MaSM: Efficient Online Updates in Data Warehouses

Manos Athanassoulis?
Phillip B. Gibbons*

tEcole Polytechnique Fédérale de Lausanne
manos.athanassoulis|natassa|radu.stoica@epfl.ch

ABSTRACT

Data warehouses have been traditionally optimized for-cedg
query performance, allowing only offline updates at niglssemn-
tially trading off data freshness for performance. The némd
24x7 operations in global markets and the rise of online ahdro
quickly-reacting businesses make concurrent online @sdatreas-
ingly desirable. Unfortunately, state-of-the-art appiees fall short
of supporting fast analysis queries over fresh data. Theeren
tional approach of performing updates in place can dramiétic
slow down query performance, while prior proposals usirfedi
ential updates either require large in-memory buffers oy meur
significant update migration cost.

This paper presents a novel approach for supporting onfire u
dates in data warehouses that overcomes the limitationsiaf p
approaches, by making judicious use of available SSDs thecac
incoming updates. We model the problem of query processitig w
differential updates as a type of outer join between the dtil-
ing on disks and the updates residing on SSDs. We prééagiv
algorithms for performing such joins and periodic migragpwith
small memory footprints, low query overhead, low SSD writds
ficient in-place migration of updates, and correct ACID sanpp

Our experiments show that MaSM incurs only up to 7% overhead

both on synthetic range scans (varying range size from 10@GB
4KB) and in a TPC-H query replay study, while also increasirgy
update throughput by orders of magnitude.

Categories and Subject Descriptors

H.2.4 DATABASE MANAGEMENT]: Systems—Query Process-
ing; H.2.7 [DATABASE MANAGEMENT]: Database Adminis-
tration—Data Warehouse and Repository

General Terms
Algorithms, Design, Performance

Keywords
Materialized Sort Merge, Online Updates, Data Warehos8Bs

1. INTRODUCTION

Data warehouses (DW) are typically designed for efficieot pr
cessing ofread-onlyanalysis queries over large data. Historically,

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGMOD’11,June 12-16, 2011, Athens, Greece.

Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

Shimin Chen*

Anastasia Ailamakit
Radu Stoica’

*Intel Labs
shimin.chen|phillip.b.gibbons@intel.com

updates to the data were performed using bulk insert/ufeate
tures that executed offline—mainly during extensive idtees (e.g.,
at night). Two important trends lead to a need for a tightegrin
leaving of analysis queries and updates. First, the glpdtidin

of business enterprises means that analysis queries acatese
round-the-clock, eliminating any idle-time window thatutd be
dedicated to updates. Second, the rise of online and otheklygu
reacting businesses means that it is no longer acceptablelday
updates for hours, as older systems did: the business vathe o
answer often drops precipitously as the underlying dat@res
more out of date [12, 24]. In response to these trends, datawa
houses must now support a much tighter interleaving of amly
queries and updates, so that analysis queries can occurad/7
take into account very recent data updates [2]. Thus, Active
Real-Time) Data Warehousing has emerged as a business objec
tive [16, 24] aiming to meet the increasing demands of appbos
for the latest version of data. Unfortunately, state-&-#nt DW
management systenfall short of the business goal of fast analysis
queries over fresh dataA key unsolved problem is how to effi-
ciently execute analysis queries in the presencentihe updates
that are needed to preserve data freshness.

1.1 Efficient Online Updates: Limitations of
Prior Approaches

While updates can proceed concurrently with analysis ggeri
using concurrency control schemes such as snapshot so[aii
the main limiting factor is the physical interference bedweon-
current queries and updates. We consider the two known apipes
for supporting online updates, in-place updates and éifféal up-
dates, and discuss their limitations.

In-Place Updates Dramatically Increase Query Time. A tra-
ditional approach, used in OLTP systems, is to update ineplac
However, as shown in Section 2.2, in-place updates can drama
ically slow down DW queries. Mixing random in-place updates
with TPC-H queries increases the execution time, on avetage
2.2X on a commercial row-store DW and by 2.6X on a commer-
cial column-store DW. In the worst case, the execution tisnéX
longer! Besides having to service a second workload (he.up-
dates), the I/O sub-system suffers from theerferencebetween
the two workloads: the disk-friendly sequential scan pateof
the queries are disrupted by the online random updates fadts
alone accounts for 1.6X slowdown on average in the row-$ve

Differential Updates Limited by In-Memory Buffer. Recently,
differential updatediave been proposed as a means to enable effi-
cient online updates in column-store DW [22, 11]. The badgaiis

to (i) cache incoming updates in an in-memory buffer, (iRetdhe
cached updates into account on-the-fly during query protgsso

that queries see fresh data, and (iii) migrate the cachedtepdo

the main data whenever the buffer is full. While these prajmos
significantly improve query and update performance, ttediance

1000

1. Incoming updates

state-of-the-art .
(updates cached in memory) 2. Query processing

Up-to-date
data

-
o
o

10 1
our approach

(updates cached in SSD) \) Related updates A
H < 1 Buffer
! rey TT
1
0.01 : — ! 3, Migrate
1
--- - - updates EEEEE -

P P PR
,\@ qu’@ Q)tx@ ’1§ <0Q$,g,@ O OO P ,@0
NP o - -
Disks (main data)

o
=

normalized migration
overhead

T

in-memory buffer size (update

Figure 1: An analysis of migration overheads for differential i A3 - cache)
updates as a function of the memory buffer size. Overhead is ! W W W e W Persistent Storage
normalized to the prior state-of-the-art using 16GB memaory e T227TC20TC e,

on anin-memorybuffer for the cached updates poses a fundamen- Figure 2: Framework for SSD-based differential updates.
tal trade-off between migration overhead and memory faatpas

¢|=
=
>

_lg

illustrated by the “state-of-the-art” curve in Figure 1 {@olog-log Prior differential update approaches [22, 11] maintaireies on
scale, the lower the better). In order to halve the migratiosts, the cached updates in memory, which we call Indexed Updates
one must double the in-memory buffer size so that migratmesir (IU). We find that naively extending IU to SSDs incurs up t0)3.8
(roughly) half as frequently. Each migration is expensivneur- query slowdowns (Section 2.3 and 4.2). While employing toges

ring the cost of scanning the entire DW, applying the updates tured merge-trees (LSM) [15] can address many of IU's perfor
writing back the results [22, 11]. However, dedicating agigant mance problems, LSM incurs a large number of writes per epdat
fraction of the system memory solely to buffering updatezraédes significantly reducing the SSDs' lifetime (Section 2.3).

query operator performance as less memory is availablefiing At a high level, our framework is similar to the way Bigtab® [
frequently accessed data structures (e.g., indices) aridginter- handles incoming updates by caching them in HDDs and merging
mediary results (e.g., in sorting, hash-joins). Moreoiecase of a related updates into query responses. However, Bigtatésign is
crash, the large buffer of updates in memory will be lost)qng- focused on neither low overhead for DW queries with small mem
ing crash recovery. ory footprint, using SSDs and minimizing SSD writes, norreot

1.2 Our Solution: Cache Updates in SSDs ACID support for multi-row transactions. Using SSDs insted

HDDs for the update cache is crucial to our design, as it resluc
We exploit the recent trend towards including a small amafint range scan query overhead by orders of magnitude for srmajésa
flash storage (SSDs) in mainly HDD-based computer systeins [1 o
Our approach follows the differential updates idea disedsove, ~ Our Proposal: MaSM. We propose MaSMraterialized sort-
but instead of being limited to an in-memory buffer, makediju merge) algorthms thgt achieve the five design goals with the fol-
cious use of available SSDs to cache incoming updates. &ur lowing techniques. First, we observe that the “Merge” congr
presents the high-level framework. Updates are stored B3D- in Figure 2 is essentially an outer join between the main data
based update cache, which is 1%—10% of the main data sizen Whe disks and the updates cached on SSDs. Among various join algo
a query reads data, the relevant updates on SSDs are loeded, rithms, we find that sort-merge joins fit the current contetei!.w
and merged with the bulk of the data coming from disks. A small cached updates are sorted according to the layout ordee ofidmn
in-memory buffer is used as a staging area for the efficientess- plata and.then merged W|th the main data. We ex.pI0|t extemi.al s
ing of queries and incoming updates. The updates are mitate N9 algorlth_ms both to achievamall memory footprirénd toavoid
disks only when the system load is low or when updates reach afandom writesto SSDs. To sorf|SSD|| pages of cached updates
certain threshold (e.g., 90%) of the SSD size. on SSD, two-pass external sorting requitds= /[|SSD|| pages
Design GoalsWe aim to achieve the following five design goals: ~ ©f memory. Compared with differential updates limited toian
e Low query overhead with small memory footprinthis ad- memory updatg cache, our.approach can effectively use d smal
dresses the main limitations of prior approaches. memory footprint, and exploits the larger on-SSD cache ¢aidy

. . . reduce migration frequency, as shown in the “our approaahve
e No random SSD writesiVhile SSDs have excellent sequential in Figure 19 q 4 PP
read/write and random read performance, random writes per- '

f v b hev often i . o Second, we optimize the two passes of the “Merge” operation:
orm poorly because they often incur expensive erase anc wea generating sorted runs and merging sorted runs. For theeform
leveling operations [4]. Moreover, frequent random writes

) . . because a query should see all the updates that an earligritase
transition an SSD into sub-optimal states where even the wel query b 9!

red i tror f d ded perf il seen, we materialize and reuse sorted runs, amortizingenerg-
supported operations suffer from degraded performanciij4, tion costs across many queries. For the latter, we buildlsingad-

e Low total SSD writes per updatéh NAND flash cell can en- gnly indexes on materialized runs in order to reduce the 3B r
dure only a limited number of writes (e.90° writes for enter- I/0s for a particular query. Combined with the excellentuseg
prise SSDs). Therefore, the SSDs' lifetime is maximizedef W tjal/random read performance of SSDs, this technique sstalty
minimize the amount of SSD writes per incoming update. achievedow query overheadat most only 7% slowdowns in our

e Efficient in-place migration: Migrations should occur infre- experimental evaluation).
quently while supporting high sustained update rate. Ma#go Third, we consider thérade-off between memory footprint and

prior approaches [11, 22] migrate updates to a new copy of the SSD writes The problem is complicated because allocated memory
DW and swap it in after migration completes, essentially-dou is used for processing both incoming updates and queriedirie
bling the disk capacity requirement. We want to remove such present a MaSM-2M algorithm, which achieves the minimal SSD
requirement by migrating to the main data in place. writes per update, but allocatég memory for incoming updates

e Correct ACID supportWe must guarantee that traditional con- and A/ memory for query processing. Then, we present a more
currency control and crash recovery techniques still work. sophisticated MaSM-M algorithm that reduces memory faotpr

to M but incurs extra SSD writes. We select optimal algorithmpa- g 9 Eno updates

rameters to minimize SSD writes for MaSM-M. After that, wege % 8 4. mquery w/ updates

eralize the two algorithms into a MaSMM algorithm. By varying S -§ Oquery only + update only

«, we can obtain a spectrum of algorithms with different traffe 253

between memory footprint and SSD writes. g § 2 I - 1 | n
Fourth, in order to suppoih-place migrationandACID proper- = E

ties we propose to attach timestamps to updates, data pages, and .2 2 1

queries. Using timestamps, MaSM can determine whetherta no § o o o

particular update has been applied to a data page, therebyiremn 3 SRS Al i i nlf i i n nif e ai RN

concurrent queries during in-place migration. MoreovesSi Figure 3: TPC-H queries with random updates on a row store

guarantees serializability in the timestamp order amormliyvid-

ual queries and updates. This can be easily extended to suppo 7z 5 mno updates
two-phase locking and snapshot isolation for general #retiens =3 4.
. . X © = Equery w/ updates
involving both queries and updates. Furthermore, crastvesg EQ
can use the timestamps to determine and recover only theagda S 53
in the memory buffer, but not those on (non-volatile) SSDs. 2 § 2 |
Finally, we minimize the impact of MaSM on the DBMS code =2
in order to reduce the development effort to adopt the smiuti S ‘:é’_ 1
Specifically, MaSM can be implemented in the storage manager 39 o
(with minor changes to the transaction manager if genesabkac- % TETFVEHT/RZoNRTer2g A

O O O T T T T OO

tions are to be supported). It does not require modificatiotiné
buffer manager, query processor or query optimizer.

1.3 Contributions . , .
) i o) queries. Therefore, we will focus on table range scans agyitie
This paper makes the following contributions. First, to lawowl- mization target: preserving the nice sequential data aquatserns
edge, this is the first paper that exploits SSDs for efficierine of table range scans in the face of online updates. The diaiua

updates in DWs. We propose a high-level framework and iden- \yjj| yse the TPC-H benchmark, which is a decision supporthen
tify five design goals for a good SSD-based solution. Secwed, mark with emphasis on ad-hoc queries.

propose MaSM algorithms that exploit a set of techniquesite s
cessfully achieve the five design goals. Third, we study theet:
off between memory footprint and SSD writes with MaSM-2M,
MaSM-M, and MaSMaM. Fourth, we present a real-machine
experimental study. Our results show that MaSM incurs oply u
to 7% overhead both on synthetic range scans (varying ramge s
from 100GB to 4KB) and in a TPC-H query replay study, while

Figure 4: TPC-H queries with emulated random updates on a
column store.

Record Order. In row stores, records are often stored in primary
key order (with clustered indices). In column stores (thgip®rt
online updates), the attributes of a record are aligned prarsee
columns allowing retrieval using a position value (RID)J#1we
assume that range scans provide data in the order of prinegsy k
in row stores, and in the order of RIDs in column stores. When-

also increasing the sustained update throughput by ordensg- ever primary keys in row stores and RIDs in column stores @an b
nitude. Finally, we discuss considerations for various Bilted handled S|m|IarI¥, we use key” to mean bOth'

aspects, including shared nothing architectures, Exffeatsform- Updates. Following prior work on differential updates [11], we
Load (ETL) processes, secondary indexes, and materializac. optimize for incoming updates of the following forms: (isirting

Outline. Section 2 sets the stage for our study. Section 3 presentsa re(_:or_d given _its key; (ii) deleting a reco_rq given its key({(ia) .
MaSM design for achieving the five design goals. Section depres .mOd'fyz'n39 the field(s) of a record to specified new valug(y)eg|
the experimental evaluation. Section 5 discusses relatekl and its key:" We call these updatesell-formedupdates. Data in large

considerations for various DW-related issues. Sectiom@lcaes. analytical DWs are often “write-once, read-many” [2], a cipe
case of well-formed updates. Note that well-formed upddeesot

require reading existing DW data. In contrast, generals@ations

2. EFFICIENT ONLINE UPDATES AND can require an arbitrary number of reads and writes. Thigndis
RANGE SCANS IN DATA WAREHQUSES tion is important because the reads in general transaati@ysin-

In this section, we first describe the basic concepts aniycthe herently require /O reads to the main data and thus inexiéth
focus of our study. As in most optimization problems, we vdoul the sequential data access patterns in table range scanaelo

like to achieve good performance for the frequent use cagate formed updates, our goal is to preserve range scan perfosTem

providing correct functional support in general. Aftertthae ana- !f thgrehwerea no c()jnllng updates. Fo.rdgeneral trfansa.ctlc;yﬁ.\rn
lyze limitations of prior approaches for handling onlinedates. ing t Ot_ reads and updates, we provide correct functigh we
achieving comparable or better performance than convegitian-

2.1 Basic Concepts and Focus of the Study line update handling, which we will discuss in Section 4.2.
Data Warehouse.Our study is motivated by large analytical DWs 2.2 Conventional Approach: In-Place Updates
such as those characterized in the XLDB'07 report [2]. Thsre In order to clarify the impact of online random updates in-ana

typically a front-end operational (e.g., OLTP) system graduces n
the updates for the back-end analytical DW. The DW can be very ~Following prior work [11], we focus on a single sort order fbe columns

large (e.g., petabytes), and does not fit in main memory. of a table. We discuss how to support multiple sort orderseictién 5.
. - 2We follow prior work on column stores to assume that the RIRmip-
Query Pattern. Large analytical DWs often observe “highly un- gate is provided [11]. For example, if updates contain seyskRIDs may

predictable query loads”, as described in [2]. Most queiriesive be obtained by searching the (in-memory) index on sort keys.

“summary or aggregative queries spanning large fractidrthe %A modification that changes the key is treated as a deleticenghe old
database”. As a result, table range scans are frequentlyinisiee key followed by an insertion given the new key.

:Memory Sosition : :Memory : :Memory i G, tree :
} Tracking Updates L Index on Cached Updal Do { propagate 1
| T | e T ___ |
: | 1SSD | 'SSD_ propagate propag |
[T v [T ITTT] [TTT] ro TN w
i |insert oo o ' ilinsert ocoo delete modi [G, tree !
CLLELL b LI LLLL o l

(a) In-memory IU (Positional Delta Tree [11])

(b) Directlytending 1U to SSDs

(c) Applying LSM [15] to U

Figure 5: Extending prior proposals of Indexed Updates (IU)to SSDs.

lytic workloads, we execute TPC-H queries on both a comrakrci
row-storeDBMS Rand a commercial column-stoBBMS Cwhile
running online in-place updatésThe TPC-H scale factor is 30.
We make sure that the database on disk is much larger thaft the a
located memory buffer size. We were able to perform conatirre
updates and queries on the row store. However, the colume sto
supports only offline updates, i.e., without concurrentrigse We
recorded the 1/O traces of offline updates, and when runnieges

on the column store, we use a separate program to replay@he I/
traces outside of the DBMS to emulate online updates. Dugng
play, we convert all I/O writes to I/O reads so that we canagpl
the disk head movements without corrupting the database.

Figure 3 compares the performance of TPC-H queries with no
updates (first bar) and queries with online updates (secarjcob
DBMS R The third bar shows the sum of the first bar and the time
for applying the same updates offline. Each cluster is nazedl
to the execution time of the first bar. Disk traces show sequen
tial disk scans in all queries. As shown in Figure 3, queriégh w
online updates see 1.5-4.1X slowdowns (2.2X on averagei, in
cating significant performance degradation because ofaihéom
accesses of online updates. Moreover, the second bar ii-sign
cantly higher than the third bar in most queries (with an ager
1.6X extra slowdown). This shows that the increase in query r
sponse time is a result of not only having two workloads etiegu
concurrently, but also the interference between the twkiwads.
Figure 4 shows a similar comparison for the column siEB&S C
Compared with queries with no updates, running in-placeatesd
online slows down the queries by 1.2—4.0X (2.6X on average).

2.3 Prior Proposals: Indexed Updates (IU)

Differential updates is the state-of-the-art techniqueréaluc-
ing the impact of online updates [11, 22]. While the basiaide
is straightforward (as described in Section 1), the effoftprior
work and this paper are on the data structures and algoritbms
efficiently implementing differential updates.

In-Memory Indexed Updates. Prior proposals maintain the cache
for updates in main memory and build indexes on the cached up-
dates [11, 22], which we call Indexed Updates (IU). Figura)5(
shows the state-of-the-art IU proposal, Positional DeteeTPDT)
designed for column stores [11]. PDT caches updates in an in-
sert table, a delete table, and a modify table per databagmit.

It builds a positional index on the cached updates using RID a
the index key. Incoming updates are appended to the relavant
sert/delete/modify tables. During query processing, P@ks up

the index with RIDs to retrieve relevant cached updatesréfbee,

the PDT tables will be accessed in a random fashion duringgera
scan on the main data. Migration of the updates is handleaddsy ¢
ating a separate copy of the main data, then making the ney cop
available when migration completes. Note that this reguivdce

as much data storage capacity as the main data size.

*\We were able to run 20 TPC-H queries@BBMS Rand 17 TPC-H queries
on DBMS C The rest of the queries either do not finish in 24 hours, or are
not supported by the DBMS.

Problems of Directly Extending IU to SSDs.As discussed in Sec-
tion 1, we aim to develop an SSD-based differential upddteisa

that achieves the five design goals. To start, we considecttir
extending IU to SSDs. As shown in Figure 5(b), the cached up-
dates in insert/delete/modify tables are on SSDs. In omlavoid
random SSD writesncoming updates should be appended to these
tables. For the same reason, ideally, the index is placecmany
because it sees a lot of random writes to accommodate ingomin
updates. Note that the index may consume a large amount af mai
memory, reducing the SSDs’ benefit of saving memory footprin
We implemented this ideal-case IU following the above adnsi
erations (ignoring any memory footprint requirement). éwer,
real-machine experiments show up to 3.8X query slowdowes ev
for this ideal-case IU (Section 4.2). We find that the slowdadsy
because the insert/delete/modify tables are randomly degdg
range scan operations. This is wasteful as an entire SSDhzage
to be read and discarded for retrieving a single update .entry

Problems of Applying LSM to IU. The log-structured merge-tree
(LSM) is a disk-based index structure designed to suppoigla h
rate of insertions [15]. An LSM consists of multiple leveltiees
of increasing sizes. PDT employs the idea of multiple legétsees
to support snapshot isolation in memory [11]. Here, we atersi
the feasibility of combining LSM and 1U as an SSD-based sofut
As shown in Figure 5(c), LSM keeps the small€st tree in
memory, and’, ..., C}, trees on SSDs, where > 1. Incoming
updates are first inserted in&, then gradually propagate to the
SSD-resident trees. There are asynchronous rolling petjosg
processes between every adjacent pair C;+1) that (repeatedly)
sequentially visit the leaf nodes 6f; andC;+1, and move entries
from C; to Ci41. This scheme avoids many of IU’s performance
problems. Random writes can be avoided by using large sequen
tial I/0Os during propagation. For a range scan query, itqreré
corresponding index range scans on every level of LSM, byere
avoiding wasteful random 1/Os as in the above ideal-case 1U.
Unfortunately,LSM incurs a large amount of writes per update
entry, violating the third design goal he additional writes arise in
two cases: (i) An update entry is copiédimes fromCj to Cj;
and (ii) the propagation process frof to C;41 rewrites the old
entries inC; 41 to SSDs once per round of propagation. According
to [15], in an optimal LSM, the sizes of the trees form a geoinet
progression. That isize(Ciy1)/size(C;) = r, wherer is a con-
stant parameter. It can be shown that in LSM the above twacscase
introduce about + 1 writes per update for levels ..., » — 1 and
(r+ 1)/2 writes per update for levél. As an example, with 4GB
flash space and 16MB memory (which is our experimental ggettin
in Section 4.1), we can compute that a 2-leveE 1) LSM writes
every update entry 128 times. The optimal LSM that minimizes
total writes hag = 4 and it writes every update entry 17 times!
In other words, compared to a scheme that writes every upgahate
try once, applying LSM on an SSD reduces its lifetiriie fold
(e.g., from 3 years to 2 months).

3. MaSM DESIGN

In this section, we propose MaShéterialized sort-mergeal-

gorithms for achieving the five design goals. We start by ideisig)

the basic ideas in Section 3.1. Then we present two MaSM algo-
rithms: MaSM-2M in Section 3.2 and MaSM-M in Section 3.3.
MaSM-M halves the memory footprint of MaSM-2M but incurs
extra SSD writes. In Section 3.4, we generalize these two-alg
rithms into a MaSMaM algorithm, allowing a range of trade-offs
between memory footprint and SSD writes by varying After

that, we discuss a set of optimizations in Section 3.5, asdrdse
transaction support in Section 3.6. Finally, we analyzeNasM
algorithms in terms of the five design goals in Section 3.7.

3.1 Basic ldeas

Consider the operation of merging a table range scan and the
cached updates. For every record retrieved by the scand# &ind
applies any matching cached updates. Records without egpdat
new insertions must be returned too. Essentially, this iswer
join operation on the record key (primary key/RID).

Among various join algorithms, we choose to employ a sort-
based join that sorts the cached updates and merges the sprte
dates with the table range scan. This is because the mosewefic
joins are typically sort-based or hash-based, but hasbdbmsns
have to perform costly 1/O partitioning for the main data. eTh
sort-based join also preserves the record order in tabtgerscans,
which allows hiding the implementation details of the maggop-
eration from the query optimizer and upper-level query afmgs.

To reduce memory footprint, we keep the cached updates on
SSDs and perform external sorting of the updates; two-pass e
ternal sorting required/ = /||SSD|| pages in memory to sort

||SSD|| pages of cached updates on SSDs. However, external sort-

ing may incur significant overhead for generating sorted ramd
merging them. We exploit the following two ideas to reduce th
overhead. First, we observe that a query should see all tfeda
updates that a previous query has seen. Thus, we mategalizel
runs of updates, deleting the generated runs only aftertepda
gration. This amortizes the cost of sorted run generationsac
many queries. Second, we would like to prune as many irreteva
updates to the current range scan query as possible. Betatise
rialized runs are read-only, we can create a simple, redimex,
calleda run index to record the smallest key (primary key/RID)
for every fixed number of SSD pages in a sorted run. Then we can
search the query’s key range in the run index to retrieve tirdge
SSD pages that fall in the range. We call the algorithm combin
the above ideas thdaterialized Sort-Merge (MaSMjlgorithm.

The picture of the above design is significantly complicdigd
the interactions among incoming updates, range scans,@tatau
migrations. For example, sharing the memory buffer betwegen
dates and queries makes it difficult to achieve a memory foutpf
M. In-place migrations may conflict with ongoing queries. €on
currency control and crash recovery must be re-examinedhen
following, we first present a simple MaSM algorithm that riegs
2M memory and a more sophisticated algorithm that reduces the
memory requirement td/, then generalize them into an algorithm
requiringaM memory. We propose a timestamp-based approach
to support in-place migrations and ACID properties.

3.2 MaSM-2M

Figure 6 illustrates MaSM-2M, which allocat&$ pages to cache
recent updates in memory and (up fid) pages for supporting a ta-
ble range scan. Incoming (well-formed) updates are indert®
the in-memory buffer. When the buffer is full, MaSM-2M flushe
the in-memory updates and creates a materialized sorteafrun
size M on the SSD. There will be at most materialized sorted
runs since the capacity of the SSDAS*>. For a table range scan,
MaSM-2M allocates one page in memory for scanning every ma-

. Incoming
erge_data_upd updates

E

M \I
pages
M
,r/pages

Main memory

L N - SSD (updates
i 4 ¢ Materialized
Disks b °oo £ sorted runs,
(main data) S each with
run index

Figure 6: lllustrating the MaSM algorithm using 2M memory.

terialized sorted run—up td/ pages. It builds a Volcano-style [9]
operator tree to merge main data and updates, replacingitiiesd
Tabl e_r ange_scan operator in query processing. We describe
the detailed algorithm in the following.

Timestamps. We associate every incoming update with a times-
tamp, which represents the commit time of the update. Eveeyyq

is also assigned a timestamp. We ensure that a query canemly s
earlier updates with smaller timestamps. Moreover, wesstoev-

ery database page the timestamp of the last update applibe to
page, for supporting in-place migration. To do this, we ectie
Log Sequence Number (LSN) field in the database page. Thiks fiel
is originally used in recovery processing to decide whetbgrer-
form a logged redo operation on the page. However, in thea@fase
MaSM, the LSN field is not necessary because recovery process
ing does not access the main data, rather it recovers themeny
buffer for recent updates.

Update Record.For an incoming update, we construct a record of
the format(ti nest anp, key, type, content). As discussed

in Section 2.1, table range scans output records in key ,oeiler
ther the primary key in a row store or the RID in a column store,
and well-formed updates contain the key information. Thee
field is one ofi nsert/ del et e/ nodi fy/ r epl ace;r epl ace rep-
resents a deletion merged with a later insertion with theeskay.
Thecont ent field contains the rest of the update information: for
i nsert/repl ace, it contains the new record except for the key;
for del et e, it is null; for nodi fy, it specifies the attribute(s) to
modify and the new value(s). During query processinggtanext

call on Mer ge_dat a_updat es will incur get next on operators

in the subtreeRun_scan andMem scan scan the associated ma-
terialized sorted runs and the in-memory buffer, respefstivThe
(begin key, end key) ofthe range scan is used to narrow down
the update records to scaver ge_updat es merges multiple streams
of sorted updates. For updates with the same key, it merges th
updates correctly. For example, thent ent fields of multiple
modifications are merged. A deletion followed by an insertio
will change thet ype field torepl ace. Merge_dat a_updat es
performs the desired outer-join like merging operationhaf tlata
records and the update records.

Incoming Update. The steps to process an incoming update are:

1: if In-memory buffer is fulthen

2: Sort update records in the in-memory buffer in key order;

3: Build arun index recordingbegi n key, SSD page);

4: Create a new materialized sorted run with run index on SSD;
5. Reset the in-memory buffer;

6: end if
7: Append the incoming update record to the in-memory buffer;

Table Range Scan.MaSM-2M constructs a Volcano-style query
operator tree to replace thabl e_r ange_scan operator:

1:

Instantiate aRun_scan operator per materialized sorted run
using the run index to narrow down the SSD pages to retrieve;
Sort the in-memory buffer for recent update records;
Instantiate aem scan operator on the in-memory buffer and
locate the begin and end update records for the range scan;
Instantiate aer ge_updat es operator as the parent of all the
Run_scan operators and thieem scan operator;

Instantiate avker ge_dat a_updat es operator as the parent of
theTabl e_range_scan and theMer ge_updat es;

returnMer ge_dat a_updat es;

2:
3:

4:

5:

6:

Online Updates and Range ScanUsually, incoming updates are
appended to the end of the update buffer, and therefore doteot
fere with ongoingvem scan. However, flushing the update buffer
must be handled specially. MaSM records a flush timestamp wit
the update buffer therefoigem scan can discover the flushing.
When this happendem scan will instantiate aRun_scan opera-

tor for the new materialized sorted run and replaces itsilf the
Run_scan in the operator tree. The update buffer must be protected
by latches (mutexes). To reduce latching overhé&d; scan re-
trieves multiple update records at a time.

Multiple Concurrent Range Scans. When multiple range scans
enter the system concurrently, each one builds its own qoeey-
ator tree with distinct operator instances, and separat weffers
for the materialized sorted runBun_scan performs correctly be-
cause materialized sorted runs are read-only. On the o#rat, h
the in-memory update buffer is shared by s#im scan opera-
tors, which sort the update buffer then read sequentiatiynfit.
For reading the buffer sequentially, eadim scan tracks(key,

poi nter) pairs for thenext position and thesnd_r ange po-
sition in the update buffer. To handle sorting, MaSM recacads
sort timestamp with the update buffer whenever it is sortéd.
this way, Mem scan can detect a recent sorting. Upon detection,
Mem scan adjusts the pointers of theext andend_r ange po-
sitions by searching for the corresponding keys. There may b
new update records that fall between the two pointers afigr s
ing. Mem scan correctly filters out the new update records based
on the query timestamp.

In-Place Migration of Updates Back to Main Data. Migration

is implemented by performing a full table scan where the scan

put is written back to disks. Compared to a normal table range
scan, there are two main differences. First,(thegi n key, end

key) is set to cover the entire range. Secorahl e_r ange_scan
returns a sequence of data pages rather than a sequencerdsrec
Mer ge_dat a_updat es applies the updates to the data pages in
the database buffer pool, then issues (large sequent@aiviites

To Merge_data_updates Incoming
updates|
%‘ Merge_ update
>
£ 4 N\
1S
£
T
E o O
M-S S(update)
qery & Y. Y. Y (pgges
REJoe BBl ee ° Bl

SSD (updates

Materialized
sorted runs,
each with
Qin index

LU {

2-pass sorted runs 1-pass sorted run:

Figure 7: lllustrating MaSM algorithm using M memory.

gration completes, it logs a migration completion recordha

redo log then deletes the s&t of materialized runs. Note that
new queries arriving after are handled correctly. They must see
all the updates being migrated. A new range scan can compare
the timestamp of a data page and the timestamp of an update in
Mer ge_dat a_updat es to determine whether the update has al-
ready been applied to the data page, thereby correctly ingruthth

the before-migration and the after-migration data pages.

3.3 MaSM-M

Figure 7 illustrates MaSM-M, the MaSM algorithm usidd
memory. There are two main differences between MaSM-M and
MaSM-2M. First, compared to MaSM-2M, MaSM-M manages
memory more carefully to reduce its memory footprinfitopages.

S of the M pages, called update pages, are dedicated to buffering
incoming updates in memory. The rest of the pages, called/que
pages, are mainly used to support query processing. Seound,
terialized sorted runs have different sizes in MaSM-M. Sittee
query pages can support up to odly/— S materialized sorted runs,
the algorithm has to merge multiple smaller materializedesb
runs into larger materialized sorted runs. We call the sortms

that are directly generated from the in-memory buffgrassruns,

and those resulted from merging 1-pass r2+massuns.

Figure 8 presents the pseudo code of MaSM-M. Algorithm pa-
rameters are summarized in Table 1. Incoming updates ahedac
in the in-memory buffer until the buffer is full. At this momg
the algorithm tries to steal query pages for caching updatesy
are not in use (Lines 2—3). The purpose is to crdapassruns as
large as possible for reducing the need for merging multipies.
When query pages are all in use, the algorithm creates asl-pas
materialized sorted run with run index on SSDs (Line 5).

The table range scan algorithm consists of three parts.t, Firs
Lines 1-4 create &-passrun if the in-memory buffer contains at
least.S pages of updates. Second, Lines 5-8 guarantee that the

to write back the data pages. For compressed data chunks in ahumber of materialized sorted runs is at modst— S, by (repeat-

column store, the data is uncompressed in memory, modiféed, r
compressed, and written back to disks. The primary key irmtex
the RID position index is updated along with every data patgre,

by in-place migration, we mean two cases: (i) new data pagas o
write the old pages with the same key ranges; or (ii) aftetimgia
new chunk of data, the corresponding old data chunk is dbkxe
that its space can be used for writing other new data chunks.

The migration operation is performed only when the system is
under low loads or when the size of cached updates is above a pr
specified threshold. When one of the conditions is true, MaSM
logs the current timestampand the IDs of the seR of current
materialized sorted runs in the redo log, and spawns a rograt
thread. The thread waits until all ongoing queries earlent
complete, then migrates the detof materialized runs. When mi-

edly) merging theV earliest 1-pass sorted runs into a single 2-pass
sorted run untilK; + Ko < M — S. Note that theN earliest
1-pass runs are adjacent in time order, and thus merging hem
meaningful. Since the size of a 1-pass run is at |€agages, the
size of a 2-pass sorted run is at led&$ pages. Finally, Lines 9-14
construct the query operator tree. This partis similar t&Ma2M.

Like MaSM-2M, MaSM-M handles concurrent range scans, up-
dates, and in-place migration using the timestamp approach

Minimizing SSD Writes for MaSM-M. We choose th& and N
parameters to minimize SSD writes for MaSM-M.

Lemma 3.1. The size of a 1-pass materialized sorted run is at
leastS. The size of a 2-pass materialized sorted run is at 18aSt

PROOF These are clear from the algorithm in Figure 8.1

Incoming Updates:

if In-memory buffer is fulthen
if Atleast one of the query pages is not usieeh
Steal a query page to extend the in-memory buffer;
else
Create a 1-pass materialized sorted run with run index
from the updates in the in-memory buffer;
6: Reset the in-memory buffer to haseempty pages;
7. endif
8: end if
9: Append the incoming update record to the in-memory buffer;

1:
2
3:
4
5

Table Range Scan Setup:

=

if In-memory buffer contains at leaStpages of updatehen
Create a 1-pass materialized sorted run with run index from
the updates in the in-memory buffer;

3: Reset the in-memory buffer to hageempty update pages;

4: end if

5: while K; + K> > M — S do{merge 1-pass runs

6: MergeN earliest adjacent 1-pass runs into a 2-pass run;

7

8

9

N

i K1 =K; — N, Kat+,

: end while

. Instantiate aRun_scan operator per materialized sorted run
using the run index to narrow down SSD pages to retrieve;

. if In-memory buffer is not emptthen

Sort the in-memory buffer and creatétm scan operator;

- end if

. Instantiate aer ge_updat es operator as the parent of all the
Run_scan operators and thieem scan operator;

. Instantiate avker ge_dat a_updat es operator as the parent of
theTabl e_range_scan and thelMer ge_updat es;

. returnMer ge_dat a_updat es;

Figure 8: MaSM-M algorithm

Theorem 3.2. The MaSM-M algorithm minimizes the number
of SSD writes in the worst case wh8p,: = 0.5M and N,y =
0.375M + 1. The average number of times that MaSM-M writes
every update record to SSD1sr5 + %

PROOF Every update record is written at least once to a 1-pass

Table 1: Parameters used in the MaSM-M algorithm.

[|ISSDJ| | SSD capacity (in pages)SSD| = M?
M memory size (in pages) allocated for MaSM-M
S memory buffer (in pages) allocated for incoming updates
K1 number of 1-pass sorted runs on SSDs
Ko number of 2-pass sorted runs on SSDs
N mergeN 1-pass runs into a 2-pass ruk, < M — S

possible value and,,; = 0.5M. Plug itinto (1) and (2):

1.5M . 1.5M
> > 1
Ky > — iff N > % N ©)
ExtraWrites = 0.5M Ko N > 0.75M2 ~ 1 4

Note that the equality signs in the above two inequalitiessahieved
at the same time. Given a fixdd., the smaller theV, the lower
the ExtraWrites. Therefore,ExtraW rites is minimized when
the equality signs hold. We can rewritein(ExtraWrites) as a
function of K»:

K>
1.5M) ®)

The global minimum is achieved with the smallest non-negati
integerK». SinceN < M — S,,: = 0.5M, we knowK> > 3
according to (3).

Therefore, ExtraWrites achieves the minimum whest,,; =
0.5M, K2 opt = 4, and Ny, = 0.375M + 1. We can compute
the minimumExtraWrites = 0.75M2 +2M. In this setting, the
average number of times that MaSM-M writes every updaterceco
to SSDisl + (0.76M* + 2M)/M?* =1.75 + 2 ~ 1.75. O

min(ExtraWrites) = 0.75M° (1 +

3.4 MaSM-aM

We generalize the MaSM-M algorithm to a MaSiMM algo-
rithm that usesx A/ memory, wherenw € [Sim,Q]. The algo-

rithm is the same as MaSM-M except that the total allocateshme
ory size isaM pages. The lower bound am ensures that the
memory is sufficiently large to make 3-pass sorted runs wesiec
sary. MaSM-M is a special case of MaSiWM whena = 1, and
MaSM-2M is a special case of MaSMM whena = 2. Similar to
the proof of Theorem 3.2, we can obtain the following theofem
minimizing SSD writes for MaSMxM.

run. Extra SSD writes occur when 1-pass runs are merged into a__1heorem 3.3. The MaSMaM algorithm minimizes the num-

2-pass run. We choosgand N to minimize the extra writes.

The worst case scenario happens when all the 1-pass sonted ru
are of the minimal siz&. In this case, the pressure for generating
2-pass runs is the greatest. Suppose all the 1-pass runsizave
S and all the 2-pass runs have six&5. We must make sure that
when the allocated SSD space is full, MaSM-M can still melge a
the sorted runs. Therefore:

KiS+ K:NS=M* and Ki+K:<M-S
ComputeK; from the first equation and plug it into the inequality:

1 M?

> — -
K2—N—1(S M + S) 1)

When the SSD is full, the total extra writes is equal to thaltsize

of all the 2-pass sorted runs:

N

ExtraWrites = KoNS > N 1(5'2 —MS+M?* (2
To minimize ExtraWrites, we would like to minimize the right
hand side and achieve the equality sign as closely as pes3ibe

right hand side achieves the minimum whahtakes the largest

ber of SSD writes in the worst case whég,: = 0.5M and
Nopt = ﬁ(% —0.5a) M + 1. The average number of times that
a2

MaSM-M writes every update record to SSD is roughly0.25q2.

We can verify that MaSM-M incurs roughly— 0.25 * 1% = 1.75
writes per update record, while MaSM-2M writes every update
record onceq — 0.25 * 2% = 1).

Theorem 3.3 shows the trade-off between memory footpridt an
SSD writes for a spectrum of MaSM algorithms. At one end of the
spectrum, MaSM-2M achieves minimal SSD writes with 2M mem-
ory. At the other end of the spectrum, one can achieve a MasSM al
gorithm with very small memory footprin2¢/M2) while writing
every update record at most twice.

3.5 Further Optimizations

Granularity of Run Index. Because run indexes are read-only,
their granularity can be chosen flexibly. For example, ssppbe
page size of the sorted runs on SSDs is 64KB. Then we can keep
the begin key for a coarser granularity, such as one key p&, b
a finer granularity, such as one key per 4KB. The run indexIshou
be cached in memory for efficient accesses (especiallyriétaee a

lot of small range scans). Coarser granularity saves mespaye,
while finer granularity makes range scans on the sorted rue mo

an update, we ensure that it is globally visible only after éisso-
ciated exclusive lock is released. To do this, we allocatmalls

precise. The decision should be made based on the query work-private update buffer per transaction (similar to snap&usation),

load. The former is a good choice if very large ranges arectypi
while the latter should be used if narrower ranges are freioor
indexing purpose, one can keep a 4-byte prefix of the actyaike
the run index. Therefore, the fine-grain indexes that keeptdsb
for every 4KB updates angSSD||/1024 large. If keeping 4 bytes
for every 1MB updates, the total run index sizd|SD||/256 K
large. In both cases the space overhead on SSD is very small.
Handling Skews in Incoming Updates.When updates are highly
skewed, there may be many duplicate updates (i.e., updatbes t
same record). The MaSM algorithms naturally handle skewsew
generating a materialized sorted run, the duplicates candrged

and cache the update in the private buffer. Upon releasmeptblu-
sive lock that protects the update, we assign the curremistamp
to the update record and append it to MaSM'’s global in-memory
update buffer. Second, we assign the normal start timestarap
query so that it can see all the earlier updates.

For example, two phase locking is correctly supported. la tw
phase locking, two conflicting transactiodsand B are serialized
by the locking scheme. Suppodehappens befor®. Our scheme
makes sure thatl’s updates are made globally visible 4l lock
releasing phase, arf@ correctly see these updates.

Crash Recovery. Typically, MaSM needs to recover only the in-

in memory as long as the merged update records do not affectmemory update buffer for crash recovery. This can be easity h

the correctness of concurrent range scans. That is, if twiatep
records with timestampl and¢2 are to be merged, there should
not be any concurrent range scans with timestamspch that1 <

t < t2. In order to further reduce duplicates, one can compute
statistics about duplicates at the range scan processiay tf the
benefits of removing duplicates outweigh the cost of SSDesrit
one can remove all duplicates by generating a single mérexa
sorted run from all existing runs.

Improving Migration. There are several ways to improve the mi-
gration operation. First, similar to coordinated scans {8 can
combine the migration with a table scan query in order toctioe
cost of performing a table scan for migration purposes o8kc-
ond, one can migrate a portion (e.g., evéyyt0 of table range) of
updates at a time to distribute the cost across multipleatioss.
To do this, each materialized sorted run will record the eartpat
have already been migrated and the ranges that are stiéacti

3.6 Transaction Support

Serializability among Individual Queries and Updates. By us-

ing timestamps, MaSM algorithms guarantee that queriesisige
earlier updates. In essence, the timestamp order definemla to
serial order, and thus MaSM algorithms guarantee serhliza
among individual queries and updates.

Supporting Snapshot Isolation for General Transactions. In
snapshot isolation [3], a transaction works on the snapshdéata
as seen at the beginning of the transaction. If multiples@ations
modify the same data item, the first committer wins while ttheo
transactions abort and roll back. Note that snapshot isolalone
does not solve the online updates problem in DWs. While draps
isolation removes the logical dependencies between update
queries so that they may proceed concurrently, the physitat
ferences between updates and queries present major parfcem
problems. Such interferences are the target of MaSM algost
Similar to prior work [11], MaSM can support snapshot isolat
by maintaining for every ongoing transaction a small pevaaffer
for the updates performed by the transaction. (Note that pue
vate buffers may already exist in the implementation of shap
isolation.) A query in the transaction will have the timesgaof
the transaction start time so that it sees only the snapdhddta
at the the beginning of the transaction. To incorporate rdmestc-
tion’s own updates, we can instantiat®tam scan operator on the
private update buffer, and insert this operator in the qogerator
tree in Figure 6 and 7. At commit time, if the transaction sgats,
we assign the commit timestamp to the private updates angl cop
them into the global in-memory update buffer.
Supporting Locking Schemes for General TransactionsShared
(exclusive) locks are used to protect reads (writes) in noatgbase
systems. MaSM can support locking schemes as follows., Farst

dled by reading the database redo log for the update recadtds.
is easy to use update timestamps to distinguish updates rim me
ory and updates on SSDs. In the rare case, the system crashes i
the middle of an update migration operation. To detect sases,
MaSM records the start and the end of an update migratiorein th
log. Note that we do not log the changes to data pages in tlee red
log during migration, because MaSM can simply redo the wpdat
migration during recovery processing: By using the timegtsin
data pages, MaSM naturally determines whether updatesdsheu
applied to the data pages. The primary key index or RID pmsiti
index is examined and updated accordingly.

3.7 Achieving The Five Design Goals

As described in Sections 3.2-3.6, itis clear that the MaS)d-al
rithms performno random SSD writeand providecorrect ACID
support We analyze the other three design goals in the following.

Low Overhead for Table Range Scan QueriesSuppose that up-
dates are uniformly distributed across the main data. Ifintlaén
data size ig| Disk|| pages, and the table range scan query accesses

R disk pages, then MaSMM readsmaz (R Hgfi” ,0.50M) pages
on SSDs. This formula has two parts. First, wheiis large, run
indexes can effectively narrow down the accesses to mbreda
sorted runs, and therefore MaSM perforti{2>21) SSD 1/0s,
proportional to the range size. Compared to reading therdik
data, MaSM reads fewer bytes from SSD,%%H is 1%—10%.
Therefore, the SSD 1/0Os can be completely overlapped with th
table range scan on main data, leading to very low overhead.
Second, when the randeis small, MaSMaM performs at least
one 1/O per materialized sorted run: the 1/0 cost is boundeth®
number of materialized sorted runs (upl&aM). (Our experi-
ments in Section 4.2 see 128 sorted runs for 100GB data.) Note
that SSDs can support 100X—-1000X random 4KB reads per second
compared to disks [13]. Therefore, MaSM can overlap mostlat
cies of thed.5aM random SSD reads with the small range scan on
disks, achieving low overhead.

Memory Footprint vs. Total SSD Writes. MaSM-aM specifies
a spectrum of MaSM algorithms trading off SSD writes for mem-

ory footprint. By varyinga from 2 to ;ﬁﬁ the memory footprint

reduces fron2 M pages t@+/M?2 pages, while the average times
that an update record is written to SSDs increases from tl@ (m
imal) 1 to close to 2. In all these algorithms, we achieve smal
memory footprint and low total SSD writes.

The write endurance of enterprise-grade SLC (Single Leedl) C
NAND Flash is typically10°. Therefore, a 32GB Intel X25E SSD
can support 3.2-petabyte writes, or 33.8MB/s for 3 yearsSM&M
writes SSDs once for any update record, therefore a sindlecas
sustain up to 33.8MB/s updates for 3 years. MaSM-M writesiabo

1.75 times for an update record. Therefore, for MaSM-M, glsin
SSD can sustain up to 19.3MB/s updates for 3 years, or 33.8MB/
for 1 year and 8 months. This limit can be improved by usingdar
total SSD capacity: doubling SSD capacity doubles this Houn

Efficient In-Place Migration. MaSM achieves in-place update mi-
gration by attaching timestamps to updates, queries, aacdges
as described in Section 3.2.

We discuss two aspects of migration efficiency. First, MaSM
performs efficient sequential 1/0 writes in a migration. Bese
update cache size is non-trivial (1%—-10%) compared to mata d
size, itis likely that there exist update records for eveatadbage.

chronous 1/Os (with libaio) are used to overlap disk and S&B3 |
and to take advantage of the internal parallelism of the SSD.

Experiments with Synthetic Data. We generate a 100GB table
with 100-byte sized records and 4-byte primary keys. Thietab
initially populated with even-numbered primary keys sat thad-
numbered keys can be used to generate insertions. We genprat
dates randomly uniformly distributed across the entirdetalvith
update types (insertion, deletion, or field modificationlestd
randomly. By default, we use 4GB flash space for caching esdat
thus MaSM-M requires 16MB memory for 64KB SSD effective
page size. We also study the impact of varying the flash space.

Compared to conventional random in-place updates, MaSM can TPC-H replay experiments. We ran the TPC-H benchmark with

achieve orders of magnitude higher sustained update satéll®e
shown in Section 4.2. Second, MaSM achieves low migratien fr
qguency with a small memory footprint. If SSD page siz&ighen
MaSM-aM usesF = aM P memory pages to support an SSD-

based update cache of six&® P = %. Note that as the memory
footprint doubles, the size of MaSM’s update cache increayea
factor of 4, and the migration frequency decreases by arfagto

4, as compared to a factor of 2 with prior approaches thatecach
updates in memory (see Figure 1). For example, for MaSM-M, if
P = 64K B, a 16GB in-memory update cache in prior approaches
has the same migration overhead as jusfas 32MB in-memory
buffer in our approach, becau#€ /(64KB) = 16GB.

4. EXPERIMENTAL EVALUATION

We perform real-machine experiments to evaluate our pexbos
MaSM algorithm. We start by describing the experimentalgét
Section 4.1. Then, we present experimental studies witthstio
data in Section 4.2 and perform experiments based on TP@eldr
recorded from a commercial database system in Section 4.3.

4.1 Experimental Setup

Machine Configuration. We perform all experiments on a Dell
Precision 690 workstation equipped with a quad-core IntbrX
5345 CPU (2.33GHz, 8MB L2 cache, 1333MHz FSB) and 4GB
DRAM running Ubuntu Linux with 2.6.24 kernel. We store the
main table data on a dedicated SATA disk (200GB 7200rpm Sea-
gate Barracuda with 77MB/s sequential read and write baattthyvi

We cache updates on an Intel X25-E SSD [13] (with 250MB/s se-
quential read and 170MB/s sequential write bandwidth). calile

is compiled with g++ 4.2.4 with “-02”.

Implementation. We implemented a prototype row-store DW, sup-
porting range scans on tables. Tables are implemented aysile
tem files with the slotted page structure. Records are ckobigc-
cording to the primary key order. A range scan performs 1MB-
sized disk 1/0O reads for high throughput unless the range isiz
less than 1MB. Incoming updates consist of insertions,tidels,

and modifications to attributes in tables. We implementedeth
algorithms for online updates: (1) In-place updates; (2)(li}
dexed Updates); and (3) MaSM-M. In-place updates perfori-4K
sized read-modify-write 1/Os to the main data on disk. TheniJ
plementation caches updates on SSDs and maintains an index t
the updates. We model the best performance for IU by keeping
its index always in memory in order to avoid random SSD writes
to the index. Note that this consumes much more memory than
MaSM. Since the SSD has 4KB internal page size, IU uses 4KB-
sized SSD 1/Os. For MaSM, we experiment with the more sophis-
ticated MaSM-M algorithm with smaller memory footprint. téo
that MaSM-M provides performance lower bounds for MagM-

By default, MaSM-M performs 64KB-sized 1/0s to SSDs. Asyn-

scale factorSF = 30 (roughly 30GB database) on a commercial
row-store DBMS and obtained the disk traces of the TPC-Higser
using the Linuxbl kt r ace tool. We were able to obtain traces for
20 TPC-H queries except queries 17 and 20, which did not finish
in 24 hours. By mapping the I/O addresses in the traces back to
the disk ranges storing each TPC-H table, we see that all@he 2
TPC-H queries perform (multiple) table range scans. Istargly,

the 4GB memory is large enough to hold the smaller relatians i
hash joins, therefore hash joins reduce to a single passithigo
without generating temporary partitions. Note that MaSksio
minimize memory footprint to preserve such good behaviors.

We replay the TPC-H traces using our prototype DW as follows.
We create TPC-H tables with the same sizes as in the commer-
cial database. We replay the query disk traces as the quekr wo
load on the real machine. We perform 1MB-sized asynchronous
(prefetch) reads for the range scans for high throughpuenie
apply online updates to TPC-H tables using in-place updatels
our MaSM-M algorithm. Although TPC-H provides a program to
generate batches of updates, each generated update bkies de
records and inserts new records in a very narrow primary &ege
(i.e. 0.1%) of theor der s andl i nei t emtables. To model the more
general and challenging case, we generate updates to tmmwhnd
distributed across the nei t emandor der s tables (which occupy
over 80% of the total data size). We make sure thabeder s
record and its associatédnei t emrecords are inserted or deleted
together. For MaSM, we use 1GB flash space, 8MB memory, and
64KB sized SSD I/Os.

Measurement Methodology.We use the following steps to mini-
mize OS and device caching effect: (i) opening all the (disR8D)
files withO_DI RECT| O_SYNCflag to get around OS file cache; (ii)
disabling the write caches in the disk and the SSD; (iii) negd
an irrelevant large file from each disk and each SSD beforgyeve
experiment so that the device read caches are cleared. émiexp
ments on synthetic data, we randomly select 10 ranges fossfa
100MB or larger, and 100 ranges for smaller ranges. For tigeta
ranges, we run 5 experiments for every range. For the smaller
ranges, we run 5 experiments, each performing all the 10§eran
scans back-to-back (to reduce the overhead of OS readinigfile
odes and other metadata). In TPC-H replay experiments, we pe
form 5 runs for each query. We report the averages of the ftres.
standard deviations are within 5% of the averages.

4.2 Experiments with Synthetic Data

Comparing All Schemes for Handling Online Updates. Fig-

ure 9 compares the performance impact of online update shem
on range scan queries while varying the range size from 10@i&B
entire table) to 4KB (a disk page). For IU and MaSM schemes, th
cached updates occupy 50% of the allocated 4GB flash space (i.
2GB), which is the average amount of cached updates exptxted
be seen in practice. The coarse-grain index records ong geitr
64KB cached updates on flash, while the fine-grain index dscor

I e ————— o 1E+5
o 12498
£ E @ e 3472 . 58631
— = T
3 g S 1E+3
N E E 1E+2
© -
g < s 1E+1
] £ @ 1E+0
= 100GB y 7} random in-place MaSM MaSM MaSM
scan wi i
4KB 100KB 1MB 10MB 100MB 1GB 10GB 100GB scan migration wiiles updates 238 2GB 208
range size .) .
@in-place updates mindexed updates (IU) Figure 11.: MQSM Flgu.re 12: Su§talned updates per second
BMaSM w/ coarse-grain index OMaSM w/ fine-grain index update migration. varying SSD size in MaSM.
Figure 9: Comparing the impact of online update schemes on < 300
range scan performance (normalized to scans without updas. 2 250 Escan w/o updates
~ BMaSM
2 200
1.2 E
PO = 150
c
E 4 & 100
e 3 50
8 1.0 e 0
g o 00 05 1.0 15 20 25
5 0.9 injected CPU cost per record (usec)
c . .
0.8 - Figure 13: Range scan and MaSM performance while emulat-
4KB 100KB 1MB 10MB 100MB 1GB 10GB 100GB ing CPU cost of query processing (L0GB ranges).
range size

Figure 10: MaSM range scans varying updates cached in SSD. ~ 25% full to 99% full) on the SSD. We disable update migratign b
setting the migration threshold to be 100%. We use MaSM with

one entry per 4KB cached updates. All the bars are normatzed fine-grain index for 4KB to 10MB ranges, and MaSM with coarse-
the execution time of range scans without updates. grain index for 100MB to 100GB ranges. From Figure 10, we see
As shown in Figure 9, range scans with in-place updates (the that in all cases, MaSM achieves performance comparabintyer
leftmost bars) see 1.7-3.7X slowdowns. This is becauseatfie 1 scans without updates. At 4KB ranges, MaSM incurs only 3%—7%
dom updates significantly disturb the sequential disk @&®ef gyerheads. The results can be viewed from another angleMMaS
the range scans. Interestingly, as the range size reduresliviB with a 25% full 4GB-sized update cache will have similar perf
to 4KB, the S|OWdOWﬂ inCreaseS from 1.7X to 3.7X. We f|nd that mance to MaSM with a 50% full 2GB-sized update cache. There-
elapsed times of pure range scans reduce from 29.8ms t0 42.2m fore, Figure 10 also represents the performance varyink flpace
while elapsed times of range scans with in-place updatesceed from 2GB to 8GB with a 50% full update cache.
from 50.3ms to only 44.7ms. Note that the queries perforrma si
gle disk I/O for data size of 1MB or smaller. The single 1/O is
significantly delayed because of the random in-place update
As shown by the second bars in Figure 9, range scans with U see
1.1-3.8X slowdowns. This is because IU performs a large mumb
of random 1/O reads for retrieving cached updates from thB.SS

HDD as Update Cache. We experimented with using a sepa-
rate SATA disk (identical to the main disk) as the update e&oh
MaSM. However, the poor random read performance of the disk-
based update cache results in high query overhead for samgjér
scans. Experiments see 28.8X (4.7X) query slowdowns for 1IMB

When the range size is 4KB, the SSD reads in IU can be mostly (10MB) sized range scans. This shows the significance of MeSM

overlapped with the disk access, leading to quite low owaithe use of SSDs for the update cache.
MaSM with coarse-grain index incurs little overhead for & General Transactions with Read-Modify-Writes. Given the low
to 100GB ranges. This is because the total size of the caghed u overhead of MaSM even at 4KB ranges, we argue that MaSM can
dates (2GB) is only 1/50 of the total data size. Using thesmar achieve good performance for general transactions. WitSia
grain run index, MaSM retrieves roughly 1/50 SSD data (cdche the reads ir] transactions achieve similar perfgrmance Heerk
updates) compared to the disk data read in the range scans. Agvere no online updates. On the other hand, writes are apgeade
the sequential read performance of the SSD is higher tharotha the in-memory buffer, resulting in low overhead.
the disk, MaSM can always overlap the SSD accesses with disk MaSM Migration Performance. Figure 11 shows the performance
accesses for the large ranges. of migrating 4GB-sized cached updates while performinghbéeta
For the smaller ranges (4KB to 10MB), MaSM with coarse-grain scan. Compared to a pure table scan, the migration perfeems s
index incurs up to 2.9X slowdowns. For example, at 4KB ranges quential writes in addition to sequential reads on the dishg-
MaSM has to perform 128 SSD reads of 64KB each. This takes ing to 2.3X execution time. The benefits of the MaSM migration
about 36ms (mainly bounded by SSD read bandwidth), inayrrin scheme are as follows: (i) multiple updates to the same dega p
2.9X slowdown. On the other hand, MaSM with fine-grain index are applied together, reducing the total disk I/O operatiqiii)
can narrow the search range down to 4KB SSD pages. Therefore disk-friendly sequential writes rather than random wries per-
it performs 128 SSD reads of 4KB each. The Intel X25-E SSD is formed; and (iii) it updates main data in place. Finally,enthat
capable of supporting over 35,000 4KB random reads per slecon MaSM incurs its migration overhead orders of magnitude fiess
Therefore, the 128 reads can be well overlapped with themi®2.2 quently than prior approaches—recall Figure 1.

455 range scan. Overall, MaSM with fine-grain index incuryon gstained Update Rate. Figure 12 reports the sustained update
4% overhead even at 4KB ranges. throughput of in-place updates, and three MaSM schemesdifith
MaSM Varying Cached Update Size.Figure 10 varies both the ferent flash space. For in-place updates, we obtain the pdstei
range size (from 100GB to 4KB) and the cached update sizm(fro rate by performing only updates, without concurrent querieor

2000

Equery w/o updates

B query w/ in-place updates

Bquery w/ MaSM updates

1500

1000 -

execution time (s)
(6]
o
o

o
1

ql

g2 g3 g4 g5 g6 q7 g8 q9 ql10 ql11 ql12 q13 q14 qi15 q16 q18 19 g21 @22

Figure 14: Replaying I/O traces of TPC-H queries on a real makine with online updates.

MaSM, we continuously perform table scans. The updateseate s
as fast as possible so that every table scan incurs the it
updates back to the disk. We set the migration threshold &Dbe

so that in steady state, a table scan with migration is miggatp-
dates in 50% of the flash while the other 50% of the flash is hgldi
incoming updates. Figure 12 also shows the disk random peite
formance. We see that (i) compared to in-place updates,hwhic
perform random disk I/Os, MaSM schemes achieve orders of mag
nitude higher sustained update rates; and (ii) as expedtedbling

the flash space will roughly double the sustained update rate

Varying CPU Cost of Query Processing.Complex queries may
perform a lot of in-memory processing after retrieving melsdfrom
range scans. In Figure 13, we model query complexity by fimjgc
CPU overhead. For every 1000 retrieved records, we injeasy b
loop that takes 0.5ms, 1.0ms, 1.5ms, 2.0ms, or 2.5ms to &xecu
In other words, we inject 0.5us to 2.5us CPU cost per recosl. A
shown in Figure 13, the performance is almost flat until tHf4.
point, indicating that the range scan is I/O bound. From 416u
2.5us, the execution time grows roughly linearly, indiegtthat
the range scan is CPU bound. Most importantly, we see thgeran
scans with MaSM have indistinguishable performance coatpar
with pure range scans for all cases. The CPU overhead for-merg
ing cached updates with main data is insignificant compar€ t
asynchronous 1/0s when the query is I/O bound and (ii) in-rym
query overhead when the query is CPU bound.

4.3 TPC-H Replay Experiments

Figure 14 shows the execution times of the TPC-H replay exper
iments (in 1000s seconds). The left bar is the query exattitice
without updates; the middle bar is the query execution tinta w
concurrent in-place updates; the right bar is the query gt
time with online updates using MaSM. For the MaSM algorithm,
the flash space is 50% full at the start of the query. MaSM diwid
the flash space to maintain cached updates per tabler(fsr s
table and i nei t emtable in the TPC-H experiments).

From Figure 14, we see that in-place updates incur 1.6-2.2X
slowdowns. In contrast, compared to pure queries withodatgs,
MaSM achieves very similar performance (with up to 1% differ
ence), providing fresh data with little 1/O overhead. Ndtattthe
queries typically consist of multiple (concurrent) rangars op-
erations on multiple tables. Therefore, the results alsovsthat
MaSM can handle multiple concurrent range scans well.

5. DISCUSSION AND RELATED WORK

In-Memory and External Data Structures. Our MaSM design
extends prior work on in-memory differential updates [12]
overcome the limitation on high migration costs vs. largenme
ory footprint. We assume 1/O to be the main bottleneck for DW
queries and therefore the focus of our design is mainly or/@e
behaviors. On the other hand, prior differential updateaegghes
propose efficient in-memory data structures, which is ajtinal to

the MaSM design, and may be applied to MaSM to improve CPU
performance for CPU-intensive workloads.

Moreover, MaSM may benefit from clever data structures for
enhancing external sorting. For example, partitionede®<r[10]
store sorted runs as portions in a B-tree in order to supfiadt-e
tive value-based prefetching during merging. MaSM can esnpl
partitioned B-trees to organize materialized sorted riNwte that
MaSM has key features beyond data structures for sorted inns
cluding the insight for materializing and reusing sorteds;uthe
careful orchestration of updates, queries, and migratiand the
trade-off between memory footprint and SSD writes.

Shared-Nothing Architectures. Large analytical DWs often em-
ploy a shared-nothing architecture for achieving scalaaldor-
mance [2]. The system consists of multiple machine nodels wit
local storage connected by a local area network. The mamigat
distributed across multiple machine nodes by using haditipar

ing or range partitioning. Incoming updates are mapped antite
individual machine nodes, and data analysis queries ofeeexa
ecuted in parallel on many machine nodes. Because updades an
queries are eventually decomposed into operations onichail/
machine nodes, we can apply MaSM algorithms on a per-machine
node basis. Note that recent data center discussions shovt ith
reasonable to enhance every machine node with SSDs [1].

Secondary Index.We discuss how to support index scans in MaSM.
Given a secondary index dn and a rangéYcgin , Yena|, an index
scan is often served in two steps in a database. In the fifst ste
the secondary index is searched to retrieve all the recordgre
within the range. In the second step, the record pointersised

to retrieve the records. An optimization for disk perforroaris to
sort the record pointers according to the physical storageraf

the records between the two steps.

For every retrieved record, MaSM can use the key (primary key
or RID) of the record to look up corresponding cached updatels
then merge them. However, we must deal with the special case
whereY is modified in an incoming update: We buildsacondary
update indexor all the update records that contain ariyvalue,
comprised of a read-only index on every materialized sorted
and an in-memory index on the unsorted updates. The index sca
searches this secondary update index to find any updatelssttat
fall into the desired rang&%egin, Yenal- In this way, MaSM can
provide functionally correct support for secondary indexe

Multiple Sort Orders. Heavily optimized for read accesses, column-
store DWs can maintain multiple copies of the data in diffies®rt
orders (a.k.a. projections) [22, 23]. For example, in addito a
prevailing sort order of a table, one can optimize a speciferyg by
storing the columns in an order that is most performancadiie
for the query. However, multiple sort orders present a ehnak for
differential updates; prior work does not handle this cd4g.[

One way to support multiple sort orders would be to treatroolsi
with different sort orders as different tables, and to bdifferent
update caches for them. This approach would require thay eve

update must contain the sort keys for all the sort orders attitte
RIDs for individual sort orders could be obtained.

Alternatively, we could treat sort orders as secondaryxede
Suppose a copy of columN is stored in an orde©x different
from the prevailing RID order. In this copy, we store the RIbray

on magnetic disks, since for the foreseeable future, magdisks
are still much cheaper but slower than SSDs. We present a high
level framework for SSD-based differential update appneacand
identify five design goals. We present an efficient algoritMaSM,
that achieves low query overhead, small memory footprimt,am-

with every X value so that when a query performs a range scan on dom SSD writes, few SSD writes, efficient in-place migratiand

this copy of X, we can use the RIDs to look up the cached updates.

Note that adding RIDs to the copy & reduces compression ef-
fectiveness, because the RIDs may be quite randomly ordEsed
sentially, X with RID column looks like a secondary index, and
can be supported similarly.

Materialized Views. Materialized views can speed up the process-
ing of well-known query types. A recent study proposed lazayim
tenance of materialized views in order to remove view maatee
from the critical path of incoming update handling [25]. kel
eager view maintenance where the update statement or tlag¢eupd
transaction eagerly maintains any affected views, lazynteaance
postpones the view maintenance until the DW has free cyclas o
query references the view. It is straightforward to exteifigigen-

tial update schemes to support lazy view maintenance, byirige
the view maintenance operations as normal queries.

Extraction-Transformation-Loading (ETL) for DWs. We focus

on supporting efficient query processing given online, ¥@iined
updates. An orthogonal problem is an efficient ETL (Extiacti
Transformation Loading) process for DWs [16, 18]. ETL iseoft
performed at a data integration engine outside the DW torpteo
rate changes from front-end operational data sourcesar8lirgng

the ETL process has been both a research topic [18, 20] ardis fo
of a DW product [16]. These ETL solutions can be employed to
generate the well-formed updates to be applied to the DW.

Sequential Reads and Random Writes in Storage SystemSon-
current with our work, Schindler et al. [19] proposed exipig
flash as a non-volatile write cache in storage systems fanieffi
servicing of I/O patterns that mix sequential reads and aand
writes. Compared to the online update problem in DWs, the set
tings in storage systems are significantly simplified: (i} @pdate
record” in storage systems is (a new version of) an entirgol@e
and (ii) ACID is not supported for accessing multiple pagks.a
result, the proposal employs a simple update managemegingch
modifying the 1/O mapping table to point to the latest vensaf
pages. Interestingly, the proposal exploits a disk accas®mp,
calledProximal I/O, for migrating updates that write to only 1% of
all disk pages. MaSM could employ this device-level tecbritp
reduce large update migrations into a sequence of smalbtigs.

Orthogonal Uses of SSDs for DWsOrthogonal to our work, pre-
vious studies have investigated placing objects (such tzs atad

correct ACID support. Experimental results using a prgietim-
plementation show that, using MaSM, query response tinteaire
nearly unaffected even if updates are running at the sanee tim

7. ACKNOWLEDGMENTS

This work was partially supported by an ESF EurY| award and
SNF funds. We would like to thank, as well, the anonymous re-
viewers for their insightful comments during the review gess.

8. REFERENCES

[1] L. Barroso. Warehouse scale computiggGMOD, 2010.

[2] J. Becla and K.-T. Lim. Report from the first workshop ortrernely
large databases (XLDB 200Mata Science JournaR008.
H. Berenson, P. Bernstein, J. Gray, J. Melton, E. J. O)Neid P. E.
O’'Neil. A critique of ANSI SQL isolation levelsSIGMOD, 1995.
L. Bouganim, B. Jénsson, and P. Bonnet. uFLIP: Undeditapflash
10 patternsCIDR, 2009.
M. Canim, B. Bhattacharjee, G. A. Mihaila, C. A. Lang, akdA.
Ross. An Object Placement Advisor for DB2 Using Solid State
Storage PVLDB, 2009.
M. Canim, G. A. Mihaila, B. Bhattacharjee, K. A. Ross, aBdA.
Lang. SSD Bufferpool Extensions for Database Systé&wé.DB,
2010.
F. Chang et al. Bigtable: A Distributed Storage SystemStiuctured
Data.OSDI, 2006.
P. M. Fernandez. Red brick warehouse: A read-mostly RSBt
open SMP platformsSIGMOD, 1994.
G. Graefe. Volcano - an extensible and parallel queryusign
systemlIEEE Trans. Knowl. Data Eng6(1), 1994.
G. Graefe. Sorting and indexing with partitioned B-8$eCIDR,
2003.
S. Héman, M. Zukowski, N. J. Nes, L. Sidirourgos, and h&.
Positional update handling in column stor86GMOD, 2010.
W. Inmon, R. Terdeman, J. Norris-Montanari, and D. MeBata
Warehousing for E-Busines3ohn Wiley & Sons, 2003.
Intel Corp. Intel X25-E SATA Solid State Drive.
http://download.intel.com/design/flash/nand/extre3m8984.pdf.
I. Koltsidas and S. Viglas. Flashing up the storagelayeDB, 2008.
P. E. O'Neil, E. Cheng, D. Gawlick, and E. J. O'Neil. The
Log-Structured Merge-Tree (LSM-Tredcta Inf, 33(4), 1996.
Oracle. On-time data warehousing with oracle10g -rimfation at
the speed of your business. Oracle White Paper, 2003.
[17] O. Ozmen, K. Salem, J. Schindler, and S. Daniel. Woiddaaare

storage layout for database syste®&5MOD, 2010.

(31
(4
(5]

(6]

(7]
(8]
El
[10]
[11]
[12]
(23]

[14]
[15]

[16]

indexes) on SSDs vs. disks [5, 14, 17], and including SSDs as a[1g] N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Sais, and N.-E.

caching layer between main memory and disks [6].

6. CONCLUSION

Efficient analytical processing in applications that regudata
freshness is challenging. The conventional approach éépeing
random updates in place degrades query performance sarilfic
because random accesses disturb the sequential disk pattesas
of the typical analysis query. Recent studies follow théedén-
tial update approach, by caching updates separate from die m
data and combining cached updates on-the-fly in query psowes
However, these proposals all require large in-memory bsifte
suffer from high update migration overheads.

In this paper, we propose to judiciously use flash storag®$3%S
to cache differential updates. Our work is based on the ipliof
using flash as a performance booster for databases stonearbyi

Frantzell. Meshing streaming updates with persistent idedia
active data warehoustEEE Trans. Knowl. Data Eng2008.
[19] J. Schindler, S. Shete, and K. A. Smith. Improving thyloput for
small disk requests with proximal I/GAST, 2011.
[20] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal
QoX-driven ETL design: reducing the cost of ETL consulting
engagementsSIGMOD, 2009.
R. Stoica, M. Athanassoulis, R. Johnson, and A. Ailamak
Evaluating and repairing write performance on flash devices
DaMoN, 2009.
M. Stonebraker et al. C-store: a column-oriented DBMEDB,
2005.
Vertica. Online referencéttp://www.vertica.com2010.
C. White. Intelligent business strategies: Real-tita¢éa warehousing
heats up. DM Review, 2002.
J. Zhou, P.-A. Larson, and H. G. EImongui. Lazy Maintece of
Materialized ViewsVLDB, 2007.

[21]

[22]

[23]
[24]

[25]

