for Table Range Scan Queries.Suppose that up-
dates are uniformly distributed across the main data. If themain
data size is‖Disk‖ pages, and the table range scan query accesses
R disk pages, then MaSM-αM readsmax(R ‖SSD‖

‖Disk‖ , 0.5αM) pages
on SSDs. This formula has two parts. First, whenR is large, run
indexes can effectively narrow down the accesses to materialized
sorted runs, and therefore MaSM performs(R ‖SSD‖

‖Disk‖) SSD I/Os,
proportional to the range size. Compared to reading the diskmain
data, MaSM reads fewer bytes from SSD, as‖SSD‖

‖Disk‖ is 1%–10%.
Therefore, the SSD I/Os can be completely overlapped with the
table range scan on main data, leading to very low overhead.

Second, when the rangeR is small, MaSM-αM performs at least
one I/O per materialized sorted run: the I/O cost is bounded by the
number of materialized sorted runs (up to0.5αM). (Our experi-
ments in Section 4.2 see 128 sorted runs for 100GB data.) Note
that SSDs can support 100X–1000X random 4KB reads per second
compared to disks [13]. Therefore, MaSM can overlap most laten-
cies of the0.5αM random SSD reads with the small range scan on
disks, achieving low overhead.

Memory Footprint vs. Total SSD Writes. MaSM-αM specifies
a spectrum of MaSM algorithms trading off SSD writes for mem-
ory footprint. By varyingα from 2 to 2

3
√

M
, the memory footprint

reduces from2M pages to2 3
√

M2 pages, while the average times
that an update record is written to SSDs increases from the (min-
imal) 1 to close to 2. In all these algorithms, we achieve small
memory footprint and low total SSD writes.

The write endurance of enterprise-grade SLC (Single Level Cell)
NAND Flash is typically105. Therefore, a 32GB Intel X25E SSD
can support 3.2-petabyte writes, or 33.8MB/s for 3 years. MaSM-2M
writes SSDs once for any update record, therefore a single SSD can
sustain up to 33.8MB/s updates for 3 years. MaSM-M writes about

1.75 times for an update record. Therefore, for MaSM-M, a single
SSD can sustain up to 19.3MB/s updates for 3 years, or 33.8MB/s
for 1 year and 8 months. This limit can be improved by using larger
total SSD capacity: doubling SSD capacity doubles this bound.

Efficient In-Place Migration. MaSM achieves in-place update mi-
gration by attaching timestamps to updates, queries, and data pages
as described in Section 3.2.

We discuss two aspects of migration efficiency. First, MaSM
performs efficient sequential I/O writes in a migration. Because
update cache size is non-trivial (1%–10%) compared to main data
size, it is likely that there exist update records for every data page.
Compared to conventional random in-place updates, MaSM can
achieve orders of magnitude higher sustained update rate, as will be
shown in Section 4.2. Second, MaSM achieves low migration fre-
quency with a small memory footprint. If SSD page size isP , then
MaSM-αM usesF = αMP memory pages to support an SSD-
based update cache of sizeM2P = F2

α2P
. Note that as the memory

footprint doubles, the size of MaSM’s update cache increases by a
factor of 4, and the migration frequency decreases by a factor of
4, as compared to a factor of 2 with prior approaches that cache
updates in memory (see Figure 1). For example, for MaSM-M, if
P = 64KB, a 16GB in-memory update cache in prior approaches
has the same migration overhead as just anF = 32MB in-memory
buffer in our approach, becauseF 2/(64KB) = 16GB.

4. EXPERIMENTAL EVALUATION
We perform real-machine experiments to evaluate our proposed

MaSM algorithm. We start by describing the experimental setup in
Section 4.1. Then, we present experimental studies with synthetic
data in Section 4.2 and perform experiments based on TPC-H traces
recorded from a commercial database system in Section 4.3.

4.1 Experimental Setup

Machine Configuration. We perform all experiments on a Dell
Precision 690 workstation equipped with a quad-core Intel Xeon
5345 CPU (2.33GHz, 8MB L2 cache, 1333MHz FSB) and 4GB
DRAM running Ubuntu Linux with 2.6.24 kernel. We store the
main table data on a dedicated SATA disk (200GB 7200rpm Sea-
gate Barracuda with 77MB/s sequential read and write bandwidth).
We cache updates on an Intel X25-E SSD [13] (with 250MB/s se-
quential read and 170MB/s sequential write bandwidth). Allcode
is compiled with g++ 4.2.4 with “-O2”.

Implementation. We implemented a prototype row-store DW, sup-
porting range scans on tables. Tables are implemented as filesys-
tem files with the slotted page structure. Records are clustered ac-
cording to the primary key order. A range scan performs 1MB-
sized disk I/O reads for high throughput unless the range size is
less than 1MB. Incoming updates consist of insertions, deletions,
and modifications to attributes in tables. We implemented three
algorithms for online updates: (1) In-place updates; (2) IU(In-
dexed Updates); and (3) MaSM-M. In-place updates perform 4KB-
sized read-modify-write I/Os to the main data on disk. The IUim-
plementation caches updates on SSDs and maintains an index to
the updates. We model the best performance for IU by keeping
its index always in memory in order to avoid random SSD writes
to the index. Note that this consumes much more memory than
MaSM. Since the SSD has 4KB internal page size, IU uses 4KB-
sized SSD I/Os. For MaSM, we experiment with the more sophis-
ticated MaSM-M algorithm with smaller memory footprint. Note
that MaSM-M provides performance lower bounds for MaSM-αM.
By default, MaSM-M performs 64KB-sized I/Os to SSDs. Asyn-

chronous I/Os (with libaio) are used to overlap disk and SSD I/Os,
and to take advantage of the internal parallelism of the SSD.

Experiments with Synthetic Data. We generate a 100GB table
with 100-byte sized records and 4-byte primary keys. The table is
initially populated with even-numbered primary keys so that odd-
numbered keys can be used to generate insertions. We generate up-
dates randomly uniformly distributed across the entire table, with
update types (insertion, deletion, or field modification) selected
randomly. By default, we use 4GB flash space for caching updates,
thus MaSM-M requires 16MB memory for 64KB SSD effective
page size. We also study the impact of varying the flash space.

TPC-H replay experiments. We ran the TPC-H benchmark with
scale factorSF = 30 (roughly 30GB database) on a commercial
row-store DBMS and obtained the disk traces of the TPC-H queries
using the Linuxblktrace tool. We were able to obtain traces for
20 TPC-H queries except queries 17 and 20, which did not finish
in 24 hours. By mapping the I/O addresses in the traces back to
the disk ranges storing each TPC-H table, we see that all the 20
TPC-H queries perform (multiple) table range scans. Interestingly,
the 4GB memory is large enough to hold the smaller relations in
hash joins, therefore hash joins reduce to a single pass algorithm
without generating temporary partitions. Note that MaSM aims to
minimize memory footprint to preserve such good behaviors.

We replay the TPC-H traces using our prototype DW as follows.
We create TPC-H tables with the same sizes as in the commer-
cial database. We replay the query disk traces as the query work-
load on the real machine. We perform 1MB-sized asynchronous
(prefetch) reads for the range scans for high throughput. Then we
apply online updates to TPC-H tables using in-place updatesand
our MaSM-M algorithm. Although TPC-H provides a program to
generate batches of updates, each generated update batch deletes
records and inserts new records in a very narrow primary key range
(i.e. 0.1%) of theorders andlineitem tables. To model the more
general and challenging case, we generate updates to be randomly
distributed across thelineitem andorders tables (which occupy
over 80% of the total data size). We make sure that anorders
record and its associatedlineitem records are inserted or deleted
together. For MaSM, we use 1GB flash space, 8MB memory, and
64KB sized SSD I/Os.

Measurement Methodology.We use the following steps to mini-
mize OS and device caching effect: (i) opening all the (disk or SSD)
files withO_DIRECT|O_SYNC flag to get around OS file cache; (ii)
disabling the write caches in the disk and the SSD; (iii) reading
an irrelevant large file from each disk and each SSD before every
experiment so that the device read caches are cleared. In experi-
ments on synthetic data, we randomly select 10 ranges for scans of
100MB or larger, and 100 ranges for smaller ranges. For the larger
ranges, we run 5 experiments for every range. For the smaller
ranges, we run 5 experiments, each performing all the 100 range
scans back-to-back (to reduce the overhead of OS reading filein-
odes and other metadata). In TPC-H replay experiments, we per-
form 5 runs for each query. We report the averages of the runs.The
standard deviations are within 5% of the averages.

4.2 Experiments with Synthetic Data
Comparing All Schemes for Handling Online Updates. Fig-
ure 9 compares the performance impact of online update schemes
on range scan queries while varying the range size from 100GB(the
entire table) to 4KB (a disk page). For IU and MaSM schemes, the
cached updates occupy 50% of the allocated 4GB flash space (i.e.
2GB), which is the average amount of cached updates expectedto
be seen in practice. The coarse-grain index records one entry per
64KB cached updates on flash, while the fine-grain index records

2

3

4
z
e
d

 t
im

e

0

1

2

3

4

4KB 100KB 1MB 10MB 100MB 1GB 10GB 100GB

n
o

rm
a

li
z
e

d
 t

im
e

range size

in-place updates indexed updates (IU)
M SM / i i d M SM / fi i i d

0

1

2

3

4

4KB 100KB 1MB 10MB 100MB 1GB 10GB 100GB

n
o

rm
a

li
z
e

d
 t

im
e

range size

in-place updates indexed updates (IU)
MaSM w/ coarse-grain index MaSM w/ fine-grain index

Figure 9: Comparing the impact of online update schemes on
range scan performance (normalized to scans without updates).

1.0

1.1

1.2

a
li

z
e

d
 t

im
e

25% full 50% full 75% full 99% full

0.8

0.9

1.0

1.1

1.2

4KB 100KB 1MB 10MB 100MB 1GB 10GB 100GB

n
o

rm
a

li
z
e

d
 t

im
e

range size

25% full 50% full 75% full 99% full

0.8

0.9

1.0

1.1

1.2

4KB 100KB 1MB 10MB 100MB 1GB 10GB 100GB

n
o

rm
a

li
z
e

d
 t

im
e

range size

25% full 50% full 75% full 99% full

Figure 10: MaSM range scans varying updates cached in SSD.

one entry per 4KB cached updates. All the bars are normalizedto
the execution time of range scans without updates.

As shown in Figure 9, range scans with in-place updates (the
leftmost bars) see 1.7–3.7X slowdowns. This is because the ran-
dom updates significantly disturb the sequential disk accesses of
the range scans. Interestingly, as the range size reduces from 1MB
to 4KB, the slowdown increases from 1.7X to 3.7X. We find that
elapsed times of pure range scans reduce from 29.8ms to 12.2ms,
while elapsed times of range scans with in-place updates reduce
from 50.3ms to only 44.7ms. Note that the queries perform a sin-
gle disk I/O for data size of 1MB or smaller. The single I/O is
significantly delayed because of the random in-place updates.

As shown by the second bars in Figure 9, range scans with IU see
1.1–3.8X slowdowns. This is because IU performs a large number
of random I/O reads for retrieving cached updates from the SSD.
When the range size is 4KB, the SSD reads in IU can be mostly
overlapped with the disk access, leading to quite low overhead.

MaSM with coarse-grain index incurs little overhead for 100MB
to 100GB ranges. This is because the total size of the cached up-
dates (2GB) is only 1/50 of the total data size. Using the coarse-
grain run index, MaSM retrieves roughly 1/50 SSD data (cached
updates) compared to the disk data read in the range scans. As
the sequential read performance of the SSD is higher than that of
the disk, MaSM can always overlap the SSD accesses with disk
accesses for the large ranges.

For the smaller ranges (4KB to 10MB), MaSM with coarse-grain
index incurs up to 2.9X slowdowns. For example, at 4KB ranges,
MaSM has to perform 128 SSD reads of 64KB each. This takes
about 36ms (mainly bounded by SSD read bandwidth), incurring
2.9X slowdown. On the other hand, MaSM with fine-grain index
can narrow the search range down to 4KB SSD pages. Therefore,
it performs 128 SSD reads of 4KB each. The Intel X25-E SSD is
capable of supporting over 35,000 4KB random reads per second.
Therefore, the 128 reads can be well overlapped with the 12.2ms
4KB range scan. Overall, MaSM with fine-grain index incurs only
4% overhead even at 4KB ranges.

MaSM Varying Cached Update Size.Figure 10 varies both the
range size (from 100GB to 4KB) and the cached update size (from

3

ti
m

e

0

1

2

3

n
o

rm
a
li
z
e
d

 t
im

e

100GB
scan

scan w/
migration

0

1

2

3

n
o

rm
a
li
z
e
d

 t
im

e

100GB
scan

scan w/
migration

Figure 11: MaSM
update migration.

6631 124981E+5

e
c

68 48

3472 6631 12498

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

random
writes

in-place
updates

MaSM
2GB

MaSM
4GB

MaSM
8GB

s
u

s
ta

in
e

d
 u

p
d

/s
e

c

68 48

3472 6631 12498

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

random
writes

in-place
updates

MaSM
2GB
SSD

MaSM
4GB
SSD

MaSM
8GB
SSD

s
u

s
ta

in
e

d
 u

p
d

/s
e

c

Figure 12: Sustained updates per second
varying SSD size in MaSM.

250

300

s
e

c
)

scan w/o updates

0

50

100

150

200

250

300

0.0 0.5 1.0 1.5 2.0 2.5e
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
)

injected CPU cost per record (usec)

scan w/o updates

MaSM

0

50

100

150

200

250

300

0.0 0.5 1.0 1.5 2.0 2.5e
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
)

injected CPU cost per record (usec)

scan w/o updates

MaSM

Figure 13: Range scan and MaSM performance while emulat-
ing CPU cost of query processing (10GB ranges).

25% full to 99% full) on the SSD. We disable update migration by
setting the migration threshold to be 100%. We use MaSM with
fine-grain index for 4KB to 10MB ranges, and MaSM with coarse-
grain index for 100MB to 100GB ranges. From Figure 10, we see
that in all cases, MaSM achieves performance comparable to range
scans without updates. At 4KB ranges, MaSM incurs only 3%–7%
overheads. The results can be viewed from another angle. MaSM
with a 25% full 4GB-sized update cache will have similar perfor-
mance to MaSM with a 50% full 2GB-sized update cache. There-
fore, Figure 10 also represents the performance varying flash space
from 2GB to 8GB with a 50% full update cache.

HDD as Update Cache. We experimented with using a sepa-
rate SATA disk (identical to the main disk) as the update cache in
MaSM. However, the poor random read performance of the disk-
based update cache results in high query overhead for small range
scans. Experiments see 28.8X (4.7X) query slowdowns for 1MB
(10MB) sized range scans. This shows the significance of MaSM’s
use of SSDs for the update cache.

General Transactions with Read-Modify-Writes. Given the low
overhead of MaSM even at 4KB ranges, we argue that MaSM can
achieve good performance for general transactions. With MaSM,
the reads in transactions achieve similar performance as ifthere
were no online updates. On the other hand, writes are appended to
the in-memory buffer, resulting in low overhead.

MaSM Migration Performance. Figure 11 shows the performance
of migrating 4GB-sized cached updates while performing a table
scan. Compared to a pure table scan, the migration performs se-
quential writes in addition to sequential reads on the disk,lead-
ing to 2.3X execution time. The benefits of the MaSM migration
scheme are as follows: (i) multiple updates to the same data page
are applied together, reducing the total disk I/O operations; (ii)
disk-friendly sequential writes rather than random writesare per-
formed; and (iii) it updates main data in place. Finally, note that
MaSM incurs its migration overhead orders of magnitude lessfre-
quently than prior approaches—recall Figure 1.

Sustained Update Rate.Figure 12 reports the sustained update
throughput of in-place updates, and three MaSM schemes withdif-
ferent flash space. For in-place updates, we obtain the best update
rate by performing only updates, without concurrent queries. For

500

1000

1500

2000

c
u

ti
o

n
 t

im
e

 (
s

)

query w/o updates query w/ in-place updates query w/ MaSM updates
3537

~

0

500

1000

1500

2000

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q18 q19 q21 q22

e
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

query w/o updates query w/ in-place updates query w/ MaSM updates
3537

~

Figure 14: Replaying I/O traces of TPC-H queries on a real machine with online updates.

MaSM, we continuously perform table scans. The updates are sent
as fast as possible so that every table scan incurs the migration of
updates back to the disk. We set the migration threshold to be50%
so that in steady state, a table scan with migration is migrating up-
dates in 50% of the flash while the other 50% of the flash is holding
incoming updates. Figure 12 also shows the disk random writeper-
formance. We see that (i) compared to in-place updates, which
perform random disk I/Os, MaSM schemes achieve orders of mag-
nitude higher sustained update rates; and (ii) as expected,doubling
the flash space will roughly double the sustained update rate.

Varying CPU Cost of Query Processing.Complex queries may
perform a lot of in-memory processing after retrieving records from
range scans. In Figure 13, we model query complexity by injecting
CPU overhead. For every 1000 retrieved records, we inject a busy
loop that takes 0.5ms, 1.0ms, 1.5ms, 2.0ms, or 2.5ms to execute.
In other words, we inject 0.5us to 2.5us CPU cost per record. As
shown in Figure 13, the performance is almost flat until the 1.5us
point, indicating that the range scan is I/O bound. From 1.5us to
2.5us, the execution time grows roughly linearly, indicating that
the range scan is CPU bound. Most importantly, we see that range
scans with MaSM have indistinguishable performance compared
with pure range scans for all cases. The CPU overhead for merg-
ing cached updates with main data is insignificant compared to (i)
asynchronous I/Os when the query is I/O bound and (ii) in-memory
query overhead when the query is CPU bound.

4.3 TPC-H Replay Experiments
Figure 14 shows the execution times of the TPC-H replay exper-

iments (in 1000s seconds). The left bar is the query execution time
without updates; the middle bar is the query execution time with
concurrent in-place updates; the right bar is the query execution
time with online updates using MaSM. For the MaSM algorithm,
the flash space is 50% full at the start of the query. MaSM divides
the flash space to maintain cached updates per table (fororders
table andlineitem table in the TPC-H experiments).

From Figure 14, we see that in-place updates incur 1.6–2.2X
slowdowns. In contrast, compared to pure queries without updates,
MaSM achieves very similar performance (with up to 1% differ-
ence), providing fresh data with little I/O overhead. Note that the
queries typically consist of multiple (concurrent) range scan op-
erations on multiple tables. Therefore, the results also show that
MaSM can handle multiple concurrent range scans well.

5. DISCUSSION AND RELATED WORK
In-Memory and External Data Structures. Our MaSM design
extends prior work on in-memory differential updates [11, 22] to
overcome the limitation on high migration costs vs. large mem-
ory footprint. We assume I/O to be the main bottleneck for DW
queries and therefore the focus of our design is mainly on theI/O
behaviors. On the other hand, prior differential update approaches
propose efficient in-memory data structures, which is orthogonal to

the MaSM design, and may be applied to MaSM to improve CPU
performance for CPU-intensive workloads.

Moreover, MaSM may benefit from clever data structures for
enhancing external sorting. For example, partitioned B-trees [10]
store sorted runs as portions in a B-tree in order to support effec-
tive value-based prefetching during merging. MaSM can employ
partitioned B-trees to organize materialized sorted runs.Note that
MaSM has key features beyond data structures for sorted runs, in-
cluding the insight for materializing and reusing sorted runs, the
careful orchestration of updates, queries, and migrations, and the
trade-off between memory footprint and SSD writes.

Shared-Nothing Architectures. Large analytical DWs often em-
ploy a shared-nothing architecture for achieving scalableperfor-
mance [2]. The system consists of multiple machine nodes with
local storage connected by a local area network. The main data is
distributed across multiple machine nodes by using hash partition-
ing or range partitioning. Incoming updates are mapped and sent to
individual machine nodes, and data analysis queries often are ex-
ecuted in parallel on many machine nodes. Because updates and
queries are eventually decomposed into operations on individual
machine nodes, we can apply MaSM algorithms on a per-machine-
node basis. Note that recent data center discussions show that it is
reasonable to enhance every machine node with SSDs [1].

Secondary Index.We discuss how to support index scans in MaSM.
Given a secondary index onY and a range[Ybegin, Yend], an index
scan is often served in two steps in a database. In the first step,
the secondary index is searched to retrieve all the record pointers
within the range. In the second step, the record pointers areused
to retrieve the records. An optimization for disk performance is to
sort the record pointers according to the physical storage order of
the records between the two steps.

For every retrieved record, MaSM can use the key (primary key
or RID) of the record to look up corresponding cached updatesand
then merge them. However, we must deal with the special case
whereY is modified in an incoming update: We build asecondary
update indexfor all the update records that contain anyY value,
comprised of a read-only index on every materialized sortedrun
and an in-memory index on the unsorted updates. The index scan
searches this secondary update index to find any update records that
fall into the desired range[Ybegin, Yend]. In this way, MaSM can
provide functionally correct support for secondary indexes.

Multiple Sort Orders. Heavily optimized for read accesses, column-
store DWs can maintain multiple copies of the data in different sort
orders (a.k.a. projections) [22, 23]. For example, in addition to a
prevailing sort order of a table, one can optimize a specific query by
storing the columns in an order that is most performance friendly
for the query. However, multiple sort orders present a challenge for
differential updates; prior work does not handle this case [11].

One way to support multiple sort orders would be to treat columns
with different sort orders as different tables, and to builddifferent
update caches for them. This approach would require that every

update must contain the sort keys for all the sort orders so that the
RIDs for individual sort orders could be obtained.

Alternatively, we could treat sort orders as secondary indexes.
Suppose a copy of columnX is stored in an orderOX different
from the prevailing RID order. In this copy, we store the RID along
with everyX value so that when a query performs a range scan on
this copy ofX, we can use the RIDs to look up the cached updates.
Note that adding RIDs to the copy ofX reduces compression ef-
fectiveness, because the RIDs may be quite randomly ordered. Es-
sentially,X with RID column looks like a secondary index, and
can be supported similarly.

Materialized Views. Materialized views can speed up the process-
ing of well-known query types. A recent study proposed lazy main-
tenance of materialized views in order to remove view maintenance
from the critical path of incoming update handling [25]. Unlike
eager view maintenance where the update statement or the update
transaction eagerly maintains any affected views, lazy maintenance
postpones the view maintenance until the DW has free cycles or a
query references the view. It is straightforward to extend differen-
tial update schemes to support lazy view maintenance, by treating
the view maintenance operations as normal queries.

Extraction-Transformation-Loading (ETL) for DWs. We focus
on supporting efficient query processing given online, well-formed
updates. An orthogonal problem is an efficient ETL (Extraction
Transformation Loading) process for DWs [16, 18]. ETL is often
performed at a data integration engine outside the DW to incorpo-
rate changes from front-end operational data sources. Streamlining
the ETL process has been both a research topic [18, 20] and a focus
of a DW product [16]. These ETL solutions can be employed to
generate the well-formed updates to be applied to the DW.

Sequential Reads and Random Writes in Storage Systems.Con-
current with our work, Schindler et al. [19] proposed exploiting
flash as a non-volatile write cache in storage systems for efficient
servicing of I/O patterns that mix sequential reads and random
writes. Compared to the online update problem in DWs, the set-
tings in storage systems are significantly simplified: (i) an“update
record” in storage systems is (a new version of) an entire I/Opage
and (ii) ACID is not supported for accessing multiple pages.As a
result, the proposal employs a simple update management scheme:
modifying the I/O mapping table to point to the latest version of
pages. Interestingly, the proposal exploits a disk access pattern,
calledProximal I/O, for migrating updates that write to only 1% of
all disk pages. MaSM could employ this device-level technique to
reduce large update migrations into a sequence of small migrations.

Orthogonal Uses of SSDs for DWs.Orthogonal to our work, pre-
vious studies have investigated placing objects (such as data and
indexes) on SSDs vs. disks [5, 14, 17], and including SSDs as a
caching layer between main memory and disks [6].

6. CONCLUSION
Efficient analytical processing in applications that require data

freshness is challenging. The conventional approach of performing
random updates in place degrades query performance significantly,
because random accesses disturb the sequential disk accesspatterns
of the typical analysis query. Recent studies follow the differen-
tial update approach, by caching updates separate from the main
data and combining cached updates on-the-fly in query processing.
However, these proposals all require large in-memory buffers or
suffer from high update migration overheads.

In this paper, we propose to judiciously use flash storage (SSDs)
to cache differential updates. Our work is based on the principle of
using flash as a performance booster for databases stored primarily

on magnetic disks, since for the foreseeable future, magnetic disks
are still much cheaper but slower than SSDs. We present a high-
level framework for SSD-based differential update approaches, and
identify five design goals. We present an efficient algorithm, MaSM,
that achieves low query overhead, small memory footprint, no ran-
dom SSD writes, few SSD writes, efficient in-place migration, and
correct ACID support. Experimental results using a prototype im-
plementation show that, using MaSM, query response times remain
nearly unaffected even if updates are running at the same time.

7. ACKNOWLEDGMENTS
This work was partially supported by an ESF EurYI award and

SNF funds. We would like to thank, as well, the anonymous re-
viewers for their insightful comments during the review process.

8. REFERENCES
[1] L. Barroso. Warehouse scale computing.SIGMOD, 2010.
[2] J. Becla and K.-T. Lim. Report from the first workshop on extremely

large databases (XLDB 2007).Data Science Journal, 2008.
[3] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. J. O’Neil, and P. E.

O’Neil. A critique of ANSI SQL isolation levels.SIGMOD, 1995.
[4] L. Bouganim, B. Jónsson, and P. Bonnet. uFLIP: Understanding flash

IO patterns.CIDR, 2009.
[5] M. Canim, B. Bhattacharjee, G. A. Mihaila, C. A. Lang, andK. A.

Ross. An Object Placement Advisor for DB2 Using Solid State
Storage.PVLDB, 2009.

[6] M. Canim, G. A. Mihaila, B. Bhattacharjee, K. A. Ross, andC. A.
Lang. SSD Bufferpool Extensions for Database Systems.PVLDB,
2010.

[7] F. Chang et al. Bigtable: A Distributed Storage System for Structured
Data.OSDI, 2006.

[8] P. M. Fernandez. Red brick warehouse: A read-mostly RDBMS for
open SMP platforms.SIGMOD, 1994.

[9] G. Graefe. Volcano - an extensible and parallel query evaluation
system.IEEE Trans. Knowl. Data Eng., 6(1), 1994.

[10] G. Graefe. Sorting and indexing with partitioned B-Trees.CIDR,
2003.

[11] S. Héman, M. Zukowski, N. J. Nes, L. Sidirourgos, and P. Boncz.
Positional update handling in column stores.SIGMOD, 2010.

[12] W. Inmon, R. Terdeman, J. Norris-Montanari, and D. Meers.Data
Warehousing for E-Business. John Wiley & Sons, 2003.

[13] Intel Corp. Intel X25-E SATA Solid State Drive.
http://download.intel.com/design/flash/nand/extreme/319984.pdf.

[14] I. Koltsidas and S. Viglas. Flashing up the storage layer. VLDB, 2008.
[15] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The

Log-Structured Merge-Tree (LSM-Tree).Acta Inf., 33(4), 1996.
[16] Oracle. On-time data warehousing with oracle10g - information at

the speed of your business. Oracle White Paper, 2003.
[17] O. Ozmen, K. Salem, J. Schindler, and S. Daniel. Workload-aware

storage layout for database systems.SIGMOD, 2010.
[18] N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simitsis, and N.-E.

Frantzell. Meshing streaming updates with persistent datain an
active data warehouse.IEEE Trans. Knowl. Data Eng., 2008.

[19] J. Schindler, S. Shete, and K. A. Smith. Improving throughput for
small disk requests with proximal I/O.FAST, 2011.

[20] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal.
QoX-driven ETL design: reducing the cost of ETL consulting
engagements.SIGMOD, 2009.

[21] R. Stoica, M. Athanassoulis, R. Johnson, and A. Ailamaki.
Evaluating and repairing write performance on flash devices.
DaMoN, 2009.

[22] M. Stonebraker et al. C-store: a column-oriented DBMS.VLDB,
2005.

[23] Vertica. Online reference.http://www.vertica.com, 2010.
[24] C. White. Intelligent business strategies: Real-timedata warehousing

heats up. DM Review, 2002.
[25] J. Zhou, P.-A. Larson, and H. G. Elmongui. Lazy Maintenance of

Materialized Views.VLDB, 2007.

