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Incremental Graph Pattern Matching

WENFEI FAN, Informatics, University of Edinburgh & RCBD and SKLSDE Lab, Beihang University
XIN WANG, Informatics, University of Edinburgh & Southwest Jiaotong University
YINGHUI WU, Informatics, University of Edinburgh & UC Santa Barbara

Graph pattern matching is commonly used in a variety of emerging applications such as social network
analysis. These applications highlight the need for studying the following two issues. First, graph pattern
matching is traditionally defined in terms of subgraph isomorphism or graph simulation. These notions,
however, often impose too strong a topological constraint on graphs to identify meaningful matches. Second,
in practice a graph is typically large, and is frequently updated with small changes. It is often prohibitively
expensive to recompute matches starting from scratch via batch algorithms when the graph is updated.

This paper studies these two issues. (1) We propose to define graph pattern matching based on a notion
of bounded simulation, which extends graph simulation by specifying the connectivity of nodes in a graph
within a predefined number of hops. We show that bounded simulation is able to find sensible matches that
the traditional matching notions fail to catch. We also show that matching via bounded simulation is in
cubic-time, by giving such an algorithm. (2) We provide an account of results on incremental graph pattern
matching, for matching defined with graph simulation, bounded simulation and subgraph isomorphism. We
show that the incremental matching problem is unbounded, i.e., its cost is not determined alone by the
size of the changes in the input and output, for all these matching notions. Nonetheless, when matching is
defined in terms of simulation or bounded simulation, incremental matching is semi-bounded, i.e., its worst-
time complexity is bounded by a polynomial in the size of the changes in the input, output and auxiliary
information that is necessarily maintained to reuse previous computation, and the size of graph patterns. We
also develop incremental matching algorithms for graph simulation and bounded simulation, by minimizing
unnecessary recomputation. In contrast, matching based on subgraph isomorphism is neither bounded nor
semi-bounded. (3) We experimentally verify the effectiveness and efficiency of these algorithms, and show
that (a) the revised notion of graph pattern matching allows us to identify communities commonly found in
real-life networks, and (b) the incremental algorithms substantially outperform their batch counterparts in
response to small changes. These suggest a promising framework for real-life graph pattern matching.
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A:2 W. Fan et al.

1. INTRODUCTION
Graph pattern matching is to find all matches in a data graph G for a given pattern
graph P . It has been increasingly used in computer vision, knowledge discovery, biol-
ogy, cheminformatics, dynamic network traffic, intelligence analysis and more recently,
social network analysis, among other things (e.g., [Bruno et al. 2002; Chen et al. 2005;
Cheng et al. 2008; Tong et al. 2007; Zou et al. 2009]).

Graph pattern matching is typically defined in terms of
◦ subgraph isomorphism: to find all subgraphs of G that are isomorphic to P (see [Gal-

lagher 2006] for a survey); that is, a match of P is a subgraph G′ of G such that there
exists a bijective function f from the nodes of P to the nodes of G′, and (a) for each
node v in G′, v and f(v) have the same label, and (b) there exists an edge from v to
v′ in P if and only if (f(v), f(v′)) is an edge in G′; or

◦ graph simulation [Milner 1989]: to find a binary relation S ⊆ VP ×V , where VP and
V are the set of nodes in P and G, respectively, such that (a) for each node u in VP ,
there exists a node v in V such that (u, v) ∈ S, and u and v have the same label, and
moreover, (b) for each (u, v) ∈ S and each edge (u, u′) in P , there is an edge (v, v′) in
G such that (u′, v′) ∈ S [Brynielsson et al. 2010; Cho et al. 2000; Nardo et al. 2009].

Nevertheless, these traditional notions of graph pattern matching are often too re-
strictive to identify patterns in emerging applications such as social network analysis.

Example 1.1. Consider the structure of a drug trafficking organization [Natarajan
2000], depicted as a pattern graph P0 in Fig. 1. A “boss” (B) oversees the operations
through a group of assistant managers (AM). An AM supervises a hierarchy of low-level
field workers (FW), up to 3 levels as indicated by the edge label 3. The FWs deliver
drugs, collect cash and run other errands. They report to AMs directly or indirectly,
while the AMs report directly to the boss. The boss may also convey messages through a
secretary (S) to the top-level FWs (denoted by edge label 1). A drug ring G0 is also shown
in Fig. 1 in which A1, . . ., Am are AMs, while Am is both an AM and the secretary (S).

One wants to identify all suspects involved in the drug ring [Natarajan 2000],
by finding matches for P0 in G0. However, graph pattern matching via subgraph
isomorphism would not be able to find these, for the following reasons.

(1) Nodes AM and S in P0 should be mapped to the same node Am in G0, which is not
allowed by a bijection.

(2) The node AM in P0 corresponds to multiple nodes A1, . . ., Am in G0. This is not allowed
by a function from the nodes of P0 to the nodes of G0. This suggests that we should
use relations instead of functions when characterizing communities (matches).

(3) The edge from AM to FW in P0 indicates that an AM supervises FWs within 3 hops.
It should be mapped to a path of a bounded length in G0 rather than to an edge.

For the same reason as (3) above, graph pattern matching defined in terms of graph
simulation is not capable of identifying the drug ring G0 as a match of P0 either. 2

As suggested by Example 1.1, we need to revise the traditional notions of graph
pattern matching, to efficiently identify sensible matches in emerging applications. In
particular, in a variety of applications one wants to inspect the connectivity of a pair
of nodes via a path of an arbitrary length [Cohen et al. 2003; Jin et al. 2009; Wang
et al. 2006] or within a bound on the number of hops (e.g., 3, 1 in P0) [Chan and Lim
2007; Cohen et al. 2003; Zou et al. 2009]. The need for this is also evident in, e.g.,
activity planning [Li and Shan 2012] and team formation [San Martın et al. 2011],
where close connections (e.g., collaboration, invitation) are specified as edges in the
query patterns but need to be mapped to paths with bounded lengths in a data graph.
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Fig. 1. Drug trafficking: Pattern and data graph

Edge-to-edge mappings of subgraph isomorphism and graph simulation impose too
strict a topological constraint to specify such connectivity in a data graph.

Another central issue of graph pattern matching in emerging applications concerns
how to efficiently compute matches when graphs are updated. In practice a graph G is
typically large. For instance, Facebook has more than 1.06 billion users (nodes) with 150
billion links (edges) [Smith 2013]. Moreover, it is frequently updated, e.g., by insertions
and deletions of edges in social networks (e.g., friendship, collaboration, citation) [Garg
et al. 2009], Web graphs [Ntoulas et al. 2004] and traffic networks [Chen et al. 2009],
when a user adjusts her friend cycle or edits her profile (see Section 4 for a real-life
example). It is often cost-prohibitive to recompute matches of a pattern P starting
from scratch when G is updated. Indeed, it is NP-complete to determine whether G
matches P via subgraph isomorphism (cf. [Garey and Johnson 1979]), and it takes
quadratic time to find the matches of P in G via simulation [Henzinger et al. 1995].

With the dynamic nature of social networks and Web graphs comes the need
for incremental matching algorithms. As opposed to batch algorithms that recom-
pute matches starting from scratch, an incremental matching algorithm aims to find
changes ∆M to the matches in response to updates ∆G to G, by minimizing unnec-
essary recomputation. It is known that while real-life graphs are constantly updated,
the changes are typically small. For example, only 5% to 10% of nodes are updated
weekly in a Web graph [Ntoulas et al. 2004]). When ∆G is small, ∆M is often small as
well, and is much less costly to compute than to recompute the entire set of matches.
In other words, this suggests that we compute matches once on the entire graph via a
batch matching algorithm, and then incrementally identify new matches in response
to ∆G, without paying the price of the high complexity of graph pattern matching.

Contributions. This paper investigates these two issues. (1) We propose a revision of
the traditional notion of graph pattern matching, to find sensible matches in emerging
applications. (2) We give a full treatment of incremental graph pattern matching, from
the complexity bounds to effective algorithms, for matching defined in terms of graph
simulation, bounded simulation and subgraph isomorphism.
(1) We propose a notion of bounded simulation, an extension of simulation [Milner
1989]. We define pattern graphs in which a node specifies a search condition on the
data content, and an edge is labeled with either a constant k or a ∗, denoting the con-
nectivity of a pair of nodes in a data graph that is bounded within k hops or unbounded,
respectively. In contrast to its traditional counterparts, matching based on bounded
simulation is to find a maximum bounded simulation relation rather than functions
(subgraph isomorphism), and it maps edges in a pattern to paths with various bounds
in a graph, instead of edge-to-edge mappings (subgraph isomorphism and simulation).

(2) We show that graph pattern matching based on bounded simulation can be per-
formed in cubic time, as opposed to the NP-completeness of the traditional notion via
subgraph isomorphism. We provide an O(|V ||E| + |Ep||V |2 + |Vp||V |)-time algorithm
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A:4 W. Fan et al.

for computing exact matches, for a pattern graph P = (Vp, Ep) and a data graph
G = (V,E). This is comparable to the complexity of graph simulation, which is in
O((|V |+ |Vp|)(|E|+ |Ep|)) time [Henzinger et al. 1995]. Indeed, in practice pattern P is
typically much smaller than data graph G, and |E| could be |V |2 in the worst case.

(3) To cope with the dynamic nature of data graphs in emerging applications, we give
a full treatment of the incremental graph pattern matching problem. For changes to
graphs, we consider unit update, i.e., a single-edge deletion or insertion, and batch
update, i.e., a list of edge deletions and insertions mixed together.

We provide the first boundedness analysis of incremental matching, for matching
defined in terms of simulation, bounded simulation and subgraph isomorphism. As ar-
gued in [Ramalingam and Reps 1996b], the traditional complexity analysis for batch
algorithms is no longer adequate for incremental algorithms. Instead, one should an-
alyze the algorithms in terms of |CHANGED|, which indicates the size of the changes
in the input and output. It represents the updating costs that are inherent to the in-
cremental matching problem itself. An incremental algorithm is said to be bounded
if its cost can be expressed as a function of |CHANGED|, instead of the size of input.
An incremental problem is said to be bounded if there exists a bounded incremental
algorithm for it, and is unbounded otherwise.

Our first boundedness result is negative: we show that incremental pattern match-
ing is unbounded, no matter whether it is defined in terms of simulation, bounded
simulation or subgraph isomorphism, even for unit updates and restricted patterns.

This motivates us to propose a notion of semi-boundedness. We use |AFF| to denote
the size of changes in the result and in auxiliary structures that are necessarily main-
tained for any incremental algorithms for the problem. We say that an incremental
algorithm is semi-bounded if its worst-time complexity is bounded by a polynomial in
|∆G|, |AFF| and the size |P | of pattern. An incremental problem is semi-bounded if
there exists a semi-bounded incremental algorithm for it. A semi-bounded algorithm
is said to be optimal if it is in O(|∆G|+ |P |+ |AFF|) time, indicating the amount of work
necessary to perform for any incremental algorithm for the problem.

We argue that the analysis of incremental algorithms should take |AFF| into ac-
count. The key idea of incremental algorithms is to speed up the process by maximally
reusing previous computation. To keep track of the (partial) results of previous com-
putation, auxiliary structures have to be maintained. Note that |CHANGED| may not
include |AFF| when we consider, e.g., partial matches found by previous process. That is,
|CHANGED| may be too strict to capture the amount of necessary computation that an
incremental algorithm has to conduct, and hence, an incremental algorithm is bounded
only in ideal and special cases. While [Ramalingam and Reps 1996b] actually advo-
cated |AFF|, they stopped short of classifying semi-bounded incremental algorithms.

Based on this, the following boundedness results are established.
◦ For matching with graph simulation [Milner 1989], we show the following: (a) the

incremental matching problem is semi-bounded, and has optimal incremental al-
gorithms for (i) unit deletions and general patterns, and for (ii) unit insertions and
DAG (directed acyclic graph) patterns, and (b) the problem is semi-bounded for batch
updates and general patterns, by providing an effective incremental algorithm.

◦ For bounded simulation, we show that the problem is semi-bounded for batch up-
dates and general patterns, by developing an efficient incremental matching algo-
rithm. The algorithm employs landmark vectors and distance vectors, an extension
of landmarks [Potamias et al. 2009], to help us find shortest paths in a data graph.
Moreover, we investigate incremental maintenance of the vectors. We show that
(a) it is bounded to maintain landmark vectors and (b) semi-bounded to maintain
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landmark vectors and distance vectors. We provide a semi-bounded incremental
algorithm that updates the landmarks and necessary distance information.

◦ For subgraph isomorphism, we show that incremental matching is more intricate:
it is (i) unbounded even for trees as patterns and forests as graphs, and (ii) NP-
complete even for fixed data graphs and hence, is not semi-bounded unless P = NP.

(4) Using two real-life datasets as well as synthetic data, we experimentally verify the
effectiveness and scalability of our matching and incremental algorithms.
◦ We find that graph pattern matching via bounded simulation is able to accurately

identify far more communities in, for instance, YouTube, than its traditional coun-
terparts. We show that the matching algorithm is quite efficient, and scales well
with the sizes of data graphs and pattern graphs.

◦ We find that for batch updates and general (possibly cyclic) patterns, our incre-
mental algorithms perform significantly better than their batch counterparts, when
data graphs are changed up to 30% for graph simulation and 10% for bounded sim-
ulation. In addition, our algorithms consistently outperform previous incremental
algorithms for (bounded) simulation [Shukla et al. 1997].

We contend that bounded simulation provides a useful alternative for graph pattern
matching, and allows us to catch sensible matches in, e.g., social networks, while re-
taining low PTIME. In addition, the complexity (boundedness) results of the incremen-
tal matching problem disclose the inherent difficulty of the problem. The incremental
algorithms yield a promising method for graph pattern matching in evolving real-life
networks, to cope with the dynamic nature and the sheer size of those networks.

This paper is an extension of earlier work [Fan et al. 2010; Fan et al. 2011], by in-
cluding the following new contributions not found in [Fan et al. 2010; Fan et al. 2011]:
(1) semi-boundedness results, extending previous complexity study in [Fan et al. 2011]
(Sections 4, 5 and 6); (2) optimization techniques for incremental matching via simu-
lation (Section 5); (3) new incremental algorithms and boundedness analysis of land-
mark maintenance (Section 6); (4) the complexity analysis of incremental subgraph iso-
morphism for fixed data graphs, and for tree patterns and data graphs (Section 7); and
(5) enhanced experiments that verify the above techniques (Section 8). This paper also
includes detailed proofs for the results, which were not presented in [Fan et al. 2010;
Fan et al. 2011]. The complexity (boundedness) results and main algorithms of the pa-
per are summarized in the table below, in which new contributions are marked with ∗.

Problem Complexity Algorithm
Matching O(|V ||E|+ |Ep||V |2 + |Vp||V |) time (Thm. 3.1) Match (Section 3)

Incremental
simulation

◦ unbounded (unit updates, general patterns)
◦ semi-bounded, optimal (unit deletion)
◦ semi-bounded, optimal (unit insertion, DAG P )
◦ semi-bounded (batch updates, general patterns) ∗

(Thm. 5.1)

◦ IncMatch+dag (unit insertion, DAG P )
◦ IncMatch− (unit deletion)
◦ IncMatch+ (unit insertion)
◦ IncMatch (batch updates) ∗

(Section 5)
Incremental
bounded
simulation

◦ unbounded (unit updates, path patterns)
◦ semi-bounded (batch updates. general P ) ∗

(Thm. 6.1)

◦ IncBMatch+ (unit insertion)
◦ IncBMatch (batch updates)

(Section 6.3)
Incremental
landmark
maintenance

◦ bounded for landmark vectors (Prop. 6.2) ∗
◦ semi-bounded for landmark and distance vectors

(Prop. 6.3) ∗

◦ InsLM (unit insertion)
◦ DelLM (unit deletion) ∗
◦ IncLM (batch updates) ∗

(Section 6.4)
Incremental
subgraph
isomorphism

◦ NP-complete for fixed data graphs ∗
◦ unbounded for unit updates ∗

(Thm. 7.1)

Related Work. We next categorize the related work as follows.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 W. Fan et al.

Subgraph isomorphism. Graph pattern matching is typically defined in terms of sub-
graph isomorphism [Bruno et al. 2002; Chen et al. 2005; Cheng et al. 2008; Tong et al.
2007; Zou et al. 2009]. In light of the intractability of the problem, approximate solu-
tions have been studied to find inexact matches (see [Gallagher 2006; Shasha et al.
2002] for surveys). In contrast, this work revises graph pattern matching by introduc-
ing bounded simulation, to capture patterns commonly found in real-life networks, in
polynomial time. We will further elaborate their differences in Section 2.
Graph simulation. Graph simulation has been used in e.g., process calculus [Nardo
et al. 2009], social position detection [Brynielsson et al. 2010], and Web site classifica-
tion [Cho et al. 2000]. An algorithm for computing graph simulation on a single graph
was proposed in [Henzinger et al. 1995]. Our matching algorithm (Section 3) is a non-
trivial extension of [Henzinger et al. 1995] to find matches in a graph for a pattern; it
employs shortest path computation to handle bounded connectivity, among others.
Extensions of simulation and isomorphism. Several extensions of graph simulation
and subgraph isomorphism have been studied for pattern matching. Among these
are [Nardo et al. 2009; Fan and Bohannon 2008; Fan et al. 2010; Zou et al. 2009].
A notion of weak similarity was proposed in [Nardo et al. 2009], which extends simu-
lation by mapping an edge to an unbounded path. It focuses on subgraph similarity, an
NP-complete problem. Extensions of subgraph isomorphism were studied in [Fan and
Bohannon 2008; Fan et al. 2010] for XML schema mapping and for Web site match-
ing, which also allow edge-to-path mappings, but are still NP-complete. None of these
supports bounded connectivity or search conditions. Recently, bounded connectivity in
graph patterns was considered in [Zou et al. 2009]. It differs from this work in the
following. (a) Patterns of [Zou et al. 2009] impose the same bound on all edges. In con-
trast, we study patterns in which edges may carry various bounds or are unbounded
at all, and moreover, nodes specify search conditions on data contents. (b) Matching
in [Zou et al. 2009] is based on an extension of subgraph isomorphism, which remains
NP-complete, whereas our matching via bounded simulation is a cubic-time problem. (c)
To find matches, [Zou et al. 2009] explores joins and pruning, which are very different
from our methods. (d) [Zou et al. 2009] does not study incremental algorithms.
Distance, reachability and query languages. There has also been a host of work on
reachability queries (e.g., [Cohen et al. 2003; Jin et al. 2009; Wang et al. 2006]), to de-
cide whether there exists a path from a node to another in a graph, as well as work
on distance queries (e.g., [Chan and Lim 2007; Cohen et al. 2003]), to compute the dis-
tance between a pair of nodes. In contrast, we study pattern graphs in which each edge
denotes the connectivity of a pair of nodes and moreover, possibly carries a bound on
the length of the paths. Query languages have also been developed for graphs (e.g., [He
and Singh 2009; Ronen and Shmueli 2009]), which differ from this work in that the
focus is on language constructs for expressing graph queries, rather than on the com-
plexity and algorithms for (incrementally) finding matches in a data graph.
Incremental graph pattern matching. Incremental algorithms have been developed
for various applications (see [Ramalingam and Reps 1993] for a survey). As observed
in [Ramalingam and Reps 1996b], the complexity of an incremental algorithm is more
accurately characterized in terms of the size of the area affected by updates, rather
than the size of the entire input. We extend this complexity measure to incremen-
tal graph pattern matching, and propose the notion of semi-boundedness. Incremental
algorithms for the shortest path problem were provided in [Ramalingam and Reps
1996a; 1996b]. We develop incremental algorithms for computing matches (Section 6),
which make use of a procedure from [Ramalingam and Reps 1996a; 1996b]. Incremen-
tal algorithms have also been developed for bisimulation [Saha 2007; Yi et al. 2004]. In

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Incremental Graph Pattern Matching A:7

contrast to our incremental methods, (a) those algorithms are based on an equivalence
relation on a single graph, which does not exist for bounded simulation, and (b) they
are unbounded, i.e., they may conduct computation outside of the affected areas.

Inexact algorithms have been studied for incremental subgraph search [Wang and
Chen 2009; Stotz et al. 2009]. An algorithm is developed in [Wang and Chen 2009] to
approximately determine whether a pattern is contained in graphs in a graph stream,
based on an index of exponential size. An exponential-time incremental algorithm for
inexact subgraph isomorphism is given in [Stotz et al. 2009], which is claimed to be
bounded. In contrast, we show that the incremental matching problem for subgraph
isomorphism is unbounded even for unit updates and path patterns (Section 7).

About incremental simulation algorithms we are only aware of [Saha 2007; Shukla
et al. 1997], mostly for verification and model checking. Incremental bisimulation is
studied in [Saha 2007]. In contrast to our work, it considers bisimulation on a sin-
gle graph, which is quite different from incremental simulation across two graphs (a
pattern and a data graph). Simulation is investigated in [Shukla et al. 1997] based
on HORN-SAT, which supports incremental updates on a single graph. However, (a)
it does not consider whether the incremental simulation problem is bounded, and (b)
it requires to update reflections and to construct an instance of size O(|E|2), where
|E| is the number of edges of the graph. In contrast, our algorithms for incremental
simulation do not have to maintain large auxiliary structures (Section 6).

Incremental view maintenance has been studied for semi-structured data modeled
as a graph (e.g., [Abiteboul et al. 1998; Zhuge and Garcia-Molina 1998]). Assuming that
data has a tree structure, [Zhuge and Garcia-Molina 1998] maintains only the nodes
of views. Incremental maintenance of graph views is studied in [Abiteboul et al. 1998],
which generates update statements in Lorel in response to updates. There has also
been a large body of work on relational view maintenance (see [Gupta and Mumick
2000] for a collection of readings). Unfortunately, as pointed out by [Saha 2007], the
incremental matching problem is non-monotonic in nature for simulation (similarly
for bounded simulation and subgraph isomorphism), and hence cannot be reduced to
incremental evaluation of logic programs with stratified negation. As a result, these
techniques cannot be directly used in incremental graph pattern matching.
Landmark vectors. Our incremental algorithms for bounded simulation employ land-
mark vectors and distance vectors, a revision of landmarks proposed in [Potamias et al.
2009]. We also propose the incremental maintenance problem for landmark and dis-
tance vectors, and provide boundedness analysis as well as incremental maintenance
algorithms, which are not addressed in [Potamias et al. 2009].

Organization. The paper consists of three parts. We first introduce bounded simula-
tion in Section 2, and provide an algorithm for matching based on bounded simulation
in Section 3. We then present the incremental graph pattern matching problem and
its complexity metrics in Section 4. The boundedness analysis and incremental algo-
rithms are given in Sections 5, 6 and 7 for matching defined in terms of simulation,
bounded simulation and subgraph isomorphism, respectively. Finally, an experimental
study is presented in Section 8, followed by open issues for future work in Section 9.

2. GRAPH PATTERN MATCHING REVISED
Below we first define data graphs and pattern graphs. We then introduce the notion of
bounded simulation. Finally, we state the revised graph pattern matching problem.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 W. Fan et al.

2.1. Data Graphs and Pattern Graphs
A data graph is a directed graph G = (V,E, fA), where (1) V is a finite set of nodes; (2)
E ⊆ V ×V , in which (v, v′) denotes an edge from node v to v′; and (3) fA(v) is a function
such that for each node v in V , fA(v) is a tuple (A1 = a1, . . . , An = an), where ai is a
constant, and Ai is referred to as an attribute of v, written as v.Ai = ai.

Intuitively, the attributes of a node carry the content of the node, e.g., label, key-
words, blogs, comments, rating [Amer-Yahia et al. 2007].

We will also use the following notations. (1) A path ρ in graph G is a sequence of
nodes (v1 . . . , vn) such that (vi, vi+1) is an edge in G for each i ∈ [1, n−1]. (2) The length
of the path ρ, denoted by len(ρ), is n− 1, i.e., it is the number of edges in ρ. (3) The path
ρ is nonempty if len(ρ) ≥ 1. Abusing terminologies for trees, we refer to v2 as a child
of v1 (or v1 as a parent of v2), and vi as a descendant of v1 for i ∈ [2, n]. We denote the
parents (resp. children) set of a node u in G as Pr(u) (resp. Cr(u)).

Patterns. A b-pattern is defined as P = (Vp, Ep, fV , fE), where (1) Vp and Ep are the set
of nodes and the set of directed edges, respectively, as defined for data graphs; (2) fV is
a function defined on Vp such that for each node u, fV (u) is the predicate of u, defined
as a conjunction of atomic formulas of the form A op a; here A denotes an attribute, a
is a constant, and op is a comparison operator <,≤,=, ̸=, >,≥; and (3) fE is a function
on Ep such that for each edge (u, u′), fE(u, u′) is either a positive integer k or symbol ∗.

Intuitively, the predicate fV (u) of a node u specifies a search condition on labels and
data contents. We say that a node v in a data graph G satisfies the search condition of
a pattern node u in P , denoted as v ∼ u, if for each atomic formula ‘A op a’ in fV (u),
there exists an attribute A in fA(v) such that v.A op a.

As will be seen shortly, an edge (u, u′) in a pattern P is mapped to a path ρ in a data
graph G, and fE(u, u

′) is a bound on the length of ρ when it is not ∗.
When fV (u) is A = l, where A is the attribute denoting node label, we simply write

fV (u) as A. We refer to P as a normal pattern if for each edge (u, u′) ∈ Ep, fE(u, u′) = 1,
and we omit fE(u, u

′) when it is 1. Intuitively, a normal pattern enforces edge to edge
mappings, as found in graph simulation and subgraph isomorphism. Traditional graph
pattern matching is defined on normal patterns [Gallagher 2006].

Example 2.1. Figure 1 depicts a b-pattern P0, in which an edge is labeled with
either 1 or 3. Each node denotes a suspect, with its predicate (omitted from the figure)
defined in terms of characteristics discovered by law enforcement, such as criminal
records and the density of contacts [Natarajan 2000].

As another example, P1 in Fig. 2 is a pattern taken from social matching [Terveen
and McDonald 2005]. In P1, each node denotes a person, with a predicate specifying
her job title and hobby. To start up a company, user A wants to find in, e.g., Facebook
(depicted as G1), (1) a software engineer (SE) and (2) a human-resource (HR) expert,
both within 2 hops; and (3) sale managers (DM) who play golf and are connected to A
through a chain of friends, and moreover, are within 1 hop of SE or 2 hops of HR.

Pattern P2 in Fig. 2 shows a pattern in, e.g., Twitter. Each node in P2 denotes
a person, with a predicate specifying her academic field, e.g., CS, Bio (Biology), Med
(Medicine) and Soc (Sociology). Assume that nodes DB and AI have attribute dept = CS;
Gen (genetics) and Eco (ecology) have attribute dept = Bio. A CS person B wants to find
collaborators in biology (within 2 hops), sociology (3 hops) and in medicine who are in
turn connected to CS people via chains of friends. In addition, the Biology researchers
should have connections to people in sociology (2 hops) and medicine (3 hops). 2

2.2. Bounded Graph Simulation
We now define bounded simulation.
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Fig. 2. Bounded simulation

Bounded simulation. Consider a data graph G = (V,E, fA) and a b-pattern P =
(Vp, Ep, fV , fE). We say that graph G matches pattern P via bounded simulation, de-
noted by PEbsimG, if and only if (iff) there exists a binary relation S ⊆ Vp×V such that

(1) for each node u in Vp, there exists a node v ∈ V such that (u, v) ∈ S;
(2) for each pair (u, v) ∈ S, v ∼ u; and
(3) for each edge (u, u′) in Ep, there exists a nonempty path ρ = (v, . . . , v′) from v to v′

in G such that (a) (u′, v′) ∈ S, and (b) len(ρ) ≤ k if fE(u, u′) is a constant k.
We refer to relation S as a match in G for P . To simplify the discussion, we also call
S = ∅ a match for P , and write P5bsimG if there exists no nonempty match in G for P .

Intuitively, (u, v) ∈ S if (1) the node v in G satisfies the search condition specified by
fV (u) in P , and (2) each edge (u, u′) in P is mapped to a nonempty path ρ = (v, . . . , v′)
in G, such that the length of ρ is bounded by k if fE(u, u′) = k. If fE(u, u′) = ∗, len(ρ)
is not bounded. Observe that the child u′ of u is mapped to a descendant v′ of v via S.
Note that there exists a path ρ from v to v′ with len(ρ) ≤ k iff the shortest path from v
to v′ is no longer than k, i.e., the distance from v to v′ is no larger than k.

Example 2.2. In Fig. 1, a match S0 in G0 for P0 maps B to B, AM to A1, . . ., Am, S to
Am, and FW to all the W nodes.

As another example, now consider graphs and patterns given in Fig. 2.
(1) P1EbsimG1. A match S1 in G1 for P1 is defined by mapping (a) A to A, (b) SE to both
(HR, SE) and SE, (c) HR to HR and (HR, SE), and (d) DM to both (DM,’golf’) nodes in G1.
Here HR and SE in P1 are mapped to the same node (HR, SE) in G1, and DM is mapped
to two nodes (DM, ’golf’) in G1. Edge (A, SE) in P1 is mapped to paths in G1. These are not
allowed by bijective functions. Note that P1 is not isomorphic to any subgraph of G1.
(2) P2EbsimG2. Here a match S2 in G2 for P2 can be defined by mapping CS to DB,
Bio to Gen and Eco, Med to Med, and Soc to Soc. However, P2 is not isomorphic to any
subgraph of G2. Here CS cannot be mapped to AI since there is no path within 3 hops
from AI to Soc as required by the edge (CS, Soc) in P2.
(3) P25bsimG

′
2, where G′

2 (not shown) is the same as G2 except that the edge (DB, Gen)
is dropped. Indeed, CS can no longer find a match in G′

2 that is within 3 hops to Soc.
In this case, the only match S for P2 in G′

2 via bounded simulation is empty. 2

Remark. (1) A match S is a relation rather than a function. Hence, for each u in Vp

there may exist multiple nodes v in V such that (u, v) is in S, i.e., each node in P
is mapped to a nonempty set of nodes in G. As opposed to subgraph isomorphism,
bounded simulation supports (a) simulation relations rather than bijective functions,
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(b) predicates specifying search conditions on the contents of nodes, and (c) edges to be
mapped to (bounded) paths instead of edge-to-edge mappings.
(2) Graph simulation is a special case of bounded simulation when only normal pat-
terns are used, i.e., when fV consists of only A = l and fE(u, u

′) = 1 for all (u, u′) ∈ Ep. It
supports label equality testing and allows edges in P to be mapped to edges in G only.
(3) One can readily extend data graphs and patterns by incorporating edge colors to
specify, e.g., various relationships [Amer-Yahia et al. 2007]. We can extend bounded
simulation by requiring match on edge colors, to enforce relationships in a pattern to
be mapped to the same relationships in a data graph (see [Fan et al. 2011]).

Maximum match. There are possibly multiple matches in a graph G for a pattern P .
Nonetheless, there exists a unique maximum match SM in G for P . That is, for any
match S in G for P , S ⊆ SM . For instance, S0, S1, S2 of Example 2.2 are maximum.

Proposition 2.1: For any graph G and pattern P , there exists a unique maximum
match in G for P .

Proof: Observe that a match S for P in G always exists. Indeed, if PEbsimG, then
obviously there exists a match S for P in G that is total. When P5bsimG, S = ∅ is such
a match. Then it suffices to show the following.
(1) There exists a maximum match. If P5bsimG, S = ∅ is the maximum match. If
PEbsimG, then for all matches S1 and S2, S3 = S2 ∪ S1 is also a match. Indeed, for
each (u, v) ∈ S3, (u, v) is either in S1 or in S2, and v is a match for u, i.e., it satisfies the
conditions of bounded simulation. Moreover, S1 ⊆ S3 and S2 ⊆ S3. From this it follows
that the maximum match SM exists, which is the union of all matches in G for P .
(2) The uniqueness of the maximum match. If P5bsimG, the empty set S is the unique
maximum match. If PEbsimG, assume by contradiction that there exist two distinct
maximum matches S1 and S2. Let S3 = S2 ∪ S1. Then S3 is also a match, while S1 ⊂ S3

and S2 ⊂ S3. This contradicts the assumption that S1 and S2 are maximum. 2

Intuitively, SM captures all nodes of a community that match the pattern P in a
network G. Note that the cardinality |SM | of SM is bounded: |SM | ≤ |V ||Vp|, where V
(resp. VP ) is the set of nodes in G (resp. P ).

2.3. The Graph Pattern Matching Problem
We revise graph pattern matching as follows. The graph pattern matching problem is
to find, given any data graph G and pattern graph P , the maximum match in G for P ,
denoted by M(P,G). We consider the following notions of graph pattern matching.

Bounded simulation. For a b-pattern P and a data graph G, the maximum match,
denoted as Mksim(P,G), is the unique maximum match for P in G as defined earlier. By
Proposition 2.1, graph pattern matching via bounded simulation is well defined.

Graph simulation. As remarked earlier, graph simulation is a special case of bounded
simulation when P is a normal pattern. We use PEsimG to denote G matches P via
graph simulation (see Section 1 for its definition). The maximum match, denoted by
Msim(P,G), is the unique maximum match for P in G (see Proposition 2.1).

Subgraph isomorphism. For a normal pattern P and a data graph G, the maximum
match, denoted as Miso(P,G), consists of all subgraphs G′ = (V ′, E′) of G that are
isomorphic to P (see Section 1 for subgraph isomorphism). If Miso(P,G) is not empty,
we say that G matches P , denoted as PEisoG. Otherwise, P5isoG.

We summarize the notions in the table below.
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Eiso subgraph isomorphism
Ebsim bounded simulation
Esim graph simulation
Msim(P,G) the unique maximum match in G for P via simulation, for a normal pattern P
Mksim(P,G) the unique maximum match in G for P via bounded simulation, for a b-pattern P
Miso(P,G) the set of all matches in G for P via subgraph isomorphism, for a normal P

Remark. Subgraph isomorphism is often used in e.g., chemical or bioinformatics,
where matches with identical structure are preferred [Gallagher 2006]. However, its
complexity makes it infeasible to find matches in “big” graphs such as social graphs.
For Web and social networks analyses, it often suffices to find “inexact” matches [Gal-
lagher 2006], which do not necessarily have identical structures of the pattern. Indeed,
simulation and bounded simulation are used to detect social positions [Brynielsson
et al. 2010] and classify Web sites [Cho et al. 2000]. Moreover, variants of simulation
that preserve more topology, e.g., bisimulation [Dovier et al. 2001] or dual simula-
tion [Ma et al. 2011], may induce results that “approximate” isomorphic subgraphs.

3. GRAPH PATTERN MATCHING VIA BOUNDED SIMULATION
In this section we investigate the graph pattern matching problem based on bounded
simulation. The main result of this section is the following.

THEOREM 3.1. For any pattern P = (Vp, Ep, fV , fE) and graph G = (V,E, fA), it is
in O(|V ||E|+ |Ep||V |2 + |Vp||V |) time to compute Mksim(P,G) in G for P .

As opposed to the NP-hardness of subgraph isomorphism, this revised notion of
graph pattern matching allows us to find matches in polynomial time. As remarked
earlier, it takes O((|V |+ |Vp|)(|E|+ |Ep|)) time to compute the maximum graph simula-
tion relation from P to G [Henzinger et al. 1995]. This tells us that bounded simulation
does not make our lives much harder since (1) P is typically much smaller than G in
practice, and (2) |E| is in O(|V |2) in the worst case.

We next prove Theorem 3.1 by providing an algorithm with the desired properties.

Algorithm. The algorithm, referred to as Match, is shown in Fig. 3. Given P and G,
it returns the maximum match relation Mksim(P,G) for P in G. In a nutshell, Match
creates for each node in P a set of “potential” matches, which is a set of nodes in
G. It iteratively refines the sets by removing from them those nodes that violate the
connectivity and distance constraints posed by P , until no further change can be made.

To understand the algorithm, we first present notations it uses. We use u, u′ to de-
note nodes in the pattern P , and v, v′, v1, v

′
1 for nodes in the data graph G. In addition,

(1) we use a distance matrix X to maintain the distances between all pairs of nodes in
G. (2) For each node u in P , we use a set mat(u) to record nodes v in G that may match u
(fA(v) satisfies fV (u)), and a set premv(u) for those nodes that cannot match any parent
of u. (3) For each node v ∈ V and edge (u′, u) ∈ Ep, anc(fE(u′, u), fV (u

′), v) records nodes
v′ in the graph G such that (i) the distance from v′ to v is within the bound imposed
by fE , i.e., len(v′, · · · , v) ≤ fE(u

′, u), and (ii) fA(v′) (resp. fA(v)) satisfies the predicate
fV (u

′) (resp. fV (u)) defined on u′ (resp. u); similarly for desc(fE(u
′, u), fV (u), v), for de-

scendants of v. These notations are summarized below.

u, u′ (resp. v, v′, v1, v′1) nodes in the pattern P (resp. G)
X distance matrix
mat(u) nodes in G that may match u in P
premv(u) nodes in G which cannot match any parent of u
anc(fE(u

′, u), fV (u′), v) nodes v′ in G that may match a parent u′ of u
desc(fE(u

′, u), fV (u), v) nodes v′ in G that may match a child u of u′

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 W. Fan et al.

Input: A b-pattern P = (Vp, Ep, fV , fE) and data graph G = (V,E, fA).
Output: The maximum match Mksim(P,G) if PEbsimG, and ∅ otherwise.
1. set S := ∅; compute the distance matrix X of G;
2. for each (u′, u) ∈ Ep and each v ∈ V do
3. if fA(v) satisfies fV (u) then compute anc(fE(u

′, u), fV (u′), v);
4. if fA(v) satisfies fV (u′) then compute desc(fE(u

′, u), fV (u), v);
5. for each u ∈ Vp do
6. mat(u) := {v | v ∈ V, fA(v) satisfies fV (u),

and out-degree(v) ̸= 0 if out-degree(u) ̸= 0};
7. premv(u) := {v′ | v′ ∈ V, out-degree(v′) ̸= 0, and

̸ ∃(u′, u) ∈ Ep (v ∈ mat(u), fA(v′) satisfies fV (u′),
and len(v′, · · · , v) ≤ fE(u

′, u))};
8. while (there exists a node u ∈ Vp with premv(u) ̸= ∅) do
9. for each (u′, u) ∈ Ep and each v1 ∈ premv(u) do
10. if v1 ∈ mat(u′) then
11. mat(u′) := mat(u′) \ {v1};
12. if mat(u′) = ∅ then return ∅;
13. for each u′′ with (u′′, u′) ∈ Ep do
14. for each v′1 ∈ (anc(fE(u

′′, u′), fV (u′′), v1) \ premv(u′)) do
15. if (desc(fE(u′′, u′), fV (u′), v′1) ∩mat(u′) = ∅) then
16. premv(u′) := premv(u′) ∪ {v′1};
17. premv(u) := ∅;
18. for each u ∈ Vp and each v ∈ mat(u) do S := S ∪ {(u, v)};
19. return S as Mksim(P,G);

Fig. 3. Algorithm Match

Algorithm Match first computes the distance matrix X for G (line 1). Using X , it
then computes anc(·) and desc(·) by inspecting the predicates and bounds specified in
P (lines 2-4). For each pattern node u ∈ Vp, Match also initializes mat(u) and premv(u)
based on P and X (lines 5-7). The out-degrees of both u and v are inspected during the
initialization; if v has zero out-degree and u has a child, v is identified as an invalid
match of u, since v has no child that can match child of u. For each parent node u′ of u
(i.e., (u′, u) ∈ Ep), Match then refines mat(u′) by removing those nodes in G that cannot
match u′, namely, nodes v1 ∈ premv(u) (lines 9-11). Moreover, it utilizes v1 to identify
nodes v′1 that cannot match any parent u′′ of u′, and includes v′1 in premv(u′) (lines 13-
16). More specifically, v′1 is not a candidate match of u′′ if v1 is the only descendant of
v′1 that is within the bound fE(u

′′, u′), satisfies the predicate fV (u
′), and is in mat(u′).

The process (lines 8-17) iterates until no mat(·) can be reduced, i.e., if premv(u) is
empty for all pattern node u (line 8). The nodes remaining in mat(u) are those that
match u, and are collected in the match Mksim(P,G) (lines 18-19). If mat(u) is empty for
any u ∈ Vp in the process, u cannot find a match in G, and Match returns ∅ (line 12).

Example 3.2. We show how Match computes the match in graph G2 for pattern P2

of Example 2.2. For each node in P2, Match initializes mat(·) and premv(·) as follows:

P2 mat(·) premv(·) P2 mat(·) premv(·)
CS {DB, AI} {DB,AI,Gen,Chem,Eco} Bio {Gen, Eco} {Med,Gen,Eco,Chem}
Med {Med} {Med,Chem} Soc {Soc} {AI,Med,Chem}

Algorithm Match then repeatedly removes from mat(·) those nodes that do not make
a match, by using premv(·). For instance, AI is removed from mat(CS): while AI is a can-
didate match for CS, it cannot reach Soc within 3 hops, as indicated by AI ∈ premv(Soc).
Match terminates when all nodes in P2 has an empty premv(·) set, and it returns the
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match S2 given in Example 2.2, which is maximum. Similarly, one can use Match to
find the maximum match in G0 for P0 (Fig. 1) and the match in G1 for P1 (Fig. 2).

Now consider G′
2 described in Example 2.2. Then DB is in premv(Med) and premv(Soc),

and all nodes in mat(CS) will be removed by Match. This is, for CS no match can be
found, and Match returns ∅ to indicate that P2 5 G′

2. 2

We show the correctness of algorithm Match as follows.

Proposition 3.1: Algorithm Match computes the maximum match in G for P .

Proof: It suffices to show the following: (I) if Match terminates, then Match returns the
maximum match S in G for P , and (II) Match always terminates.
(I). To prove (I), we first show the following claim.

Claim 1. Given a pattern node u′ and a node v′ in G, for (u′, u) ∈ Ep, v′ is not a match
of u′ iff either (i) v′ /∈ mat0(u

′), or (ii) v′ ∈ premvi(u) ∩mati(u
′) (lines 9-10 of Match).

Here mati(u
′) (resp. premvi(u)) denotes mat(u′) (resp. premv(u) for a child u of u′) at

the i-th iteration of the while loop (lines 8-17 of Match).
If Claim 1 holds then so does (I). To see this, denote by Sr the match returned by

Match. We show that if Claim 1 holds then (1) S ⊆ Sr and (2) Sr ⊆ S, i.e., Sr = S.
(1) S ⊆ Sr. If S is empty, then obviously (I) holds. If S is not empty, assume that there
exists a match (u′, v′) in S but not in Sr, i.e., v′ /∈ mat(u′). Observe that v′ ∈ mat(u′)
when mat(u) is initialized (line 6). As v′ is not in mat(u′) when S is returned, v′ must be
removed from mat(u′) at some iteration i in the while loop. Hence v′ must be in both
premvi(u) and mati(u

′) for some pattern edge (u′, u) at the i-th iteration. By Claim 1,
v′ does not match u′, contradicting the assumption that (u′, v′) ∈ S. Thus S ⊆ Sr.
(2) Sr ⊆ S. Then (I) already holds when S is empty. If S is not empty, and if there exists
a match (u′, v′) in Sr, but v′ cannot match u, then v′ would be removed from mat(u′) by
Claim 1, contradicting the assumption that v′ ∈ mat(u′).

Putting (1) and (2) together, Sr = S. From this (I) follows.
We next prove Claim 1.

(If) We show that node v′ does not match u′ if (i) v′ /∈ mat0(u
′), or (ii) v′ ∈ premvi(u) ∩

mati(u
′) at iteration i of the while loop for some i. Consider the following cases.

(1) If v′ /∈ mat0(u
′), then v′ does not satisfy fV (u

′). Thus v′ cannot match u′.
(2) Suppose that v′ ∈ mat0(u

′). We prove it by induction on iteration i of the while loop.
If i = 0, then v′ is added to premv0(u) when premv(u) is initialized (line 7). Hence for

any node v that can possibly match u, len(v′, v) > fE(u
′, u). Thus v′ cannot match u′.

Assume the statement for i ≤ k. We show that it also holds for i = k + 1. If v′ ∈
premvk+1(u) ∩ matk+1(u

′), then v′ is added to premvj(u) at some iteration j of the loop
(line 16). By the induction hypothesis, there must exist a node v1 ∈ premvj(u)∩matj(u

′),
i.e., v1 cannot match u, and v′ cannot reach any node that is not v, within fE(u

′, u) hops,
and it can match u. Thus v′ is not a match of u′.
(Only-if). For a node u′ in P and a node v′ in G, if v′ cannot match u′ (i.e., a mismatch),
then (1) v′ does not satisfy fV (u

′), or for a child u of u′, either (2) no node v within
fE(u

′, u) hops of v′ satisfies fV (u), or (3) all nodes v that satisfy fV (u) and are within
fE(u

′, u) hops of v′ cannot match u. We show (Only-if) for all these cases.
For v′ in case (1), it is not added to mat(u′) at the initialization phase (line 6). Thus

v′ /∈ mat0(u
′). For case (2), v′ will be added to premv0(u) when premv0(u) is initialized.

Thus the test v′ ∈ premv0(u) ∩mat0(u
′) is true for v′.
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If v′ is in case (3), then there must exist a mismatch v0 of u0 in case (2) that makes
v′ a mismatch, directly (if u0 is a child of u′) or indirectly (if u0 is a descendant of u′).
Suppose that there is a sequence of mismatches v0, . . . , vk for u0, . . . , uk, where for each
(ui, vi) and (ui+1, vi+1), ui+1 is a parent of ui, and vi+1 cannot match ui+1 because
its only descendant vi cannot match ui. We show (Only-if) by induction on the index
i of the sequence. (a) If i = 1, then (i) v0 is in premv(us) for some child us of u0, and
(ii) since v1 has no descendant other than v0 that can match u0, v1 will be added to
premv(u0), and hence, v′ ∈ premv1(u0) ∩ mat1(u1). (b) Assume the statement for i ≤ k.
By the induction hypothesis, vk must be in premvk(uk−1) ∩matk(uk) at iteration k. For
mismatch vk+1 of uk+1, vk+1 has no descendant other than vk to match uk. Thus vk+1 is
moved to premvk(uk). Hence at iteration k + 1, vk+1 is in premvk+1(uk) ∩matk+1(uk+1).

(II). We next prove (II). First, mat(u′) is reduced monotonically by Match for each pat-
tern node u′. Indeed, after the initialization of mat(·), Match will only remove nodes
from mat(·), and never put nodes back. Second, Match reduces mat(u′) for each pattern
node u′ if premv(u) ∩ mat(u′) is nonempty for some pattern edge (u′, u) (lines 9-11). If
there is a pattern node u′ such that mat(u′) reduces to ∅, Match returns ∅ (line 12). On
the other hand, if no mat(·) can be further reduced, premv(u) will be set to ∅ (line 17) for
each pattern node u, and the while loop terminates. In both cases, Match terminates.

From (I) and (II) the correctness of algorithm Match follows. 2

Complexity. We next show that Match is in O(|V ||E| + |Ep||V |2 + |Vp||V |) time. Algo-
rithm Match consists of three phases: pre-processing (lines 1-7), match computation
(lines 8-17), and match result collection (lines 18-19).
(i) For pre-processing, (a) it takes O(|V |(|V |+ |E|)) time to compute the distance matrix
X by using BFS search [Bang-Jensen and Gutin 2008] (line 1); (b) initializing anc(·) and
desc(·) takes O(|Ep||V |2) time (lines 2-4); and (c) mat(·) and premv(·) are computed in
O(|Vp||V |) and O(|Ep||V |2) time, respectively (lines 5-7). The predicate of a node in P
can be inspected at a node in G in linear-time when the attributes in P and G are sorted
in the same order. The total cost in this phase is thus O(|Ep||V |2+ |Vp||V |+ |V ||E|) time.
(ii) To compute the maximum match, Match maintains a matrix X ′ (omitted from Fig. 3
to simplify the exposition). For each pattern edge (u′, u) and each node v′ ∈ mat(u′), the
result of desc(fE(u′, u), fV (u), v

′) ∩mat(u) is computed and stored in X ′. The matrix X ′

is computed in O(|Ep||V |2) time, and can be maintained incrementally when mat(u′) is
updated (line 11). With X ′, we can conduct the test of line 15 in constant time.

Utilizing X ′, observe the following about the complexity of the while loop (lines 8-
17): given u ∈ Vp and v1 ∈ premv(u), (1) once v1 is removed from premv(u), it will never
be put back again; (2) for each pattern node u, premv(u) is bounded by |V |, and the test
of v1 ∈ mat(u′) is at most once for a specified u′ (here u′ is a parent of u), thus the test of
line 10 takes at most O(|Ep||V |) times in the entire process; and (3) when v1 ∈ mat(u′)
is true (only once), the inner for loop (lines 13-16) runs in O(|out degree(u′′)||V |) time
for a specified u, and hence takes O(|Ep||V |) time in total, since (a) the if test (line 15) is
conducted in O(1) time with the matrix X ′; and (b) anc(fE(u′′, u′), fV (u

′′), v1) is bounded
by |V |. Putting these together, the while loop takes O(|Ep||V |) time.
(iii) The last phase (line 18) can be done in O(|Vp||V |) time.

From these one can see that algorithm Match is in O(|V ||E|+ |Ep||V |2+ |Vp||V |) time.
From Proposition 3.1 and the complexity analysis, Theorem 3.1 follows.

Remark. (1) Observe that (bounded) simulation is to compute a matching relation
instead of an injective function in subgraph isomorphism, allowing a pattern node to
be mapped to multiple nodes in a data graph. In this context, for each pattern node u,
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a set refinement process (lines 9-16) suffices to remove the nodes that cannot match
u; in contrast, it may require exponential time to verify a single match for u in terms
of isomorphism. Hence, (bounded) simulation leads to an exponential reduction in the
size of the search space of subgraph isomorphism. (2) To demonstrate the worst-case
time complexity of Match, one may verify that when P is a cycle consisting of two
pattern nodes with the same node label a, and G is a path (a1, . . . , ak) (all with label
a), Match takes 2 ∗

∑k
i=1 i = O(k2) time to conclude that G does not match P .

Match can be readily extended to data graphs with weights on the edges following
the same procedure. The only difference is that it computes the distance matrix with
e.g., Floyd-Warshall algorithm [Floyd 1962] (in O(|V |3) time). This does not make our
lives harder: its total time complexity is still in cubic time.

4. BATCH AND INCREMENTAL GRAPH PATTERN MATCHING
As remarked in Section 1, real-life graphs are typically large, and are frequently up-
dated. Although the cubic-time complexity of Match is better than intractable, it is still
too costly to recompute matches every time when the graphs are updated.

This motivates us to study incremental graph pattern matching. In contrast to its
batch counterpart, incremental matching takes as input a data graph G, a pattern (b-
pattern) P , the matches M(P,G) in G for P , and changes ∆G to G. It finds changes
∆M to the old matches such that M(P,G ⊕ ∆G) = M(P,G) ⊕ ∆M , where operator ⊕
applies changes to the original data. That is, when the data graph G is updated, it
computes new matches by making maximal use of previous computation for M(P,G)
or in other words, by minimizing unnecessary recomputation. When ∆G is small, ∆M
is often also small, and is much more efficient to find than to recompute M(Q,G⊕∆G).

In the rest of the paper, we focus on incremental graph pattern matching, for match-
ing defined in terms of bounded simulation, as well as for matching based on tradi-
tional graph simulation and subgraph isomorphism.

Example 4.1. Graph G3 in Fig. 4 (excluding edges e1–e5) depicts a fraction of
FriendFeed (a social networking service http://friendfeed.com/). In G3, each node has
two attributes, name and job. The node (Ann, “ CTO”) denotes a person with (name =
“Ann”, job = “ CTO”). Two pattern graphs P3 and P ′

3 are also shown in Fig. 4, where P3 is
a b-pattern in which an edge is labeled with either a bound or ∗, specifying connectivity,
and P ′

3 is a normal pattern in which each edge is labeled with 1 (not shown).
(1) Pattern P3 is to find the CTOs who are connected to a DB researcher within 2 hops
and to a biologist within 1 hop; moreover, the DB researcher has to reach a biologist
within 1 hop and a CTO via a path of an arbitrary length. One can verify that P3EbsimG3

with Mksim(P3, G3) = {(CTO, Ann), (DB, Pat), (DB, Dan), (Bio, Bill), (Bio, Mat)}.
(2) Pattern P ′

3 is to find all subgraphs of G that are isomorphic to P ′
3. Here Miso(P

′
3, G3)

consists of a single subgraph of G3 induced by nodes Ann, Pat and Bill.
Suppose that graph G3 is updated by inserting five edges e1–e5 (see Fig. 4), denoted

by ∆G3. Then in the updated G3, i.e., G3 ⊕∆G3, (1) ∆G3 incurs two new matches Don
and Tom, for CTO and Bio in pattern P3, respectively; and (2) ∆G3 incurs a new subgraph
induced by edges e2–e5 as a match for pattern P ′

3. Observe that when ∆G3 is small, the
changes to the match result are also small. It is less costly to find the changes to the
match result than to recompute all the matches starting from scratch. 2

As argued in [Ramalingam and Reps 1996b], it is not very informative to define the
cost of an incremental algorithm as a function of the size of the input, as found in
traditional complexity analysis for batch algorithms. Instead, one should analyze the
algorithms in terms of |CHANGED|, the size of the changes in the input and output of
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Fig. 4. Querying FriendFeed network

the incremental problem, which represents the updating costs that are inherent to the
problem itself [Ramalingam and Reps 1996b]. Along the same line, we characterize the
complexity of incremental matching algorithms in terms of |CHANGED|. Given P , G,
M(P,G), ∆G and ∆M , we define |CHANGED| as |∆G| + |∆M |, where |∆G| (resp. |∆M |)
indicates the size of changes in the data graph (input) (resp. match result (output)).

To visually depict match result and ∆M , we represent M(P,G) as a graph, referred
to as the result graph of P in M , and use it to intuitively illustrate |CHANGED|.
Result graphs. The result graph of a pattern P in a data graph G is a graph represen-
tation of the matches M(P,G). It is a graph Gr = (Vr, Er) defined as follows.
◦ For subgraph isomorphism, Gr is the union of all the subgraphs G′ of G in Miso(P,G).
◦ For bounded simulation,

— Vr consists of all the nodes v in G such that (u, v) ∈ Mksim(P,G), i.e., v is a match
of some pattern node u in the maximum match; and

— for each edge (u1, u2) in Ep, there is an edge (v1, v2) ∈ Er iff (u1, v1) and (u2, v2)
are in Mksim(P,G), and there exists a nonempty path ρ from v1 to v2 such that
len(ρ) ≤ k if fE(u1, u2) = k, and 0 < len(ρ) otherwise. That is, the edge (v1, v2)
indicates the path in G to which the pattern edge (u1, u2) is mapped.

Similarly result graphs are defined for graph simulation.
Observe that the edges in the result graphs indicate the connectivity among the

matches, a projection from their counterpart in P .
The changes ∆M in the output can thus be characterized by the changes in the

result graphs. Let Gr and G′
r be the result graphs of P in G and G⊕∆G, respectively.

Then ∆M is captured by the nodes and edges that are not shared by G′
r and Gr.

Example 4.2. Recall graph G3 and b-pattern P3 of Fig. 4. The result graph of P3 in
G3 is shown as Gr1 in Fig. 5, representing Mksim(P3, G3).

When a new edge e2 is inserted into G3, i.e., ∆G is the insertion of edge e2, the
new result graph Gr2 of P3 is shown in Fig. 5. Then ∆M , reflected by the changes in
the result graphs, includes two new nodes Don and Tom along with the new edges
attached to them, i.e., (Don, Pat), (Pat, Don), (Don, Tom) (Don, Dan), and (Dan, Don). That
is, ∆M adds new pairs (CTO, Don) and (Bio, Tom) to Mksim(P3, G3).

When G3 ⊕∆G is further changed by inserting edges e1, e3, e4 and e5, the new result
graph is Gr3, also shown in Fig. 5. Here the changes to Gr1 contains nodes Don and Tom,
along with all the new edges attached to them. Compared to Gr2, although four new
edges are added to G3, the match result ∆M contains only one new edge (Dan, Tom). 2

(Un)boundedness. An incremental algorithm is said to be bounded if its time com-
plexity is bounded by a polynomial in |CHANGED|. An incremental graph pattern
matching problem is said to be bounded if there exists a bounded incremental algo-
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Fig. 5. Result graphs and ∆M

rithm for it, and is said to be unbounded otherwise. A bounded problem can be solved
by a PTIME algorithm with time complexity independent of |G|, the size of data graph.

Semi-boundedness. Unfortunately, the boundedness of an incremental problem is
often too strict to characterize the complexity of the problem in practice. For graph
pattern matching, |CHANGED| is defined in terms of |∆G| and |∆M |, where ∆M mea-
sures the changes in the complete matches. Consider, as an example, over a period
of time, G is updated and yields a sequence of graphs G1, . . . , Gn+1. For j ≤ n, Gj

does not match P , i.e., M(P,Gj) = ∅; but Gn+1 matches P , i.e., M(P,Gn+1) jumps to
a nonempty set from ∅. While M(P,Gn+1) can be efficiently computed from partial
matches in G1, . . . , Gn, the complexity measured in |CHANGED| does not reflect this.
That is, complexity analysis in terms of |CHANGED| is not very informative: it does not
capture the amount of information that an incremental algorithm necessarily main-
tains. As a result, an incremental problem is bounded only in special and ideal cases.

To rectify the weakness of |CHANGED|, a notion of affected areas AFF was proposed
by [Alpern et al. 1990; Ramalingam and Reps 1996b]. Intuitively, AFF covers not only
changes ∆M (complete matches), but also information that is necessarily needed to
detect ∆M , including changes in partial matches, encoded in auxiliary data structures.
As observed by [Alpern et al. 1990], complexity analysis in terms of |∆G| and |AFF|
effectively demonstrates the advantage of incremental algorithms over their batch
counterparts. We also adopt AFF to analyze our incremental matching algorithms
since after all, incremental algorithms are to maximally reuse previous computation,
including both prior complete matches and partial matches (in auxiliary structures).

Auxiliary information. We characterize the essential information needed to detect ∆M
as “local information” for nodes v in G [Ramalingam and Reps 1996b].
(1) For graph simulation, the local information includes (a) whether v is a match of
some pattern node u, (b) whether v is a candidate, i.e., it satisfies the predicate of u
but does not yet match u, and (c) whether a child of v is a match or a candidate. For
each node u in the pattern graph P , we use sets match(u) and candt(u) to store its
matches and candidates in G, respectively. We also encode the connectivity relation on
the matches and candidates in these two sets, which is part of the local information.
(2) For bounded simulation, in addition to match(·) and candt(·), the local information
includes the distance between v and v′ in G, where v and v′ are matches or candidates
of two adjacent nodes u and u′ in P , respectively. We defer the definition of auxiliary
structures for the distance information to Section 6.
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Table I. Notations: CHANGED, match(·), candt(·), AFF and Gr

|CHANGED| size of total change in input and output, i.e., |∆G|+ |∆M |
match(u) the matches of a node u in P
candt(u) the nodes v in G that satisfy the predicate of u, but do not match u in P
AFF affected area, ∆M and updates in auxiliary structures for essential local information
Gr result graphs, a graph representation of M(P,G)

The information is essential for detecting ∆M . If any of the information is missing, it
can be verified that matches (resp. candidates) that become invalid (resp. new matches)
cannot be detected by using prior computation without traversing irrelevant part of G
(along the same lines as the proofs of Theorems 5.1(1) and 6.1(1)). In other words,
the information is needed by any incremental algorithm for the problem, which is
independent of algorithms but inherent to the incremental matching problem.
(3) For subgraph isomorphism, we show that incremental matching is inherently in-
tricate no matter what auxiliary structures of polynomial size are used (Section 7).

Affected area. For P , ∆G, G and M(P,G), the affected area, denoted as AFF, is the local
information of the nodes in G given above that must be accessed to detect ∆M .

Intuitively, let Gr and G′
r be the result graphs of P in G and G ⊕ ∆G, respectively.

Then AFF includes (1) those nodes and edges that are not shared by G′
r and Gr (i.e.,

∆M ), (2) changes in auxiliary structures match(·), candt(·) (as well as those used to
store the distance information for bounded simulation), especially changes to the chil-
dren or parents of the nodes adjacent to those nodes identified in (1).

Semi-boundedness. We now introduce the notion of semi-boundedness. We say that an
incremental matching algorithm is semi-bounded if (1) its cost can be expressed as a
polynomial function of |AFF|, |P | and |∆G|, and (2) the size of the auxiliary structure
is bounded by a polynomial in |G|. An incremental graph pattern matching problem is
said to be semi-bounded if there exists a semi-bounded incremental algorithm for it.

That is, a semi-bounded incremental algorithm is in PTIME in the sizes of |∆G|, pat-
tern P , and the amount |AFF| of information essential for identifying ∆M , by utilizing
auxiliary structures of a small size. In other words, its cost depends only on |∆G|, |P |
and |AFF|, where AFF indicates the amount of work that must be done for computing
∆M by any incremental algorithms. Such algorithms often suffice in practice since the
sizes of pattern P , ∆G and AFF are typically much smaller than big graph G.

In addition, we say an incremental matching algorithm is optimal if its cost is in
O(|AFF| + |P | + |∆G|), indicating necessary amount of work to perform for any incre-
mental algorithm for the problem. An incremental matching problem is optimal if it
has an optimal incremental algorithm. Note that an optimal problem is semi-bounded.

We summarize the notations in this section in Table I.

Example 4.3. The auxiliary structures store the essential information for identify-
ing ∆M for any incremental algorithm, and improve query efficiency.
(1) Recall the sequence G1, . . . , Gn resulted from updating a graph G mentioned earlier.
With auxiliary structures match(·) and candt(·), one can efficiently compute M(P,Gj) by
leveraging partial matches computed earlier, no matter whether PEsimGj (Section 5).
(2) As another example, consider a DAG pattern P and a graph G. Assume that G
cannot match P via (bounded) simulation until n edges are inserted one by one into G.
Without auxiliary structure the worst-case complexity is O(n|P ||G|). As will be seen in
Section 5, with match(·) and candt(·), we can do it in O(n|AFF|) time, and |AFF| ≪ |G|. 2

Based on this complexity model, below we first study incremental graph pattern
matching defined in terms of graph simulation (Section 5). We then extend the study
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Fig. 6. Unboundedness of IncSim

to bounded simulation (Section 6). We provide both complexity bounds and effective
incremental algorithms in these settings. Finally, we provide complexity analysis for
incremental matching via subgraph isomorphism (Section 7).

Remark. In [Ramalingam and Reps 1996b; Fan et al. 2011], a more general notion
of |CHANGED| is adopted, which includes ∆G, ∆M and changes to certain auxiliary
structure (AFF). We use a strict notion of |CHANGED| in this work, which only depends
on |∆G| and |∆M |, to distinguish boundedness and semi-boundedness of incremental
algorithms.

5. INCREMENTAL SIMULATION MATCHING
In this section we study the incremental simulation problem, referred to as IncSim.
Given a normal pattern P , a data graph G, a result graph Gr (depicting the unique
maximum simulation Msim(P,G)), and changes ∆G to G, IncSim is to compute the
changes to result graph Gr, which represents ∆M such that Msim(P,G ⊕ ∆G) =
Msim(P,G)⊕∆M . The main results of this section are as follows.

THEOREM 5.1. The incremental simulation problem is
(1) unbounded even for single updates and general (possibly cyclic) patterns;
(2) semi-bounded and optimal for (a) single-edge deletions and general patterns, and for

(b) single-edge insertions and DAG patterns, both in linear time O(|AFF|); and
(3) semi-bounded in O(|∆G|(|P ||AFF| + |AFF|2)) time for batch updates and general

patterns.

To the best of our knowledge, Theorem 5.1 presents the first boundedness analysis
for IncSim. While the problem is unbounded, it is semi-bounded: its cost depends only
on the size of the changes in ∆G, P and necessary auxiliary information AFF, which
are small in practice. Note that if |CHANGED| is defined to include |∆G| and |AFF| [Ra-
malingam and Reps 1996b], the cases in Theorem 5.1(2) are bounded [Fan et al. 2011].
Proof of Theorem 5.1(1): We show that IncSim is unbounded for a single-edge inser-
tion and a pattern with a single cycle. Consider an instance of IncSim shown in Fig. 6,
which consists of (1) a pattern P with one cycle and a pattern node v, and (2) a data
graph G consisting of two chains (v1, . . . , vn) and (vn+1, . . . , v2n), where each node in G
has the same label as v, and n ≥ 2. Given unit update ∆G to G, one may verify that
deciding whether PEsimG ⊕∆G is equivalent to checking whether there exists a cycle
in the updated graph. Indeed, any node vi in a cycle of G is a match of v.

Denote by ∆1 the insertion of edge e1 = (vn, vn+1) into G, and by ∆2 the insertion of
e2 = (v2n, v1). Figure 6 shows H1 = G⊕∆1, H2 = G⊕∆2 and H = H1⊕∆2. Observe that
◦ Msim(P,G) = Msim(P,H1) = Msim(P,H2) = ∅; and
◦ Msim(P,H) = {(v, vi) | i ∈ [1, 2n]}.
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We show that no bounded incremental algorithm A can carry out the updates, i.e.,
IncSim is unbounded. Recall that A is bounded if given P , G, a unit update ∆G and the
old output Msim(P,G), A(P,G,∆G,Msim(P,G)) computes ∆M and moreover, its cost is
a function of |CHANGED| (Table I). Note that |CHANGED| depends on |∆M | alone since
|∆G| and |P | are constants. In terms of result graphs, |∆M | after either ∆1 or ∆2 alone
is 0, while |∆M | after ∆1 and ∆2 is 4n, which corresponds to a result graph as H itself.

Assume by contradiction that such algorithm A exists. Then A(P,G,∆1,Msim(P,G))
and A(P,G,∆2,Msim(P,G)) are both in O(1) time, since ∆1 and ∆2 are unit updates,
and the changes in the outputs (i.e., Msim(P,H1) and Msim(P,H2)) are empty in both
cases. Algorithm A conducts matching by traversing G and updating the status of those
nodes visited. The status is associated with each node u, denoted by s(u). To investigate
the behavior of A, we consider the sequence of nodes visited by A when computing ∆M ,
while A may update the status of those nodes. We refer to the sequence of nodes visited
as the trace of A(P,G,∆G,Msim(P,G)) and denote it by T (G,∆G).

To see that such an algorithm A does not exist, observe the following.
(1) There exist nodes m in T (G,∆1) such that A(P,G,∆1,Msim(P,G)) updates their
status. Indeed, A(P,G,∆2,Msim(P,G)) finds no match while A(P,H1,∆2,Msim(P,G))
identifies all the nodes in G as matches. Since H1 is the same as G except the insertion
of edge e1 and A(P,G,∆2,Msim(P,G)) is in O(1) time, the different behaviors of A on G
and H1 when processing ∆2 can only be triggered if s(m) differs in G and H1 for some
nodes m, i.e., A takes different actions based on s(m). This could only happen if m is in
T (G,∆1), and moreover, A(P,G,∆1,Msim(P,G)) updates s(m) when processing ∆1.
(2) Algorithm A is unbounded. Since A(P,G,∆1,Msim(P,G)) is in O(1) time, T (G,∆1)
consists of a constant number of nodes. Consider a graph H ′

1 that is obtained from
H1 by “bypassing” the nodes in T (G,∆1): for each node vi in T (G,∆1), if 1 < i < 2n,
then add an edge (vi−1, vi+1) and leave out vi along with edges adjacent to it, while
updating only the “local” information in s(vi−1) and s(vi+1) such as parents and chil-
dren; and if i is 1 or 2n, then remove vi along with its edges while adjusting e2 ac-
cordingly (e.g., e2 is changed to (v2n, v2) if i = 1). Denote by H ′′

1 the graph H ′
1 ⊕ ∆2.

Note that H ′
1 is nonempty when n is sufficiently large. Then we have the following: (a)

A(P,G,∆2,Msim(P,G)) and A(P,H ′
1,∆2,Msim(P,G)) should behave the same, since for

all nodes v in H ′
1, s(v) in G and s(v) in H ′

1 are not different enough to trigger different
actions of A on G and H ′

1; but (b) Msim(P,H
′′
1 ) is of size O(n) while Msim(P,H2) = ∅.

Hence either A(P,H ′
1,∆2,Msim(P,G)) does not compute Msim(P,H

′
1) correctly, or the

number of nodes in T (G,∆1) is not a constant. Both cases contradict the assumption
that A is a bounded algorithm, i.e., A is unbounded for unit updates. 2

As an immediate result, IncSim is unbounded for batch updates and general patterns.
In the rest of this section we show Theorem 5.1(2) for unit updates (Section 5.1) and

Theorem 5.1(3) for batch updates (Section 5.2).

5.1. Incremental Simulation for Unit Updates
As optimal special cases of IncSim, we provide O(|AFF|)-time incremental algorithms
for (a) unit deletions and general patterns, and (b) unit insertions and DAG patterns.

The algorithms in this section use match(·) and candt(·) as auxiliary structures, stor-
ing local information about whether a node and its child is a match or candidate of a
pattern node (see Table I and Section 4). Note that the size of match(·) and candt(·) is
bounded by O(|P ||G|), and P is typically much smaller than |G|. The affected area AFF
is defined as the changed entries in these structures, which is not known in advance.

We keep track of three types of edges in ∆G, denoted by cc, cs and ss edges (Table II).
We will show that only certain type of these edges need to be processed by our incre-
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Table II. Notations: cc, cs and ss edges for IncSim

cc edges edges (v′, v) in ∆G such that v′ ∈ candt(u′) and v ∈ candt(u) for edge (u′, u) in P
cs edges edges (v′, v) in ∆G such that v′ ∈ candt(u′) and v ∈ match(u) for edge (u′, u) in P
ss edges edges (v′, v) in ∆G such that v′ ∈ match(u′) and v ∈ match(u) for edge (u′, u) in P

Fig. 7. IncSim in various updates

mental algorithms, i.e., may change the match result. Note that these edges can be
identified by looking up (a reversed index of) match(·) and candt(·) in constant time.

Unit deletions. The deletion of an edge from G may only reduce matches, i.e., it leads
to the removal of nodes and edges from the result graph Gr (Table I). Indeed, only
deletion of ss edges can reduce Gr. Observe that the result graph Gr contains all the ss
edges. It suffices to consider ss edges for edge deletions by the following result.

Proposition 5.1: Given a pattern P and a data graph G, only the deletions of ss edges
for some pattern edge in G may reduce the matches of P in G.

Proof: Denote the result graph as Gr for a pattern P in G. The deletion of an edge e =
(v′, v) in G has the following cases.
◦ Neither v′ nor v is a match for any pattern node u′. Since v′ is not a match of u′,

either v′ does not satisfy fV (u
′), or there exists a child u of u′, where none of the

child of v′ matches u. In either case, v′ cannot match node u′ after the removal of e.
◦ The node v′ is in match(u′), while the node v matches no pattern node. Since v′ is a

match for u′, for any node u as a child of u′, there exists a child vs ̸= v of v′ such that
vs ∈ match(u). Thus, the removal of e does not change Gr.

◦ The node v ∈ match(u) and the node v′ matches no pattern node. Since graph simu-
lation only considers the children of v, the removal of e does not change Gr.

◦ The edge e is an ss edge for a pattern edge (u′, u). In this case, v′ may no longer be
a match for u′ due to the removal of e. To see this, note that v may be the only child
of v′ that matches the child u of u′. If v′ has another child vs that matches u, the
removal of e does not change Gr; otherwise, v′ is no longer a match, and should be
removed (along with the attached edges) from Gr.

Thus, only the removal of ss edges may reduce Gr. 2

Observe that when v′ is no longer a match, the ancestors of v′ that are matches
appearing in Gr may also not remain matches, i.e., we have to propagate the change in
Gr given the single edge deletion, as will be discussed later in this section.

Example 5.2. Consider the normal pattern P ′
3 and data graph G3 of Example 4.1.

Observe that G3 matches P ′
3 via graph simulation, where the maximum match is

{(CTO, Ann), (DB, Pat), (DB, Dan), (Bio, Bill), (Bio, Mat)}. The result graph Gr5 is shown
in Fig. 7. Suppose that graph G3 is updated by deleting e6 = ((Pat, “DB”), (Bill, “Bio”)),
which is an ss edge for the pattern edge (DB, Bio) and is also in Gr5. When e6 is re-
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Input: A normal pattern P , the result graph Gr = (Vr, Er), match(·), candt(·),
and an edge e = (v′, v) to be deleted from G.

Output: The updated result graph Gr.
1. if e = (v′, v) ̸∈ Er then delete e from G and return Gr;
2. stack eset := ∅; eset.push(e);
3. while eset is not empty do
4. edge e := eset.pop();
5. for each ep = (u′, u) that e = (v′, v) can match do
6. check if v′ can match u′;
7. if v′ can not match u′ then
8. for each e′ = (v′′, v′) in Er do
9. Er := Er \ {e′}; eset.push(e′);
10. Vr := Vr \ {v′}; match(u′) := match(u′) \ {v′};
11. if match(u′) = ∅ then return ∅;
12. return Gr.

Fig. 8. Algorithm IncMatch−

moved, the node (Pat, “DB”) is no longer a valid match for the pattern node DB, since
there exists no edge from (Pat, “DB”) to a node that can match the pattern node Bio. 2

Based on Proposition 5.1, we give an incremental algorithm for deleting an edge e =
(v′, v), denoted by IncMatch− and shown in Fig. 8. Intuitively, IncMatch− identifies the
affected area caused by the deletion of ss edges, and “propagates” it by identifying and
removing the nodes in Gr that are no longer matches due to the updates.

The algorithm first checks whether e = (v′, v) is an ss edge for a pattern edge. If not,
the result graph Gr is unchanged (line 1). Otherwise IncMatch− propagates e to find
all the matches v′ that are no longer valid due to the removal of e, until the changed
affected area AFF is identified, and Gr (Table I) is updated accordingly (lines 2-12).

More specifically, IncMatch− uses a stack eset (line 2) to store edges to be processed.
For each pattern edge ep = (u′, u) to which the ss edge e corresponds, it checks whether
v′ still has children to match u (lines 4-7). If not, then v′ is removed from match(u′)
(Table I). If v′ cannot match any pattern node, it is removed from Gr along with all
the edges connected to it (lines 8-10). The removed edges (v′′, v′) are pushed into eset
for further checking (line 9). If there is a pattern node that has no valid matches, then
G \ {e} no longer matches P , and Gr is empty (line 11). This process continues until all
the “affected” nodes and edges are examined (lines 3-10).

Example 5.3. Recall P ′
3 and Gr5 from Example 5.2. When e6 is removed, IncMatch−

finds that no child of node Pat can match Bio. Thus Pat is no longer a match. The edge
(Ann, Pat), an ss edge for (CTO,DB), is then checked. Since Ann has children Dan and Bill
that match DB and Bio, respectively, IncMatch− updates Gr5 by removing Pat and its
three edges, which constitute AFF, as marked in Fig. 7. 2

Correctness & complexity. (1) Algorithm IncMatch− correctly updates the result graph
Gr since it only removes nodes that are no longer valid matches and their edges from
Gr. It terminates when all the invalid matches are removed. (2) IncMatch− runs in
O(|AFF|) time. Indeed, (a) IncMatch− only visits the nodes that can not match some
pattern node in Gr and their parents at most once. If a node remains to be a valid
match, IncMatch− stops the propagation (line 7); otherwise IncMatch− removes the node
from match(·) and visits its 1-hop nodes in Gr, whose local information is changed. (b)
IncMatch− determines if a match becomes invalid, by deriving and maintaining the
number of the children of v′ that are matches of u (not shown in Fig. 8) in O(|AFF|)
time. (i) The derivation of the local information is only conducted to the nodes with
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their local information changed (line 6), which takes in total O(|AFF|) time by using
hashing techniques and linear time set operation. (ii) IncMatch− checks if the number
becomes 0, and if so, v′ is not a match of u′; it then propagates the changes of the local
information, by reducing all such numbers associated to the parents of v′ in Gr by 1,
in O(|AFF|) time. (c) The number of updates to match(·) are bounded by the size of its
change (which is in O(|AFF|)), as match(·) is monotonically decreasing (line 10).

The algorithm and analysis given above complete the proof of theorem 5.1 (2a).

Unit insertions. In contrast to edge deletions, inserting edges into s data graph G
may only add new nodes and edges to the result graph Gr (Table I), but does not remove
anything from it. One may verify that only cc edges and cs edges (Table II) may yield
new matches when they are added to G. Indeed, one can verify the following.

Proposition 5.2: (1) For a DAG pattern P , only insertions of cs edges into a data graph
G may increase matches of P . (2) For a general pattern P , only insertions of cs or cc
edges into G may add new matches of P . (3) Moreover, cc edges alone only add new
matches for pattern nodes in some strongly connected component (SCC) of P .

Proof: One may easily verify (1) by a case analysis on the types of the inserted edge,
and prove by induction on the topological order of the DAG pattern P .

To see (2), one can verify that (a) the insertion of an ss edge (v′, v) (Table II) does not
introduce new matches, and thus can be simply inserted into the result graph Gr; (b)
the insertion of an edge (v′, v), where v′ is a match and v is not, does not change Gr

(Table I), since (i) v′ is already a match, and (ii) whether v is a match only depends on
whether its children become matches, and the insertion of (v′, v) does not affect this;
and (c) insertions of cs and cc edges (Table II) may result in new matches, e.g., v′ for
pattern node u′, since v (as a child of v′) becomes a match of u (as a child of u′).

To see (3), suppose that v′ and v match u′ and u, respectively, after the insertion of
an cc edge e = (v′, v). Suppose that pattern edge (u′, u) is not in any SCC of P . Then
the insertion of e alone does not make v′ a match for u′, as v is a candidate, and the
insertion of the cc edge does not make v a match because of (1) given above. Thus, the
pattern edge (u′, u) must already be in an SCC of P . 2

Example 5.4. Consider again pattern P ′
3 and graph G3 given in Example 5.3. Sup-

pose that after the deletion of edge e6, edge e7 from Pat to Mat is inserted into G3,
which is a cs edge for the pattern edge (DB,Bio). This yields a new match Pat for the
pattern node DB, and the new result graph Gr6 is depicted in Fig. 7. 2

Capitalizing on Proposition 5.2, below we propose incremental algorithms to process
a single-edge insertion into general data graphs, denoted by IncMatch+dag and IncMatch+,
for DAG patterns and general patterns, respectively.

DAG patterns. IncMatch+dag (not shown) identifies those nodes that yield a new match
upon an edge insertion, and propagates the new matches until the entire AFF is found.
When a cs edge (v′, v) is inserted (Table II) , IncMatch+dag checks whether each child of
u′ (v′ ∈ candt(u′)) has a match as a child of v′, and if so, v′ becomes a match of u′. This
may result in more new matches in the parents of v′. IncMatch+dag propagates the new
matches following a reversed depth-first strategy, until Gr can no longer be changed.

One can verify that IncMatch+dag is correct and is in O(|AFF|) time, similar to its coun-
terparts for IncMatch−. Indeed, IncMatch+dag derives the following local information of
v′: does a child of a pattern node u′ find no match in the children of v′ (v′ ∈ candt(u′))?
This can be derived from match(·), candt(·) and Gr in O(|AFF|) time. In addition, only

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 W. Fan et al.

Input: A normal pattern P , match(·), candt(·), the result graph
Gr = (Vr, Er), and an edge e = (v′, v) to be added to G.

Output: The updated result graph Gr.
1. AFFcs := {(v′, v) | (v′, v) is a cs edge for a (u′, u) ∈ Ep};
2. AFFcc := {(v′, v) | (v′, v) is a cc edge for a (u′, u) ∈ Ep};
3. propCS(AFFcs,AFFcc, P,Gr);
4. propCC(AFFcs,AFFcc, P,Gr);
5. propCS(AFFcs,AFFcc, P,Gr);
6. return Gr.
Procedure propCC
Input: Sets AFFcs, AFFcc, pattern P , and the result graph Gr.
Output: The updated result graph Gr, AFFcs and AFFcc.
1. construct the SCC graph Gs of P ;
2. for each SCC scci of Gs do
3. AFFcci := {(w′, w)| (w′, w) is a cc edge for (u′, u) in scci};
4. if AFFcci ̸= ∅ then
5. for each node u ∈ scci do match′(u) := candt(u);
6. compute the matches for subgraph scci in AFFcci ;
7. if match′(u) ̸= ∅ then update Gr, AFFcs and AFFcc;
8. return Gr, AFFcs and AFFcc;

Fig. 9. Algorithm IncMatch+

the new matches and those nodes and edges within 1 hop of them in Gr are visited, at
most once, which takes O(|AFF|) time. This completes the proof of Theorem 5.1 (2b).

General patterns. We present algorithm IncMatch+ in Fig. 9. When it comes to cyclic
graph patterns, it is more challenging to process edge insertions. Following Proposi-
tion 5.2, IncMatch+ first identifies AFFcs and AFFcc, which include all the cc and cs
edges (Table II) that may introduce new matches, respectively, when an edge e is in-
serted into G (lines 1-2). It then does the following. (1) It invokes procedure propCS to
find all new matches added by the insertion of cs edges (line 3). Note that new matches
generated in this step reduces cc edges. (2) It then uses procedure propCC to detect new
matches formed in new SCCs in G consisting of all cc edges (line 4), which correspond
to SCCs of P . (3) Since new cs edges may be generated in step (2), IncMatch+ invokes
propCS again to detect any new match (line 5). After these three phases no new match
could be generated, and the updated result graph Gr (Table I) is returned (line 6).

We next present the procedures used by IncMatch+. (1) Similar to IncMatch+dag, proce-
dure propCS (not shown) first identifies new matches added by AFFcs, and then induc-
tively checks their parents for propagation of the new matches. (2) Procedure propCC
is given in Fig. 9. It detects those new matches added only by cc edges, corresponding
to SCCs in P . It first constructs a graph Gs for P , in which each node is an SCC (line 1).
For each SCC node in Gs that contains at least a pattern edge, propCC checks whether
there exists a new match formed by the cc edges (lines 3-6). If new matches are found,
Gr is updated by including the new nodes and edges (line 7). After each SCC in P is
examined (lines 2-7), the updated Gr, AFFcs and AFFcc are returned (line 8).
Correctness & Complexity. IncMatch+ correctly updates Gr because all the matches
found are valid, since IncMatch+ adds a new match v′ to pattern node u′ only if each
child of u′ has a match as a child of v′. For the complexity, note that (1) procedure propCS
is in O(|AFF|) time, similar to IncMatch+dag; and (2) propCC is in O(|P ||AFF|+|AFF|2) time,
where for all SCC of P , it takes in total O(|P ||AFFcc|) time to identify AFFcci (lines 2-3
of propCC), O(|AFFcc|2) time to find new matches (lines 5-7), and |AFFcc| ≤ |AFF|.
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Input: A normal pattern P , the result graph Gr, match(·), candt(·), and
batch updates ∆G.

Output: The updated result graph Gr.
1. minDelta(∆G,P,match(·), candt(·));
2. for each pattern edge ep and its ss edges do
3. iteratively identify and remove invalid matches; update Gr;
4. for each SCC in P and related cc and cs edges do
5. iteratively identify and add new matches; update Gr;
6. return Gr;

Procedure minDelta
Input: A normal pattern P , match(·), candt(·), updates ∆G.
Output: The reduced ∆G.
1. for each edge e to be inserted do
2. if there is no edge ep ∈ Ep for which e is a cs or cc edge then
3. ∆G := ∆G \ {e};
4. for each edge e to be deleted do
5. if there is no edge ep ∈ Ep for which e is an ss edge then
6. ∆G := ∆G \ {e};
7. for each ep ∈ Ep and its cs and ss edges do
8. reduce ∆G via combination and cancellation;
9. return ∆G;

Fig. 10. Algorithm IncMatch

5.2. Incremental Simulation for Batch Updates
We next prove Theorem 5.1(3) by presenting IncMatch, an incremental simulation al-
gorithm for general patterns and a list ∆G of edge deletions and insertions (batch
updates). Its main idea is to (1) remove redundant updates as much as possible, and
(2) handle multiple updates simultaneously rather than one by one.

Algorithm IncMatch is shown in Fig. 10, using the same auxiliary structures as re-
marked earlier. It first invokes procedure minDelta to reduce the list ∆G of updates
(line 1). It then collects for each pattern edge e all its ss edges, and handles deletions
first to identify invalid matches (lines 2-3). After the invalid matches are removed from
Gr, it checks new matches formed in all the cs and cc edges, for each SCC of P (lines 4-5).

Reducing redundant updates. Procedure minDelta reduces ∆G. It first removes all
updates e that do not inflict changes to the result, i.e., those that are not an ss, cs or cc
edge (Table II) for any pattern edge ep (lines 1-6), by leveraging match(·) and candt(·). It
then identifies and combines updates that “cancel” each others. These include, for each
pattern edge ep = (u′, u), (a) insertions and deletions of ss edges for v′ ∈ match(u′), and
(b) insertions and deletions of cs edges for v′ ∈ candt(u′) (Table I) . Indeed, for the same
pattern edge ep, if ss edges (v′, v1) and (v′, v2) are inserted into G and deleted from G
in (a), then v′ remains to be a valid match of u′; similarly for (b). Such updates are
removed from ∆G, including but not limited to those that insert and delete the same
edge. Finally, it further combines the updates and induces a processing order, using a
topological rank (see below). Updates that involve the same data node are combined
such that they are processed only once in minDelta and IncMatch (lines 7-8).

To improve the efficiency, minDelta employs a strategy to reduce redundant updates
based on the notion of topological ranks, an extension of simulation ranks of [Gentilini
et al. 2003]. We consider a graph GI induced by the matches, candidates and the edges
among them. The strongly connected component graph GSCC of GI is obtained by col-
lapsing each strongly connected component SCC of GI into a single node. Each node
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v of GI is in an SCC node [v] in GSCC. The rank r(v) of a node v in GI is computed as
follows: (a) r(v) = 0 if [v] contains a single node, and is a leaf node in GSCC; (b) r(v) = ∞
if [v] reaches a nontrivial SCC (i.e., with at least 2 nodes); and (c) r(v) = max{1 + r(v′) |
edge ([v], [v′]) in GSCC} otherwise. We also define r(e) = r(v) for an edge update e =
(v, v′). Note that GI and the topological ranks over GI can be derived from match(·)
and candt(·). Similarly, we define a topological rank over P with the SCC graph of P .
The lemma below connects topological ranks and the simulation relation.
Lemma 5.1: In any pattern P and graph G, r(u) in P is no greater than r(v) in GI if
(u, v) ∈ Msim(P,G). 2

Proof: We prove this by contradiction. Suppose that there exists a node pair (u, v) ∈
Msim(P,G), where r(u) in P is greater than r(v) in GI . Consider the following cases. (a)
If r(u) = 1, then r(v) = 0, and hence u has at least one child as pattern node, while v has
no child in GI as either match or candidate. Thus, (u, v) /∈ Msim(P,G), contradicting our
assumption that (u, v) ∈ Msim(P,G). (b) Suppose that r(u) = k and r(v) = k − i, where
k and i are integers. By induction, one may verify that there is a descendant u′ of u in
P such that r(u′) = i, where there is a descendant v′ of v in GI with r(v′) = 0, and that
(u′, v′) ∈ Msim(P,G). This leads to a contradiction as in (a). (c) If r(u) is ∞ and r(v) is
an integer, then u must reach a nontrivial SCC in P with at least a cycle, while v does
not reach any SCC in GI . This leads to a contradiction as in (a). 2

By Lemma 5.1, minDelta uses topological ranks to remove redundant updates. Given
a set of updates ∆G (after the initial process of minDelta, lines 1-6), it does the following:

(1) dynamically maintain the topological ranks for each edge e = (v, v′) ∈ ∆G in GI , and
sort ∆G based on the updated rank r(e);

(2) group the updates e ∈ ∆G with the same source node v together into a set, and
identify redundant e = (v, v′) by checking if any of the following holds for e:
(a) e is an insertion, and there exists no pattern edge ep with a lower rank than e;
(b) e is an insertion, and for each pattern edge (u, u′) ∈ P such that v ∼ u, v has no

edge to nodes in match(u′);
(c) e is a deletion, and there exists no pattern edge ep with a higher rank than e; or
(d) e is a deletion, and there exists an edge (v, v1) in G such that for any pattern

edge (u, u′) with v ∼ u, if v′ ∼ u′ then v1 ∼ u′ and v1 does not appear in ∆G;
(3) return ∆G after removing all the redundant updates identified in (2).

Example 5.5. Consider again P ′
3 and G3 of Fig. 4. Consider batch updates ∆G,

which insert edges e1, e2, e3, e4, e5, e7 and delete e6, where e6 and e7 are given in Ex-
amples 5.2 and 5.4, respectively. The result graph is depicted as Gr7 in Fig. 7. Given
these, algorithm IncMatch first invokes minDelta to reduce ∆G: (1) the insertions of e1
and e5 are removed from ∆G or simply conducted to Gr7 as they do not yield increment
to matches; and (2) the deletion of e6 and the insertion of e7 cancel each other as they
are both ss edges of the pattern edge (DB, Bio) for node Pat, which remains to be an
unaffected match. After minDelta, ∆G contains the insertion of edges e2, e3, e4.
IncMatch then identifies the new match (Don, “CTO”) generated by the insertion of cs

edges e2, e3 and e4, and includes it in Gr7. Observe that (1) the affected area AFF in Gr7

includes the new node (Don, “CTO”), the newly inserted and deleted edges, and the edges
attached to (Don, “CTO”) from other matches in Gr7, and (2) node (Pat, “DB”) remains to
be a match, although it is affected twice by the deletion of e6 and the insertion of e7 (as
discussed in Examples 5.2 and 5.4). IncMatch avoids the unnecessary recomputation by
canceling these updates via minDelta, rather than processing them one by one. 2

Correctness & Complexity. To see that IncMatch is correct, note the following: (1)
minDelta removes only those updates that have no impact on the final match; and (2)
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Fig. 11. Unboundedness of IncBSim

IncMatch handles updates along the same line as in IncMatch− and IncMatch+, which are
shown to be correct earlier. The overall complexity of minDelta is in O(|AFF|+ |P ||∆G|).
To see this, (a) it takes |AFF| time to update the topological rank, via a topological sort
as in [Kahn 1962], (b) it takes O(|P ||∆G|) time to identify redundant updates in ∆G.
From the complexity of minDelta, IncMatch− and IncMatch+, it follows that IncMatch is in
O(|∆G|(|P ||AFF| + |AFF|2)) time. Hence IncSim is semi-bounded for batch updates and
general patterns. Again ∆G and P are typically small in practice.

This completes the proof of Theorem 5.1.

6. INCREMENTAL BOUNDED SIMULATION MATCHING
In this section we study the incremental bounded simulation problem, referred to as
IncBSim. We first present the complexity (boundedness) result (Section 6.1). To show
the result, we employ landmark and distance vectors as auxiliary structures, to effi-
ciently compute and maintain the local distance information (Section 6.2). Based on
the notion, we develop an incremental algorithm for graph pattern matching defined
in terms of bounded simulation (Section 6.3). Finally, we provide complexity bounds
and algorithms for incrementally maintaining those vectors (Section 6.4).

6.1. Incremental bounded simulation problem
The incremental bounded simulation problem IncBSim is a generalization of the incre-
mental simulation problem IncSim. It takes as input a b-pattern P , a data graph G,
changes ∆G to G, and a result graph Gr that depicts the unique maximum bounded
simulation Mksim(P,G). It computes the changes to Gr, which represents ∆M such that
Mksim(P,G⊕∆G) = Mksim(P,G)⊕∆M . The main results of this section are as follows.

THEOREM 6.1. The incremental bounded simulation problem is
(1) unbounded even for unit updates and path patterns; and
(2) semi-bounded, in O(|∆G|(|P ||AFF|+ |AFF|2)) time for batch updates and general pat-

terns.

We first prove Theorem 6.1(1), and then show Theorem 6.1(2) in Section 6.3.

Proof of Theorem 6.1(1): We show that IncBSim is unbounded even for a single-edge
insertion and a pattern with a single edge. Consider an instance of IncBSim shown in
Fig. 11, consisting of a pattern P ′ and a data graph G′. The pattern P ′ has a single
edge connecting pattern nodes u and t, labeled with ∗. The graph G′ consists of paths
(u1, . . . , ul), (v1, . . . , vm) and (t1, . . . , tn), as well as edge (tn, u1). The node labels are
shown in Fig. 11, e.g., u in P ′ and ui in G′ (i ∈ [1, l]) are labeled with u. One may verify
that there exists a match for P ′ in G′ based on bounded simulation if and only if there
exists a path in G′ from a node labeled with u to a node labeled with t.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:28 W. Fan et al.

Denote by ∆1 the insertion of edge e1 = (ul, v1), and by ∆2 the insertion of e2 =
(vm, t1). The updated graphs H ′

1 = G′ ⊕∆1, H ′
2 = G′ ⊕∆2, and H ′ = H ′

1 ⊕∆2 are shown
in Fig. 11. Observe the following.
◦ Mksim(P

′,H ′
1) = Mksim(P

′,H ′
2) = Mksim(P

′, G′) = ∅; but
◦ Mksim(P

′,H ′) ={(u, ui), (t, tj) | i ∈ [1, l], j ∈ [1, n]}.
We next show that no bounded incremental algorithm A can compute the updates,

i.e., IncBSim is unbounded. Recall that A is bounded if it computes ∆M with time cost
as a function of |CHANGED| (Table I). Here |CHANGED| depends on |∆M | alone, as |∆G|
is 1. In terms of result graphs, |∆M | after either ∆1 or ∆2 alone is 0, while |∆M | after
∆1 and ∆2 is n ∗ l + n + l, which corresponds to a result graph that contains all the
nodes labeled with u (i.e., u nodes) and t in H ′, and edges from each u node to t node.

Assume by contradiction that there exists such a bounded incremental algorithm
A that given P ′, graph G′, a unit update ∆G′ and the old output Mksim(P

′, G′),
A(P ′, G′,∆G′,Mksim(P

′, G′)) computes ∆M . Thus, A(P ′, G′,∆1,Mksim(P
′, G′)) and

A(P ′, G′,∆2,Mksim(P
′, G′)) are both in O(1) time, since for unit updates ∆1 and ∆2,

the changes from Mksim(P
′, G′) to the new results Mksim(P

′,H ′
1) and Mksim(P

′,H ′
2)

are empty in both cases. As in the proof of Theorem 5.1, we introduce the status
s(v) associated with each node v in a graph G′, as well as the trace T (G′,∆G′) of
A(P ′, G′,∆G′,Mksim(P

′, G′)). We next show that such an algorithm A does not exist.
(1) There exist nodes w in T (G′,∆1) such that A(P ′, G′,∆1,Mksim(P

′, G′)) changes their
status. Observe that T (G′,∆2) and T (H ′

1,∆2) generate different outputs. The different
behaviors of A on G′ and H ′

1 when processing ∆2 can only be triggered if s(w) differs in
G′ and H ′

1 for some nodes w. Since graph H ′
1, as an input of A, differs from G′ only due

to ∆1 that inserts edge e1, A(P ′, G′,∆1,Mksim(P
′, G′)) must visit nodes w and change

their status s(w) during its update process T (G′,∆1).
(2) Algorithm A is unbounded. Since A(P ′, G′,∆1,Mksim(P

′, G′)) is in O(1) time,
T (G′,∆1) consists of a constant number of nodes. Consider a graph H ′′

1 constructed
from H ′

1 by “bypassing” those nodes in T (G′,∆1): for each node xv in T (G′,∆1), (a) if
xv is (i) the node ui for some i ∈ [1, l], (ii) the node vj for j ∈ [2,m − 1], or (iii) the
node tk for k ∈ [2, n], then we add an edge (vp, vc), where vp and vc are the parent and
child of xv in G′, respectively, and leave out xv along with edges adjacent to it, while
updating only the “local” information in s(vp) and s(vc) such as parents and children;
and (b) if xv is v1, vm or t1, then remove xv along with its edges while adjusting the
edge e1 and e2 accordingly (e.g., e1 is changed to (ul, v2), and e2 is changed to (vm−1, t1)).
Denote by H ′′

s the graph H ′′
1 ⊕∆2. Observe the following: (a) A(P ′, G′,∆2,Mksim(P

′, G′))
and A(P ′,H ′′

1 ,∆2,Mksim(P
′, G′)) should behave the same, since for all nodes xv in H ′′

1 ,
s(xv) in G and s(xv) in H ′′

1 are the same; but (b) Mksim(P
′,H ′′

s ) is of size O(l ∗ n),
while Mksim(P

′,H ′
2) is ∅, the same as Mksim(P

′, G′) as remarked earlier. Hence either
A(P ′,H ′′

1 ,∆2,Mksim(P
′, G′)) does not compute Mksim(P

′,H ′′
s ) correctly, or the number of

nodes in T (G′,∆1) is not a constant. Both cases contradict that A is bounded. 2

We next prove Theorem 6.1(2) by developing an incremental algorithm for IncBSim.
In contrast to the incremental algorithms of [Fan et al. 2010] that only work on DAG
patterns, our algorithm is able to handle possibly cyclic patterns, and is semi-bounded
in |AFF|, |P | and |∆G|. The algorithm employs landmark vectors [Potamias et al. 2009]
and distance vectors as auxiliary structures, which are presented next.

6.2. Landmark Vectors
As remarked in Section 4, in addition to match(·) and candt(·), the local information
for bounded simulation includes distance information about the matches and candi-
dates of pattern nodes in P , to cope with the length constraints posed on the pattern
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edges. One way to encode the distance information is to maintain an all-pair distance
matrix as the auxiliary structure [Fan et al. 2010], which always takes O(|V |2) space.
In this work we introduce landmark and distance vectors as more “compact” auxiliary
structures.
(1) A landmark vector lm = <v1, . . . , v|lm|> for a data graph G is a list of nodes in G such
that for each pair (v′′, v′) of nodes in G, there exists a node in lm that is on a shortest
path from v′′ to v′, i.e., lm “covers” all-pair shortest distances [Potamias et al. 2009].
(2) In addition, with each node v in G we associate two distance vectors, each of size
|lm|: distvf = <dis(v, v1), . . . , dis(v, v|lm|)>, and distvt = <dis(v1, v), . . . , dis(v|lm|, v)>.

As observed in [Potamias et al. 2009], we can use a landmark vector and distance
vectors to find the distance between any pair of nodes in G as follows. The distance
dis(v′′, v′) from node v′′ to v′ in G is the minimum of the sums of distvf [i] of v′′ and
distvt[i] of v′ for all i ∈ [1, |lm|]. It can be found by a distance query, denoted as
dist(v′′, v′, lm), with at most |lm| operations. In practice |lm| is typically small and can
even be taken as a constant [Potamias et al. 2009].

Selection of landmarks. There are multiple landmark vectors for a graph G. For
example, any vertex cover Vc of G can be considered as a landmark vector. Indeed,
since Vc is a vertex cover, for any edge e = (v1, v2) in G, v1 or v2 is in Vc. Thus, for any
two nodes v′ and v and any shortest path ρ from v′ to v, there is a node v′′ ∈ Vc that is
on some edge e ∈ ρ. In our experimental study, we compute a minimum vertex cover
as a landmark vector using heuristic algorithm (see Section 8).

One may also want to use a “high-quality” landmark vector lm, with a small number
of nodes that are not changed frequently when G is updated. In this context, a set of
landmarks can also be selected as the nodes with e.g., larger degrees, attached edges
that are less frequently updated [Kumar et al. 2006], or larger betweenness central-
ity [White and Smyth 2003], a normalized measurement for the number of shortest
paths in G that go through the node v. Intuitively, the selection favors the smaller and
more stable lm. We illustrate this using an example, but defer a full treatment of such
landmark vectors to a future publication, due to the space constraint.

Example 6.2. Recall graph G3 of Example 4.1. A landmark vector lm for G3 is
<(Ann, “CTO”), (Dan, “DB”), (Pat, “DB”), (Ross, “Med”)>. Here distvf of Dan is <1, 0, 2,∞>,
and distvt of Bill is <1, 2, 1,∞>. From these we find 2 as the distance from Dan to Bill.

Suppose that Ann frequently updates her contacts, i.e., frq(Ann) is high, while Bill
seldom updates his contacts. Although the degree and betweenness of Ann) are large,
Bill is a better choice for a landmark, since he is more stable than Ann. Thus a better
landmark vector is <(Bill, “Bio”), (Dan, “DB”), (Pat, “DB”), (Ross, “Med”)>. 2

We will study how to incrementally maintain the landmark and distance vectors to
Section 6.4. Below we assume that the landmark and distance vectors are available,
and develop incremental algorithms for IncBSim by using the vectors.

6.3. Incremental Matching for Bounded Simulation
Based on landmark vectors, we develop incremental algorithms for IncBSim. The algo-
rithm uses match(·) and candt(·), as for incremental simulation (Section 5). In addition,
it uses landmark and distance vectors as auxiliary structures to encode the local dis-
tances (Section 4) between node pairs that are matches or candidates of pattern nodes
in P . The affected area AFF (Table I) is defined as the changed entries in these struc-
tures. For example, it includes changes to the connectivity and distance information,
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Table III. Notations: cc, cs, ss pairs for IncBSim

cc pair node pairs (v′, v), where v′ ∈ candt(u′), v ∈ candt(u) for edge (u′, u) in P
cs pair node pairs (v′, v), where v′ ∈ candt(u′), v ∈ match(u) for edge (u′, u) in P

ss pair node pairs (v′, v) where (1) v′ ∈ match(u′), v ∈ match(u) for edge (u′, u) in P ;
and (2) dis(v′, v) ≤ k if fE(u′, u) = k, and 0 < dis(v′, v) otherwise

Input: A b-pattern P , landmark vector lm,
the result graph Gr, and single insertion e.

Output: The updated result graph Gr.
1. lm′ := InsLM(P, e, lm);
2. identify all cc and cs pairs for each ep of P ;
3. for each SCC in P and related cc and cs pairs do
4. iteratively identify and add new matches; update Gr;
5. return Gr;

Fig. 12. Algorithm IncBMatch+

represented by the updated entries in the landmark and distance vectors. We defer the
details of AFF to Section 6.4, where changes to the vectors are elaborated.

The change of the local distance information may affect a pair of nodes from match(·)
or candt(·) that are not connected. Thus, instead of cc, cs and ss edges (as for IncSim),
we keep track of three types of node pairs, given in Table III. A pair (v′, v) of nodes
from match(·) or candt(·) is (a) a cs (resp. cc) pair if v′ ∈ candt(u′) and v ∈ match(u) (resp.
v ∈ candt(u)) for edge (u′, u) in P ; and (b) an ss pair if v′ ∈ match(u′) and v ∈ match(u)
for edge (u′, u) in P , and dis(v′, v) ≤ k if fE(u′, u) = k, and 0 < dis(v′, v) otherwise.

One may verify the following result for incremental bounded simulation.

Proposition 6.1: Given a b-pattern P and a graph G, (1) PEbsimG if and only if PEsimGr

(P is treated as a normal pattern), where Gr is the result graph for Mksim(P,G); and (2)
Mksim(P,G) can be increased (resp. reduced) only by those cs and cc (resp. ss) pairs with
updated distance satisfying (resp. not satisfying) the bound for a pattern edge.

Proof: (1) First assume that PEbsimG (bounded simulation). Then for any (u, v) ∈
Mksim(P,G) and any child u′ of u in P , there exist a node v′ in G such that (u′, v′) ∈ G,
and a path from v to v′ that satisfies the bound on the pattern edge (u, u′). Observe that
for all such v and v′, (v, v′) is also an edge in Gr (Table I). Thus, Mksim(P,G) is a match
for P in Gr based on simulation. Conversely, if Gr matches P based on graph simula-
tion, one can verify that PEbsimG similarly, since Gr is the result graph of Mksim(P,G).
(2) This can be verified by a case study on the updates of the node pairs, along the
same lines as the proof of Proposition 5.1 (see Section 5). 2

Proposition 6.1 reduces bounded simulation in a data graph to simulation in the
result graph Gr. It suggests a two-step strategy for IncBSim: (1) identify all the cc, cs
and ss pairs (Table III) via auxiliary structures; and (2) find changes ∆M , by treating
cc and cs pairs (resp. ss pairs) as insertions of the edges to Gr (resp. deletions from Gr).

Below we start with unit updates. We will then study batch updates.

Single edge insertions. An algorithm to handle a single-edge insertion is given in
Fig. 12, denoted as IncBMatch+. Intuitively, it determines the affected areas for simu-
lation in Gr, and propagates the changes. It first invokes procedure InsLM to identify
all the cc and cs pairs (lines 1-2), to check simulation in Gr. By Proposition 6.1, these
pairs are insertions to the result graph Gr. Hence the algorithm finds new matches by
updating Gr (lines 3-4), along the same lines as algorithm IncMatch+ (see Section 5.1).
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Procedure InsLM updates landmarks as well as the distance vectors of the nodes in
G, when an edge e = (v′, v) is inserted. The details will be discussed in Section 6.4.

Example 6.3. Consider pattern P3 and graph G3 of Example 4.1. Given a landmark
vector for G3 <(Ann, “CTO”), (Dan, “DB”), (Pat, “DB”), (Ross, “Med”)>. The table below
shows the distance vectors of the nodes Don, Dan, Pat and Tom.

V in G3 distvf distvt V in G3 distvf distvt
(Don, “CTO”) <∞,∞,∞,∞><2, 3, 1,∞> (Pat, “DB”) <1, 2, 0,∞> <1, 2, 0,∞>

(Dan, “DB”) <1, 0, 2,∞> <1, 0, 2,∞> (Tom, “Bio”) <2, 1, 3,∞><∞,∞,∞,∞>

When edge e2 is inserted into G3, the process of InsLM is illustrated in Fig. 13. It first
identifies nodes Don, Pat, Ann and Dan, from which the distances to Tom are changed.
It inserts Don into lm as a new landmark, and updates distance vectors distvf accord-
ingly. Similarly, it finds nodes whose distances from Don are changed, and updates the
distance vectors distvt. The new distvf of (Don, “CTO”) is <3, 2, 4,∞, 0>, and distvt of (Dan,
“DB”) is <1, 0, 2,∞, 2>. The new distance from Don to Dan is 2. After this, we have:

V in G3 distvf distvt V in G3 distvf distvt
(Don, “CTO”) <3, 2, 4,∞, 0><2, 3, 1,∞, 0> (Pat, “DB”) <1, 2, 0,∞, 1><1, 2, 0,∞, 4>

(Dan, “DB”) <1, 0, 2,∞, 3><1, 0, 2,∞, 2> (Tom, “Bio”) <2, 1, 3,∞, 4><3, 4, 4,∞, 1>

IncBMatch+ then incrementally finds new matches by operating on result graph Gr1

of Fig. 5, via simulation. It finds new cc and cs pairs, e.g., (Don, Tom), (Don, Dan) and
(Don, Pat), and inserts them as edges into Gr1. This yields new result Gr3 of Fig. 13. 2

Single edge deletions. Similarly, when an edge e = (v′, v) is deleted, we first identify
node pairs (v1, v2) for which (1) dis(v1, v) or dis(v′, v2) is changed, and (2) v1 and v2 are
within km hops of v and v′, respectively, where km is the maximum (finite) bound on
a pattern edge in P . For each such pair (v1, v2), we (1) compute the distance from v1
to v2 following a new shortest path between them, (2) select and add a new landmark
on a shortest path from v1 to v2 to lm, and (3) extend the distance vectors distvf of v1
and distvt of v2 with the new distances from and to the landmark, respectively. We
finally collect ss pairs following Proposition 6.1, and treat these node pairs as edges to
be deleted from the result graph Gr. The invalid matches are removed as in IncMatch−

(see Section 5.1), and changes to the match result ∆M are identified. The landmark
and distance vectors are maintained by a procedure DelLM to be given in Section 6.4.

Batch updates. For batch updates ∆G, we do the following. (1) We adopt a variant of
a dynamic fixed point algorithm [Ramalingam and Reps 1996a], denoted as IncLM (see
Section 6.4), to identify all the node pairs (v1, v2) for which (a) dis(v1, v2) is changed,
and (b) v1 and v2 are within km hops of the nodes in the edge of ∆G inserted or deleted;
here km is given as above. (2) We collect all ss, cs and cc pairs (Table III) from those
pairs examined in (1) that have new distances satisfying the condition specified in
Proposition 6.1. We then find changes ∆M to the matches by removing redundant
updates as for simulation (Section 5.2), and incrementally compute simulation of P in
Gr, as in algorithm IncMatch that handles batch updates for simulation.
Correctness & Complexity. The correctness of the incremental algorithms for IncBSim
is assured by Proposition 6.1. For the complexity, it takes, for a single update, (a)
O(|P |+|AFF| log |AFF|+|AFF|2) time to maintain the landmark and distance vectors (see
Section 6.4), and (b) O(|P ||AFF| + |AFF|2) time to update the matches as incremental
simulation in Gr, following an analysis as in Section 5. Thus, the total time complexity
of IncBSim is O(|∆G|(|AFF| log |AFF|+ |P ||AFF|+ |AFF|2)). This verifies Theorem 6.1(2).
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Fig. 13. Incremental bounded simulation

6.4. Incremental maintenance of landmarks
For IncBSim, we need to incrementally maintain landmark vectors when the data graph
is updated, to keep track of the distance changes in the data graph. Below we study
incremental techniques to maintain landmark and distance vectors. More specifically,
for a data graph G, we study the following: the incremental landmark problem, to
maintain a landmark vector; and the incremental landmark and distance problem, to
maintain a landmark vector as well as the distance vectors for IncBSim.

Maintaining landmarks. The incremental landmark problem, denoted as IncLMK,
takes as input a graph G, a landmark vector lm, and batch updates ∆G. It is to find
an updated landmark vector lm′ for G ⊕∆G. Here |CHANGED| = |∆G| + |∆lm|, where
|∆lm| is the size of different entries between the original and updated lm. We show that
IncLMK is bounded, and can be solved in linear time of |CHANGED|.

Proposition 6.2: IncLMK is bounded for batch updates, in O(|CHANGED|) time.

Proof: We first show that for single edge insertions, the problem is bounded, by pro-
viding a bounded algorithm as follows. Given an edge (v′, v) to be inserted into G, the
algorithm checks whether v′ or v is already in the landmark vector lm. If none of them
is in lm, it simply inserts either v′ or v into lm; otherwise lm remains unchanged.

The algorithm correctly maintains lm, because (a) edge insertions only cause new
nodes to be added into lm, (b) adding v′ or v to lm covers all the node pairs with their
distance changed, and (c) if lm is a landmark vector, then lm∪{v′} is a landmark vector,
for any node v′ of G. The algorithm can be implemented in O(1) time (via e.g., hashing).

For single edge deletions, one can verify that if lm is already a landmark vector
of G, then it remains a landmark vector for G \ {(v′, v)}, where (v′, v) is the edge to
be deleted. Thus, there is no need to change lm in response to the deletion, and the
algorithm simply removes the edge from G, which is in O(1) time.

For batch updates ∆G, one can invoke the two algorithms above, one for each update
in ∆G. The algorithm is in time O(|CHANGED|). Hence the problem is bounded. 2

Incremental landmark and distance problem. Given P , G, a landmark vector lm
and batch updates ∆G, the incremental problem, denoted as IncLMDK, is to maintain
a landmark vector as well as the distance vectors in response to ∆G.

Below we develop techniques for IncLMDK, to incrementally compute bounded sim-
ulation (IncBSim). IncLMDK maintains both a landmark vector and distance vectors
as auxiliary structures for IncBSim. It needs to change those landmarks that affect
matches, while leaving the rest to be adapted offline, based on a “lazy” strategy. Here

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Incremental Graph Pattern Matching A:33

Procedure DelLM
Input: A b-pattern P = (Vp, Ep, fV , fE), edge e = (v′, v) deleted,

landmark vector lm.
Output: Landmark vector lm′ as the updated lm.
1. km := max(fE(ep)) for all ep ∈ Ep;

stack vset := {v′}; lm′ := lm;
2. if v′ has no child then lm′ := lm′ ∪ {v′};
3. while vset ̸= ∅ do
4. Boolean flag := false;
5. node u:=vset.pop(); affUP := affUP ∪ {u};
6. for each node u′ as parent of u with dist(u′, v, lm) = 1+ dist(u, v, lm) do
7. for each node u′′ as child of u′ with dist(u′, v, lm) = 1+ dist(u′′, v, lm) do
8. if u′′ /∈ affUP then flag := true; break ;
9. if flag = false and u′ is within km hops of v′ then vset.push (u′);
10. compute affDW similarly;
11. for each node vAFF ∈ affUP do
12. for each node vlm ∈ lm′ do vAFF.distvf [vlm] := dis(vAFF, vlm);
13. update vAFF.distvt[vlm] similarly for vAFF ∈ affDW and vlm ∈ lm′;
14. return lm′;

Fig. 14. Procedure DelLM

|CHANGED| is |∆G| + |∆lm| + |∆distv|, where |∆G| and |∆lm| are the same as for IncLMK,
and |∆distv| is the size of the changed entries in the distance vectors.

To identify |CHANGED|, we employ the necessary local information (see Section 4)
of a node u as (a) the distances from u to the landmarks, and the distances from the
landmarks to u, and (b) the distances of (a) for the neighborhood of u. One may verify
that the changes in lm and distv cannot be incrementally detected without traversing
irrelevant part of G if any information in (a) or (b) is missing for a node u. Auxiliary
structures lm and distv encode the distance information in (a) and (b). In addition, the
neighborhood of u can be derived from its distance vectors, by extracting the nodes
with distance 1 in distvf (u) (resp. distvt(·)) as its parents (resp. children). The affected
area AFF for IncLMDK consists of nodes and edges with their local information changed.

Note that AFF for the incremental matching algorithm IncBSim (Section 6.3) is the
same as AFF in IncLMDK. The total size of landmark and distance vectors is bounded
by O(|G||lm|), which is much smaller than an all-pair distance matrix adopted by [Fan
et al. 2010], in particular when |lm| is treated as a constant in practice [Potamias et al.
2009]. Moreover, |AFF| = |∆lm| + |∆distv| is much smaller than lm and distv.

The distance vectors are updated once lm is updated, using a lazy strategy as follows.
(a) We maintain lm in response to ∆G, by keeping track of node pairs that lm covers.
We add a landmark only when necessary, and only extend the distance vectors of those
node pairs with changed distances; and (b) we rebuild space efficient landmark vectors
periodically via an offline process when, e.g., |lm| approaches the number of nodes in G.

Proposition 6.3: IncLMDK is in O(|P |+|AFF| log |AFF|+|AFF|2) time, i.e., semi-bounded,
for batch updates.

We prove this by presenting semi-bounded algorithms to maintain landmark vectors
and distance vectors, for single edge deletions (Procedure DelLM), single edge inser-
tions (Procedure InsLM), and batch updates (Procedure IncLM).

Single edge deletions. Procedure DelLM is given in Fig. 14. It updates lm in response
to a single edge deletion e = (v′, v). Given e, DelLM first initializes two sets affUP and
affDW, to store the nodes with distance to v and from v′ changed, respectively; it also
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initializes vector lm′ as lm, and a stack vset with v′ (line 1). DelLM also updates lm by
adding those nodes v′ without any child (line 2). It then computes affUP (lines 3-9).
More specifically, it first initializes a Boolean flag to be false, and selects a node u from
the stack vset and adds it to affUP (line 5). It identifies the parents u′ of u (by checking
distv), where their old distance to v may be affected by the removal of e (line 6). For
each such parent u′, it then checks if there is a child u′′ of u′ that is (a) not in the set
affUP, and (b) the original distance from u to v is not changed. If there is no such u′′,
u is inserted into affUP, and is pushed to the stack vset. The process stops when vset
is empty. The set affDW is similarly computed (line 10). Note that DelLM only inspects
those nodes that have changed entries and are within km hops of the deleted edge.

After the sets affUP and affDW are computed, procedure DelLM updates the distance
vectors for the affected nodes (lines 11-13). For each affected node vAFF ∈ affUP and
each landmark vlm, it updates the distance vector distvf of vAFF with the new distance
(lines 11-12). Similarly, it updates the distance vectors of the nodes in affDW (line 13).
It then returns the updated landmark vector lm′ (line 14).
Correctness & Complexity. Procedure DelLM correctly maintains the landmark vector
and updates distance vectors for each affected node (with local information changed).
Indeed, (1) the loop (lines 3-10) correctly finds affected node sets affUP and affDW. (2)
After affUP and affDW are computed, procedure DelLM iteratively updates the distance
vectors for the affected nodes, by updating their distance from or to the new landmark
vectors, respectively (lines 11-13). For the complexity, observe the following. (1) It takes
O(|P |) to find km (line 1). (2) It takes O(|AFF|2) time to find affUP and affDW (lines
3-10), as (a) DelLM only visits the nodes with local information changed once, and
(b) each time it identifies the distance with linear time in |AFF|. (3) It takes in total
O(|AFF| log |AFF|) time to update the distance vectors, by implementing distv as priority
queues (lines 11-13). To see this, note that (a) DelLM visits each node in affUP as an
ancestor of at least a landmark in lm′, in O(|AFF|) time, and (b) DelLM updates distv
of a node vAFF in affUP, by (i) updating distv of the children of vAFF, and (ii) computing
distv of vAFF directly with distv of its children, via priority queue insertion in O(log |AFF|)
time. Thus procedure DelLM is in O(|P | + |AFF| log |AFF| + |AFF|2) time. As verified by
our experimental study, |AFF| is typically small in practice.

Single edge insertions. Procedure InsLM incrementally updates lm in response to a
single edge insertion (v′, v), similarly as DelLM. It finds those nodes v1 such that (1)
dis(v1, v) is changed, and (2) v1 is within km hops of v, where km is the maximum bound
in P . It updates the old landmark vector and distvf for these nodes, and propagates the
changes. Similarly it processes v′. The complexity of InsLM is in O(|P |+|AFF| log |AFF|+
|AFF|2) time, the same as DelLM. Observe that InsLM is “lazy”: (a) the distance vectors
of the nodes are updated only if they are within km hops of the edge e and if their
distances are changed; and (b) at most one new landmark is added, while the other
landmarks are updated later by an offline process in the background.

Batch updates. We next present IncLM to incrementally maintain landmark vectors
and distance vectors in response to batch updates ∆G. Instead of dealing with updates
one by one, it handles multiple updates simultaneously.

Given ∆G, algorithm IncLM first initializes two sets affUP and affDW . It uses affUP to
store all those nodes u for which there exists an update (v′, v) ∈ ∆G such that dis(u, v)
is changed in G ⊕ ∆G. Similarly, affDW stores those nodes u with changed distance
dis(v′, u), for some (v′, v) ∈ ∆G. After these, it updates G with ∆G, and updates lm
based on ∆G following procedures InsLM and DelLM. For each update e ∈ ∆G, it then
computes affUP and affDW, by identifying the affected nodes along the same lines as in
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Fig. 15. Unboundedness of IncIsoMat

procedures DelLM and InsLM. After all the affected nodes are identified, IncLM updates
their distance vectors, and returns the updated vectors.
Correctness & Complexity. The correctness of IncLM follows from that of InsLM and
DelLM. For the complexity, observe the following: the number km is computed in O(|P |)
time once and can be reused, and lm can be updated in O(|∆G|) time (Proposition 6.2).
Affected node pairs can be found in O(|AFF|2) time. Note that |∆G| is subsumed by
|AFF|2 in this phase, as IncLM handles multiple updates simultaneously instead of one
by one. The distance vectors can be updated in O(|AFF| log |AFF|) time. Thus IncLM is
in O(|P |+ |AFF| log |AFF|+ |AFF|2) time. This completes the proof of Proposition 6.3.

7. INCREMENTAL SUBGRAPH ISOMORPHISM
We next study incremental matching for subgraph isomorphism, denoted as IncIsoMat.
Given a normal pattern P , a data graph G, matches Miso(P,G) and changes ∆G to G,
IncIsoMat is to find ∆Miso, the set of subgraphs of G that are to be added to (or deleted
from) Miso(P,G), such that Miso(P,G⊕∆G) = Miso(P,G)⊕∆Miso.

We also study the problem for deciding whether there exists a subgraph in the up-
dated graph G⊕∆G that is isomorphic to P , i.e., PEisoG⊕∆G, referred to as IncIso.

The main results of this section are negative: these problems are hard even when
data graphs are fixed, and for pattern and data graphs that have a tree structure.

THEOREM 7.1. For subgraph isomorphism,
(1) IncIso is NP-complete even when data graphs are fixed, and
(2) IncIsoMat is unbounded for unit updates, even when patterns are trees and data

graphs are forests.

Proof: (1) We show that IncIso is NP-complete when G is fixed. The problem is in NP.
Indeed, there exists an NP algorithm that (a) computes G⊕∆G by applying ∆G to G,
(b) guesses a subgraph Gs of G⊕∆G, and (c) checks if Gs is isomorphic to P in PTIME.

We show that IncIso is NP-hard by reduction from the maximum clique problem
(MCP), which is NP-complete (cf. [Garey and Johnson 1979]). An instance of MCP I
= (G0, k) consists of a graph G0 = (V0, E0) and an integer k. It is to determine whether
there exists a clique of at least k nodes in G0. Given I, we construct an instance of
IncIso as follows. (a) We define a normal pattern P as a k-clique. (b) We fix graph G to
be empty, i.e., the node and edge sets of G are empty. (c) Fixing G, we define ∆G such
that G0 = G ⊕∆G. Observe that for any graph G0 and the fixed G, ∆G always exists.
It is easy to verify that there exists a k-clique in G0 if and only if there exists a match
for P in G⊕∆G. Since MCP is NP-hard, IncIso is NP-complete even for a fixed graph G.
(2) We next show that IncIsoMat is unbounded for unit updates, and when P is a tree
and G is a forest. We construct a normal pattern P ′′ and a graph G′′ as shown in Fig.15
(ignore edges e1 and e2 for the moment). (a) The pattern P ′′ consists of a tree rooted as
node a0, which consists of m+ n+ 1 nodes labeled with a. (b) The graph G′′ consists of
a single node a0, and two paths (a1, . . . , a2m) and (a2m+1, . . . , a2m+2n). We define ∆1 as
the insertion of edge e1 = (a0, a1), and ∆2 as the insertion of edge e2 = (a0, a2m+1). Let
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G′′
1 = G′′ ⊕∆1, G′′

2 = G′′ ⊕∆2, and G′′
3 = G′′

1 ⊕∆2. As in the proof of Theorem 5.1, we use
s(u) to denote the status of a node u in G′′. Observe that Miso(P

′′, G′′) = Miso(P
′′, G′′

1) =
Miso(P

′′, G′′
2) = ∅, while Miso(P

′′, G′′
3) is a tree of m+ n+ 1 nodes.

Assume by contradiction that IncIsoMat is bounded. Then there exists an incremen-
tal algorithm A such that given a pattern P , graph G, a unit update ∆G and the old
output Miso(P,G), A(P,G,∆G,Miso(P,G)) computes ∆Miso with its cost as a function
of |CHANGED|. Thus, A(P ′′, G′′,∆1,Miso(P

′′, G′′)) and A(P ′′, G′′,∆2,Miso(P
′′, G′′)) are

both in O(1) time, since for unit updates ∆1 and ∆2, the changes from Miso(P
′′, G′′)

to the new results Miso(P
′′, G′′

1) and Miso(P
′′, G′′

2) are empty in both cases. Along
the same line as in the proof of Theorem 5.1, we consider the trace T (G′′,∆G′′) of
A(P ′′, G′′,∆G′′,Miso(P

′′, G′′)). We show that such an algorithm A does not exist.
(A) There exist nodes v in T (G′′,∆1) such that A(P ′′, G′′,∆1,Miso(P

′′, G′′)) changes
their status, because T (G′′,∆2) and T (G′′

1 ,∆2) generate different outputs. This can only
happen if s(v) differs in G′′ and G′′

1 for some nodes v, since A(P ′′, G′′,∆2,Miso(P
′′, G′′))

is in O(1) time. Since graph G′′
1 as an input of A differs from G′ only due to ∆1,

A(P ′′, G′′,∆1,Miso(P
′′, G′′)) must visit nodes v in T (G′′,∆1) and change their status.

(B) Algorithm A is unbounded. Consider a graph G′′
v constructed from G′′

1 by “shortcut-
ting” those nodes v in T (G′′,∆1): (1) if such a node v is a0, then remove a0 along with its
edges while adjusting e2 accordingly (e.g., e2 is changed to (a1, a2m+1)); (2) if v is a node
ai (i ̸= 0 and i ̸= (2m+1)), and if it is not a leaf, an edge is added from its parent ai−1 to
ai+1; (3) if v is the node a2m+1, edge e2 is adjusted to (a0, a2m+2); and (4) if v is one of the
two leaf nodes a2m and a2m+2n, then remove the edges attached to v. Let G′′

v2
= G′′

v⊕∆2.
Observe the following: (a) A(P ′′, G′′,∆2,Miso(P

′′, G′′)) and A(P ′′, G′′
v ,∆2,Miso(P

′′, G′′))
should behave the same, since for all nodes u in G′′

v , s(u) in G and s(u) in G′′
v are the

same; however, (b) Miso(P
′′, G′′

v2) is of size O(m + n + 1) while Miso(P,G
′′
2) = ∅. To see

(b), note that for any node set with status changed, the corresponding G′′
v with edges

“bypassing” these nodes always contains a tree isomorphic to P ′′ after the insertion
∆2. Hence either A(P ′′, G′′

v ,∆2,Miso(P
′′, G′′)) is not correct, or T (G′′,∆1) is not of a con-

stant size (while A(P ′′, G′′,∆2,Miso(P
′′, G′′)) is in O(1) time). Both cases contradict the

assumption that A is a bounded algorithm. 2

Theorem 7.1(1) shows that the intractability of IncIso is introduced by pattern and
updates, i.e., the “dynamic” nature of the incremental problem. From this it also follows
that IncIso is not semi-bounded unless P = NP, since there exists no algorithm with a
polynomial cost in the size of |∆G| and |AFF| otherwise, no matter what auxiliary struc-
ture is used as long as it is bounded by a polynomial in the size of G. Theorem 7.1(2)
shows that IncIsoMat is unbounded although its batch counterpart is in PTIME (when
P ′′ and G′′ are trees [Garey and Johnson 1979]). In contrast, the incremental (bounded)
simulation problems are semi-bounded and their batch counterparts are in PTIME.

8. EXPERIMENTAL EVALUATION
We next present an experimental study of our matching methods (Section 8.1) and
incremental methods (Section 8.2), using real-life and synthetic data. The experiments
were conducted on a machine with an Intel Core(TM)2 Dual Core 3.00GHz CPU and
4GB of RAM. Each experiment was run at least 5 times, and the average is reported.

8.1. Experiments for Graph Pattern Matching
We first conducted two sets of experiments to evaluate (1) the effectiveness of graph
pattern matching based on bounded simulation (Section 2), and (2) the efficiency and
scalability of algorithm Match (Fig. 3) for graph pattern matching.

Experimental setting. We used real-life data and synthetic data in our experiments.
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(1) Real-life data. We used (a) a crawled YouTube graph [you 2012] with 14829 nodes
and 58901 edges, where each node denotes a video with attributes (e.g., length, cate-
gory, age), and edges indicate recommendations; and (b) a citation network [Tang et al.
2008] with 17292 nodes and 61351 edges, where each node represents a paper with
attributes (e.g., title, author, the year of publication), and edges denote citations.
(2) Synthetic data. We used the Java boost graph generator to produce graphs, with 3
parameters: the number of nodes, the number of edges, and a set of node attributes.
We generated sequences of data graphs following the densification law [Leskovec et al.
2007] and linkage generation models [Garg et al. 2009].
(3) Pattern generator. We designed a generator to produce meaningful pattern graphs
for both real-life and synthetic data, controlled by 4 parameters: the number of nodes
|Vp|, the number of edges |Ep|, the average number |pred| of predicates carried by each
node, and an upper bound k such that each pattern edge has a bound k′ with k − c ≤
k′ ≤ k, for a small constant c. We will use (|Vp|, |Ep|, |pred|, k) to characterize a pattern.
(4) Implementation. We implemented the following algorithms in Java: (1) Match; (2)
two variants of Match, Match with BFS and Match with 2-hop, which use breadth-first
search (BFS) to compute node distances and leverage 2-hop labeling [Cheng et al. 2008]
to prune disconnected nodes, respectively; these were to explore whether the existing
techniques could help bounded simulation; and (3) VF2, a matching algorithm based
on subgraph isomorphism [Cordella et al. 2004]. Observe that given a normal pattern
in which all the edges are labeled 1, Match conducts matching via simulation.

Experimental results. We next present our findings.

Exp-1: Effectiveness and efficiency. In this set of experiments, we first evaluated
the effectiveness of Match vs. VF2 in identifying sensible matches in YouTube. We then
studied the efficiency of different matching methods, using large synthetic datasets.
Effectiveness. We manually constructed 20 patterns for YouTube, to find popular videos.
Two sample patterns and their result graphs are shown in Fig. 16(a). Pattern P1 is to
find “music” videos with rating (p1), which are linked to videos of user “FWPB” within
2 hops (p2); node p2 is within 3 hops to videos uploaded by “Ascrodin” (p3), which are
less than 500 days old and are in turn connected to p2 in 4 hops. Pattern P2 is to find
all “comedy” videos from “Gisburgh” (p6), which are referenced by both “politics” (p4)
and “science” videos (p5) in 3 hops, and have links to “people” videos within 2 hops (p7).

We ran Match and VF2 on YouTube for each pattern. We then manually inspected the
result graphs found by Match and the subgraphs found by VF2 that are isomorphic to
the pattern, to check the accuracy of the matches. We find the following. (1) For 2 out
of 20 patterns, VF2 could not find any match, while Match returned meaningful results
with 9 matches in average per pattern node. These happened even when the bound k
was set to 1 to favor VF2. (2) When VF2 did not fail, Match consistently identified more
meaningful matches than VF2. Indeed, while VF2 found only 1 match for each pattern
node, Match found in average 5 matches per pattern node. For instance, partial matches
found by Match were shown as S1 and S2 in Fig. 16(a), which were missed by VF2.
Efficiency. We evaluated the efficiency of Match vs. VF2 using YouTube. Figure 16(b)
shows the results, where x-axis represents (|Vp|, |Ep|) in a pattern P (Vp, Ep). We used
k = 1 to favor VF2 and Match based on graph simulation. The curves Match (k = 1) and
Match (k = 3) reflect the elapsed time for matching (excluding the time for computing
a distance matrix, since it was computed only once and shared by all patterns). The
results tell us that Match is much faster than VF2, no matter whether k = 1 or k = 3.
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Fig. 16. Exp-1: Effectiveness and efficiency of bounded simulation

Moreover, when k = 3, Match ran slower than when k = 1 (but not much), because
bounded simulation is more costly than simulation, as expected.

Figure 16(c) reports the number of distinct matches found by VF2, Match (k = 1)
and Match (k = 3). It tells us the following: (1) Match consistently finds much more
meaningful matches than VF2, since matching via subgraph isomorphism imposes too
strong a topological constraint; and (2) Match captures more sensible matches when
k = 3 (i.e., based on bounded simulation) than Match when k = 1 (simulation), since
pattern matching via bounded simulation allows edge to path mappings, as expected.

Exp-2: Efficiency and scalability. The second set of experiments evaluated (1) the
efficiency of various implementations of Match by using distance matrices, BFS and
2-hop, respectively, to identify ancestors or descendants of a node within a distance
bound k; and (2) the scalability of Match with the size of data graphs and patterns.
Efficiency. Figures 17(a) and 17(b) show the results on real-life datasets YouTube and
Citation, respectively. The x-axis represents (|Vp|, |Ep|, k) for a pattern. The results tell
us the following: (1) Match with a distance matrix outperforms the other approaches;
(2) the more complex the patterns are, the more costly for all the three methods, as
expected; and (3) when the pattern size is fixed, varying the distance bound (from
k = 3 to k = 4) increases the computational time of all these methods.
Scalability. When data graphs are large, it is not feasible to build a distance matrix and
2-hop. This highlights the need for Match with BFS. Hence we focused on the scalability
of Match via BFS, first with the complexity of patterns. When k = 3 or k = 4, we varied
|Vp| = |Ep| from 3 to 8, on a graph G with |V | = 1M , |E| = 2M . The results in Fig. 17(c)
tells us the following. (1) Match via BFS scales well with the size of patterns. (2) BFS
accounts for 80% of the total computational time of Match. (3) The larger the bound k or
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Fig. 17. Exp-2: Efficiency and scalability of bounded simulation

the pattern is, the more costly BFS is. Indeed, when k or patterns get larger, BFS visits
more nodes to identify ancestors or descendants of a node within the distance bound k.

We also evaluated the scalability of Match via BFS with the size of data graph |G|.
We varied |V | from 0.3M to 1M , in 0.1M increments, while letting |E| = 2|V |. We used
two patterns P1 and P2, with (Vp, Ep, k) = (3, 3, 3) and (4, 4, 3), respectively. As shown
in Fig. 17(d), (1) Match via BFS scales with |G|; this verifies the complexity analysis of
Match via BFS (Section 3); and (2) it is more costly for Match to find matches of P2 than
the smaller P1. This is consistent with the observation of Fig. 17(c).

8.2. Experiments for Incremental Graph Pattern Matching
We conducted three sets of experiments to evaluate: (1) the performance of IncMatch
for incremental simulation, compared with (a) its batch counterpart Matchs [Henzinger
et al. 1995], (b) IncMatchn, a naive algorithm that processes unit updates one by one by
invoking IncMatch+ and IncMatch−, and (c) HORNSAT, the incremental simulation al-
gorithm of [Shukla et al. 1997]; (2) the efficiency of IncBMatch for incremental bounded
simulation (see Section 6), compared with (a) its batch counterpart Matchbs [Fan et al.
2010], and (b) the incremental algorithm IncBMatchm of [Fan et al. 2010] on DAG pat-
terns, using a distance matrix; (3) the effectiveness of the optimization techniques,
i.e., (a) landmark and distance vectors, and (b) procedures minDelta and InsLM, DelLM,
IncLM. All the algorithms (summarized below) are implemented in Java.

Problem Batch Incremental
IncSim Matchs IncMatch, IncMatchn, HORNSAT
IncBSim Matchbs IncBMatch, IncBMatchm

Optimizations BatchLM, minDelta InsLM, DelLM, IncLM
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Fig. 18. Exp-1: Incremental graph simulation

Experimental setting. We used the real-life datasets, synthetic graph generator and
pattern generator given in Section 8.1. Updates were selected following the densifi-
cation law [Leskovec et al. 2007]: we selected nodes with larger degree with higher
probability for edge deletion (resp. insertion) if they are (resp. not) connected. We used
a greedy algorithm [Vazirani 2003] to approximately compute a minimum vertex cover
for each data graph as a landmark vector, as well as corresponding distance vectors.

Experimental results. We next report our findings.

Exp-1: Incremental graph simulation. We first evaluated the efficiency of IncMatch.
We generated 30 normal patterns for each of YouTube, Citation and synthetic data,
with parameters (4, 5, 3, 1) for synthetic data and (6, 8, 3, 1) for real-life data.

Fixing |V | = 17K on synthetic data, we varied |E| from 78K to 108K (resp. from
108K to 78K) in 3K increments (resp. decrements). The results in Figures 18(a)
and 18(b) tell us the following. (a) IncMatch outperforms Matchs when insertions are
no more than 30% (resp. 30% for deletions; not shown). When the changes are 11% for
insertions (resp. 18% for deletions), IncMatch improves Matchs over by 40% (resp. 50%).
(b) IncMatch and IncMatchn consistently do better than HORNSAT. HORNSAT does not
scale well with |∆G|, due to its additional costs for updating reflections and maintain-
ing its auxiliary structures. (c) IncMatch does better than IncMatchn. This verifies the
effectiveness of minDelta, which reduces |∆G|. (d) As opposed to Matchs, IncMatch and
IncMatchn are sensitive to |∆G|, as expected. This is because the larger |∆G| is, the
larger the affected area is; so is the computation cost. This justifies the complexity
measure of incremental algorithms in terms of the size of |∆G| and |AFF|.

On real-life data, Figures 18(c) and 18(d) show the results for edges inserted into
YouTube and Citation datasets, respectively. Each data set has |V | = 18K (resp. 17K),
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Fig. 19. Exp-2: Incremental bounded simulation

and |E| as shown in the x-axis. Here the updates are the differences between snapshots
w.r.t. the age (resp. year) attribute of YouTube (resp. Citation), reflecting their real-
life evolution. The results confirm our observations on synthetic data. For instance,
IncMatch outperforms Matchs on YouTube even when the changes are up to 50%.

Exp-2: Incremental bounded simulation. We evaluated the efficiency of IncBMatch
vs. Matchbs and IncBMatchm. We produced 30 b-patterns with parameters (4, 5, 3, 3) for
synthetic data, and (6, 8, 3, 3) for real-life data. To favor IncBMatchm that only works
on DAGs, we used DAG b-patterns.

Fixing |V | = 17K on synthetic data, we varied |E| from 98K to 108K (resp. from
108K to 98K) in 1K increments (resp. decrements). The results shown in Figures 19(a)
and 19(b) tell us the following. (a) IncBMatch outperforms Matchbs when both edge in-
sertions and deletions are no more than 10%. (b) IncBMatch consistently does better
than IncBMatchm, by about 30% (resp. 40%) for insertions (resp. deletions) when |∆G|
= 10K. Note that IncBMatchm employs a distance matrix to compute the distance be-
tween two nodes, and does not scale well with large graphs. In contrast, IncBMatch
uses landmark vectors to improve the scalability. (c) For the same |∆G|, IncBMatch
takes longer to process insertions than deletions. As indicated by Theorem 5.1(2), edge
insertions introduce more complications than deletions to (bounded) simulation. For
deletions (Fig. 19(b)), the larger ∆G is, the smaller G ⊕ ∆G is, and hence so is the
cost for handling ∆G. Note that Matchbs is less sensitive to |∆G| than IncBMatch, as
expected, although it takes less time for graphs with less edges. This further justifies
the complexity analysis of incremental algorithms in terms of ∆G as opposed to |G|.

Figures 19(c) and 19(d) show the performance of the algorithms for edge insertions
to YouTube and Citation datasets, respectively, in the same setting as above. The re-
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Fig. 20. Exp-3: Optimization Techniques

sults show that IncBMatch does even better on real-life data than on synthetic data;
e.g.,IncBMatch outperforms Matchbs on YouTube when changes are no more than 20%.

Exp-3: Optimization techniques. In this set of experiments we evaluated (1) the ef-
fectiveness of minDelta, (2) the space cost of landmark and distance vectors, and (3) the
efficiency of InsLM, DelLM and IncLM for updating those vectors. In these experiments,
we generated synthetic graphs following the densification law [Leskovec et al. 2007],
by using one more parameter α for our generator such that |E| = |V |α.
Effectiveness. To analyze the effectiveness of minDelta, we fixed |V | = 20K, varied pa-
rameter α, and randomly inserted and deleted 4000 edges. The results are shown in
Fig. 20(a). We find that minDelta significantly reduces redundant updates. This be-
comes more evident when α is increased, i.e., if the graphs have more edges. In this
case, more nodes are in the result graphs, and those updated edges are less likely to af-
fect the match results. The results also demonstrate the potential benefits of minDelta
in real-life applications, where insertions are more common (e.g., [Garg et al. 2009]).
Space cost. Fixing |V | = 10K and α = 1.1, Figure 20(b) shows the space cost of land-
mark and distance vectors, incrementally maintained and recomputed from scratch,
respectively. Observe that (a) landmark and distance vectors take much less space
than a (10K)2 distance matrix [Fan et al. 2010]; and (b) compared to recomputation,
InsLM updates the landmark and distance vectors with extra space cost of at most 2%.
After 5K edges are inserted, the recomputed landmark and distance vectors takes
56M , while the total extra space added by InsLM is only 674K.
Efficiency. We evaluated the efficiency of InsLM vs. BatchLM+ (resp. DelLM
vs. BatchLM−) over YouTube. Here BatchLM+ (resp. BatchLM−) denotes a batch algo-
rithm for edge insertion (resp. deletion). Fixing |V | = 18K and k = 5, we varied |E|
from 59K to 62K (resp. from 59K to 56K). The results are reported in Fig. 20(c), which
tell us the following. (1) InsLM (resp. DelLM) is much more efficient than BatchLM+

(resp. BatchLM−): InsLM (resp. DelLM) takes only 8% (resp. 13%) of the time of BatchLM+

(resp. BatchLM−) when 3K edges are inserted (resp. removed). (2) InsLM is more effi-
cient than DelLM; this is because edge deletions tend to affect more nodes with changed
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distance from (resp. to) the nodes in landmark vector, and BatchLM+ outperforms
BatchLM− for the same reason. This is more evident when |∆G| gets larger.

We also evaluated the efficiency of IncLM vs. the batch algorithm BatchLM, using
YouTube. Fixing k = 5, we varied updates from 1K to 6K, with 50% of edge insertions
and 50% of edge deletion. As shown in Fig. 20(d), IncLM is much more efficient than
BatchLM, taking only 15% of the time used by BatchLM for updates of 6K.

Moreover, we evaluated the impact of the maximum bound k on IncLM, using Cita-
tion. Fixing |V | = 17K and |E| = 62K, we varied k from 3 to 6, and generated batch
updates (edge insertions and deletions). As shown in Fig. 20(e), it is more costly for
IncLM to maintain landmark vectors for larger k. Indeed, the larger k is, the more node
pairs IncLM has to inspect, to find out whether these nodes are affected by the updates.

Finally, we evaluated the efficiency of IncLM vs. a naive incremental algorithm, de-
noted by InsLM+DelLM, which invokes InsLM and DelLM one by one for each update. We
used synthetic graphs in this experiment. Fixing |V | = 15K, |E| = 40K and k = 5, we
generated ∆G with both edge insertions and deletions. The results shown in Fig. 20(f)
tell us that IncLM consistently outperforms InsLM+DelLM, by 20% on average. These
verified the effectiveness of the optimization strategies used by IncLM, which, among
other things, substantially eliminated redundant updates from ∆G.

Summary. We summarize our findings in the table below.

Problems Algorithm comparisons ResultsTraditional ones Our algorithms

Revised
graph pattern matching

VF2 (subgraph
isomorphism)

Match (bounded
simulation)

◦ Match identifies far more sensible matches
◦ Match is more efficient than VF2
◦ Match scales well with data graphs

Incremental simulation
IncSim

Matchs,
HORNSAT

IncMatch,
IncMatchn

◦ IncMatch is much more efficient than batch
Matchs and naive process IncMatchn

◦ IncMatch does much better than HORNSAT

Incremental bounded
simulation IncBSim

Matchbs
IncBMatch,
IncBMatchm

◦ IncBMatch is far better than batch Matchbs
and naive IncBMatchm on DAG patterns

Optimizations BatchLM

minDelta,
InsLM,
DelLM,
IncLM

◦ minDelta significantly reduces updates
◦ InsLM takes less space than BatchLM
◦ IncLM is more efficient than BatchLM
◦ InsLM (resp. DelLM) is far better than

BatchLM for insertions (resp. deletions)

9. CONCLUSION
We have proposed a revision of graph pattern matching, based on a notion of bounded
simulation. This yields a cubic-time method for finding matches, as opposed to the
intractability of its counterpart via subgraph isomorphism. Moreover, it is able to cap-
ture more sensible matches in emerging applications. We have also investigated the
incremental pattern matching problem for matching defined in terms of subgraph iso-
morphism, graph simulation and bounded simulation, from complexity (boundedness)
analysis to incremental algorithms. We have shown that the incremental matching
problem is unbounded for matching based on all the three notions. Nonetheless, for
simulation and bounded simulation, we have shown that their incremental matching
problems are semi-bounded, and developed efficient incremental algorithms for (possi-
bly cyclic) patterns and batch updates. We have also developed incremental algorithms
for maintaining auxiliary data structures, i.e., landmark and distance vectors. These
allow us to efficiently find matches when data graphs are updated, minimizing un-
necessary recomputation. Our experimental results have verified the scalability and
effectiveness of our batch and incremental methods, using real-life and synthetic data.
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We are experimenting with real-life datasets in various domains, to identify areas
in which the revised matching is most effective. We are also investigating optimiza-
tion techniques, as well as lower bounds for incremental matching by exploring us-
age patterns of real-life networks [Kumar et al. 2006; Ntoulas et al. 2004; White and
Smyth 2003]. Another topic is to develop bounded incremental heuristic algorithms
for subgraph isomorphism, with performance guarantees. Finally, we are extending
our incremental matching methods to querying distributed graphs, using MapReduce.
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